
HAL Id: hal-03550102
https://hal.science/hal-03550102v1

Submitted on 31 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Universal insertion grammars of size two
Sergey Verlan, Henning Fernau, Lakshmanan Kuppusamy

To cite this version:
Sergey Verlan, Henning Fernau, Lakshmanan Kuppusamy. Universal insertion grammars of size two.
Theoretical Computer Science, 2020, 843, pp.153-163. �10.1016/j.tcs.2020.09.002�. �hal-03550102�

https://hal.science/hal-03550102v1
https://hal.archives-ouvertes.fr


Universal insertion grammars of size two

Sergey Verlana,∗, Henning Fernaub, Lakshmanan Kuppusamyc

aUniv Paris Est Creteil, LACL, F-94010 Creteil, France
bFachbereich 4 – Abteilung Informatikwissenschaften, CIRT, Universität Trier, D-54286 Trier, Germany

cSchool of Computer Science and Engineering, VIT, Vellore-632 014, India

Abstract

In this paper, we show that pure insertion grammars of size 2 (i.e., inserting two symbols in a left and
right context, each consisting of two symbols) can characterize all recursively enumerable languages. This is
achieved by either applying an inverse morphism and a weak coding, or a left (right) quotient with a regular
LOC(2) language, or an intersection with a LOC(2) language and a weak coding. The obtained results
improve the descriptional complexity of insertion grammars and complete the picture of known results on
insertion-deletion systems that are motivated from the DNA computing area.

Keywords: insertion grammars, insertion systems, recursively enumerable sets, homomorphic
representation.

1. Introduction

An insertion grammar is a pure grammar (i.e., there are no non-terminals as opposed to terminal
symbols) having only rules of form uv → uxv. Such grammars originated in [6]; they are inspired by Marcus
contextual grammars [17, 26] used in linguistics. Another motivation for their study comes from the area
of biology. As pointed out in [27], the process of mismatched annealing of DNA strands can be seen as
an insertion or a deletion of a string in a specified context. A similar process happens in the case of RNA
editing [2], where the uracil base U is inserted or deleted in some left context, as well as in the case of
CRISPR-Cas9 technology that uses insertion and deletion to edit the genome [28, 1]. These observations led
to the intense study of insertion-deletion systems (considering insertion and deletion operations together)
in the framework of DNA computing [13, 29, 11, 18, 19, 30, 31].

There are several related models using a similar principle of insertion or deletion of a string in a specified
context. We cite guided-insertion systems [3] used to model RNA editing, leftist grammars [20] used to
model accessibility problems in protection systems, restarting automata [10] used to model the analysis
by reduction and the insertion operation from [8] introduced as a generalization of the concatenation (and
which corresponds to a context-free insertion grammar).

Since an insertion grammar is a pure grammar, an additional squeezing mechanism must be used in order
to obtain a final language, as otherwise the described language class will have poor closure properties. Usually
some restricted transducers are used for this purpose. Some standard examples are (1) the intersection
with the free monoid over a terminal alphabet (used traditionally for Chomsky grammars), (2) projection
composed with an inverse morphism, (3) left/right quotient by a regular language, (4) projection composed
with intersection with a regular language. In the area of insertion grammars, variant (2) is mostly used,
because (1) may only give at most context-sensitive languages [27].

The size of the insertion grammar is naturally defined by the triple (n,m,m′), where n (resp. m, m′) is
the maximal length of the inserted string (resp. left context, right context). If all parameters coincide, we

∗Corresponding author
Email addresses: verlan@u-pec.fr (Sergey Verlan), fernau@uni-trier.de (Henning Fernau), klakshma@vit.ac.in

(Lakshmanan Kuppusamy)

Preprint submitted to Elsevier August 28, 2020



just say that the grammar is of size n. In [27], it was shown for the first time that insertion grammars of
size (4,7,6) together with the squeezing mechanism (2) as described above generate all recursively enumerable
languages. This result was improved in [21], where insertion grammars of size (3,5,4) are shown to be
sufficient for the same task. Continuing with this race, papers [23, 12] show that insertion grammars of
size 3 generate all recursively enumerable languages with squeezing mechanisms (2), (3) and (4). In [24, 22]
the squeezing mechanism (4) was thoroughly investigated showing that the result above also holds when
some restricted classes of regular languages are used.

Further decrease in size of rules was achieved only by using additional control mechanisms, like graph-
control for the size 2 [14, 15] and matrix control [25, 16] for the size (1,2,2) [4].

In this paper, we show that it is possible to generate all recursively enumerable languages using insertion
grammars of size 2 with squeezing mechanisms (2), (3) and (4). This settles the question of the computational
power of this model when all three parameters are the same, as insertion grammars of size (n, 1, 1) are shown
to be context-free [27]. This also proves a remarkable jump when combined with squeezing mechanisms as
described above, because the context-free languages are closed under these operations. Hence, while insertion
grammars of size 1 with squeezing mechanisms (2), (3) and (4) stay within the context-free languages,
size 2 grammars jump up to all recursively enumerable languages. The proof of the main result is greatly
simplified by the introduced notion of an independent rule set that allows to formalize the conditions when
the application of two insertion rules in a derivation is independent and can be done in any order.

2. Definitions

We assume the reader is familiar with the standard concepts used in formal languages theory. We recall
some of them in order to fix the notations. Given an alphabet (a finite set) V , let V ∗ denote the set of all
strings over V , i.e., the free monoid generated by V ; the operator symbol · (for concatenation) is mostly
omitted. For a string x ∈ V ∗, we denote the length of x by |x| and the empty string is written as λ. If
not explicitly stated otherwise, the notion of a morphism refers to a (homo)morphism mapping from the
free monoid over some alphabet to the free monoid over some (other) alphabet. A weak coding is a special
morphism h : V ∗ → W ∗, where W ⊆ V and the restriction of h to W is the identity, and h(x) = λ for
x ∈ V \W .

The set of prefixes of a string s will be denoted by Pref(s) and the set of suffixes as Suff(s). In this
paper we consider non-empty prefixes and suffixes, i.e., λ 6∈ Pref(s), λ 6∈ Suff(s) for any string s. A proper
substring of a string s = a1 . . . an is any sequence of consecutive letters s that is not equal to s: ai . . . aj ,
1 ≤ i ≤ j ≤ n, with j − i + 1 < n. An internal substring of a string w is any substring of w that is not
prefix or suffix of w.

2.1. Special Geffert Normal Form

A type-0 grammar G = (N,T, S, P ) is said to be in Geffert normal form [7] if the set of non-terminals N
is defined as N = {S,A,B,C,D}, T is an alphabet (of terminal symbols) and P only contains context-free
rules S → uSv with u ∈ {A,C}+ and v ∈ (T ∪ {B,D})+, as well as S → uv whenever S → uSv ∈ P , and
two (non-context-free) erasing rules AB → λ and CD → λ.

