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Abstract: Wildfires are one of the most destructive natural disasters that can affect our environment,
with significant effects also on wildlife. Recently, climate change and human activities have resulted
in higher frequencies of wildfires throughout the world. Timely and accurate detection of the burned
areas can help to make decisions for their management. Remote sensing satellite imagery can have a
key role in mapping burned areas due to its wide coverage, high-resolution data collection, and low
capture times. However, although many studies have reported on burned area mapping based on
remote sensing imagery in recent decades, accurate burned area mapping remains a major challenge
due to the complexity of the background and the diversity of the burned areas. This paper presents
a novel framework for burned area mapping based on Deep Siamese Morphological Neural Net-
work (DSMNN-Net) and heterogeneous datasets. The DSMNN-Net framework is based on change
detection through proposing a pre/post-fire method that is compatible with heterogeneous remote
sensing datasets. The proposed network combines multiscale convolution layers and morphological
layers (erosion and dilation) to generate deep features. To evaluate the performance of the method
proposed here, two case study areas in Australian forests were selected. The framework used can
better detect burned areas compared to other state-of-the-art burned area mapping procedures, with
a performance of >98% for overall accuracy index, and a kappa coefficient of >0.9, using multispectral
Sentinel-2 and hyperspectral PRISMA image datasets. The analyses of the two datasets illustrate
that the DSMNN-Net is sufficiently valid and robust for burned area mapping, and especially for
complex areas.

Keywords: deep learning; PRISMA; burned area; Sentinel-2; morphological operator; convolutional
neural network

1. Introduction

As a natural hazard, wildfires represent one of the most important reasons for the
evolution of ecosystems in the Earth’s system on a global scale [1–3]. Recently, the frequency
of occurrence of wildfires has increased significantly due to climate change and human
activities around the world [4,5]. Wildfires can be influenced by the environment from
different aspects, such as soil erosion, increasing flood risk, and habitat degradation
for wildlife [6,7]. Furthermore, wildfires generate a wide range of pollutants, including
greenhouse gases (i.e., methane and carbon dioxide) [8].

Burned area mapping (BAM) can be useful to predict the behavior of a fire, to define
the burning biomass, for compensation from insurance companies, and for estimation of
greenhouse gases emitted [9,10]. As result, the generation of reliable and accurate burned
area maps is necessary for their management and planning in the support of decision
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making. BAM by traditional methods (e.g., field surveys) is a major challenge, and these
methods have some limitations, such as the wide areas to be covered and the lack of direct
access to the region of interest, which leads to large time and financial costs [10].

The Earth observation satellite fleet has steadily grown over the last few decades [11].
The diversity of Earth observation datasets means that remote sensing (RS) is now known
as a key tool in the provision of valuable information about the Earth that is available
at low cost and time needs on a global scale [12]. Currently, the upcoming new series of
RS sensors (e.g., Landsat-9, PRecursore IperSpettrale della Missione Applicativa (PRISMA),
Sentinel-5) provides improvements in terms of spatial, temporal, and spectral detail, with
RS now becoming a routine tool with an extensive range of applications [13,14]. The most
common applications of RS include classification [15,16] and detection of targets [17,18]
and changes [19,20].

The diversity of RS Earth observation imagery and its free availability has meant that
monitoring of changes following disasters has turned into a hot topic for research [21–28].
Indeed, we are witnessing many BAM products on a global scale that differ in terms of
spatial resolution and reliability of the burned areas mapped. Based on spatial resolution,
the recent BAM methods can be categorized into two main groups: (1) coarse spatial
resolution satellite sensors and (2) fine spatial resolution sensors.

Burned area mapping based on the low and medium resolution of satellite imagery
is common in the RS community. In recent years, many studies have used BAM based
on Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel-3, Medium Res-
olution Imaging Spectrometer (MERIS), and Visible/Infrared Imager Radiometer Suite
(VIIRS) [29–31]. However, while these sensors have a high temporal resolution, they suffer
from low spatial resolution. Accurate BAM for small areas is a major challenge due to the
mixing of pixels. Furthermore, the complex diversity of scenes can result in spectrum gains
in one burned pixel to be mixed with some other material. Furthermore, these are based
on ruleset classification and manual feature extraction such that the extraction of suitable
features and the finding of optimum threshold values are time consuming.

Recently, with the arrival of a new series of cloud computing platforms (e.g., Google
Earth Engine, Microsoft Azure), BAM using fine-resolution datasets has been considered by
researchers. The capacity of cloud computing platforms has created a great opportunity for
BAM based on high-resolution datasets and advanced machine-learning-based methods
for accurate mapping. Based on the structure of the algorithm, we can categorize these
methods into two main categories: (1) BAM by conventional machine-learning methods
and (2) BAM via deep-learning-based frameworks.

