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In this paper, we show that pure insertion grammars of size 2 (i.e., inserting two symbols in a left and right context, each consisting of two symbols) can characterize all recursively enumerable languages. This is achieved by either applying an inverse morphism and a weak coding, or a left (right) quotient with a regular LOC(2) language, or an intersection with a LOC(2) language and a weak coding. The obtained results improve the descriptional complexity of insertion grammars and complete the picture of known results on insertion-deletion systems that are motivated from the DNA computing area.

Introduction

An insertion grammar is a pure grammar (i.e., there are no non-terminals as opposed to terminal symbols) having only rules of form uv → uxv. Such grammars originated in [START_REF] Galiukschov | Semicontextual grammars. Matem. Logica i Matem. Lingvistika[END_REF]; they are inspired by Marcus contextual grammars [START_REF] Marcus | Contextual grammars[END_REF][START_REF] Pȃun | Marcus Contextual Grammars[END_REF] used in linguistics. Another motivation for their study comes from the area of biology. As pointed out in [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF], the process of mismatched annealing of DNA strands can be seen as an insertion or a deletion of a string in a specified context. A similar process happens in the case of RNA editing [2], where the uracil base U is inserted or deleted in some left context, as well as in the case of CRISPR-Cas9 technology that uses insertion and deletion to edit the genome [START_REF] Ran | Genome engineering using the CRISPR-Cas9 system[END_REF]1]. These observations led to the intense study of insertion-deletion systems (considering insertion and deletion operations together) in the framework of DNA computing [START_REF] Kari | Contextual insertions/deletions and computability[END_REF][START_REF] Takahara | On the computational power of insertion-deletion systems[END_REF][START_REF] Kari | At the crossroads of DNA computing and formal languages: Characterizing recursively enumerable languages using insertion-deletion systems[END_REF][START_REF] Margenstern | Context-free insertion-deletion systems[END_REF][START_REF] Matveevici | Insertion-deletion systems with one-sided contexts[END_REF][START_REF] Verlan | On minimal context-free insertion-deletion systems[END_REF][START_REF] Verlan | Recent developments on insertion-deletion systems[END_REF].

There are several related models using a similar principle of insertion or deletion of a string in a specified context. We cite guided-insertion systems [3] used to model RNA editing, leftist grammars [START_REF] Motwani | On the decidability of accessibility problems[END_REF] used to model accessibility problems in protection systems, restarting automata [START_REF] Jančar | Restarting automata[END_REF] used to model the analysis by reduction and the insertion operation from [START_REF] Haussler | Insertion languages[END_REF] introduced as a generalization of the concatenation (and which corresponds to a context-free insertion grammar).

Since an insertion grammar is a pure grammar, an additional squeezing mechanism must be used in order to obtain a final language, as otherwise the described language class will have poor closure properties. Usually some restricted transducers are used for this purpose. Some standard examples are (1) the intersection with the free monoid over a terminal alphabet (used traditionally for Chomsky grammars), (2) projection composed with an inverse morphism, (3) left/right quotient by a regular language, (4) projection composed with intersection with a regular language. In the area of insertion grammars, variant (2) is mostly used, because (1) may only give at most context-sensitive languages [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF].

The size of the insertion grammar is naturally defined by the triple (n, m, m ), where n (resp. m, m ) is the maximal length of the inserted string (resp. left context, right context). If all parameters coincide, we just say that the grammar is of size n. In [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF], it was shown for the first time that insertion grammars of size (4,[START_REF] Geffert | Normal forms for phrase-structure grammars[END_REF][START_REF] Galiukschov | Semicontextual grammars. Matem. Logica i Matem. Lingvistika[END_REF] together with the squeezing mechanism (2) as described above generate all recursively enumerable languages. This result was improved in [START_REF] Mutyam | On characterizing recursively enumerable languages by insertion grammars[END_REF], where insertion grammars of size (3,[START_REF] Freund | Graph-controlled insertion-deletion systems[END_REF]4) are shown to be sufficient for the same task. Continuing with this race, papers [START_REF] Onodera | A note on homomorphic representation of recursively enumerable languages with insertion grammars[END_REF][START_REF] Kari | On the weight of universal insertion grammars[END_REF] show that insertion grammars of size 3 generate all recursively enumerable languages with squeezing mechanisms (2), ( 3) and (4). In [START_REF] Onodera | New morphic characterizations of languages in chomsky hierarchy using insertion and locality[END_REF]22] the squeezing mechanism (4) was thoroughly investigated showing that the result above also holds when some restricted classes of regular languages are used.

