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STABILIZATION OF THE WAVE EQUATION ON 1-D NETWORKS∗

JULIE VALEIN† AND ENRIQUE ZUAZUA‡

Abstract. In this paper we study the stabilization of the wave equation on general 1-d networks.
For that, we transfer known observability results in the context of control problems of conservative
systems (see [R. Dáger and E. Zuazua, Wave Propagation, Observation, and Control in 1-d Flexible
Multi-structures, Math. Appl. 50, Springer-Verlag, Berlin, 2006]) into a weighted observability esti-
mate for dissipative systems. Then we use an interpolation inequality similar to the one proved in
[P. Bégout and F. Soria, J. Differential Equations, 240 (2007), pp. 324–356] to obtain the explicit
decay estimates of the energy for smooth initial data. The obtained decay rate depends on the geo-
metric and topological properties of the network. We also give some examples of particular networks
in which our results apply, yielding different decay rates.
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1. Introduction and main results. In this paper, we consider a planar net-
work of elastic strings that undergoes small perpendicular vibrations. Recently, the
control, observation, and stabilization problems of these networks have been the ob-
jects of intensive research (see [15, 17] and the references therein).

Here we are interested in the problem of stabilization of the network by means
of a damping term located on one single exterior node. The aim of this paper is to
develop a systematic method to address this issue and to give a general result allowing
us to transform an observability result for the corresponding conservative system into
a stabilization result for the damped system.

Before going on, let us recall some definitions and notations about 1-d networks
used in the paper. We refer to [1, 20, 25] for more details.

A 1-d network R is a connected set of Rn, n ≥ 1, defined by

R =
N⋃
j=1

ej ,

where ej is a curve that we identify with the interval (0, lj), lj > 0, and such that
for k �= j, ej ∩ ek is either empty or a common end called a vertex or a node (here ej
stands for the closure of ej).

For a function u : R −→ R, we set uj = u|ej
to be the restriction of u to the

edge ej .
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“Région Nord-Pas de Calais” (France).

‡Ikerbasque Research Professor, Basque Center for Applied Mathematics (BCAM), Bizkaia Tech-
nology Park, Building 500, E-48160 Derio - Basque Country, Spain (zuazua@bcamath.org). The
work of this author was supported by the grant MTM2008-03541 of the MICINN (Spain).

2771



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2772 JULIE VALEIN AND ENRIQUE ZUAZUA

We denote by E = {ej ; 1 ≤ j ≤ N} the set of edges of R, and by V the set of
vertices of R. For a fixed vertex v, let

Ev = {j ∈ {1, . . . , N} ; v ∈ ej}
be the set of edges having v as a vertex. If card(Ev) = 1, v is an exterior node, while
if card(Ev) ≥ 2, v is an interior one. We denote by Vext the set of exterior nodes, and
by Vint the set of interior ones. For v ∈ Vext, the single element of Ev is denoted by
jv.

We now fix a partition of Vext: Vext = D ∪ {v1}, where D �= ∅. In this way, we
distinguish the conservative exterior nodes, D, in which we impose the Dirichlet ho-
mogeneous boundary condition, and the node in which the damping term is effective,
v1. To simplify the notation, we will assume that v1 is located at the end 0 of the
edge e1.

Let uj = uj(t, x) : R × [0, lj] → R be the function describing the transversal
displacement in time t of the string ej of length lj . Let us denote by L the sum of
the lengths of all edges of the network, the total length of the network.

We assume that the displacements uj satisfy the following system:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2uj

∂t2 (x, t) − ∂2uj

∂x2 (x, t) = 0, 0 < x < lj , t > 0, ∀j ∈ {1, . . . , N},
uj(v, t) = ul(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑

j∈Ev

∂uj

∂nj
(v, t) = 0 ∀v ∈ Vint, t > 0,

ujv (v, t) = 0 ∀v ∈ D, t > 0,
∂u1
∂x (0, t) = ∂u1

∂t (0, t) ∀t > 0,
u(t = 0) = u(0), ∂u∂t (t = 0) = u(1),

where ∂uj/∂nj(v, .) stands for the outward normal (space) derivative of uj at the
vertex v. We denote by u the vector u = (uj)j=1,...,N .

The above system has been considered by several authors in some particular
situations. We refer, for instance, to [2, 3, 4, 5, 6, 26], where explicit decay rates are
obtained for networks with some special structures. We also refer to [21], where the
problem is considered in the presence of delay terms in the feedback law.

The object of this paper is not to give an additional result in a particular case, but
rather to develop a systematic method allowing one to address the issue in a general
context. We do this by transferring known observability results for the corresponding
conservative system into stabilization results for the dissipative system. This provides
a new proof for the existing results mentioned above and allows us to get new results.

As mentioned above, in this paper we consider the case where the dissipation
is located on an external node of the network, but the method can be adapted to
treat the case where the damping term is located in several nodes, both exterior and
interior.

In order to study system (1.1) we need a proper functional setting. We define the
real Hilbert spaces

L2(R) = {u : R → R;uj ∈ L2(0, lj) ∀j = 1, . . . , N}
and

V :=

⎧⎨
⎩φ ∈

N∏
j=1

H1(0, lj) : φj(v) = φk(v)∀j, k ∈ Ev, ∀v ∈ Vint ; φjv (v) = 0 ∀v ∈ D
⎫⎬
⎭ ,
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equipped with the natural inner products

〈φ, φ̃〉L2(R) =
N∑
j=1

∫ lj

0

φj φ̃jdx and 〈φ, φ̃〉V =
N∑
j=1

∫ lj

0

∂φj
∂x

∂φ̃j
∂x

dx,

respectively.
It is well known that system (1.1) may be rewritten as the first order evolution

equation

(1.2)
{
U ′ = AU,
U(0) = (u(0), u(1)),

in the Hilbert space

H := V × L2(R)

equipped with the usual inner product

〈(
u
w

)
,

(
ũ
w̃

)〉
:=

N∑
j=1

∫ lj

0

(
∂uj
∂x

∂ũj
∂x

+ wjw̃j

)
dx.

Here U is the vector U = (u, ∂u∂t )
T , and the operator A is defined by

A
(

u
w

)
:=

(
w

Δu

)
,

Δ being the Laplace operator: Δu = (∂
2uj

∂x2 )j=1,...,N . The domain D(A) of the opera-
tor A is defined by

D(A) :=

⎧⎨
⎩(u, w) ∈

⎛
⎝V ∩

N∏
j=1

H2(0, lj)

⎞
⎠× V :

∂u1

∂x
(0) = w1(0) ;

∑
j∈Ev

∂uj
∂nj

(v) = 0

∀v ∈ Vint

⎫⎬
⎭ .

Since A is maximal dissipative, by the Lumer–Phillips theorem, for an initial
datum U0 ∈ H there exists a unique solution U ∈ C([0, +∞), H) to problem (1.2).
Moreover, if U0 ∈ D(A), then

U ∈ C([0, +∞), D(A)) ∩ C1([0, +∞), H).

We define the natural energy of u by

(1.3) Eu(t) :=
1
2

N∑
j=1

∫ lj

0

((
∂uj
∂t

)2

+
(
∂uj
∂x

)2
)
dx.

This energy satisfies

(1.4) E′
u(t) = −

(
∂u1

∂t
(0, t)

)2

≤ 0,
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and therefore it is decreasing.
Remark 1.1. Integrating (1.4) between 0 and T , we obtain

∫ T

0

(
∂u1

∂t
(0, t)

)2

dt = Eu(0) − Eu(T ) ≤ Eu(0).

Consequently, this estimate implies that ∂u1
∂t (0, .) belongs to L2(0, T ) for finite energy

solutions. This is a “hidden” regularity property in the sense that it is not a direct
consequence of the regularity of finite energy solutions.

In [2, 3, 4, 5, 6, 21], the method for obtaining the stabilization of (1.1) in par-
ticular cases is based on the use of observability estimates for the solutions φ of the
conservative problem without damping, with Neumann boundary condition at the
node x = 0:

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2φj

∂t2 − ∂2φj

∂x2 = 0, 0 < x < lj, t > 0, ∀j ∈ {1, . . . , N},
φj(v, t) = φl(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑

j∈Ev

∂φj

∂nj
(v, t) = 0 ∀v ∈ Vint, t > 0,

φjv (v, t) = 0 ∀v ∈ D, t > 0,
∂φ1
∂x (0, t) = 0 ∀t > 0,
φ(t = 0) = u(0), ∂φ∂t (t = 0) = u(1).

It is well known that this problem is well posed in the natural energy space. If we
suppose that (u(0), u(1)) ∈ H , then problem (1.5) admits a unique solution,

φ ∈ C(0, T ; V ) ∩ C1(0, T ; L2(R)).