Burned area mapping based on conventional machine-learning-based methods can be
used to extract spectral and spatial features, and then to define the burned areas according
to a classifier [10]. For instance, Donezar, et al. [32] designed a BAM framework based
on the multitemporal change-detection method and time series synthetic aperture radar
(SAR) imagery. They used an object-based image analysis method for classification of the
SAR imagery. They also used the Shuttle Radar Topography Mission (SRTM) for digital
elevation models to enhance their BAM results. Additionally, Xulu, et al. [33] considered
a BAM method based on differenced normalized burned ratios and Sentinel-2 imagery
in the cloud-based Google Earth engine. A random forest classifier method was used for
the BAM. They reported an overall accuracy close to 97% for detection of burned areas.
Moreover, Seydi, Akhoondzadeh, Amani and Mahdavi [10] evaluated the performance
of a statistical machine-learning method for BAM using the Google Earth Engine and
pre/post-fire Sentinel-2 imagery. Furthermore, they evaluated the potential spectral and
spatial texture features using a Harris hawks optimization algorithm for the BAM. They
reported an accuracy of 92% by the random forest classifier on the validation dataset.
Liu, et al. [34] proposed a new index for BAM for bi-temporal Landsat-8 imagery and an
automatic thresholding method. They evaluated the efficiency of their proposed method in
different areas. Their BAM results showed that their presented method had high efficiency.
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Recently, deep-learning-based approaches have been applied increasingly for map-
ping RS imagery, with promising results obtained. These methods can extract high-level
features from the raw data automatically, by convolution layers. This advantage of deep-
learning-based methods has resulted in their use for BAM. BAM based on deep-learning-
based methods has become a hot topic of research, with many methods being proposed.
For instance, Nolde, et al. [35] designed large-scale burned area monitoring in near-real-
time based on the morphological active contour approach. This framework was applied
through several steps: (1) generation of a normalized difference vegetation index (NDVI) for
pre/post-fire; (2) determination of the region of interest based on active fires, anomaly de-
tection, and region-growing methodologies; (3) accurate shape of the burned area perimeter
extraction based on morphological snakes; (4) confidence evaluation based on a burn area
index; and (5) tracking. The result was accuracy of 76% by evaluation with reference data.
Knopp, et al. [36] carried out BAM by deep-learning-based semantic segmentation based
on mono-temporal Sentinel-2 imagery. They used the U-Net architecture for their BAM. A
binary change map was obtained based on the thresholding of the U-Net probability map.
They reported the difficulty of the segmentation model in some areas, such as agriculture
fields, rocky coastlines, and lake shores. de Bem, et al. [37] investigated the effects of
patch sizes on the result of burned area classification with deep-learning methods using
Landsat-8 OLI. Here, three different deep-learning methods were investigated: simple
convolutional neural network (CNN), U-Net, and Res-U-Net. Their results showed that
Res-U-Net had high efficiency, with a patch-size of 256 × 266. Hu, Ban and Nascetti [26]
evaluated the potential of deep learning methods for BAM based on the unitemporal
multispectral Sentinel-2 and Landsat-8 datasets. Their study showed that deep-learning
methods have a high potential for BAM in comparison to machine-learning methods.
Ban, et al. [38] experimented with the capacity of time series SAR imagery for BAM by a
deep-learning method. To this end, their deep-learning framework was based on CNN and
was developed to automatically detect burned areas by investigating backscatter variations
in the time series of Sentinel-1 SAR imagery. They reported accuracy of <95% for BAM.
Zhang, et al. [39] proposed a deep-learning framework for mapping burned areas based on
fusion Sentinel-1 and Sentinel-2 imagery. Furthermore, they investigated two scenarios for
training the deep-learning method: (1) continuous joint training with all historical data
and (2) learning-without-forgetting based on new incoming data alone. They reported that
the second scenario for BAM showed accuracy close to 90%, in terms of overall accuracy.
Zhang, Ban and Nascetti [39] presented a deep-learning-based BAM framework by fusion
of optical and radar datasets. They proposed a deep-learning framework based on CNN,
with two convolution layers, max-pooling, and two fully connected layers. They showed
an increase in the complexity of the network that resulted in rising computing needs, while
the results for the burned area detection were not enhanced. Farasin, et al. [40] presented
an automatic framework for evaluation of the damage severity level based on a supervised
deep-learning method and post-fire Sentinel-2 satellite imagery. They used double-step
U-Net architecture for two tasks (classification and regression). The classification generated
binary damage maps and the regression was used to generate damage severity levels.
Lestari, et al. [41] increased the efficiency of statistical machine-learning methods and a
CNN classifier for BAM using optical and SAR imagery. Their BAM results showed that
the CNN method has high efficiency in comparison with other machine-learning methods
with texture features. Furthermore, the fusion of optical and SAR imagery can enhance
the results of BAM. Belenguer-Plomer, et al. [42] developed a CNN-based BAM method by
combining active and passive datasets. Sentinel-1 and Sentinel-2 were used by the CNN
algorithm to generate burned areas. Their proposed CNN architecture included two con-
volution layers, a max-pooling layer, and two fully connected layers. The results of BAM
have shown that combining Sentinel-1 and Sentinel-2 imagery can provide improvements.

Although many research efforts have proposed several algorithms for BAM and
applied them to fine-resolution optical and SAR RS imagery, many limitations remain:
(1) Semantic segmentation based methods (e.g., U-Net DeeplabV3+ and Seg-Net) have
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provided promising results, but they need large numbers of labeled datasets, and finding
large amounts of sample data with specific sizes (i.e., 512 × 512 or 1024 × 1024) for small
areas is a major challenge. (2) The performance of statistical classification methods such
as random forest or support vector machine classifiers depend on the setting of the input
features, while the selection and extraction of the informative manual features can be
a time-consuming process. (3) Some studies have focused on only spectral features for
BAM, while the efficiency of spatial features in BAM has been shown in many studies;
furthermore, an unsupervised thresholding manner on the spectral index is not always
effective due to the complexity of the background and ecosystem characteristics, and to the
topographic effects on the surface reflectance [43,44]. (4) Shallow feature representation
methods have been shown not to be applicable in complex areas, especially for BAM tasks.
(5) More methods have focused on time series Sentinel-1 imagery; however, preprocessing
and processing of SAR imagery is very difficult due to noise conditions.