We remark that, according to [7], the generation of a string using a grammar in this normal form is
performed in three stages. During the first two stages, only context-free rules S → uSv can be applied;
this follows from the fact that u ∈ {A,C}+ and v ∈ ({B,D} ∪ T )+. Moreover, the terminal symbols are
generated first, so during the first stage, the string can be described by the regular expression (A|C)∗ST ∗,
which changes to (A|C)∗S(B|D)∗T ∗ during the second stage. Assuming a terminal derivation, switching
back to the first stage is not possible. The second stage is finalized by applying a rule of the form S → uv.
During the third stage, only non-context-free rules can be applied, because the symbol S is no longer present
in the string. Moreover, in each step only one such rule can be applied. Note that the symbols A,B,C,D
are treated like terminals during the first two stages and so, each rule S → uSv is, in a sense, “linear”. We
would also like to remark that according to the construction from Theorem 1 from [7] it is possible that
u = λ for some rules, however, v can never be the empty word.

2



Throughout this paper, we will use the special Geffert normal form (SGNF) [5, 9, 25]. This normal form
is obtained by transforming “linear” rules from Geffert normal form to a set of “left- and right-linear” rules
using a standard approach, see [25] for more details. Additionally, for commodity reasons, the terminals are
generated at the left side of the string, which means by the remark above that “linear” rules from Geffert
normal form that have to be transformed are of the form S → uSv where v = λ for some rules, while u is
never the empty word (†). Hence, for a grammar in SGNF, it is possible to split the set of non-terminals
into disjoint sets as follows: N = NS ∪NT ∪NL ∪NR, where NT = NAC ∪NBD, with NAC = {A,C}, and
NBD = {B,D}, NS = {S, S′}, NL (resp. NR) is the set of non-terminals appearing in the left-hand-side of
“left-linear” (resp. “right-linear”) rules except for S. We cite below some of the interesting properties of a
grammar G in SGNF:

1. G has only two (non-context-free) erasing rules AB → λ and CD → λ, and several “right-linear” and
“left-linear” rules of one of the following forms; notice that due to Condition (†) above, we start with
generating the non-empty part with “right-linear” rules and then might even skip the “left-linear”
rules.

• X → bY, where X ∈ NR ∪ {S}, b ∈ T ∪NAC , Y ∈ NR ∪NL ∪NS , X 6= Y,

• X → Y b, where X ∈ NL, b ∈ NBD, Y ∈ NL ∪NS , X 6= Y ,

• S′ → λ.

2. We can assume that rules rewriting a symbol different from S are deterministic: for each X 6= S, there
is a single rule X → ab ∈ P . This property can be achieved, as we can choose different nonterminals in
NR ∪NL for each “linear” rule S → α that is going to be simulated by “right-linear” and “left-linear”
rules.

3. The computation in G is done in three stages described below.

• Generating terminals at the left end of the string. The sentential form at this stage can be
described by the regular expression T ∗(N \NT )(NBD)∗. We remark that at this stage only one
non-terminal from N \NT is present in the string.

• Generation of symbols from NAC . The sentential form at this stage can be described by the
regular expression T ∗(NAC)∗(N \ NT )(NBD)∗. As above, at this stage only one non-terminal
from N \NT is present in the string.

• Erasing stage. The sentential form at this stage can be described by the regular expression
T ∗(NAC)∗(AB|CD)(NBD)∗. We remark that there is only one matching pair AB or CD present
in the string.

The transition from stage 1 to stage 2 is performed when the last rule producing a terminal is applied
(X → bY , b ∈ T ). The transition from stage 2 to stage 3 is performed by applying the rule S′ → λ.

2.2. Insertion grammars

First, we define the notion of an insertion rule.

Definition 1. Let V be an alphabet. An insertion rule over V is the triple r = (u, x, v), where u, x, v ∈ V ∗.

Next, we define different types of relations between insertion rules.
An insertion rule r = (u, x, v) matches the string w if uv is a substring of w. When |uv| > 1 this implies

that an insertion (by using rule r) may happen inside w.
An insertion rule r1 = (u1, x1, v1) matches an insertion rule r2 = (u2, x2, u2) if u1v1 = u2v2. We also

define a notion of a perfect match between two rules where additionally to the match it is required that
u1 = u2 and v1 = v2. In a sense, matching rules compete for being applied on a string that they match.

Definition 2. An insertion rule r = (u, x, v) overlaps string w (for a given alphabet V ) if there exist strings
w′, w′′, u′, v′ ∈ V ∗ such that w′ww′′ = u′uvv′ and |u′u| > |w′| and |vv′| > |w′′|.

3



The notion of overlap expresses the potential possibility to apply r modifying the string w. It is clear that
the notion of overlap makes sense only for |w| > 1.

By definition, if r = (u, x, v) overlaps w, then there is a factorisation w′ww′′ = u′uvv′. Then, the
condition |u′u| > |w′| implies that w starts before u ends. Similarly, the condition |vv′| > |w′′| implies that
v starts before w ends. Hence, there are 4 possible cases for positioning of w within u′uvv′ (they are also
depicted on Fig. 1):

a. w starts before u starts and ends after v ends, hence uv is a substring of w, possibly uv = w,

b. w starts after u starts and ends before v ends, hence w is a proper substring of uv but it is not a
proper substring of either u or v,

c. w starts before u starts and ends before v ends, hence Suff(w) ∩ uPref(v) 6= ∅,
d. w starts after u starts and ends after v ends, hence Suff(u)v ∩ Pref(w) 6= ∅.

w

u v

(a)

w

u v

(b)

w

u v

(c)

w

u v

(d)

Figure 1: Four possible cases for string overlap: (a) uv is a substring of w, (b) w is a substring of uv, (c) Suff(w)∩uPref(v) 6= ∅,
(d) Suff(u)v ∩ Pref(w) 6= ∅.

Definition 3. A (pure) insertion grammar is given by a triple G = (V,A,R), where

• V is an alphabet,

• A ⊆ V ∗ is the set of axioms,

• R is a finite set of insertion rules over V .

We will also use the term insertion system as a synonym for an insertion grammar.

Definition 4. The derivation relation ⇒ ⊆ V ∗ × V ∗ of the insertion grammar G = (V,A,R) is defined as
follows:

w1uvw2 ⇒ w1uxvw2, if and only if ∃r = (u, x, v) ∈ R

It can be easily deduced that an insertion rule (u, x, v) corresponds to the rewriting rule uv → uxv.
However, there is a small difference with traditional Chomsky grammars, where uv cannot be empty. There
is no such restriction for insertion grammars. If uv = λ, then x can be inserted anywhere in the string, in
particular, it can be appended to its left or right end.

We define the language generated by an insertion grammar G = (V,A,R) as the reflexive and transitive
closure of the set of axioms:

L(G) = {w ∈ V ∗ | ∃x ∈ A : x⇒∗ w}.

We define the size of an insertion grammar G = (V,A,R) as the triple (n,m,m′), where

n = max
(u,x,v)∈R

|x| , m = max
(u,x,v)∈R

|u| and m′ = max
(u,x,v)∈R

|v| .