This system is obviously conservative, and its energy is constant: Eφ(t) = Eφ(0) for
all t > 0. Let us then denote by (λ2

n)n≥1 the sequence of eigenvalues of (1.5), and let
(ϕn)n≥1 be the corresponding eigenvectors forming an orthonormal basis of L2(R).
In particular cases, in [2, 3, 4, 5, 6, 21], under appropriate conditions, observability
inequalities of the form

(1.6)
∑
n≥1

c2n(λ
2
na

2
n + b2n) ≤ C

∫ T

0

∣∣∣∣∂φ1

∂t
(0, t)

∣∣∣∣
2

dt

are proved for system (1.5), where an, bn are the Fourier coefficients of the initial data
of φ in the basis (ϕn)n, and with weights c2n > 0 depending on the network. To obtain
the stabilization result from the observability inequality (1.6), the authors decompose
the solution u as the sum of φ, solution of (1.5) with the same initial data as u, and
a rest with vanishing initial data. Then they show regularity results of trace type for
this rest (see section 4 of [21]). However, in these articles, the analysis is limited to
strong observability inequalities (leading to exponential or polynomial decay results),
which hold for only a restricted class of networks.

In the present paper we are able to deal with arbitrary networks in which weaker
observability inequalities may hold, leading to arbitrarily slow decay rates.

Our analysis is based on the existing observability results for the following system
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with Dirichlet boundary conditions at all exterior nodes:

(1.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ψj

∂t2 (x, t) − ∂2ψj

∂x2 (x, t) = 0, 0 < x < lj , t > 0, ∀j ∈ {1, . . . , N},
ψj(v, t) = ψl(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑
j∈Ev

∂ψj

∂nj
(v, t) = 0 ∀v ∈ Vint, t > 0,

ψjv (v, t) = 0 ∀v ∈ D, t > 0,
ψ1(0, t) = 0, t > 0,
ψ(t = 0) = ψ(0), ∂ψ∂t (t = 0) = ψ(1).

The study of the observability of this system is motivated by control problems (see
[10, 11, 12, 13, 14, 15]).

The difference between systems (1.5) and (1.7) is the boundary condition at the
end 0 of e1: the Dirichlet one for (1.7) and Neumann one for (1.5).

If we suppose that (ψ(0), ψ(1)) ∈ H̃ = Ṽ × L2(R), where

Ṽ =

⎧⎨
⎩ψ ∈

N∏
j=1

H1(0, lj) : ψj(v) = ψk(v)∀j, k ∈ Ev, ∀v ∈ Vint ;

ψjv (v) = 0 ∀v ∈ D ; ψ1(0) = 0

⎫⎬
⎭ ,

then problem (1.7) admits a unique solution ψ ∈ C(0, T ; Ṽ )∩C1(0, T ; L2(R)). This
system is obviously also conservative.

In this paper, we show the link between the existing observability results for (1.7)
and the stabilization properties of (1.1).

To be more precise, let us denote by (λ̃2
n)n≥1 the sequence of eigenvalues corre-

sponding to problem (1.7), and let (ϕDn )n≥1 be the corresponding eigenvectors forming
an orthonormal basis of L2(R). Under some conditions on the topology of the network
and the lengths of the strings entering it, Dáger and Zuazua [10, 11, 12, 13, 14, 15]
proved weighted observability inequalities for (1.7) of the following form:

(1.8) ED∗ (ψ, 0) :=
∑
n≥1

c2n(λ̃
2
nψ

2
0,n + ψ2

1,n) ≤ C

∫ T

0

∣∣∣∣∂ψ1

∂x
(0, t)

∣∣∣∣
2

dt,

for a positive constant C, where ψ0,n, ψ1,n are the Fourier coefficients of the initial
data of ψ in the basis (ϕDn )n, and with positive weights (c2n)n≥1 depending on the
properties of the network.

To obtain this weighted observability estimate (1.8), several methods have been
developed in those articles. The first, which uses the D’Alembert representation
formula, applies to tree-shaped networks. Its main advantage is that it does not
require computing the spectrum of the network. This method was later adapted in
[3] and [5] to analyze the stabilization of stars and trees. A second method uses the
Fourier expansion of solutions and the Beurling–Malliavin theorem (see, for instance,
[14, 15, 21]). This applies for general networks and avoids the difficulties related to
applying the D’Alembert formula to more complex networks that may contain circuits
(see, for instance, [9]).

The key observation of this paper is that the weighted observability estimates for
u solution of (1.1) can be obtained directly from (1.8). This method is of systematic
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application and avoids remaking all the fine analysis already carried out in [10, 15],
which uses, in particular, tools from number theory to analyze the properties of the
weights

{
c2n
}
n≥1

in terms of those of the network under consideration.
Let us now explain how (1.8) can be applied directly in our context. For that

we decompose u as the sum of w, a solution of (1.7) with appropriate initial data
(u(0) − u

(0)
1 (0)ϕ, u(1)) (where ϕ is a given smooth function such that ϕ1(0) = 1), and

a rest. Applying (1.8) to the solution w of (1.7), we obtain the following weighted
observability estimate for u solution of (1.1):

(1.9) ED∗ (w, 0) + u
(0)
1 (0)2 ≤ CT

∫ T

0

(
∂u1

∂t
(0, t)

)2

dt,

where ED∗ (w, 0) is defined by (1.8), with weights (c2n)n depending on the network. If
the weights c2n are nontrivial for all n ∈ N∗, the energy of the dissipative system tends
to 0 as t → ∞. However, in general, the weights tend to 0 as n → ∞, the observed
quantity is weaker than the V × L2(R)-norm, and the decay rate is not exponential.

It is important to underline that (1.9) holds under the same assumptions on the
network needed for (1.8) to hold for the Dirichlet problem (1.7). Thus, no further
analysis is required to establish the existence of the weights

{
c2n
}
n≥1

in terms of the
properties of the network.

To derive decay properties from (1.9), we view this inequality as a weak observ-
ability estimate in which the observed energy E−(0) is equal, roughly speaking, to
ED∗ (w, 0) + u

(0)
1 (0)2. In practice we often take, if necessary, the lower convex enve-

lope of c2n instead of the weights c2n in the definition of ED∗ (see section 3.1). The
observed energy E− is weaker than the V ×L2(R)-norm of the initial data that would
be required to prove exponential decay, and consequently we obtain weaker decay
rates. To obtain explicit decay rates from this weak observability inequality we use
an interpolation inequality which is a variant of the one from Bégout and Soria [7]
and which is a generalization of Hölder’s inequality. For this to be done we need
to assume more regularity of the initial data. To be more precise, we shall consider
initial data (u(0), u(1)) ∈ Xs :=

[
D(A), D(A0)

]
1−s for 0 < s < 1/2. In this way we

deduce an interpolation inequality of the form

1 ≤ Φs

(
E−(0)
CEu(0)

) ∥∥(u(0), u(1))
∥∥2

Xs

C′Eu(0)
,

where Φs is an increasing function which depends on s and on the energy E− under
consideration.

The previous interpolation inequality implies

E−(0) ≥ CEu(0)Φ−1
s

⎛
⎝ C′Eu(0)∥∥(u(0), u(1))

∥∥2

Xs

⎞
⎠ .

With (1.4) and (1.9), we obtain

Eu(0) − Eu(T ) ≥ CEu(0)Φ−1
s

⎛
⎝ C′Eu(0)∥∥(u(0), u(1))

∥∥2

Xs

⎞
⎠ ,
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which implies, by the semigroup property (see Ammari and Tucsnak [6])

(1.10) ∀t > 0, Eu(t) ≤ CΦs

(
1

t+ 1

)∥∥∥(u(0), u(1))
∥∥∥2

Xs

.

Obviously, the decay rate in (1.10) depends on the behavior of the function Φs near 0.
Thus, in order to determine the explicit decay rate we need to have a sharp description
of the function Φs, which depends on s and on the energies E and E− and thus on
the weights (c2n)n of (1.9) in an essential way. These weights depend on the topology
of the network and the number-theoretical properties of the lengths of the strings
entering it.

In a systematic way this approach allows getting decay rates for the energy of
smooth solutions of the damped system as a consequence of the observability proper-
ties of the undamped system.

The analysis in this paper is limited to networks of strings with damping in one
single end, but the same methods, combined with the tools developed in [15], can be
applied in other situations, as, for instance, the following:

(a) networks of strings with damping in several end points;
(b) networks with damping on end points and internal nodes;
(c) networks of beams.
The paper is organized as follows. In the second section, we show how to pass

from the observability inequality for the conservative problem (1.7) with Dirichlet
boundary conditions at all exterior nodes to the weighted observability inequality
(1.9) for (1.1). In section 3 we give an interpolation inequality which is a variant of
the one by Bégout and Soria [7], and we apply it to obtain the explicit decay estimate
of the energy. Finally we end up discussing some illustrative examples in section 4.

2. The weighted observability inequality. In this section, we prove that
we can obtain a weighted observability estimate for u solution of (1.1) directly from
(1.8). First of all, we recall some results about system (1.7) with Dirichlet boundary
conditions at all exterior nodes.