Further decrease in size of rules was achieved only by using additional control mechanisms, like graphcontrol for the size 2 [START_REF] Krassovitskiy | On the power of insertion P systems of small size[END_REF][START_REF] Krassovitskiy | On the power of small size insertion P systems[END_REF] and matrix control [START_REF] Petre | Matrix insertion-deletion systems[END_REF][START_REF] Kuppusamy | Matrix insertion-deletion systems for bio-molecular structures[END_REF] for the size (1,2,2) [4].

In this paper, we show that it is possible to generate all recursively enumerable languages using insertion grammars of size 2 with squeezing mechanisms (2), ( 3) and ( 4). This settles the question of the computational power of this model when all three parameters are the same, as insertion grammars of size (n, 1, 1) are shown to be context-free [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF]. This also proves a remarkable jump when combined with squeezing mechanisms as described above, because the context-free languages are closed under these operations. Hence, while insertion grammars of size 1 with squeezing mechanisms (2), ( 3) and ( 4) stay within the context-free languages, size 2 grammars jump up to all recursively enumerable languages. The proof of the main result is greatly simplified by the introduced notion of an independent rule set that allows to formalize the conditions when the application of two insertion rules in a derivation is independent and can be done in any order.

Definitions

We assume the reader is familiar with the standard concepts used in formal languages theory. We recall some of them in order to fix the notations. Given an alphabet (a finite set) V , let V * denote the set of all strings over V , i.e., the free monoid generated by V ; the operator symbol • (for concatenation) is mostly omitted. For a string x ∈ V * , we denote the length of x by |x| and the empty string is written as λ. If not explicitly stated otherwise, the notion of a morphism refers to a (homo)morphism mapping from the free monoid over some alphabet to the free monoid over some (other) alphabet. A weak coding is a special morphism h : V * → W * , where W ⊆ V and the restriction of h to W is the identity, and h(x) = λ for x ∈ V \ W .

The set of prefixes of a string s will be denoted by Pref(s) and the set of suffixes as Suff(s). In this paper we consider non-empty prefixes and suffixes, i.e., λ ∈ Pref(s), λ ∈ Suff(s) for any string s. A proper substring of a string s = a 1 . . . a n is any sequence of consecutive letters s that is not equal to s: a i . . . a j , 1 ≤ i ≤ j ≤ n, with j -i + 1 < n. An internal substring of a string w is any substring of w that is not prefix or suffix of w.

Special Geffert Normal Form

A type-0 grammar G = (N, T, S, P ) is said to be in Geffert normal form [START_REF] Geffert | Normal forms for phrase-structure grammars[END_REF] if the set of non-terminals N is defined as N = {S, A, B, C, D}, T is an alphabet (of terminal symbols) and P only contains context-free rules S → uSv with u ∈ {A, C} + and v ∈ (T ∪ {B, D}) + , as well as S → uv whenever S → uSv ∈ P , and two (non-context-free) erasing rules AB → λ and CD → λ.