To overcome these problems, the present study presents a novel framework for BAM
with heterogeneous datasets that has many advantages compared to other state-of-the-
art methods. The method proposed here is applied in an end-to-end manner without
additional processes, based on a deep morphological network. This method is based on
change detection that uses pre/post-fire datasets based on deep Siamese morphological
operators. Additionally, the efficiency of the hyperspectral dataset in comparison with the
multispectral dataset shows that this study takes advantage of the hyperspectral dataset.
The proposed framework is additive with the type of datasets, whereby the pre-event
dataset is Sentinel-2 imagery while the post-event dataset can be either Sentinel-2 or
hyperspectral PRISMA datasets.

The main contributions of this study follow: (1) BAM is based on deep morphological
layers for the first time; (2) it takes advantage of the hyperspectral PRISMA sensor dataset
for accurate BAM for the first time; and (3) it includes evaluation of the performance of
the multispectral and hyperspectral dataset in BAM and comparison of the results with
state-of-the-art methods.

This paper is outlined as follows: Section 2 provides the details of the DSMNN-Net
for BAM. Section 3 introduces the study areas and the datasets. The evaluation results of
this study area are provided in Section 4, and the experimentation results are discussed
in Section 5.

2. Methodology

The proposed framework is conducted in three steps, according to the flowchart in
Figure 1. The first step is image preparation, and in this step, some preprocessing (i.e.,
registration) is applied. The second step is the training of the proposed network to tune the
network parameters based on reference sample data. The training and validation datasets
are exploited in the training process to optimize the model parameters, while the testing
dataset is used to evaluate model hyperparameters. The third step is burned area map
generation and accuracy assessment of the result of the BAM.

2.1. Proposed Deep Learning Architecture

The proposed DSMNN-Net architecture for the detection of burned areas is illustrated
in Figure 2. Accordingly, the framework has two parts: (1) two streams of deep-feature-
extraction models and (2) classification. The deep-feature-extraction task is conducted
in a double-stream manner, such that these streams are for post-event and pre-event
datasets, respectively. Then, the deep features are transformed to the next task, which is
the classification. The classification task included two fully connected layers and a soft-
max layer for making a decision. More details of the DSMNN-Net are explained in the
next subsection.
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2.2. Deep-Feature Extraction

Feature extraction can be defined as an image processing technique to determine
the identity of the mutual importance of imaged areas. There are many procedures for
feature extraction in the field of image processing and RS, such as the texture Haralick
feature [45,46], spectral features (e.g., the NDVI) [10], and transformation-based (e.g.,
principal component analysis) and deep-feature [15,47,48] extraction. Among the types
of feature-extraction methods, the deep-feature-extraction methods have found a specific
place in RS communication because they have great potential for the extraction of complex
features from an image [49]. Deep-learning methods can automatically extract high-level
spatial and spectral features simultaneously [50]. This advantage of deep-learning methods
means that they have been used for many applications in RS, such as change detection [51],
classification [52], anomaly detection [53], and damage mapping [54].
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The deep features are extracted by convolution layers, and the arrangement of the
convolution layers and their diversity has caused many deep-learning-based methods to be
proposed [55–57]. Presenting the informative structure of convolution layers can be a major
challenge. In this regard, the present study presents a novel framework based on standard
3D, 2D, and depthwise convolution layers, with their combination with morphological
layers. As illustrated in Figure 2, the method proposed here has two deep-feature extractor
streams. The first stream investigates the pre-fire dataset, and the second stream explores
the deep features from the post-event dataset. Each stream includes 2D-depthwise, 3D/2D
standard convolution layers, and morphological layers based on erosion and dilation
operators. Initially, the deep-features extraction is based on 3D multiscale convolution
layers, and then the extracted features are fed into the 3D convolution layer. The main
advantage of 3D convolution layers is to take the full content of the spectral information of
the input dataset by considering the relation among all of the spectral bands. Furthermore,
the multiscale block enhances the robustness of the DSMNN-Net against variations in the
object size [12]. The multiscale block uses a type kernel size of convolution layers that
increase the efficiency of the network. The expected features are reshaped and converted to
2D feature maps, and then the 2D-depthwise convolution layers are used. Next, the hybrid
morphological layers based on 2D dilation and erosion combine with 2D convolution layers
to explore more high-level features. For this, first, we use two erosion layers, and then the
2D convolution layer and dilation layers are used (see Figure 2). Finally, the 2D convolution,
erosion, and dilation layers have been used in the last part of the morphological deep-
feature extractor. The extracted deep features are concatenated for two streams and then
they are flattened and transferred to two fully connected layers, and finally, the soft-max
layer is entitled to decide the input data. The main differences between the proposed
architecture and other CNN frameworks are:

(1) We take advantage of multiscale convolution layers that increase the robustness of
the network against the scale of variations.

(2) We use the trainable morphological layers, which can increase the efficiency of the
network for the extraction of nonlinear features.
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(3) We use 3D convolution layers to make use of the full content of the spectral informa-
tion in the hyperspectral and multispectral datasets.

(4) We use depthwise convolution layers that are computationally cheaper and can help
to reduce the number of parameters and to prevent overfitting.