2.1. Preliminaries about the Dirichlet problem. Recall that if we suppose
that (ψ(0), ψ(1)) ∈ H̃, then problem (1.7) admits a unique solution

ψ ∈ C(0, T ; Ṽ ) ∩ C1(0, T ; L2(R)).

Denote by (λ̃2
n)n≥1 the sequence of eigenvalues corresponding to problem (1.7),

and let (ϕDn )n≥1 be the corresponding eigenvectors forming an orthonormal basis of
L2(R). We assume now that (ψ(0), ψ(1)) ∈ H̃, and we set

ψ(0) =
∑
n≥1

ψ0,nϕ
D
n and ψ(1) =

∑
n≥1

ψ1,nϕ
D
n ,

where (λ̃nψ0,n)n, (ψ1,n)n ∈ l2(N∗).
In [15], a weighted observability inequality is derived, motivated by control prob-

lems. More precisely, it is shown that, under some conditions on the topology of the
network and the lengths of the strings entering it, for all T > T0 (where T0 > 0 is large
enough) there exist a sequence of positive weights

{
c2n
}
n≥1

and a positive constant C
such that for all solutions ψ of (1.7) it holds that

(2.1)
∑
n≥1

c2n(λ̃
2
nψ

2
0,n + ψ2

1,n) ≤ C

∫ T

0

∣∣∣∣∂ψ1

∂x
(0, t)

∣∣∣∣
2

dt.
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Notice that, for this to be true, it is essential that the time T0 > 0 be large enough.
More precisely, in [15] inequality (2.1) is proved in the case of general networks for
T > 2L, where L is the total length of the network. In the case of tree-like networks,
(2.1) is obtained by the D’Alembert representation formula, and the weights c2n are
strictly positive for every n ∈ N∗ if the tree is nondegenerate. In the case of stars, this
comes down to imposing irrationality conditions on the ratio of each pair of lengths. In
the case of trees, the condition of nondegeneracy of the network is a natural extension
of the irrationality condition for stars and is also generically true (see [10, 13, 15]
for more details). In the case of general networks, (2.1) is established by means of
the Beurling–Malliavin theorem under the assumption that all eigenfunctions have
a nontrivial Neumann trace at the observation node. This condition is generically
satisfied.

We set

(2.2) ED∗ (ψ, 0) :=
1
2

∑
n≥1

c2n(λ̃
2
nψ

2
0,n + ψ2

1,n)

as the weighted energy for ψ at time 0. Note that (ED∗ )
1
2 defines a norm on H̃ because

the weights c2n, according to the results in [15], are assumed to be positive. In what
follows, we assume that the network under consideration is such that the solutions ψ
of (1.7) satisfy (2.1).

2.2. The weighted observability inequality. In this section, we prove that
we can obtain a weighted observability estimate for u solution of (1.1) directly from
(2.1). Thus, we assume that the network is such that (2.1) holds and (u(0), u(1)) ∈ H .

We introduce w solution of (1.7) with initial data given as (w(0), w(1)) =
(u(0) − u

(0)
1 (0)ϕ, u(1)), where ϕ is a given smooth function satisfying

(2.3)

⎧⎪⎪⎨
⎪⎪⎩

ϕ1(0) = 1,
ϕjv (v) = 0 ∀v ∈ D,
ϕj(v) = ϕl(v) ∀j, l ∈ Ev, v ∈ Vint,∑

j∈Ev

∂ϕ
∂nj

(v) = 0 ∀v ∈ Vint.

In this manner, the initial data (w(0), w(1)) belong to H̃; i.e., w(0) satisfies the Dirich-
let boundary condition at the end 0 of e1. Therefore, by hypothesis, w satisfies (2.1).

We also consider ε, the solution of the following nonhomogeneous Dirichlet prob-
lem:

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2εj
∂t2 (x, t) − ∂2εj

∂x2 (x, t) = 0 ∀x ∈ (0, lj), t > 0, ∀j ∈ {1, . . . , N},
εj(v, t) = εl(v, t) ∀j, l ∈ Ev, v ∈ Vint, t > 0,∑
j∈Ev

∂εj
∂nj

(v, t) = 0 ∀v ∈ Vint, t > 0,
εjv (v, t) = 0 ∀v ∈ D, t > 0,
ε1(0, t) = u1(0, t), t > 0,

ε(t = 0) = u
(0)
1 (0)ϕ, ∂ε∂t (t = 0) = 0.

Note that ε satisfies a nonhomogeneous Dirichlet boundary condition at x = 0. Actu-
ally it coincides with the value of the solution u1 of (1.1) at that point. By Remark
1.1, we notice that ∂u1/∂t(0, .) ∈ L2(0, T ), so that the nonhomogeneous Dirichlet
boundary condition belongs to H1(0, T ).
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In this way we have the decomposition

(2.5) u = w + ε.

In this section, we prove the following theorem.
Theorem 2.1. Assume that the network is such that the weighted observability

inequality (2.1) is satisfied for the conservative system (1.7) with Dirichlet boundary
conditions at all exterior nodes. We split up u, solution of (1.1), as (2.5), where w
is the solution of (1.7) with initial data (u(0) − u

(0)
1 (0)ϕ, u(1)) and ε is the solution of

(2.4). We define E∗(u, 0) by

(2.6) E∗(u, 0) := ED∗ (w, 0) + u
(0)
1 (0)2,

where ED∗ (w, 0) is defined by (2.2). Then for all T > T0 there exists CT > 0 such
that any solution u of (1.1) satisfies the weighted observability inequality

(2.7) E∗(u, 0) ≤ CT

∫ T

0

(
∂u1

∂t
(0, t)

)2

dt,

provided that (u(0), u(1)) ∈ H.
Remark 2.2. Note that, according to Theorem 2.1, we transform the observability

inequality for the Dirichlet problem (1.7) into a similar one for the dissipative problem
(1.1). Thus, in particular, estimate (2.7) holds under the same assumptions on the
network that are needed for the Dirichlet problem and that are discussed in [15]. Some
examples will be discussed in section 4.

Note also that (E∗(u, 0))1/2 defines a norm in the space of initial data (u(0), u(1)) ∈
H . Indeed, when E∗(u, 0) vanishes, u(0)

1 (0) = 0. Thus (u(0), u(1)) ∈ H̃ and then
E∗(u, 0) = ED∗ (u, 0), and, by assumption, (ED∗ (u, 0))1/2 defines a norm in H̃.

2.3. Proof of Theorem 2.1. Let (u(0), u(1)) ∈ H . We decompose u as in (2.5),
where w and ε solve (1.7) and (2.4), respectively. Therefore, w is the solution of (1.7)
with initial data (w(0), w(1)) = (u(0) − u

(0)
1 (0)ϕ, u(1)), and thus, by hypothesis, it

satisfies (2.1).
First, we have the following lemma.
Lemma 2.3. For all T > 0 there exists CT > 0 such that the solutions u of (1.1)

and ε of (2.4) satisfy the following estimate:

(2.8)
∫ T

0

(
∂ε1
∂x

(0, t)
)2

dt ≤ CT

(∫ T

0

(
∂u1

∂t
(0, t)

)2

dt+
(
u

(0)
1 (0)

)2
)
.

Remark 2.4. Note that (2.8) holds for all networks, since, in fact, it holds locally
near the boundary of a single string. In this context we apply it along the string
containing the extreme x = 0, getting (2.8).

Proof. First, we easily show that the energy Eε of the solution ε (defined as in
(1.3)) satisfies

d

dt
Eε(t) = −∂ε1

∂x
(0, t)

∂u1

∂t
(0, t),

and then for all t > 0

Eε(t) = Eε(0) −
∫ t

0

∂ε1
∂x

(0, s)
∂u1

∂t
(0, s)ds.
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Therefore, by using Cauchy’s inequality, we obtain

(2.9) Eε(t) ≤ Eε(0) +
1
4

∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds+
∫ t

0

(
∂u1

∂t
(0, s)

)2

ds.

Second, for all t ∈ (0, T ], multiplying the wave equation satisfied by ε1 by (l1 −
x)∂ε1∂x and integrating on (0, l1) × (0, t), we have

∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂t2

dxds −
∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂x2

dxds = 0.

By integration by parts, we have∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂t2

dxds = −
∫ t

0

∫ l1

0

(l1 − x)
∂2ε1
∂xt

∂ε1
∂t

dxds

+
∫ l1

0

(l1 − x)
∂ε1
∂x

(s, x)
∂ε1
∂t

(s, x)dx

∣∣∣∣∣
t

0

= −1
2

∫ t

0

∫ l1

0

(
∂ε1
∂t

)2

dxds+
l1
2

∫ t

0

(
∂u1

∂t
(0, s)

)2

ds

+
∫ l1

0

(l1 − x)
∂ε1
∂x

(t, x)
∂ε1
∂t

(t, x)dx,

because ∂ε
∂t (t = 0) = 0, and

∫ t

0

∫ l1

0

(l1 − x)
∂ε1
∂x

∂2ε1
∂x2

dxds =
1
2

∫ t

0

∫ l1

0

(l1 − x)
∂

∂x

((
∂ε1
∂x

)2
)
dxds

=
1
2

∫ t

0

∫ l1

0

(
∂ε1
∂x

)2

dxds− l1
2

∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds.