The family of insertion grammars of size (n,m,m′) is denoted as INS(n,m,m′).
We now introduce an important notion of the independent rule set. The main idea is to capture the

conditions that allow rules to be applied in any order (independently of each other). In turn, this allows us
to consider particular rule application orders that greatly simplify the proofs.

Definition 5. A set of insertion rules R is called independent if, for any two rules r1 = (u1, x1, v1), r2 =
(u2, x2, v2) from R, one of the following two conditions holds:

4



• r1 and r2 perfectly match,

• r1 does not overlap u2v2 and r2 does not overlap u1v1.

The independence property says that for two insertion rules r1 = (u1, x1, v1) and r2 = (u2, x2, v2), r1

(resp. r2) can never insert x1 (resp. x2) inside the site u2v2 (resp. u1v1), except the case when they perfectly
match (and then u1 = u2 and v1 = v2). Neglecting symmetric cases, this leaves us with only 3 possibilities
for the relation between contexts and they are depicted in Fig. 2.

u1 v1

u2 v2

(a)

u1 v1

u2 v2

(b)

u1 v1

u2 v2

(c)

Figure 2: Three possible rule relations for an independent rule set (we recall that these conditions are symmetric with respect
to rules): (a) rules perfectly match, (b) rules do not overlap and Suff(u1v1) ∩ Pref(u2v2) = ∅, (c) rules do not overlap and
Pref(u2) ∩ Suff(v1) 6= ∅.

We now show that the independence property allows rules to be applied in any order.

Proposition 1. Consider an insertion grammar (V, {w1ww2}, R). If any rule r = (u, x, v) from R does not
overlap w and if w is not a proper substring of u or v, then

• w is preserved in any derivation, i.e., no symbols will be inserted inside w;

• any derivation involving w1 is independent of any derivation involving w2, i.e., if w1ww2 ⇒∗ w′1ww′2
then w1w ⇒∗ w′1w and ww2 ⇒∗ ww′2.

Proof. Since no rule overlaps w, this implies that no insertion may happen inside w. The second condition
ensures that no rule contains w in its left or right context. This implies that w acts as a barrier for rules as
they cannot check any letter beyond it. This implies the two claims.

Proposition 2. Consider an insertion grammar (V,A,R) having an independent rule set. Then for any rule
r = (u, x, v) ∈ R and any derivation w1uvw2 ⇒∗ w′1uvw′2 that does not apply r or any rule that perfectly
matches it for the highlighted site uv, the evolution of w1 and w2 is independent, i.e., w1u ⇒∗ w′1u and
vw2 ⇒∗ vw′2.

Proof. This proposition is a consequence of Proposition 1, as the independence condition implies that any
rule r′ = (u′, x, v′) different from r (and its perfectly matching variants) will not overlap u and v and also
u and v will not be proper substrings of u′ or v′.

We would like to remark that for an insertion grammar with an independent rule set each substring uv
corresponding to rule contexts marks a portion in the string that cannot be altered until the corresponding
rule (or any rule perfectly matching it) is applied. When several such contexts are present in the string, it
is possible to apply the corresponding rules in any order. This is formalized by the following theorem.

Theorem 1. Let G = (V,A,R) be an insertion grammar with an independent rule set. Then, for any
derivation the rule application order is not important, i.e., a rule can be applied to some part of the string
at any time starting from the moment it becomes applicable and yielding the same result.

Proof. Indeed, consider any derivation applying a rule r = (u, x, v):

w ⇒∗ w1uvw2 ⇒∗ w′1uvw′2 ⇒r w
′
1uxvw

′
2 ⇒∗ w′ . (1)

Because R is independent, by Proposition 2 we have:

w1u⇒∗ w′1u
vw2 ⇒∗ vw′2

5



Then the initial derivation can be reorganized as follows, applying r immediately after the substring uv
appears for the first time in a string of the derivation sequence:

w ⇒∗ w1uvw2 ⇒r w1uxvw2 ⇒∗ w′1uxvw′2 ⇒∗ w′ .

Since derivation (1) does not impose any constraints on word w1uvw2, it may correspond to the first
appearance of the substring uv or not. This allows us to conclude that rule r can be applied either immedi-
ately after substring uv is introduced, or deferred for the application at a later time. To conclude the proof
we remark that because of rule independency the substring uv cannot be “broken” by an application of a
rule inside it.

Taking into account the last theorem, we remark that one can always choose the leftmost (resp. rightmost)
site in the string for the rule application, this corresponds to the leftmost (resp. rightmost) derivation.

3. Mark and migration technique

For the proof of the main result, we use a variant of the mark-and-migration technique introduced in [27]
and that is commonly used to obtain computational completeness results in the area of insertion systems.
This technique is based on a simulation of a type-0 grammar. Since it is not possible to delete symbols in
the derivation string, the main idea is to simulate the deletion of a non-terminal symbol X by adding a
special marker $ to its left (in [27] two markers # and $ were used). Such a sequence can be later easily
filtered by an inverse morphism or other squeezing mechanism. After the introduction of the $ marker, the
corresponding symbol X is treated as non-existing. We will also call a symbol X with a $ to its left a dead
symbol. By contrast, a symbol X without $ to the left will be called active, or non-dead. When simulating
context-free rules, dead symbols can be easily ignored by choosing insertion contexts that never allow an
insertion between $ and X. However, for context-sensitive rules like AB → λ, it may happen that symbols
A and B are separated by a sequence of dead symbols. To address this issue, the “migration” of B towards
the left until it is placed right to its partner A is performed. The migration is performed by “jumping” over
a dead symbol, i.e., a substring $XB is transformed to Bw1$Xw2$B, with w1, w2 ∈ ($Z)∗, with Z being
an alphabet of some additional symbols. The iteration of this process allows us to obtain an adjacent pair
of symbols A and B that can be further used for the simulation of an application of the corresponding rule
AB → λ, by turning the neighboring symbols A, B into dead symbols.

As shown in [27, 21, 23, 12], the migration of B over $X can be implemented in two phases: “jumping”
over $X and marking the rightmost B as dead. However, for such an approach contexts of length at least 3
are required, as with contexts of length 2 it is not possible anymore to “jump” over the sequence $X (as
the sequence $XB should be in the right context of some insertion rule). So, in order to be able to decrease
the length of the context more phases and a “jump” inside the sequence $X are required. But this can
pose integrity problems, as temporarily X is not a dead symbol anymore. The papers [14, 15, 4] solve these
problems by using an additional control (graph or matrix) for the rule application that allows to apply only
specific sequences of rules.