2.3. Convolution Layer

The convolution layers are the core building block of deep-learning methods that can
learn feature representations of input data. A convolution layer builds several convolution
kernels to extract the type of meaningful features. This study used 3D/2D convolution
layers for deep-feature extraction [58–60]. Mathematically, the feature value (Ψ) in the lth
layer is expressed according to Equation (1) [61]:

νl = g
(

wl xl−1
)
+ bl , (1)

where x is the input data, g is the activation function, b is the bias vector for the current
layer, and w is the weighted vector. The value (ν) at position (x,y,z) on the jth feature ith
layer for the 3D convolution layer is given by Equation (2) [62]:

ν
xyz
i,j = g(bi,j + ∑χ ∑Ωi−1

ω=0 ∑Φi−1
ϕ=0 ∑Λi−1

λ=0 Wω,ϕ,λ
i,j,χ v(x+ω)(y+ϕ)(z+λ)

i−1,χ ) (2)

where χ is the feature cube connected to the current feature cube in the (i − 1)th layer, and
Ω, Φ, and Λ are the length, width, and depth of the convolution kernel size, respectively.
In 2D convolution, the output of the jth feature map in the ith layer at the spatial location
of (x,y) can be computed using Equation (3):

ν
xy
i,j = g

(
bi,j + ∑χ ∑Ωi−1

ω=0 ∑Φi−1
ϕ=0 Wω,ϕ

i,j,χ v(x+ω)(y+ϕ)
i−1,χ

)
(3)

2.4. Morphological Operation Layers

Topological operators are applied to images by morphological operators to recover
or filter out specific structures [63,64]. Mathematical morphology operators are nonlinear
image operators that are based on the image spatial structure [65–67]. Dilation and Erosion
are shape-sensitive operations that can be relatively helpful to extract discriminative spatial-
contextual information during the training stage [67–69]. Erosion(	) and Dilation(⊕) are
two basic operations in morphology operators that can be defined for a grayscale image X
with size M × N and W structuring elements, as follows in Equation (4) [65,66]:

(X⊕W)(x, y) = max
(i,m)∈S(X(x− l, y−m) + Wd(l, m))

S = {(l, m)|l ∈ {1, 2, 3, . . . , a}; m ∈ {1, 2, 3, . . . , b}; }
(4)

where Wd is the structuring element of dilation that can be defined on domain S. Ac-
cordingly, the erosion operator with structuring element Wd can be defined as follows in
Equation (5):

(X	W)(x, y) = min
(i,m)∈S(X(x + l, y + m)−We(l, m)) (5)

The structure element is initialized based on random values in the training process.
The back-propagation algorithm is used to update the structure elements in the morpho-
logical layers. The propagation of the gradient through the network is very similar to that
of a neural network.

2.5. Classification

After deep-feature extraction by convolution and morphological layers, the deep
features are transformed for the flattening layer to reshape as 1D vectors. Then, these
vectors are fed to the first fully connected layer and the second fully connected layer. The
latest layer is soft-max, which assigns probabilities to each class for input pixels. Figure 1
presents the classification procedure for this framework.
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2.6. Training Process

The network parameters are initialized based on the initial values and then are tuned
iteratively based on optimizers, such as stochastic gradient descent. The DSMNN-Net is
trained based on the training data, and the error of the network is obtained based on the
calculation of the loss value on the validation dataset. The error of the training model is
fed to the optimizer and is used to update the parameters. Due to back-propagation, the
parameters are updated at each step to decrease the error of comparing the results obtained
from the network with the validation dataset. The Tversky loss function is used to calculate
the network error in the training process, which is a generalization of the dice score [70].
The Tversky index (TI) between Ψ̂ (predicted value) and Ψ (truth value) is defined as in
Equation (6):

TI
(
Ψ̂, Ψ, α, β

)
=

∣∣ Ψ̂Ψ
∣∣∣∣ Ψ̂Ψ

∣∣+ α| Ψ̂/Ψ|+ β|Ψ/ Ψ̂|
(6)

where α and β control the magnitude of penalties for false positive and false negative pixels,
respectively. These parameters are often chosen based on trial and error.

2.7. Accuracy Assessment

We assessed the results of the BAM based on visual and numerical analysis. The
numerical analysis was applied as the standard measurement indices. To this end, the five
most common quantitative assessment metrics were selected to evaluate the results. These
indices are the overall accuracy (OA), the kappa coefficient (KC), and the F1-score, Recall,
and intersection over union (IOU).

To compare the performance of the method proposed here, two state-of-the-art deep-
learning methods were selected for this study. The first method was the deep Siamese
network, which has been proposed in many studies for change detection purposes [71–73].
This method has three convolution layers in each stream, and then fully connected was
used for classification. Then, the second method was CNN, based on a framework designed
by Belenguer-Plomer, Tanase, Chuvieco and Bovolo [42] for mapping of burned areas. This
method has two convolution layers and a max-pooling layer, then two fully connected
layers were used. More details of this method can be found in [42].

3. Case Study and Satellite Images

This section investigates the case study area and the satellite data in more detail.

3.1. Study Area

Both study areas in this research were located in the Australian continent. The main
reason for choosing the areas was the availability of the PRISMA hyperspectral datasets
for these areas. Reference is the most important factor in the evaluation of BAM results.
Thus, the reference data were obtained based on visual analysis and the interpretation of
the results of BAM in previous papers. Figure 3 presents the locations of two study areas,
in the southern Australian continent.
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Figure 3. The locations of the two study areas for burned area mapping.

Figure 4 shows the incorporated burned area datasets for the first study area. Figure 5
illustrates the original incorporated dataset for the BAM for the second study area. The
details for the incorporated datasets for both of the study areas are given in Table 1.
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Table 1. The main characteristics of the incorporated datasets for both case studies.