Therefore, we obtain

−1
2

∫ t

0

∫ l1

0

(
∂ε1
∂t

)2

dxds+
l1
2

∫ t

0

(
∂u1

∂t
(0, s)

)2

ds+
∫ l1

0

(l1 − x)
∂ε1
∂x

(t, x)
∂ε1
∂t

(t, x)dx

− 1
2

∫ t

0

∫ l1

0

(
∂ε1
∂x

)2

dxds +
l1
2

∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds = 0,

and thus

(2.10)
∫ t

0

(
∂ε1
∂x

(0, s)
)2

ds ≤ 2
l1

∫ t

0

Eε(s)ds+ 2Eε(t).

By grouping (2.9) and (2.10), we find

Eε(t) ≤ Eε(0) +
1

2l1

∫ t

0

Eε(s)ds+
1
2
Eε(t) +

∫ t

0

(
∂u1

∂t
(0, s)

)2

ds.

That is to say,

Eε(t) ≤ 2Eε(0) +
1
l1

∫ t

0

Eε(s)ds+ 2
∫ t

0

(
∂u1

∂t
(0, s)

)2

ds.
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By Gronwall’s lemma, we obtain that, for all t ∈ (0, T ],

Eε(t) ≤ CT

(
Eε(0) +

∫ T

0

(
∂u1

∂t
(0, s)

)2

ds

)
,

where CT depends on T . By inserting this expression into (2.10), we find

∫ T

0

(
∂ε1
∂x

(0, t)
)2

dt ≤ CT

(
Eε(0) +

∫ T

0

(
∂u1

∂t
(0, t)

)2

dt

)
.

However,

Eε(0) =
(
u

(0)
1 (0)

)2

⎛
⎝1

2

N∑
j=1

∫ lj

0

(
∂ϕj
∂x

(x)
)2

dx

⎞
⎠ = C

(
u

(0)
1 (0)

)2

,

where C is a constant, since ϕ is given as in (2.3), independently of the solution under
consideration. This proves (2.8).

Let us now return to the proof of Theorem 2.1.
Since w satisfies (2.1), we have

(2.11) ED∗ (w, 0) = ED∗ (w, t) ≤ C

∫ T

0

(
∂w1

∂x
(0, t)

)2

dt,

where ED∗ (w, 0) is defined as in (2.2) for w solution of (1.7) with initial data (u(0) −
u

(0)
1 (0)ϕ, u(1)).

Moreover, we have

∫ T

0

(
∂w1

∂x
(0, t)

)2

dt ≤ C

∫ T

0

((
∂u1

∂x
(0, t)

)2

+
(
∂ε1
∂x

(0, t)
)2
)
dt.

Therefore, with (2.8) and (2.11), we obtain
(2.12)

ED∗ (w, 0) = ED∗ (w, t) ≤ CT

∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt+CT

(
u

(0)
1 (0)

)2

.

We recall that E∗(u, 0) is given by (2.6), where ED∗ (w, 0) is defined by (2.2).
Then, (2.12) becomes

(2.13) E∗(u, 0) ≤ CT

∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt+ CT

(
u

(0)
1 (0)

)2

.

In fact, we can remove the last term on the right-hand side of (2.13).
Lemma 2.5. For T large enough, the solutions u of (1.1) satisfy

E∗(u, 0) ≤ CT

∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt,

for a positive constant CT depending on T .
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Proof. In view of (2.13) it is sufficient to show that there exists a positive constant
C > 0 such that

∣∣∣u(0)
1 (0)

∣∣∣2 ≤ C

∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dt.

We argue by contradiction. If this is not the case, there exists a sequence of solutions
un such that

(2.14)
∣∣∣u(0)
n, 1(0)

∣∣∣ = 1 ∀n ∈ N

and

(2.15)
∫ T

0

((
∂un, 1
∂t

(0, t)
)2

+
(
∂un, 1
∂x

(0, t)
)2
)
dx→ 0 as n→ +∞.

In view of this and (2.13), we deduce that E∗(un, 0) are uniformly bounded. Passing
weakly to the limit in the Hilbert space H, defined as the closure of V with respect
to the norm (E∗(un, 0))

1
2 , we obtain a limit solution u such that

(2.16)
∣∣∣u(0)

1 (0)
∣∣∣ = 1

and

(2.17)
∫ T

0

((
∂u1

∂t
(0, t)

)2

+
(
∂u1

∂x
(0, t)

)2
)
dx = 0.

The fact that (2.16) holds is a consequence of the compactness of the trace operator
from R to R. (It is, in fact, an operator of rank one.) On the other hand, (2.17) holds
as a consequence of the weak lower semicontinuity. But, by unique continuation, it is
easy to see, in view of (2.17), that for all T > 2L the whole limit solution u vanishes.
Indeed, we obtain by (2.17)

∂u1

∂t
(0, t) =

∂u1

∂x
(0, t) = 0,

and therefore ∂u/∂t solves system (1.7) with initial data (u(1), ∂2u(0)/∂x2). Then,
we can apply (2.1) to obtain

u(1) =
∂2u(0)

∂x2
= 0.

Consequently, ∂u/∂t = 0 on R× (0, T ), and thus u is independent of t. Thus u = 0
on R× (0, T ) since it is harmonic on the network and fulfills the Dirichlet boundary
condition. This contradicts (2.16).

This lemma proves Theorem 2.1, because u is the solution of (1.1).

3. The stabilization result.
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3.1. An interpolation inequality. In this subsection, we give an interpolation
result similar to that of [7].

Let m ∈ [0, 1), 0 < s < 1/2, and assume that

(3.1) ω : (m, ∞) → (0, ω(m)) is a convex and decreasing function with ω(∞) = 0;

(3.2) Φs : (0, ω(m)) → (0, ∞) is a concave and increasing function with Φs(0) = 0;

(3.3) ∀t ∈ [1, ∞), 1 ≤ Φs(ω(t))t2s;

(3.4) the function t �→ 1
t
Φ−1
s (t) is nondecreasing on (0, 1).

Before stating the needed interpolation inequality, we recall the inverse Jensen
inequality, which is the inverse version of the classical Jensen inequality (see Lemma
2.4 from [7] and Rudin [23]).

Lemma 3.1 (inverse Jensen inequality). Let (Ω, Υ, ν) be a measure space such
that ν (Ω) = 1, and let −∞ ≤ a < b ≤ ∞. Assume that

(1) ϕ : (a, b) → R is a concave function,
(2) g ∈ L1(Ω, Υ, ν) is such that for almost every x ∈ Ω, g(x) ∈ (a, b).

Then ϕ(g)+ ∈ L1(Ω, Υ, ν) and∫
Ω

ϕ(g)dν ≤ ϕ

(∫
Ω

gdν

)
.

Under the conditions (3.2)–(3.3), we have the following result, which is a gener-
alized Hölder’s inequality, a variant of Theorem 2.1 given in [7].

Theorem 3.2. Let (ω, Φs) be as above, satisfying (3.1)–(3.3). Then for any
f = (fn)n∈N∗ ∈ l1(N∗), f �= 0, we have

(3.5) 1 ≤ Φs

(∑
n≥1 |fn|ω(n)∑

n≥1 |fn|

) ∑
n≥1 |fn|n2s∑
n≥1 |fn|

,

as soon as (fnω(n))n ∈ l1(N∗) and (fnn2s)n ∈ l1(N∗).
Proof. The proof is similar to that of Theorem 2.1 of [7]. We give it for the sake

of completeness. By (3.3) and the Cauchy–Schwarz inequality, we have

1 =

⎛
⎝∑
n≥1

|fn|∑
n≥1 |fn|

⎞
⎠

2

≤
⎛
⎝∑
n≥1

|fn|∑
n≥1 |fn|

Φ
1
2
s (ω(n))ns

⎞
⎠

2

≤
⎛
⎝∑
n≥1

|fn|∑
n≥1 |fn|

Φs(ω(n))

⎞
⎠
⎛
⎝∑
n≥1

|fn|∑
n≥1 |fn|

n2s

⎞
⎠ .

Now, we apply Lemma 3.1 with ϕ = Φs a concave function, g = ω, and the discrete
measure ν =

∑
n≥1

|fn|∑
n≥1|fn|δn, by noticing that

⎛
⎝∑
n≥1

|fn|∑
n≥1 |fn|

⎞
⎠ = 1.
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We then obtain (3.5).
We now give some examples of pairs (ω, Φs) satisfying (3.1)–(3.4).
Example 3.3. 1. If

ω(t) =
c

tp

for some p ≥ 1, we can take Φs of the form

Φs(t) =
(
t

c

) 2s
p

.