In this paper we show that by carefully choosing the contexts (of length 2) the temporary unmarking
of a dead symbol cannot produce wrong derivations, so no additional control is required to achieve the
claimed computational completeness. To achieve this, a barred copy of all non-terminal symbols (including
the marker $) is used. They are inserted in between $ and X in order to split the “jump” and they also
play the role of $ symbol by not allowing X to be active, thus blocking wrong derivations. The “jump” of
B over $X is performed in three phases. First a new symbol B̄1 is inserted between $ and X and then B
and X are marked as dead. Hence, the substring $XB is transformed to $B̄1$X$∇$B, where ∇ is a kind
of separator symbol. Next, $B̄1$X$∇$B is transformed to B$∇$̄B̄2$̄B̄1$X$∇$B, finishing the migration
of B. Since such a migration introduces sequences of form $̄B̄i, 1 ≤ i ≤ 2 a symmetrical group of rules
that allows to perform a migration over sequences $̄X̄ is added to the system. Finally, we remark that the
construction from the current paper has an independent rule set, see the appendix for more details.

6



4. Main Results

Theorem 2. For each recursively enumerable language L, there exists a morphism h, a weak coding g and
a language L1 ∈ INS(2, 2, 2) such that L = g(h−1(L1)).

Proof. Let G = (N,T, P, S) be a type-0 grammar in SGNF. We construct the insertion grammar G1 =
(V, {øøS$S}, P1), where

V = N ∪ T ∪ {KAB ,KCD} ∪
{
X, X̄ | X ∈ {$,∇, B1, D1}

}
∪ {ø} .

The set of rules P1 is constructed as follows. Consider the following sets:

L = T ∪ {A,C, ø},
N = N ∪ {KAB ,KCD, B1, D1,∇},
N̄ = {B̄1, D̄1, ∇̄},
D = {$X | X ∈ N} ∪ {$̄Ȳ | Ȳ ∈ N̄},
F = L2 ∪ D,
S = V \ {$, $̄} = N ∪ N̄ ∪ T ∪ {ø}.

• For any rule k : X → bY ∈ P we add the following rules to P1 (we recall that b ∈ T ∪ {A,C}):

rk,1 = (L, bY,X), rk,2 = (Y, $, X)

• For any rule k : X → Y b ∈ P we add the following rules to P1 (we recall that b ∈ {B,D}):

rk,3 = (L, Y,X), rk,4 = (Y, b$, X)

• Rule S′ → λ is simulated by the following rule in P1:

rS′ = (L, $, S′).

• The move of symbols B and D to the left of the sequence $X, X ∈ N is performed using the following
rules in P1 (we remark that rules rD,i are obtained from rules rB,i by replacing B by D):

rB,1 = (S$, B̄1, XB) rB,2 = (B̄1X,∇$, B$) rD,1 = (S$, D̄1, XD) rD,2 = (D̄1X,∇$, D$)

rB,3 = ($B̄1, $, X∇) rB,4 = ($X, $,∇$) rD,3 = ($D̄1, $, X∇) rD,4 = ($X, $,∇$)

rB,5 = (F , B$, $B̄1) rB,6 = ($$, $̄, B̄1$) rD,5 = (F , D$, $D̄1) rD,6 = ($$, $̄, D̄1$)

rB,7 = (B$,∇, $$̄) rB,8 = (∇$,∇, $̄B̄1) rD,7 = (D$,∇, $$̄) rD,8 = (∇$,∇, $̄D̄1)

• The move of symbols B and D to the left of the sequence $̄Ȳ , Ȳ ∈ N̄ is performed using following
rules in P1 (we remark that rules r̄D,i are obtained from rules r̄B,i by replacing B by D):

r̄B,1 = (S $̄, B1, Ȳ B) r̄B,2 = (B1Ȳ ,∇$, B$) r̄D,1 = (S$̄, D1, Ȳ D) r̄D,2 = (D1Ȳ ,∇$, D$)

r̄B,3 = ($̄B1, $̄, Ȳ∇) r̄B,4 = ($̄Ȳ , $,∇$) r̄D,3 = ($̄D1, $̄, Ȳ∇) r̄D,4 = ($̄Ȳ , $,∇$)

r̄B,5 = (F , B$, $̄B1) r̄B,6 = ($$̄, $, B1$) r̄D,5 = (F , D$, $̄D1) r̄D,6 = ($$̄, $, D1$)

r̄B,7 = (B$,∇, $̄$) r̄B,8 = (∇$̄, ∇̄, $B1) r̄D,7 = (D$,∇, $̄$) r̄D,8 = (∇$̄, ∇̄, $D1)

We remark that rules rB,i (resp. rD,i), 1 ≤ i ≤ 8 are very similar to rules r̄B,i (resp. r̄D,i) — they
are obtained one from another by removing the bar (if present) or adding the bar (if not present) to
symbols inserted or used as contexts inside the sequence $X or $̄Ȳ .

7



• Rules AB → λ and CD → λ are simulated by the following rules in P1:

rAB,1 = (LA,KAB$, B$) rAB,2 = (L, $, AKAB) rAB,3 = ($A, $,KAB),

rCD,1 = (LC,KCD$, D$) rCD,2 = (L, $, CKCD) rCD,3 = ($C, $,KCD).

Finally, let h : S → V ∗ be the morphism defined by

h(x) =


$x, x ∈ N ,
$̄x, x ∈ N̄ ,
x, x ∈ T,
ø, x = ø.

and g : S → T be the weak coding defined by

g(x) =

{
x, x ∈ T,
λ, otherwise.

Now we show that L(G) = g(h−1(L(G1))).
First we show the inclusion L(G) ⊆ g(h−1(L(G1))). A sentential form w = w1 . . . wn of G will be

represented by a word of form øøD∗w1D+w2D+ . . . wnD+ in G1. In particular, for the axiom, we find
øøS$S ∈ øøD∗SD+, as it represents the sentential form S of G. To simplify the presentation, we suppose
that there exists a function c that, applied to a word w = w1 . . . wn, gives the set of all strings of form
D∗w1D∗w2D∗ . . . wnD+. Hence, the axiom of G1, øøS$S, belongs to øø c(S). We remark that the rules
from G1 ensure that there is at least one symbol different from $ and $̄ after the starting øø sequence. We
highlight this in what follows by writing the sentential form uv in G as øøuc(v) in G1.

Consider an arbitrary derivation in G. As pointed out above, this derivation can be split into three
phases. During the first two phases only rules of type X → bY or X → Y b can be executed and during
the third phase, only rules AB → λ and CD → λ can be performed. The transition between the second
and the third phases is done by the application of the rule S′ → λ. Consider the part of the derivation
corresponding to the first or second phase. Suppose that the rule k : X → bY is applied:

uXv ⇒ ubY v

Then in G1 there is the following derivation:

øøuXc(v)⇒rk,1
øøubY Xc(v)⇒rk,2

øøubY $Xc(v)

We remark that the first derivation is possible as øøu ⊆ L+, because uXv is of the form T ∗(NAC)∗(N \
NT )(NBD)∗. Also, it is clear that øøubY $Xc(v) ⊆ øø c(ubY v) that corresponds to ubY v in G.