Sensor Properties First Study Area Second Study Area

Se
nt

in
el

-2

Spectral bands 13 13
Spatial resolution (m) 10 10

Resampled spatial resolution (m) 30 30
Data size (pixel) 1168 × 1168 1159 × 1853

Pre-event acquired date December 2019 October 2019
Post-event acquired date November 2020 January 2020

PR
IS

M
A Spectral bands 169 169

Spatial resolution (m) 30 30
Data size (pixel) 1168 × 1168 1159 × 1853

Post-event acquired date December 2019 January 2020

3.2. Sentinel-2 Images

Sentinel-2 is a European Space Agency Earth observation project that provides con-
tinuity to services dependent on multispectral high-spatial-resolution observations over
the whole land surface of the Earth. This mission consists of two satellites, Sentinel-2-A
and Sentinel-2-B, which have completed the existing Landsat and Spot missions and have
enhanced data availability for RS communications. One satellite has a temporal resolution
of 10 days, while the two satellites have a temporal resolution of 5 days [10]. The Sentinel-2
main sensor, the multispectral instrument, is based on the push-broom principle. Sentinel-2
has 13 spectral bands and broad spectral coverage.

This study used the Level-2A product as input data for BAM, which are surface
reflectance data. Furthermore, it was necessary to convert the spatial resolution of the
Sentinel-2 dataset into the spatial resolution of the hyperspectral dataset (30 m).
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3.3. PRISMA Images

PRISMA is a medium-resolution hyperspectral imaging mission of the Italian Space
Agency that was launched in March 2019 [74]. The PRISMA sensor is a spaceborne system
that acquires hyperspectral datasets continuously, with a repeat orbital cycle of approxi-
mately 29 days [75]. PRISMA images the Earth surface in 240 contiguous spectral bands
(66 visible to near-infrared, plus 174 short-wave infrared) with a push-broom scanning
mode, covering the wavelengths between 400 and 2500 nm, at a spatial resolution of 30 m.
The high dimensional spectral bands provide the possibility to analyze complex land-cover
objects [14]. We chose the level-2-D product for the BAM, which was preprocessed (i.e., at-
mospheric correction and geolocation, orthorectification) [14]. The PRISMA hyperspectral
dataset is freely available on this website: http://prisma.asi.it/missionselect/, accessed on
16 November 2021. After removing the noisy and no-data bands, 169 spectral bands were
chosen for the next analysis.

4. Experiments and Results

Gathering of sample data is required to estimate the burned area due to using a
supervised learning method. The quality and quantity of the sample data have a key role
in BAM. In this study, the numbers of the sample data were kept at a sufficient level for the
two classes (i.e., burned areas, unburned areas). Figure 6 shows the spatial distribution of
the sample data.
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In addition, Table 2 shows the sizes of sample data for two classes in the study areas.

Table 2. The number of samples used for mapping of burned area in the two study areas.

Case Study Number of Pixels in
the Study Area Class Number of

Samples Training Validation Testing

First study area 989,764
Unburned 15,318 9803 2450 3065

Burned 21,387 13,687 3421 4459

Second study
area

1,955,898
Unburned 6590 4217 1054 1318

Burned 3206 2051 513 642

4.1. Parameter Setting

The DSMNN-Net has hyperparameters that need to be set. These hyperparameters
were set manually based on trial and error. The optimum values of these parameters were
set as follows: the input patch-size for Sentinel-2 and PRISMA sensors were 11 × 11 × 13
and 11 × 11 × 169, respectively, with 500 epochs; the weight initializer was set as He-
normal-Initializer [76] for convolution layers; the random value for initializing of the
morphological layers, number of neurons at the fully-connected layer was 900; the initial
learning rate was 10−4; and the minibatch size was 550. It is worth noting that all of the
hyperparameters were constant during the process for all of the CNN methods. Similarly,
the two other methods set such values. Additionally, the selection of some of these
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parameters was related to hardware (e.g., increasing minibatch size quickly filled the RAM
of the system). Moreover, the weight initializer by the He-normal-initializer increased the
speed of network convergence compared to the random initializer.

4.2. Results

The results for the BAM for the two study areas are considered in this section. For the
two main scenarios, these were investigated according to Table 3.

Table 3. Different scenarios for mapping of burned areas in two case-study areas.

Scenario Pre-Event Dataset Post-Event Dataset

S#1 Sentinel-2 Sentinel-2
S#2 Sentinel-2 PRISMA

4.2.1. First Study Area

Figure 7 shows the results of the BAM based on the post/pre-event Sentinel-2 imagery.
Based on these results, the DSMNN-Net differed from the BAM. Most methods detected
the burned areas, with differences seen in the detail. For example, there are some missed
detection areas in the results of the two CNN-based methods (center of scene) while the
method proposed here detected these well.

Figure 8 shows the mapping results for the heterogeneous dataset provided by var-
ious methods. As shown in Figure 8, all of the methods provided better performance in
comparison with the first scenario (S#1) as a result of the small missed detection area
that was significantly decreased. The results of the DSMNN-Net fit better with ground
truth while results of other methods have many false pixels; in particular, for the Siamese
network (Figure 8a). The main differences among these results are obvious at the edges of
the burned areas.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 26 
 

 

4.2. Results 

The results for the BAM for the two study areas are considered in this section. For 

the two main scenarios, these were investigated according to Table 3. 

Table 3. Different scenarios for mapping of burned areas in two case-study areas. 

Scenario Pre-Event Dataset Post-Event Dataset 

S#1 Sentinel-2 Sentinel-2 

S#2 Sentinel-2 PRISMA 

4.2.1. First Study Area 

Figure 7 shows the results of the BAM based on the post/pre-event Sentinel-2 im-

agery. Based on these results, the DSMNN-Net differed from the BAM. Most methods 

detected the burned areas, with differences seen in the detail. For example, there are some 

missed detection areas in the results of the two CNN-based methods (center of scene) 

while the method proposed here detected these well. 