We can easily prove that (ω, Φs) satisfy (3.1)–(3.2) with m = 0 and (3.3)–(3.4).
2. If

ω(t) = Ce−At,

where A > 2(2s+ 1) and C > 0, we can take Φs of the form

Φs(t) =

(
A

ln
(
C
t

)
)2s

.

We can easily prove that Φs is an increasing function on (0, ω(0)) and a concave
function on (0, ω(1/2)) (because A > 2(2s+ 1)), that t �→ 1

tΦ
−1
s (t) is nondecreasing

on (0, 1), and that the pair (ω, Φs) satisfies (3.3) on [1, ∞). Thus (ω, Φs) satisfy
(3.1)–(3.4) with m = 1/2.

In the application of the interpolation inequality of Theorem 3.2 to our stabi-
lization problem the weight ω is determined by the weights (c2n)n in (2.2). However,
notice that, in general, the weights c2n may degenerate quickly, and consequently we
have to work in a more general context.

Moreover, in principle, (c2n)n does not necessarily satisfy the convexity or the
monotony property in (3.1). To ensure that this assumption is satisfied, we introduce
the notion of the lower convex envelope of a sequence (un)n satisfying lim infn→∞ un =
0. Roughly, it is the “nearest” convex and decreasing function ω(n) satisfying 0 <
ω(n) ≤ un for all n ∈ N. The existence of this function is guaranteed by the following
lemma.

Lemma 3.4 (see [7]). Let −∞ < a < b ≤ ∞, and let ε : [a, b) → (0, ∞) be a
continuous function such that lim inft↗b ε(t) = 0. Then there exists a convex function
ϕ ∈ C1

b ([a, b); R) such that 0 < ϕ ≤ ε and ϕ′ < 0 on [a, b).
The proof of this lemma can be found in [7].
Now, we show how to construct the weight ω satisfying (3.1) from (un)n∈N ⊂

(0, ∞) such that lim infn→∞ un = 0. Let ε ∈ C([0, ∞); R) be such that 0 < ε(n) ≤ un
for any n ∈ N. Let ϕ ∈ C([0, ∞); R) be a decreasing and convex function such that
for any t ≥ 0, 0 < ϕ(t) ≤ ε(t) (which exists by the previous lemma), and consider
C ⊂ [1, ∞) × [0, ∞) the closure of the convex envelope of the set {(n, un); n ∈ N}.
Finally, fix arbitrarily t ≥ 1. Then the set Ct = C ∩ ({t}×R) is nonempty and closed,
and the previous lemma ensures that, for any st ∈ R such that (t, st) ∈ Ct,

0 < ϕ(t) ≤ st.

So by compactness, we may define the function ω as

∀t ≥ 1, ω(t) = min {st; (t, st) ∈ Ct} .
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Finally we extend ω as a decreasing, continuous, and convex function on [0, 1]. There-
fore, ω satisfies (3.1) with m = 0. This function ω is called the lower convex envelope
of the sequence (un)n.

In what follows, assuming that the weights in (2.1) are such that lim infn→∞cn = 0
and cn �= 0 for all n ∈ N∗, we choose the function ω as follows:

(3.6) ω is the lower convex envelope of the sequence
(
1, (c2n)n≥1

)
.

3.2. The main results. In this subsection we assume that the network is such
that the weighted observability inequality (2.1) holds for every solution of problem
(1.7). Therefore, by Theorem 2.1, u satisfies (2.7). Let us make some remarks, as
follows.

Remark 3.5. 1. If for all n ∈ N∗ we have c2n > 0, then the energy Eu tends to 0
as t→ ∞.

2. If there exists a positive constant c such that for all n ∈ N∗, c2n ≥ c > 0, then
the energy of u solution of (1.1) is exponentially decreasing. Unfortunately this does
not hold in general except, for example, for the simplest network, which consists of a
single string, and for trees with all but one damped end [21], but never for nontrivial
networks with one single damped end.

The statement in the first point can be proved by LaSalle’s invariance principle,
and the second one by a classical energy method combining the observability inequality
(2.7) and the energy dissipation law (1.4) (see, for instance, [21]).

Before stating the main result of this paper, let us give a technical lemma which
will be used in what follows. For that, we need to define Xs as the interpolation space
between D(A) and D(A0):

Xs :=
[
D(A), D(A0)

]
1−s ,

where 0 < s < 1/2. Note that if s = 0, then X0 = D(A0) = V × L2(R), and if s = 1,
then X1 = D(A). More precisely we can identify the space Xs as follows.

Lemma 3.6. For 0 < s < 1/2,

Xs =

⎛
⎝V ∩

∏
j

H1+s(0, lj)

⎞
⎠×

∏
j

Hs(0, lj).

Proof. First, D(A) is a dense subset of V × L2(R), and (V ∩∏N
j=1H

2(0, lj)) ×
V is a dense subset of V × L2(R) with D(A) ⊂ (V ∩ ∏N

j=1H
2(0, lj)) × V . Then[

D(A), V × L2(R)
]
1−s is a subset of

⎡
⎣
⎛
⎝V ∩

N∏
j=1

H2(0, lj)

⎞
⎠× V, V × L2(R)

⎤
⎦

1−s

with the same norms.
However,⎡

⎣
⎛
⎝V ∩

N∏
j=1

H2(0, lj)

⎞
⎠× V, V × L2(R)

⎤
⎦

1−s

=

⎛
⎝V ∩

N∏
j=1

H1+s(0, lj)

⎞
⎠×

N∏
j=1

Hs(0, lj),
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and thus, if D(A) is dense in (V ∩ ∏N
j=1H

1+s(0, lj)) ×
∏N
j=1H

s(0, lj), then, by a
classical result of [24],

Xs=

⎡
⎣
⎛
⎝V ∩

N∏
j=1

H2(0, lj)

⎞
⎠× V, V × L2(R)

⎤
⎦

1−s

=

⎛
⎝V ∩

N∏
j=1

H1+s(0, lj)

⎞
⎠×

N∏
j=1

Hs(0, lj).

To verify that D(A) is dense in (V ∩∏N
j=1H

1+s(0, lj))×
∏N
j=1H

s(0, lj), we note
that D(Δ) ×∏N

j=1 D(0, lj) ⊂ D(A), where

D(Δ) :=

⎧⎨
⎩u ∈ V ∩

N∏
j=1

H2(0, lj) :
∑
j∈Ev

∂uj
∂nj

(v) = 0 ∀v ∈ Vint ; ∂u1

∂x
(0) = 0

⎫⎬
⎭

and D(0, lj) is the space of C∞ functions with compact support in (0, lj). As∏N
j=1 D(0, lj) is dense in

∏N
j=1H

s(0, lj) (because 0 < s < 1/2), it remains to show
that D(Δ) is dense in V ∩∏N

j=1H
1+s(0, lj). For that, let ξ ∈ V ∩∏N

j=1H
1+s(0, lj).

For j ∈ {1, . . . , N}, we take

ξ̂j = ξj − ξj(0)ηj − ξj(lj)η̃j ,

where ηj and η̃j are C∞ functions satisfying

ηj(0) = 1 near 0, ηj(lj) = 0 near lj and η̃j(0) = 0 near 0, η̃j(lj) = 1 near lj .

Then ξ̂j ∈ H1+s
0 (0, lj). As D(0, lj) is dense into H1+s

0 (0, lj), there exists a sequence
ξ̂n,j ∈ D(0, lj) such that ξ̂n,j → ξ̂j in H1+s

0 (0, lj) when n→ ∞. Setting

ξn,j := ξ̂n,j + ξj(0)ηj + ξj(lj)η̃j ,

we see that ξn = (ξn,j)j=1,...,N ∈ D(Δ) and ξn → ξ in
∏N
j=1H

1+s(0, lj).
AsD(Δ) is dense in V ∩∏N

j=1H
1+s(0, lj), D(A) is dense in (V ∩∏N

j=1H
1+s(0, lj))×∏N

j=1H
s(0, lj), which finishes the proof.