Now suppose that the rule k : X → Y b is applied in G:

uXv ⇒ uY bv

Then in G1 there is the following derivation:

øøuXc(v)⇒rk,3
øøuY Xc(v)⇒rk,4

øøuY b$Xc(v)

As before, the first derivation is possible as øøu ∈ L+.
Let us consider now that the rule S′ → λ is applied:

uS′v ⇒ uv

Then in G1 there is the following derivation:

øøuS′c(v)⇒rS′ øøu$S′c(v)

8



Again, we remark that this derivation is possible as øøu ∈ L+.
Now consider the third phase of the derivation in G. We recall that during this phase exactly one of

rules AB → λ or CD → λ is applicable. We will consider below only the first case, the other one being
symmetrical. Hence, consider the derivation uABv ⇒ uv in G. Suppose that corresponding symbols A and
B from øøuc(ABv) are adjacent to each other. Then there exists the following derivation in G′:

øøuABc(v)⇒rAB,1
øøuAKA,B$Bc(v)⇒rAB,2

øøu$AKAB$Bc(v)⇒rAB,3
øøu$A$KAB$Bc(v)

We remark that the first two rules are applicable, because for a grammar in SGNF it holds that u ∈ L+,
hence øøu ∈ L+ as well.

Now suppose that symbols A and B are not adjacent. In this case, consider the leftmost B that is not
dead. It is clear that there are only dead symbols between A and that B. We will show below how it
is possible to transfer B over a dead symbol $X. We suppose that the two symbols ab to the left of $X
correspond either to a dead symbol ($Y or $̄Ȳ ) or to a pair of symbols from L. This corresponds to ab ∈ F .
We will show below that the transformation we perform keeps this property.

ab$XB ⇒rB,1
ab$B̄1XB ⇒rB,2

ab$B̄1X∇$B ⇒rB,3
ab$B̄1$X∇$B ⇒rB,4

⇒rB,4
ab$B̄1$X$∇$B ⇒rB,5

abB$$B̄1$X$∇$B ⇒rB,6
abB$$$̄B̄1$X$∇$B ⇒rB,7

⇒rB,7
abB$∇$$̄B̄1$X$∇$B ⇒rB,8

abB$∇$∇$̄B̄1$X$∇$B

We remark that in the last string all symbols to the right of the first B are dead, that ensures that for the
migration of the next symbol B it will encounter the left context from F .

By repeating the above process it is possible to migrate to the left all symbols B and D that are not
dead. Then because the derivation in G is terminal, all these symbols will be marked as dead together
with the corresponding symbols A and C. Hence, for any terminal derivation S ⇒∗ u in G we obtain the
derivation øøS$S ⇒∗ øøuv, with v ∈ D+. Hence, L(G) ⊆ g(h−1L(G1)).

Now let us show the converse inclusion, g(h−1L(G1)) ⊆ L(G).
First, we remark that all rules from G1 are independent, see the appendix for more details. This implies

that the rules can be applied at any moment as soon as the corresponding context appears in the string.
Next we remark that the computation in G1 can be split into two phases: in the first phase only rules

rk,∗ are applied and in the second phase only rules rZ,∗, r̄Z,∗, Z ∈ {B,D,AB,CD} are applied. Indeed,
the initial configuration is øøS$S, so no rule from the second group can be applied. The application of
rules rk,1 or rk,3 leaves in the string a single occurrence of LZX$, Z,X ∈ N \ NT . This substring can
only be matched by a rule rk,2 or rk,4. Because the rules are independent, we can immediately perform
the corresponding rule. Because of the form of the rules, there are only symbols from L at the left of the
leftmost (active) nonterminal from N \NT and no symbols from L at the right of it. Hence, the sentential
form can be described by the expression øøT ∗{A,C}∗(N \NT )w, with w ∈ (N \NAB)∗. Because of the rule
independence, by Theorem 1, we can first apply again rk,1 or rk,3, etc. Hence, it is possible to reorganize
the derivation and to execute first rules from the first group and after that the rule rS′ and after that use
only rules from the second group. This means that the first part of the derivation follows the following
rule sequence: (

⋃
k:X→bY rk,1rk,2 ∪

⋃
k:X→Y b rk,3rk,4)

∗
rS′ . To conclude, we finally remark that the rule rS′

should be applied in a successful derivation, otherwise the string cannot pass the filter h−1.
Consider now the second phase. At the beginning of it, the current string is of the following form:

øøT ∗N∗AC$S′($(N \NT )∗NBD)∗$S (T and NAC followed by a sequence containing dead nonterminals from
N \NT mixed with symbols from NBD). We will show now how the migration is performed. For simplicity,
let us suppose that the rightmost symbol of the N∗AC part is equal to A and that the leftmost alive symbol
from NBD is B. Since it is not adjacent to A it should be migrated to the left.

Let us consider the migration of B over $X, X ∈ N \ NT . It is performed by rules rB,∗. Since the
rules are independent, by Theorem 1, we chose to apply them in the rightmost manner. Denote by ab the
two symbols at the left of $X. If b ∈ {$, $̄} then no rule is applicable. So, we suppose that b ∈ S (which
is initially true). We will also show that there is always a $ to the right of B. So, we have the following

9



derivation

ab$XB$ ⇒rB,1
ab$B̄1XB$ ⇒rB,2

ab$B̄1X∇$B$ ⇒rB,3
ab$B̄1$X∇$B$ ⇒rB,4

ab$B̄1$X$∇$B$

At this moment if ab 6∈ F the derivation stops. So, we suppose that ab ∈ F (this is true in particular at
the beginning of phase 2). Then the derivation continues as follows:

ab$B̄1$X$∇$B$⇒rB,5
abB$$B̄1$X$∇$B$⇒rB,6

abB$$$̄B̄1$X$∇$B$⇒rB,7

⇒rB,7
abB$∇$$̄B̄1$X$∇$B$⇒rB,8

abB$∇$∇$̄B̄1$X$∇$B$

So, we have shown that ab$XB$⇒∗ abB$∇$∇$̄B̄1$X$∇$B$. We observe that all symbols at the right
of B are dead and that there is a $ to the right of first B.

A similar computation happens for the case $̄Ȳ B, as well as for the migration of symbol D.
After several migration steps, B becomes adjacent to the last alive A. At this point, only rule rAB,1 is

applicable, which yields the following sequence of applications (a ∈ L):

aAB$⇒rAB,1
aAKAB$B$⇒rAB,2

a$AKAB$B$⇒rAB,3
a$A$KAB$B$

This simulates one application of the rule AB → λ from G. We remark that we can choose to apply the last
three rules in a row, because the set of all rules is independent. The case of the rule CD → λ is similar.