  

(a) (b) 

Figure 7. Cont.



Remote Sens. 2021, 13, 5138 15 of 26
Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 26 
 

 

  

(c) (d) 

Figure 7. Visual comparisons of the results for the burned area mapping based on the post/pre-event Sentinel-2 imagery 

for the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method 

proposed in the present study. (d) Ground truth map. 

Figure 8 shows the mapping results for the heterogeneous dataset provided by vari-

ous methods. As shown in Figure 8, all of the methods provided better performance in 

comparison with the first scenario (S#1) as a result of the small missed detection area that 

was significantly decreased. The results of the DSMNN-Net fit better with ground truth 

while results of other methods have many false pixels; in particular, for the Siamese net-

work (Figure 8a). The main differences among these results are obvious at the edges of 

the burned areas.  

  

(a) (b) 
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the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method proposed
in the present study. (d) Ground truth map.

The numerical results for the BAM for the first study area are given in Table 4. Based
on these data, the accuracies of all of the methods in both scenarios were >87% in all
terms. The accuracy of the algorithms in combining the hyperspectral datasets with the
multispectral dataset was significantly better than only the multispectral datasets. The
accuracy of the BAM results based on the fusion of the PRISMA imagery and Sentinel-2
imagery was >94% by OA index. However, the results of BAM based on only the Sentinel-2
imagery were very close together, but these were considerably different in the second
scenario (S#2). The method proposed here provided an accuracy of >97% in terms of the
OA, Recall, and F1-score indices. Furthermore, this provided the highest score by KC index
for the second scenario.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 26 
 

 

  

(c) (d) 

Figure 7. Visual comparisons of the results for the burned area mapping based on the post/pre-event Sentinel-2 imagery 

for the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using the method 

proposed in the present study. (d) Ground truth map. 

Figure 8 shows the mapping results for the heterogeneous dataset provided by vari-

ous methods. As shown in Figure 8, all of the methods provided better performance in 

comparison with the first scenario (S#1) as a result of the small missed detection area that 

was significantly decreased. The results of the DSMNN-Net fit better with ground truth 

while results of other methods have many false pixels; in particular, for the Siamese net-

work (Figure 8a). The main differences among these results are obvious at the edges of 

the burned areas.  

  

(a) (b) 

Figure 8. Cont.



Remote Sens. 2021, 13, 5138 16 of 26
Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
 

 

  

(c) (d) 

Figure 8. Visual comparisons of the results for the burned area mapping based on pre-event Sentinel-2 and post-event 

PRISMA imagery for the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) 

Using the DSMNN-Net. (d) Ground truth map. 

The numerical results for the BAM for the first study area are given in Table 4. Based on 

these data, the accuracies of all of the methods in both scenarios were >87% in all terms. The 

accuracy of the algorithms in combining the hyperspectral datasets with the multispectral da-

taset was significantly better than only the multispectral datasets. The accuracy of the BAM 

results based on the fusion of the PRISMA imagery and Sentinel-2 imagery was >94% by OA 

index. However, the results of BAM based on only the Sentinel-2 imagery were very close 

together, but these were considerably different in the second scenario (S#2). The method pro-

posed here provided an accuracy of >97% in terms of the OA, Recall, and F1-score indices. 

Furthermore, this provided the highest score by KC index for the second scenario. 

Table 4. Accuracy assessment for the burned area mapping for the first study area. S#1, pre/post-

event Sentinel-2 imagery; S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery. 

Method Scenario OA (%) Recall (%) 
F1-Score 

(%) 
IOU KC 

Siamese network 
S#1 87.94 87.10 91.34 0.740 0.716 

S#2 94.79 96.19 96.43 0.786 0.868 

CNN method proposed 

by [42]  

S#1 89.35 89.40 92.46 0.842 0.744 

S#2 94.35 97.13 96.17 0.851 0.853 

DSMNN-Net 
S#1 90.24 92.51 93.26 0.864 0.755 

S#2 97.46 97.99 98.25 0.901 0.936 

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient. 

4.2.2. Second Study Area 

Figure 9 illustrates the results of the BAM based on the bi-temporal multispectral/hy-

perspectral datasets for the second study area. Based on these results, there are some dif-

ferences among the algorithms seen for the details. Figure 9a shows the performance of 

the deep Siamese network, in that it has low false pixels, although many missed detection 

pixels can be seen in the result. However, the lowest missed pixels can be seen in the BAM 

Figure 8. Visual comparisons of the results for the burned area mapping based on pre-event Sentinel-2 and post-event
PRISMA imagery for the first study area. (a) Deep Siamese network. (b) Using the CNN method proposed in [42]. (c) Using
the DSMNN-Net. (d) Ground truth map.

Table 4. Accuracy assessment for the burned area mapping for the first study area. S#1, pre/post-event Sentinel-2 imagery;
S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery.

Method Scenario OA (%) Recall (%) F1-Score (%) IOU KC

Siamese network
S#1 87.94 87.10 91.34 0.740 0.716
S#2 94.79 96.19 96.43 0.786 0.868

CNN method proposed
by [42]

S#1 89.35 89.40 92.46 0.842 0.744
S#2 94.35 97.13 96.17 0.851 0.853

DSMNN-Net
S#1 90.24 92.51 93.26 0.864 0.755
S#2 97.46 97.99 98.25 0.901 0.936

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient.