Then we have the following lemma.
Lemma 3.7. Assume that (u(0), u(1)) belongs to Xs, where 0 < s < 1/2, and

(w(0), w(1)) = (u(0) − u
(0)
1 (0)ϕ, u(1)), where ϕ is a given smooth function satisfying

(2.3). Then there exists a positive constant C such that

‖(w(0), w(1))‖2
D(As

D) + |u(0)
1 (0)|2 ≤ C‖(u(0), u(1))‖2

Xs
,

where D(As
D) is the domain of the operator As with Dirichlet boundary conditions at

all exterior nodes.
Proof. First, we know that there exists C > 0 such that

‖(w(0), w(1))‖2
D(As

D) ≤ C‖(w(0), w(1))‖2

(Ṽ ∩∏N
j=1H

1+s(0, lj))×
∏N

j=1 H
s(0, lj)

by interpolation (see [24], for example).
This estimate leads to the existence of a positive constant C such that

(3.7) ‖(w(0), w(1))‖2
D(As

D) ≤ C‖(w(0), w(1))‖2

(V ∩∏N
j=1 H

1+s(0, lj))×
∏N

j=1H
s(0, lj)

,
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because w(0) ∈ V ∩ Ṽ .
The Sobolev injection theorem and the fact that (w(0), w(1)) = (u(0)−u(0)

1 (0)ϕ, u(1))
imply that there exists C > 0 such that

(3.8) ‖w(0)‖2
V ∩∏N

j=1H
1+s(0, lj)

+ |u(0)
1 (0)|2 ≤ C‖u(0)‖2∏N

j=1 H
1+s(0, lj)

.

By definition of w(1), we also have

(3.9) ‖w(1)‖2∏
N
j=1 H

s(0, lj)
= ‖u(1)‖2∏

N
j=1H

s(0, lj)
.

Moreover, by the continuous injection of[
D(A), D(A0)

]
1−s = Xs

into ⎡
⎣ N∏
j=1

H2(0, lj) ×
N∏
j=1

H1(0, lj),
N∏
j=1

H1(0, lj) × L2(R)

⎤
⎦

1−s

=
N∏
j=1

H1+s(0, lj) ×
N∏
j=1

Hs(0, lj),

there exists C > 0 such that

(3.10) ‖(u(0), u(1))‖2∏N
j=1H

1+s(0, lj)×
∏N

j=1H
s(0, lj)

≤ C‖(u(0), u(1))‖2
Xs
.

The estimates (3.7)–(3.10) prove this lemma.
The main results of the paper are the following.
Theorem 3.8. Assume that the weighted observability inequality (2.1) holds for

every solution of (1.7) with lim infn→∞ cn = 0 and cn �= 0 for all n ∈ N∗. Let ω be
defined by (3.6). Assume that the initial data (u(0), u(1)) belong to Xs, characterized
by Lemma 3.6, where 0 < s < 1/2. Let Φs be a function such that the pair (ω, Φs)
satisfies (3.1)–(3.4). Then there exists a constant C > 0 such that the corresponding
solution u of (1.1) verifies

(3.11) ∀t ≥ 0, Eu(t) ≤ CΦs

(
1

t+ 1

)∥∥∥(u(0), u(1))
∥∥∥2

Xs

.

Remark 3.9. We see that the decay rate of the energy directly depends on the
behavior of the interpolation function Φs near 0 and thus of ω and of the weights c2n
as n→ ∞.

Proof. We split up u as in (2.5), and we decompose w(0) = u(0) − u
(0)
1 (0)ϕ and

w(1) = u(1) as

w(0) = u(0) − u
(0)
1 (0)ϕ =

∑
n≥1

w0,nϕ
D
n and w(1) = u(1) =

∑
n≥1

w1,nϕ
D
n ,

where (λ̃nw0,n)n, (w1,n)n ∈ l2(N∗). We write

(3.12) E−(0) =
∑
n≥1

unω(n),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2788 JULIE VALEIN AND ENRIQUE ZUAZUA

where (un)n∈N∗ ∈ l1(N∗; R) is defined by

∀n ≥ 2, un =
1
2

(
λ̃2
n−1w

2
0,n−1 + w2

1,n−1

)
and

u1 = u
(0)
1 (0)2.

Observe that, by the construction (3.6) of ω, we have

E−(u, 0) ≤ E∗(u, 0).

Then, by (1.4) and (2.7) of Theorem 2.1, we have

(3.13) Eu(0) − Eu(T ) =
∫ T

0

(
∂u1

∂t
(0, t)

)2

dt ≥ CE−(0).

Assume further that (u(0), u(1)) ∈ Xs. We define

(3.14) E+(0) =
∑
n≥1

unn
2s.

It follows from Theorem 3.2 (applied to the function f = u and the weight ω) that

(3.15) 1 ≤ Φs

(
E−(0)∑
n≥1un

)
E+(0)∑
n≥1un

.

By the so-called Weyl’s formula (see, for instance, Theorem 1.3 of [1], Proposition 6.2
of [15], or [20, 25]), we have

(3.16) λ̃k ∼ kπ

L
,

and thus there exist c1, c2 > 0 such that, for n large enough, we have

c1
(n+ 1)π

L
≤ λ̃n ≤ c2

(n+ 1)π
L

.

Therefore, we have

E+(0) =
1
2

(
L

π

)2s∑
n≥1

(
λ̃2
nw

2
0,n + w2

1,n

)( (n+ 1)π
L

)2s

+
∣∣∣u(0)

1 (0)
∣∣∣2

≤ C

⎛
⎝∑
n≥1

(
λ̃2
nw

2
0,n + w2

1,n

)
λ̃2s
n +

∣∣∣u(0)
1 (0)

∣∣∣2
⎞
⎠

≤ C
(
‖(w(0), w(1))‖2

D(As
D) + |u(0)

1 (0)|2
)
.

Consequently, by Lemma 3.7, we obtain that there exists C > 0 such that

E+(0) ≤ C
∥∥(u(0), u(1))

∥∥2

Xs
.
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Moreover,∑
n≥1

un =
1
2

∑
n≥1

(
λ̃2
nw

2
0,n + w2

1,n

)
+ u

(0)
1 (0)2 =

∥∥∥w(0)
∥∥∥2

Ṽ
+ u

(0)
1 (0)2 +

∥∥∥u(1)
∥∥∥2

L2(R)
.

Furthermore, there exists C′ > 0 such that

‖u(0)‖2
V = ‖w(0) + u

(0)
1 (0)ϕ‖2

V ≤ C′(‖w(0)‖2
V + |u(0)

1 (0)|2) = C′(‖w(0)‖2
Ṽ

+ |u(0)
1 (0)|2)

because ϕ is given and w(0) ∈ Ṽ . Therefore, there exists C′ > 0 such that∑
n≥1

un ≥ C′
∥∥∥(u(0), u(1)

)∥∥∥2

V×L2(R)
.

Consequently, (3.15) becomes, by the increasing character of Φs,

1 ≤ Φs

⎛
⎝ E−(0)

C′ ∥∥(u(0), u(1))
∥∥2

V×L2(R)

⎞
⎠ C

∥∥(u(0), u(1))
∥∥2

Xs

C′ ∥∥(u(0), u(1))
∥∥2

V×L2(R)

,

which yields

(3.17) E−(0) ≥ C′
∥∥∥(u(0), u(1))

∥∥∥2

V×L2(R)
Φ−1
s

⎛
⎝
∥∥(u(0), u(1))

∥∥2

V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

⎞
⎠ ,

with C, C′ > 0. From (3.13) and (3.17), it follows that there exist C, C′ > 0 such
that

(3.18) Eu(T ) ≤ Eu(0) − C′
∥∥∥(u(0), u(1))

∥∥∥2

V×L2(R)
Φ−1
s

⎛
⎝
∥∥(u(0), u(1))

∥∥2

V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

⎞
⎠ ,

for any (u(0), u(1)) ∈ Xs.
We now follow the proof of Ammari and Tucsnak [6]. We rewrite (3.18) as follows:

‖(u(T ), ut(T ))‖2
V×L2(R) ≤

∥∥(u(0), u(1))
∥∥2

V×L2(R)

− C′∥∥(u(0), u(1))
∥∥2

V×L2(R)
Φ−1
s

⎛
⎝
∥∥(u(0), u(1))

∥∥2

V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

⎞
⎠ .

This estimate remains valid in successive time-intervals [lT, (l + 1)T ]. Notice that
there exists C > 0 such that

(3.19) ∀t ≥ 0, ‖(u(t), ut(t))‖Xs
≤ C‖(u(0), u(1))‖Xs ,

for 0 < s < 1
2 by interpolation, because it is true for s = 0 and s = 1 (see Theorem

5.1 of [19]). By (3.19) and the fact that the energy is decreasing by (1.4) and that
Φ−1
s is increasing, we obtain that

(3.20)
‖(u((l + 1)T ), ut((l + 1)T ))‖2

V×L2(R) ≤ ‖(u(lT ), ut(lT ))‖2
V×L2(R)

−C′ ‖(u(lT ), ut(lT ))‖2
V×L2(R) Φ−1

s

⎛
⎝‖(u((l + 1)T ), ut((l + 1)T ))‖2

V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

⎞
⎠ ,
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for every l ∈ N ∪ {0} .
Our expression (3.20) coincides with (4.16) in Ammari and Tucsnak [6] (with

G = Φ−1
s and θ = 1/2). The rest of the proof follows as in [6], where (3.4) is used, by

noticing that

‖(u((l + 1)T ), ut((l + 1)T ))‖2
V×L2(R)

C
∥∥(u(0), u(1))

∥∥2

Xs

< 1,

taking a higher constant C if necessary. Then (3.11) follows.
In addition, using (3.11) and making a particular and explicit choice of the concave

function Φs, we obtain a more explicit dependence of the weights on the decay rate
of the energy, as follows.