A successful derivation in G1 implies that all symbols except terminals are dead. We remark that
the sequence of rules in phase 1 always leaves one non-terminal that is not dead. Hence, according to the
discussion above, in a successful derivation all rules from phase 1 need to be executed. Next, at the beginning
of phase 2 there are always symbols from {A,B,C,D} that are not dead. We remark that the application of
rule sequences of type rZ,∗, r̄Z,∗, Z ∈ {B,D} does not decrease the number of dead symbols. Only sequences
of rules of type rAB,∗ and rCD,∗ can decrease this number (by two). In order to apply these last rules,
corresponding symbols B and D need to be migrated to the left and then matched to corresponding symbols
A and C. Hence, the sequence of used rules is described by the language( ⋃

k:X→bY

rk,1rk,2 ∪
⋃

k:X→Y b

rk,3rk,4

)∗
rS′
(
(zM,1 . . . zM,8)+rPM,1rPM,2rPM,3

)∗
,

where z ∈ {r, r̄}, PM ∈ {AB,CD} . Then we can construct the derivation in G yielding to the same terminal
string as follows (we recall that there is at most one non-terminal from N \ {A,B,C,D} or a sequence AB
or CD in any sentential form of G):

• for each rule rk,1 or rk,3, execute rule rk in G,

• for the rule rS′ , execute the rule S′ → λ in G,

• for the rule rAB,1 (resp. rCD,1) execute rule AB → λ (resp. CD → λ) in G.

This concludes the proof.

Corollary 1. For each recursively enumerable language L, there exists a regular language L1 ∈ LOC(2), a
weak coding g and a language L2 ∈ INS(2, 2, 2) such that L = g(L1 ∩ L2).

Proof. Theorem 2 shows how to construct an insertion grammar G1 = (V,A,R) that for any x ∈ L will
generate øøxw, w ∈ D+, where D is defined as above. We add to G1 a rule (x, $, y), x, y ∈ T ∪{ø} and change
the axiom to $øøS$S. Then, the corresponding grammar will generate $ø$ø$x1 . . . $xnw, if x1 . . . xn ∈ L.
Consider L1 = (D ∪ {$x | x ∈ L})∗. Clearly, L1 ∈ LOC(2). The intersection L1 ∩ L(G1) will keep only
strings that have all symbols dead; this corresponds to a successful derivation. To conclude the proof, we
take the same mapping g as in Theorem 2.

10



Corollary 2. For each recursively enumerable language L, there exists a regular language L1 ∈ LOC(2),
and a language L2 ∈ INS(2, 2, 2) such that L = L2/L1.

Proof. Let G = (N,T, S, P ) be the grammar describing L. We can suppose that it is in SGNF. Theorem 2
shows how starting from G it is possible to construct an insertion grammar G1 = (V,A,R) that for any
x ∈ L will generate øøxw, w ∈ D+, where D is defined as above. Since w is already in LOC(2) form,
L(G1)/L1 = {øøx | x ∈ L}, where L1 = D∗. To eliminate the sequence øø, it is sufficient to observe that it
is used as a rule context only during the first steps, when no terminals are yet generated. This means that
we can replace the axiom øøS$S by a set of axioms where the two first terminals are already generated:
abS$Sw1$Sw2 . . . $Swn$S, where S ⇒∗ abw1 . . . wn in G and a, b ∈ T , w1, . . . , wn ∈ N . Since G is in SGNF,
all corresponding strings can be obtained by considering derivations in G where the number of applications
of “right-linear” rules (X → bY ) is two. Since in any derivation there cannot be infinite sequences of “left-
linear” rules, there is a finite number of such strings. To conclude, we shall also add all strings of length 1
and 0 from L to the set of axioms. Then, no sequence øø is present anymore at the beginning of the string
and this concludes the proof.

Corollary 3. For each recursively enumerable language L, there exists a regular language L1 ∈ LOC(2),
and a language L2 ∈ INS(2, 2, 2) such that L = L1\L2.

The left quotient proof is a consequence of the previous corollary, as we can reverse all the rules and axioms.

5. Conclusions

In this paper, we have shown computational completeness of insertion grammars of size 2 enriched with
different squeezing mechanisms. Since insertion grammars of size (n, 1, 1) are known to be context-free [27],
only cases (1, 2, 2), (n,m, p), 1 ≤ n ≤ 2, 0 ≤ p ≤ 1, m ≥ 0 as well as their symmetric variants remain to be
investigated for computational completeness.

The proof of the result was greatly simplified using the concept of an independent rule set. We have
checked that the rules given in Theorem 2 are independent and then by Theorem 1 we could use them in
the order we preferred in order to achieve a simpler proof. We think that this notion can be very useful
in the area of insertion grammars and insertion-deletion systems from DNA computing [31] and it can help
obtain results improving the existing ones. Another challenging application of the independence property is
related to the modelling of the CRISPR-Cas9 mechanism [1] used for genome editing and that is very close
to insertion grammars. Ensuring the independence of the target sequences can lead to a better control of
the iteration of the editing process.

References

[1] Adli, M., 2018. The CRISPR tool kit for genome editing and beyond. Nature Communications 9, 1–13.
[2] Benne, R. (Ed.), 1993. RNA Editing: The Alteration of Protein Coding Sequences of RNA. Series in Molecular Biology,

Ellis Horwood, Chichester, UK.
[3] Biegler, F., Burrell, M.J., Daley, M., 2007. Regulated RNA rewriting: Modelling RNA editing with guided insertion.

Theoretical Computer Science 387, 103–112.
[4] Fernau, H., Kuppusamy, L., Verlan, S., 2017. Universal matrix insertion grammars with small size, in: Patitz, M.J.,

Stannett, M. (Eds.), Unconventional Computation and Natural Computation - 16th International Conference, UCNC
2017, Fayetteville, AR, USA, June 5-9, 2017, Proceedings, Springer. pp. 182–193. URL: https://doi.org/10.1007/

978-3-319-58187-3_14, doi:10.1007/978-3-319-58187-3\_14.
[5] Freund, R., Kogler, M., Rogozhin, Y., Verlan, S., 2010. Graph-controlled insertion-deletion systems, in: McQuillan, I.,

Pighizzini, G. (Eds.), Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, pp.
88–98.

[6] Galiukschov, B., 1981. Semicontextual grammars. Matem. Logica i Matem. Lingvistika , 38–50 Tallin University, (in
Russian).

[7] Geffert, V., 1991. Normal forms for phrase-structure grammars. RAIRO Informatique théorique et Applications / Theo-
retical Informatics and Applications 25, 473–498.

[8] Haussler, D., 1983. Insertion languages. Information Sciences 31, 77–89. doi:10.1016/0020-0255(83)90023-3.

11

https://doi.org/10.1007/978-3-319-58187-3_14
https://doi.org/10.1007/978-3-319-58187-3_14
http://dx.doi.org/10.1007/978-3-319-58187-3_14
http://dx.doi.org/10.1016/0020-0255(83)90023-3


[9] Ivanov, S., Verlan, S., 2015. Universality of graph-controlled leftist insertion-deletion systems with two states, in: Durand-
Lose, J., Nagy, B. (Eds.), Machines, Computations, and Universality - 7th International Conference, MCU, Springer. pp.
79–93.