4.2.2. Second Study Area

Figure 9 illustrates the results of the BAM based on the bi-temporal multispec-
tral/hyperspectral datasets for the second study area. Based on these results, there are some
differences among the algorithms seen for the details. Figure 9a shows the performance of
the deep Siamese network, in that it has low false pixels, although many missed detection
pixels can be seen in the result. However, the lowest missed pixels can be seen in the BAM
for the method proposed by [42] in Figure 9b, although it shows high false pixels in the
results presented. The result of BAM by the DSMNN-Net can be seen in Figure 9c, which
shows the lowest false pixels and missed pixels in the mapping.

The results of the BAM based on the Sentinel-2 and PRISMA sensors for the second
area are presented in Figure 10. Based on the comparisons of the results presented with the
multispectral dataset, there are some improvements in the details of the mapping. These
improvements are more evident in the results of the DSMNN-Net, as some false pixels
were classified correctly.
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proposed in the present study. (d) Ground truth map.
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(c) Using the DSMNN-Net. (d) Ground truth map.

Table 5 presents the quantitative performance comparison of the methods for the
second study area for the BAM. Based on these data, there are some enhancements in the
results of the BAM in all terms for the case study area. The enhancement of the methods is
more evident for the Recall, F1-Score, IOU, and KC indices. For example, the difference
between Recall of the Siamese network in the first and second scenarios is >20%; moreover,
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in other terms, this improvement is >3%. The improvement of the BAM in the CNN
method proposed by [42] was slight. The DSMNN-Net has some improvements that are
more evident by terms KC, IOU, F1-Score, and Recall. For example, these terms show
greater improvement for the method proposed here in the detection of burned pixels, while
there is some improvement in the detection of nonburned pixels.

Table 5. Accuracy assessment for the burned area mapping for the second study area. S#1, pre/post-event Sentinel-2
imagery; S#2, pre-event Sentinel-2 imagery and post-event PRISMA imagery.

Method Scenario OA (%) Recall (%) F1-Score (%) IOU KC

Siamese network
S#1 97.32 78.90 85.03 0.739 0.835
S#2 97.41 98.79 88.05 0.786 0.866

CNN method proposed
by [42]

S#1 98.21 98.94 91.44 0.842 0.904
S#2 98.35 97.75 91.94 0.851 0.910

DSMNN-Net
S#1 98.56 95.13 92.75 0.864 0.919
S#2 98.95 98.90 94.80 0.901 0.942

OA, overall accuracy; IOU, intersection over union; KC, kappa coefficient.

5. Discussion

This study focused on BAM based on deep-learning methods based on bi-temporal
multispectral and hyperspectral imagery. BAM has mainly been applied based on low-
resolution satellite imagery (e.g., MODIS, VIIRS, and Sentinel-3). However, BAM based on
these sensors has provided promising results, although mapping of small burned areas is
the most important challenge. These methods support the high coverage areas but do not
provide suitable results for small areas. Furthermore, there are some burned area products
on a global scale based on the MODIS satellite imagery. Many studies have evaluated the
accuracy obtained by BAM based on the MODIS collection, where this has been reported
as <80%, while for the BAM for both study areas, the DSMNN-Net provided an accuracy
of >98% by the OA index (Tables 4 and 5).

Most BAM is mainly based on high-resolution imagery (e.g., Landsat-8, Sentinel-2)
for the normalized burned ratio index. Although this index has provided some promising
results for BAM, due to the dependency of burned areas on the environmental features
and the behavior of the fire, it is hard to discriminate burned areas from the background.
This issue has reduced the efficiency of the BAM methods by the need to threshold the
normalized burned ratio indices. Furthermore, some high-resolution burned area products
on a global scale have been obtained based on this. Thus, these products do not support
accurate BAM in practical real-world burned area estimation. Similarly, some unsupervised
thresholding methods have been used, but due to the complexity of the background and
noise conditions, the selection of suitable thresholds is another limitation of these methods.

Many BAM methods have been proposed based on machine-learning methods, such
as random forest, K-nearest neighbor, and support machine vector. While these methods
have provided acceptable results for BAM, they use handcrafted feature extraction. Manual
feature extraction and then selection of suitable features is a time-consuming process. This
issue needs to be considered when the study area is very large scale and the number
of features is high. Additionally, these methods mainly focus on spectral features and
ignore the potential of spatial features. The potential of spatial features has been shown
in many studies on BAM based on machine-learning methods. The deep-learning-based
methods can automatically extract deep features that are a combination of spectral and
spatial features. This study has used the deep-feature extraction manner for BAM based on
convolution and morphological layers.

To show further the effectiveness of the DSMNN-Net process, we visualized the
feature maps in the different layers to look inside their internal operation and behavior.
Figure 11 illustrates the visualization of the feature maps extracted from some layers in
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the proposed DSMNN-Net for random pixels. The first layers show the shallow features,
while the middle layers focus on the general structure around the central pixel.
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The efficiency of deep features and handcrafted features can be seen in Table 6. Based
on these data, the DSMNN-Net provided greater accuracy compared to other state-of-the-
art methods for BAM using the Sentinel-2 imagery.
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Table 6. Comparison of performance of the DSMNN-Net with other burned area mapping methods.

Reference Accuracy Method Dataset

Grivei, et al. [77] (F1-Score: 0.873)
Support vector machine

algorithm and spectral indices,
factor analysis

Sentinel-2

Barboza Castillo, et al. [78] 94.4 Thresholding on the
spectral index Sentinel-2

Syifa, et al. [79] 92 Support vector machine and
imperialist competitive algorithm Sentinel-2

Quintano, et al. [80] 84 Spectral index and thresholding Combination of Landsat-8
and Sentinel-2

Ngadze, et al. [81] 92 Random forest Sentinel-2

Roy, et al. [82] 92 Random forest change regression,
and a region growing manner

Combination of Landsat-8
and Sentinel-2

Lima, et al. [83] 96 Thresholding on the
spectral index Sentinel-2

Seydi, Akhoondzadeh, Amani
and Mahdavi [10] 91 Spectral and spatial features and

random forest Sentinel-2

DSMNN-Net 98 Deep-learning based Sentinel-2

OA, overall accuracy.