Theorem 3.10. Assume that the weighted observability inequality (2.1) holds for
every solution of (1.7) with lim infn→∞cn = 0 and that cn �= 0 for all n ∈ N∗. Let ω
be defined by (3.6). We set

∀t > 0, ϕ(t) =
ω(t)
t2

.

Then there exists a constant C > 0 such that for any initial data (u(0), u(1)) ∈ Xs

(0 < s < 1/2) the corresponding solution u of (1.1) verifies

(3.21) ∀t ≥ 0, Eu(t) ≤ C(
ϕ−1

(
1
t+1

))2s

∥∥∥(u(0), u(1))
∥∥∥2

Xs

.

Proof. We set

Φs(t) =
1

(ϕ−1(t))2s
,

where 0 < s < 1/2. Then the pair (ω, Φs) verifies (3.1)–(3.2) on (0, ∞). Indeed, as
Φs is the composition of the functions t �→ 1/ϕ−1(t) and t �→ t2s, which are increasing
and concave functions (by Lemma 2.6 of [7]), Φs is an increasing and concave function.

Moreover, we easily check that

1
ϕ−1(ω(t))

≥ 1
t

on [1, ∞). As a consequence, (3.3) holds on [1, ∞).
Finally, we have

1
t
Φ−1
s (t) = t

1−s
s ω

(
1
t

1
2s

)
,

which is an increasing function on (0, ∞) because 0 < s < 1/2, and therefore (ω, Φs)
satisfy (3.1)–(3.4). We now apply (3.11) of Theorem 3.8 with

Φs(t) =
(

1
ϕ−1(t)

)2s

to obtain the result.
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v

v1

e1

v2
e2

v
NeN

Fig. 4.1. A star-shaped network with N strings.

4. Examples. In [15] the authors proved observability inequalities of type (2.1)
on which our analysis is based. In the case of star-shaped networks, the weights in (2.1)
depend on the irrationality properties of the ratios of the lengths of the strings. In the
case of tree-shaped networks, the observability inequality is proved under a condition
(that is fulfilled generically within the class of tree-shaped networks) that generalizes
the condition on the irrationality of the ratios of the lengths of the strings arising in
the case of stars. Finally, in the case of general networks, the observability inequality
holds under the condition that all eigenfunctions of the network are observable. This
last result is a generalization of the previous one for stars and trees.

To illustrate the wide range of applications of the main result of this paper, in
this section we apply our previous results to some examples of particular networks: a
star-shaped network and a particular tree. We obtain the weights (cn)n directly by
[15] and deduce an explicit decay rate for the corresponding dissipative system.

4.1. The star-shaped network with N strings. The star-shaped network,
which constitutes a particular tree, is formed by N strings connected at one point v
(see Figure 4.1). Recall that the damping term is located on the vertex v1, the origin
of the controlled edge e1 of length l1. The remaining N−1 exterior nodes are denoted
by vi, i = 2, . . . , N , the string that contains vi by ei, and its length by li.

In [15], the authors proved the observability inequality (2.1) for the conserva-
tive system (1.7) with Dirichlet boundary conditions at all exterior nodes with the
following weights:

ck = max
i=2,...,N

∏
j �=i

∣∣∣sin(λ̃klj)
∣∣∣ ∀n ≥ 1.

First, if the ratio of any two of the lengths of the uncontrolled strings is an
irrational number, i.e., li/lj /∈ Q for all i, j = 2, . . . , N, i �= j, then for all k ∈ N we
have ck > 0. In this case, the energy of u solution of the dissipative system (1.1) tends
to 0 as t → ∞. This can be easily proved with LaSalle’s invariance principle, using
the energy as a Lyapunov functional, but it does not yield any explicit decay rate.

Thus assume that li/lj /∈ Q for all i, j = 2, . . . , N, i �= j. Denote by S the set of
all real numbers ρ such that ρ /∈ Q and so that its expansion as a continued fraction
[0, a1, . . . , an, . . .] is such that (an) is bounded. It is well known that S is uncountable
and that its Lebesgue measure is zero. Roughly speaking, the set S contains all
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irrational numbers which are badly approximated by rational ones. In particular, by
the Euler–Lagrange theorem, S contains all irrational quadratic numbers (i.e., the
roots of second order equations with rational coefficients).

We also use a well-known result asserting that, for all ε > 0, there exists a set
Bε ⊂ R such that the Lebesgue measure of R\Bε is equal to zero, and a constant
Cε > 0 for which, if ξ ∈ Bε, then

�
ξm

�
≥ Cε
m1+ε

,

where
�
η

�
is the distance from η to the set Z:

�
η

�
= min
η−x∈Z

|x| .

In particular, S is contained in the sets Bε for every ε > 0 (see [15] for more details).
Then, by Corollary A.10 of [15], we have the next claim.
Lemma 4.1. 1. If for all values i, j = 2, . . . , N, i �= j, the ratios li/lj belong to

S, then there exists a constant c > 0 such that

ck ≥ c

λ̃N−2
k

∀k ∈ N∗.

2. If for all values i, j = 2, . . . , N, i �= j, the ratios li/lj belong to Bε, then there
exists a constant cε > 0 such that

ck ≥ cε

λ̃N−2+ε
k

∀k ∈ N∗.

With more restrictive assumptions on the lengths of the uncontrolled strings, we
have another bound for ck. Let us recall a definition of [15].

Definition 4.2. We say that the real numbers l1, . . . , lN verify the conditions
(S) if

• l1, . . . , lN are linearly independent over the field Q of rational numbers;
• the ratios li/lj are algebraic numbers for i, j = 1, . . . , N .
In this case, we have the following result (see Corollary A.10 of [15]).
Lemma 4.3. If the numbers l2, . . . , lN verify the conditions (S), then for every

ε > 0 there exists a constant cε > 0 such that

ck ≥ cε

λ̃1+ε
k

∀k ∈ N∗.

Consequently, we have the next proposition.
Proposition 4.4. 1. Assume that for all values i, j = 2, . . . , N, i �= j, the ratios

li/lj belong to S. Then there exists a constant C > 0 such that for any initial data
(u(0), u(1)) ∈ Xs (0 < s < 1/2) the corresponding solution u of (1.1) verifies

Eu(t) ≤ C

(t+ 1)
s

N−2

∥∥∥(u(0), u(1))
∥∥∥2

Xs

.

2. Assume that for all values i, j = 2, . . . , N, i �= j, the ratios li/lj belong to
Bε for ε > 0. Then there exists a constant Cε > 0 such that for any initial data
(u(0), u(1)) ∈ Xs (0 < s < 1/2) the corresponding solution u of (1.1) verifies

Eu(t) ≤ C

(t+ 1)
s

N−2+ε

∥∥∥(u(0), u(1))
∥∥∥2

Xs

.
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3. Assume that the numbers l2, . . . , lN verify the conditions (S). Let ε > 0. Then
there exists a constant Cε > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 <
s < 1/2) the corresponding solution u of (1.1) verifies

Eu(t) ≤ Cε

(t+ 1)
s

1+ε

∥∥∥(u(0), u(1))
∥∥∥2

Xs

.

Proof. We set α = N − 2 and cα = c in the first case, α = N − 2 + ε and cα = cε
in the second case and α = 1 + ε and cα = cε in the third case. For α ≥ 1, we take

ω(t) = d2
α

(
1
t

)2α

,

where dα verifies d2
α ≤ 1 and c2αλ̃

−2α
n−1 ≥ d2

αn
−2α for all n ∈ N∗, which is possible

because of Weyl’s formula (3.16).
We are in situation 1 of Example 3.3 with p = 2α ≥ 1. Therefore, we take

Φs(t) =
(
t

d2
α

) s
α

.

Then (ω, Φs) satisfy (3.1)–(3.4), and we apply Theorem 3.8 to finish the proof.
Finally, if the lengths l2, . . . , lN verify li/lj /∈ Q for all i �= j, but the conditions

1, 2, and 3 of Proposition 4.4 are not verified, it can be proved that cn verify

(4.1) cn ≥ ψ(n) > 0 ∀n ∈ N∗,

where ψ is a positive, convex, and decreasing function which can be smaller than
cλ̃−αn , with α > 0. Indeed, we know by Appendix A of [15] that if we set

a(λ) =
N∑
i=2

∏
j �=i

|sin(λlj)| ,

we have

a(λ) ≥ C min
i=2,...,N

∏
j �=i

∥∥∥∥
∣∣∣∣ liljmi(λ)

∣∣∣∣
∥∥∥∥ ,

where

mi(λ) = E
(
li
π
λ

)
,

with E(η) being the closest integer number to η: |η − E(η)| =
�
η

�
. Therefore, it is

sufficient to bound ‖| liljm|‖ from below for all m ∈ N and i �= j to get a lower bound
of cn.