[10] Jančar, P., Mráz, F., Plátek, M., Vogel, J., 1995. Restarting automata, in: Reichel, H. (Ed.), Fundamentals of Computation
Theory, FCT, pp. 283–292.

[11] Kari, L., Păun, Gh., Thierrin, G., Yu, S., 1999. At the crossroads of DNA computing and formal languages: Char-
acterizing recursively enumerable languages using insertion-deletion systems, in: Rubin, H., Wood, D.H. (Eds.), DNA
Based Computers III. AMS. volume 48 of DIMACS Series in Discrete Mathematics and Theretical Computer Science,
pp. 329–338.

[12] Kari, L., Sośık, P., 2008. On the weight of universal insertion grammars. Theoretical Computer Science 396, 264–270.
[13] Kari, L., Thierrin, G., 1996. Contextual insertions/deletions and computability. Information and Computation 131, 47–61.
[14] Krassovitskiy, A., 2009. On the power of insertion P systems of small size, in: Proc. of Seventh Brainstorming Week on

Membrane Computing, pp. 29–44.
[15] Krassovitskiy, A., 2011. On the power of small size insertion P systems. Int. J. Comput. Commun. Control 6, 266–277.

URL: https://doi.org/10.15837/ijccc.2011.2.2175, doi:10.15837/ijccc.2011.2.2175.
[16] Kuppusamy, L., Mahendran, A., Krishna, S.N., 2011. Matrix insertion-deletion systems for bio-molecular structures, in:

Natarajan, R., Ojo, A.K. (Eds.), Distributed Computing and Internet Technology - 7th International Conference, ICDCIT
2011, Bhubaneshwar, India, February 9-12, 2011. Proceedings, Springer. pp. 301–312. doi:10.1007/978-3-642-19056-8_23.

[17] Marcus, S., 1969. Contextual grammars, in: Third International Conference on Computational Linguistics, COLING
1969, Stockholm, Sweden, September 1-4, 1969. URL: https://www.aclweb.org/anthology/C69-4801/.

[18] Margenstern, M., Păun, Gh., Rogozhin, Y., Verlan, S., 2005. Context-free insertion-deletion systems. Theoretical Com-
puter Science 330, 339–348.

[19] Matveevici, A., Rogozhin, Y., Verlan, S., 2007. Insertion-deletion systems with one-sided contexts, in: Durand-Lose, J.O.,
Margenstern, M. (Eds.), Machines, Computations, and Universality, 5th International Conference, MCU, Springer. pp.
205–217.

[20] Motwani, R., Panigrahy, R., Saraswat, V., Ventkatasubramanian, S., 2000. On the decidability of accessibility problems
(extended abstract), in: Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC,
ACM. pp. 306–315. URL: http://doi.acm.org/10.1145/335305.335341.

[21] Mutyam, M., Krithivasan, K., Reddy, A.S., 2005. On characterizing recursively enumerable languages by insertion
grammars. Fundam. Inform. 64, 317–324. URL: http://content.iospress.com/articles/fundamenta-informaticae/

fi64-1-4-27.
[22] Okubo, F., Yokomori, T., 2011. Morphic characterizations of language families in terms of insertion systems and star

languages. Int. J. Found. Comput. Sci. 22, 247–260. doi:10.1142/S012905411100799X.
[23] Onodera, K., 2003. A note on homomorphic representation of recursively enumerable languages with insertion grammars.

Transactions of Information Processing Society of Japan 44, 1424–1427.
[24] Onodera, K., 2009. New morphic characterizations of languages in chomsky hierarchy using insertion and locality, in:

Dediu, A., Ionescu, A., Mart́ın-Vide, C. (Eds.), Language and Automata Theory and Applications, Third International
Conference, LATA 2009, Tarragona, Spain, April 2-8, 2009. Proceedings, Springer. pp. 648–659. URL: https://doi.org/
10.1007/978-3-642-00982-2_55, doi:10.1007/978-3-642-00982-2\_55.

[25] Petre, I., Verlan, S., 2012. Matrix insertion-deletion systems. Theoretical Computer Science 456, 80–88. doi:10.1016/j.
tcs.2012.07.002.

[26] Păun, Gh., 1997. Marcus Contextual Grammars. Kluwer/Springer. doi:10.1007/978-94-015-8969-7.
[27] Păun, Gh., Rozenberg, G., Salomaa, A., 1998. DNA Computing: New Computing Paradigms. Springer.
[28] Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013. Genome engineering using the CRISPR-Cas9

system. Nature Protocols 8, 2281–2308. doi:10.1038/nprot.2013.143.
[29] Takahara, A., Yokomori, T., 2003. On the computational power of insertion-deletion systems. Natural Computing 2,

321–336.
[30] Verlan, S., 2007. On minimal context-free insertion-deletion systems. Journal of Automata, Languages and Combinatorics

12, 317–328.
[31] Verlan, S., 2010. Recent developments on insertion-deletion systems. Computer Science Journal of Moldova 18, 210–245.

URL: http://www.math.md/files/csjm/v18-n2/v18-n2-(pp210-245).pdf.

12

https://doi.org/10.15837/ijccc.2011.2.2175
http://dx.doi.org/10.15837/ijccc.2011.2.2175
http://dx.doi.org/10.1007/978-3-642-19056-8_23
https://www.aclweb.org/anthology/C69-4801/
http://doi.acm.org/10.1145/335305.335341
http://content.iospress.com/articles/fundamenta-informaticae/fi64-1-4-27
http://content.iospress.com/articles/fundamenta-informaticae/fi64-1-4-27
http://dx.doi.org/10.1142/S012905411100799X
https://doi.org/10.1007/978-3-642-00982-2_55
https://doi.org/10.1007/978-3-642-00982-2_55
http://dx.doi.org/10.1007/978-3-642-00982-2_55
http://dx.doi.org/10.1016/j.tcs.2012.07.002
http://dx.doi.org/10.1016/j.tcs.2012.07.002
http://dx.doi.org/10.1007/978-94-015-8969-7
http://dx.doi.org/10.1038/nprot.2013.143
http://www.math.md/files/csjm/v18-n2/v18-n2-(pp210-245).pdf


A
p
p
e
n
d
ix

L
X

Y
X

L
S
′

S
$
X

B
B̄

1
X

B
$

$
B̄

1
X

∇
$
X

∇
$

F
$
B̄

1
$
$
B̄

1
$

B
$
$
$̄

∇
$
$̄
B̄

1
L
A

B
$

L
A

K
$
A

K
S

$̄
Ȳ

B
B

1
Ȳ

B
$

$̄
B

1
Ȳ

∇
$̄
Ȳ

∇
$

F
$̄
B

1
$
$̄
B

1
$

B
$
$̄
$

∇
$̄
$
B

1

L
X

[1
],

[1
]

[]
,
[2

]
[]
,
[2

]
[]
,
[2

]

Y
X

[2
],

[]
[1

,
2
],

[1
,
2
]

[2
],

[]
[]
,
[2

]
[]
,
[2

]