Hyperspectral imagery has a high content of spectral information in comparison with
multispectral imagery. This advantage of hyperspectral imagery helps to detect burned
areas with a highly complex background. Thus, the main reason behind the robust results
provided by the method proposed here is the use of the hyperspectral dataset for the
BAM. The burned pixels have a high similarity to some unburned pixels, and to clarify
this subject, we presented some spectral signatures of burned and unburned pixels in the
different areas. Figure 12 illustrates the similarities of the spectral signatures for the two
main classes. Based on these data, the burned and unburned pixels have similar behaviors
in the 0.45 to 0.8 µm range, while for other areas there are some differences in the reflectance.
Therefore, hyperspectral imagery and combining pre-event datasets can be useful for BAM.

Additionally, the proposed suitable deep-feature extraction framework is very impor-
tant in deep-learning-based methods. Among these three deep-learning-based methods,
the method proposed here provided the best performance in all of the scenarios and for
both study areas. This issue originated from the architecture of the deep-learning methods
in the extraction of deep features. The DSMNN-Net extracts the deep features based on
the type of kernel convolution and morphological layers. Initially, the DSMNN-Net uses
multiscale 3D kernel convolution that investigates the relation among the spectral bands in
deep-feature extraction. Based on Figure 12, there are some differences among the spectral
signatures for the same classes, and these differences are greater for some spectral bands.
Furthermore, there is some overlap between the two classes in the spectral bands. Therefore,
using 3D convolution can enhance the efficiency of the network, because this can consider
the relations between the spectral bands and the relations between the central pixel and the
neighboring pixels. This advantage is the most important factor in taking the full content
of spectral information for the BAM. Then, the morphological layers are used to explore
nonlinear characterizers of the input dataset in the mapping. Thus, the DSMNN-Net can
extract high-level and informative deep features based on proposed architectures; as a
result, accurate BAM is possible using this proposed method. Additionally, the diversity
of objects and the complexity of unburned areas mean that the BAM changes, which is
a challenge. Solving this challenge mainly requires increasing the depth of the network,
which results in an increasing number of parameters, and the need for greater training data
and time. Here, the DSMNN-Net uses morphological operation cases to investigate the
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complexity of the background. The morphological operators use nonlinear operations that
increase the efficiency of the network for the BAM.
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Recently, some semantic-segmentation-based (U-Net architecture) methods have been
proposed. While these methods can provide considerably improved results for BAM,
it needs to be noted that they require large amounts of labeled data of a specific size
(i.e., 512 × 512 or 256 × 256). Obtaining a large amount of labeled datasets for such an
application is very difficult and time consuming. Furthermore, these models are more
complex due to the higher number of parameters and the need for more time for training
the network. The DSMNN-Net used close to 45,000 pixels for the BAM, and obtaining this
amount of sample data is easy according to the extent of the study areas.

One of the most common challenges for BAM based on changes in detection meth-
ods is the detection of nontarget changes. For example, the second study area has some
nontarget change areas where their changes originated from changes in the water level
of the lakes. This issue meant that the methods considered these as burned areas, while
they are nonburned areas. This challenge is more evident in the BAM by the CNN method
proposed in [42]. The sample data should cover more areas in the background, although
the method proposed here controlled this issue in the BAM.

The method proposed here uses adaptive heterogeneous datasets in the mapping
of burned areas. However, pixel-based change detection methods can be applied for bi-
temporal multispectral/hyperspectral datasets easily, while they are difficult to apply for a
heterogeneous dataset. In other words, some methods (i.e., image differencing algorithm)
compare the pixel-to-pixel of the first and second time of bi-temporal dataset for BAM,
while for heterogeneous datasets this is very difficult due to difference in a number of
spectral bands, and content of datasets. The proposed DSMNN-Net can be applied to
heterogeneous datasets without any additional processing (e.g., dimensional reduction).
These advantages will also help in BAM when applied in a near real-time manner. It is
worth noting that the proposed DSMNN-Net applied based on pre-event multispectral
and post-event hyperspectral datasets while the bi-temporal pre-event and post-event
hyperspectral datasets can improve the result of the BAM.
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6. Conclusions

Accurate and timely BAM is the most important factor in wildfire damage assessment
and management. In this study, a novel framework based on a deep-learning method
(DSMNN-Net) and the use of bi-temporal multispectral and hyperspectral datasets was
proposed. We evaluated the performance of the DSMNN-Net for two study areas in two
scenarios: (1) BAM based on bi-temporal Sentinel-2 datasets and (2) BAM based on pre-
event Sentinel-2 and post-event PRISMA datasets. Furthermore, the results for the BAM are
compared with other state-of-the-art methods, both visually and numerically. The results
of the BAM show that the method proposed here has high efficiency in comparison with
the other methods for BAM. Additionally, the use of hyperspectral datasets can improve
the performance of BAM based on deep-learning-based methods. The experimental results
of this study illustrate that the DSMNN-Net has some advantages: (1) it provides high
accuracy for BAM; (2) it has a high sensitivity for BAM for complex background areas; (3) it
is adaptive, with heterogeneous datasets for BAM (multispectral and hyperspectral); and
(4) it can be applied in an end-to-end framework without any additional processing.
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