Moreover, we know that Liouville’s numbers ξ are such that for all n ∈ N there
exists q ∈ N, q > 1, such that

0 <
�
ξq

�
<

1
qn+1

.

That is why, when li/lj is a Liouville number (see [8]), the function ψ in (4.1) is
smaller than any negative power of λ̃n (for example, of the order of e−n), and thus
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the decay rate of the energy of u is slower than polynomial. Indeed, it is possible to
construct, for instance, real numbers ξ of the form

ξ =
∑
k∈N

10−ak ,

where (ak)k is an increasing sequence of natural numbers, which are approximated by
rational ones faster than any given positive increasing function ρ:

�
10apξ

�
ρ(10ap) < ε ∀p ∈ N

for ε > 0 (see [15, p. 66], for more details).
Let us construct an irrational number x which is approximated by rational ones

at an exponential speed. The aim is to find an irrational xa such that

(4.2) lim inf
q→∞

�
xaq

� 1
q = e−a, where a is a positive constant.

This construction uses the theory of continued fractions (see [22]). We recall here
some results about the continued fractions which are used in what follows, and we
refer to [8, 16, 18] for more details. Let [a0, a1, . . . , an, . . .] be the expansion as a
continued fraction of x ∈ R\Q. We set xn = [a0, a1, . . . , an] = pn

qn
, where pn, qn are

integers. The integers pn, qn are relatively prime and satisfy the following relations:

(4.3) p−1 = 1, p0 = a0, pn+1 = an+1pn + pn−1

and

(4.4) q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1.

First, we can notice that

(4.5) lim inf
�
xq

� 1
q = lim inf a

− 1
qn

n+1

(see [22] for more details).
Thus finding xa ∈ R\Q such that (4.2) holds is equivalent to finding xa ∈ R\Q

such that

lim inf a
− 1

qn
n+1 = e−a.

We construct such an xa by induction. Set a0 = 0, which determines p0 and q0. Then,
if a0, . . . , an, p0, . . . , pn, q0, . . . , qn are found, we choose an+1 by

an+1 = E(eaqn).

Then, pn+1 and qn+1 are imposed by the relations (4.3) and (4.4).
Therefore, for all a > 0, we have found an irrational number xa such that there

exists a positive constant δ such that

(4.6)
�
qxa

�
≥ δe−aq ∀q ∈ N.

Consequently, if li/lj are reals of the form xai,j for ai,j > 0, which verify (4.6), then
there exists a positive constant C such that for all k ∈ N,

ck ≥ Ce−b(N−2)λ̃k
l
π ,
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Fig. 4.2. A non–star-shaped tree.

where b = maxi�=j(ai,j) > 0 and l = maxj(lj). By Weyl’s formula, there exists c2 > 0
such that λ̃k ≤ c2kπ/L, and thus we obtain

c2k ≥ Ce−2c2b(N−2)k = Ce−Ak,

where A = 2c2b(N − 2).
Consequently, we have the next claim.
Proposition 4.5. Assume that for all values i, j = 2, . . . , N, i �= j, the ratios

li/lj are reals of the form xai,j for ai,j > 0 which verify (4.6). Then there exist
constants C, C′ > 0 such that for any initial data (u(0), u(1)) ∈ Xs (0 < s < 1/2) the
corresponding solution u of (1.1) verifies

(4.7) ∀t ≥ 0, Eu(t) ≤ C′

(ln(C(1 + t)))2s
∥∥∥(u(0), u(1))

∥∥∥2

Xs

.

Proof. We apply Theorem 3.8 with

ω(t) = Ce−At,

for C > 0 and A > 2(2s+ 1), and

Φs(t) =

(
A

ln
(
C
t

)
)2s

.

We are in situation 2 of Example 3.3, and we simply apply (3.11) to obtain
(4.7).

4.2. A non–star-shaped tree. Now let us consider a tree, which is not star-
shaped, having the simple structure shown in Figure 4.2.

Recall that the damping term is on the vertex v1, the origin of the damped edge
e1 of length l1. We will assume, in addition, that l4 = l2.

Recall that in [15] the authors proved the observability inequality (2.1) for the
conservative system (1.7) with Dirichlet boundary conditions at all exterior nodes,
with the weights ck given by

ck = max
{|d5(λ̃k)|, |d4(λ̃k)|, |d2(λ̃k)|

}
,
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where

d5(λ) = − sin(λl2) sin(λl4), d4(λ) = − sin(λl2) sin(λl5),

d2(λ) = −(cos(λl3) sin(λl5) sin(λl4)+sin(λl3) cos(λl5) sin(λl4)+sin(λl3) sin(λl5) cos(λl4)).

First, if ck = 0, then |d5(λ̃k)| = |d4(λ̃k)| = |d2(λ̃k)| = 0. As l4 = l2, we obtain
sin(λl4) = 0 and sin(λl3) sin(λl5) = 0. If sin(λl3) = 0 (resp., sin(λl5) = 0), then
necessarily l3/l2 (resp., l5/l2) is a rational number. Consequently, ck �= 0 if l3/l2 and
l5/l2 are irrational numbers, and then in this case the energy of u solution of (1.1)
decays to 0.

Secondly, applying Appendix A of [15], we know that there exists a positive
constant c such that, for every k ∈ N∗,

ck ≥ c

λ̃αk

if one of the following three conditions holds:
• the ratios l5/l2, l3/l2, and l3/l5 belong to S and α > 4, or
• the ratios l5/l2, l3/l2, and l3/l5 belong to some Bε (ε > 0) and α > 4 + ε, or
• the numbers l3, l5, l2 satisfy the conditions (S) and α > 2 + ε.
Consequently, by using (3.11) of Theorem 3.8 and the first statement of Example

3.3, there exists a constant C > 0 such that for any initial data (u(0), u(1)) ∈ Xs

(0 < s < 1/2) the corresponding solution u verifies

Eu(t) ≤ Cε

(t+ 1)
s
α

∥∥∥(u(0), u(1))
∥∥∥2

Xs

.

Finally, if these previous conditions do not hold, we can apply Theorem 3.8 to
obtain a decay rate of the energy of u with an admissible pair (ω, Φs), or Theorem
3.10 to obtain a more explicit decay rate of the energy.

As we have seen in these examples, our method for obtaining decay rates of the
dissipative system (1.1) is of systematic application: First, we find the weights (c2n)
of the observability inequality (1.8) for the conservative problem (1.7) with Dirichlet
boundary conditions at all exterior nodes. Then, we take, for the weight ω, the lower
convex envelope of the sequence (1, (c2n)n). Finally, we choose Φs such that (ω, Φs)
satisfy (3.1)–(3.4) to obtain the decay rate of the energy, given by

Φs

(
1

1 + t

)
.

Note that the study of the observability inequality (1.8) for (1.7) and the weights
(c2n) have been already done in some works (see [15]). Consequently we can directly
use these results, and it is not necessary to show another observability inequality. In
addition, notice that the weighted observability inequality (2.7) holds under the same
assumptions on the network that are needed for the Dirichlet problem (1.7). This
method allows us to treat an important class of networks.

Moreover we can extend this general principle to networks of strings with damping
in several exterior vertices, or with damping in interior nodes.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZATION OF THE WAVE EQUATION ON 1-D NETWORKS 2797

Acknowledgment. The first author would like thank Professor Serge Nicaise
for fruitful discussions.

REFERENCES

[1] F. Ali Mehmeti, A characterization of a generalized C∞-notion on nets, Integral Equations
Operator Theory, 9 (1986), pp. 753–766.

[2] K. Ammari, A. Henrot, and M. Tucsnak, Asymptotic behaviour of the solutions and optimal
location of the actuator for the pointwise stabilization of a string, Asymptot. Anal., 28
(2001), pp. 215–240.

[3] K. Ammari and M. Jellouli, Stabilization of star-shaped networks of strings, Differential
Integral Equations, 17 (2004), pp. 1395–1410.

[4] K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings, Appl.
Math., 52 (2007), pp. 327–343.

[5] K. Ammari, M. Jellouli, and M. Khenissi, Stabilization of generic trees of strings, J. Dynam.
Control Systems, 11 (2005), pp. 177–193.

[6] K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of
unbounded feedbacks, ESAIM Control Optim. Calc. Var., 6 (2001), pp. 361–386.

[7] P. Bégout and F. Soria, An interpolation inequality and its application to the stabilization
of damped equations, J. Differential Equations, 240 (2007), pp. 324–356.

[8] J. W. Cassals, An Introduction to Diophantine Approximation, Cambridge University Press,
Cambridge, UK, 1966.

[9] C. Cattaneo and L. Fontana, D’Alembert formula on finite one-dimensional networks, J.
Math. Anal. Appl., 284 (2003), pp. 403–424.
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