L
S
′

[]
,
[2

]
[1

],
[1

]
[]
,
[2

]
[]
,
[2

]

S
$
X

B
[2

],
[]

[2
],

[]
[2

],
[]

[1
,
4
],

[1
,
4
]

[3
],

[]
[4

],
[]

[3
],

[]
[4

],
[]

[3
],

[]
[]
,
[4

]
[4

],
[]

[3
],

[]
[3

],
[]

[3
],

[]
[4

],
[4

]
[3

],
[]

[4
],

[]
[3

],
[]

[4
],

[]
[3

],
[]

[]
,
[4

]
[4

],
[]

B̄
1
X

B
$

[]
,
[3

]
[1

],
[1

]
[]
,
[4

]
[]
,
[4

]
[4

],
[4

]
[]
,
[4

]
[]
,
[3

]
[4

],
[]

[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[3

]

$
B̄

1
X

∇
[]
,
[4

]
[4

],
[]

[1
],

[1
]

[4
],

[]
[3

],
[]

[4
],

[]
[]
,
[4

]
[4

],
[]

[]
,
[4

]
[4

],
[]

[4
],

[]
[4

],
[]

[4
],

[]
[]
,
[4

]

$
X

∇
$

[]
,
[3

]
[4

],
[]

[]
,
[4

]
[1

,
4
],

[1
,
4
]

[]
,
[4

]
[4

],
[4

]
[]
,
[3

]
[4

],
[]

[]
,
[4

]
[4

],
[]

[4
],

[]
[]
,
[4

]
[4

],
[4

]
[4

],
[]

F
$
B̄

1
[]
,
[4

]
[4

],
[4

]
[]
,
[3

]
[4

],
[]

[1
],

[1
]

[4
],

[]
[4

],
[]

[]
,
[4

]
[4

],
[]

[4
],

[]
[4

],
[]

[4
],

[]
[3

],
[]

$
$
B̄

1
$

[]
,
[3

]
[4

],
[]

[]
,
[4

]
[4

],
[4

]
[]
,
[4

]
[1

,
4
],

[1
,
4
]

[4
],

[]
[]
,
[4

]
[4

],
[]

[4
],

[]
[]
,
[4

]
[4

],
[4

]
[4

],
[]

B
$
$
$̄

[4
],

[]
[3

],
[]

[]
,
[4

]
[1

],
[1

]
[3

],
[]

[4
],

[]
[3

],
[]

[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[3

]

∇
$
$̄
B̄

1
[]
,
[4

]
[]
,
[4

]
[4

],
[]

[3
],

[]
[]
,
[3

]
[1

],
[1

]
[]
,
[4

]
[4

],
[]

[3
],

[]
[]
,
[3

]

L
A

B
$

[]
,
[3

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[3

]
[1

],
[1

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[3

]

L
A

K
[]
,
[3

]
[1

],
[1

]
[]
,
[3

]

$
A

K
[]
,
[3

]
[4

],
[]

[4
],

[]
[4

],
[]

[4
],

[]
[1

],
[1

]
[]
,
[3

]
[4

],
[]

[4
],

[]
[4

],
[]

[4
],

[]

S
$̄
Ȳ

B
[2

],
[]

[2
],

[]
[2

],
[]

[4
],

[4
]

[4
],

[]
[4

],
[]

[]
,
[4

]
[4

],
[]

[3
],

[]
[3

],
[]

[1
,
4
],

[1
,
4
]

[4
],

[]
[4

],
[]

[]
,
[4

]
[4

],
[]

B
1
Ȳ

B
$

[]
,
[3

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[3

]
[]
,
[4

]
[1

],
[1

]
[4

],
[4

]
[]
,
[4

]
[]
,
[3

]
[4

],
[]

$̄
B

1
Ȳ

∇
[]
,
[4

]
[4

],
[]

[]
,
[4

]
[]
,
[4

]
[1

],
[1

]
[3

],
[]

[]
,
[4

]

$̄
Ȳ

∇
$

[]
,
[3

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[4

],
[]

[]
,
[3

]
[]
,
[4

]
[1

],
[1

]
[]
,
[4

]
[]
,
[4

]

F
$̄
B

1
[]
,
[4

]
[4

],
[]

[4
],

[]
[4

],
[]

[4
],

[]
[]
,
[4

]
[4

],
[4

]
[]
,
[3

]
[4

],
[]

[1
],

[1
]

[4
],

[]
[4

],
[]

[3
],

[]

$
$̄
B

1
$

[]
,
[3

]
[4

],
[]

[]
,
[4

]
[4

],
[4

]
[]
,
[4

]
[4

],
[4

]
[3

],
[]

[4
],

[]
[]
,
[4

]
[4

],
[]

[4
],

[]
[]
,
[4

]
[1

,
4
],

[1
,
4
]

[4
],

[]

B
$
$̄
$

[4
],

[]
[3

],
[]

[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[]
,
[4

]
[3

],
[]

[]
,
[4

]
[4

],
[]

[3
],

[]
[]
,
[4

]
[]
,
[4

]
[1

],
[1

]

∇
$̄
$
B

1
[]
,
[4

]
[4

],
[]

[]
,
[3

]
[]
,
[4

]
[]
,
[4

]
[4

],
[]

[]
,
[3

]
[1

],
[1

]

N
o
t
a
t
io

n
s
:
B

=
{B

,
D
},
A

=
{A

,
C
},

K
=
{K

A
B
,
K

C
D
},

X
∈
N

,
Y
∈
N̄

,
X
,
Y
∈

N
.

C
om

m
on

p
re

fi
x
es

/s
u
ffi

x
es

b
et

w
ee

n
ru

le
s

fr
om

T
h

eo
re

m
2.

A
t

th
e

in
te

rs
ec

ti
on

o
f

ro
w
u

=
u

1
..
.u

n
a
n

d
co

lu
m

n
v

=
v 1
..
.v

k
,

th
er

e
is

a
p

ai
r

of
li

st
s

o
r

em
p

ty
sp

ac
e

if
b

ot
h

li
st

s
ar

e
em

p
ty

.
T

h
e

fi
rs

t
(r

es
p

.
se

co
n

d
)

li
st

in
d

ic
a
te

s
p

os
it

io
n

s
P

su
ch

th
a
t

fo
r

ea
ch

p
∈
P

:
u
i

=
v p

+
i−

1
,

1
≤
i
≤
k
−
p

+
1

(r
es

p
.
v i

=
u
p
+
i−

1
,

1
≤
i
≤
n
−
p

+
1
);

e.
g.

,
if
u

=
a
a
ca
a

a
n

d
v

=
a
a
c,

th
en

th
e

co
rr

es
p

on
d

in
g

ce
ll

w
il

l
co

n
ta

in
[1

],
[4
,5

]
(s

ee
al

so
th

e
p

ic
tu

re
b

el
ow

).
a
a
c

a
a
c

a
a

1

a
a
c

a
a

a
a

c

4

a
a
ca

a a
a
c

5

13