We remark that, according to [START_REF] Geffert | Normal forms for phrase-structure grammars[END_REF], the generation of a string using a grammar in this normal form is performed in three stages. During the first two stages, only context-free rules S → uSv can be applied; this follows from the fact that u ∈ {A, C} + and v ∈ ({B, D} ∪ T ) + . Moreover, the terminal symbols are generated first, so during the first stage, the string can be described by the regular expression (A|C) * ST * , which changes to (A|C) * S(B|D) * T * during the second stage. Assuming a terminal derivation, switching back to the first stage is not possible. The second stage is finalized by applying a rule of the form S → uv. During the third stage, only non-context-free rules can be applied, because the symbol S is no longer present in the string. Moreover, in each step only one such rule can be applied. Note that the symbols A, B, C, D are treated like terminals during the first two stages and so, each rule S → uSv is, in a sense, "linear". We would also like to remark that according to the construction from Theorem 1 from [START_REF] Geffert | Normal forms for phrase-structure grammars[END_REF] it is possible that u = λ for some rules, however, v can never be the empty word.

Throughout this paper, we will use the special Geffert normal form (SGNF) [START_REF] Freund | Graph-controlled insertion-deletion systems[END_REF][START_REF] Ivanov | Universality of graph-controlled leftist insertion-deletion systems with two states[END_REF][START_REF] Petre | Matrix insertion-deletion systems[END_REF]. This normal form is obtained by transforming "linear" rules from Geffert normal form to a set of "left-and right-linear" rules using a standard approach, see [START_REF] Petre | Matrix insertion-deletion systems[END_REF] for more details. Additionally, for commodity reasons, the terminals are generated at the left side of the string, which means by the remark above that "linear" rules from Geffert normal form that have to be transformed are of the form S → uSv where v = λ for some rules, while u is never the empty word ( †). Hence, for a grammar in SGNF, it is possible to split the set of non-terminals into disjoint sets as follows:

N = N S ∪ N T ∪ N L ∪ N R , where N T = N AC ∪ N BD , with N AC = {A, C}, and N BD = {B, D}, N S = {S, S }, N L (resp. N R )
is the set of non-terminals appearing in the left-hand-side of "left-linear" (resp. "right-linear") rules except for S. We cite below some of the interesting properties of a grammar G in SGNF:

1. G has only two (non-context-free) erasing rules AB → λ and CD → λ, and several "right-linear" and "left-linear" rules of one of the following forms; notice that due to Condition ( †) above, we start with generating the non-empty part with "right-linear" rules and then might even skip the "left-linear" rules.

• X → bY, where X ∈ N R ∪ {S}, b ∈ T ∪ N AC , Y ∈ N R ∪ N L ∪ N S , X = Y, • X → Y b, where X ∈ N L , b ∈ N BD , Y ∈ N L ∪ N S , X = Y ,
• S → λ.

2. We can assume that rules rewriting a symbol different from S are deterministic: for each X = S, there is a single rule X → ab ∈ P . This property can be achieved, as we can choose different nonterminals in N R ∪ N L for each "linear" rule S → α that is going to be simulated by "right-linear" and "left-linear" rules. 3. The computation in G is done in three stages described below.

• Generating terminals at the left end of the string. The sentential form at this stage can be described by the regular expression T * (N \ N T )(N BD ) * . We remark that at this stage only one non-terminal from N \ N T is present in the string.

• Generation of symbols from N AC . The sentential form at this stage can be described by the regular expression T * (N AC ) * (N \ N T )(N BD ) * . As above, at this stage only one non-terminal from N \ N T is present in the string.

• Erasing stage. The sentential form at this stage can be described by the regular expression T * (N AC ) * (AB|CD)(N BD ) * . We remark that there is only one matching pair AB or CD present in the string.

The transition from stage 1 to stage 2 is performed when the last rule producing a terminal is applied (X → bY , b ∈ T ). The transition from stage 2 to stage 3 is performed by applying the rule S → λ.

Insertion grammars

First, we define the notion of an insertion rule.

Definition 1. Let V be an alphabet. An insertion rule over V is the triple r = (u, x, v), where u, x, v ∈ V * .

Next, we define different types of relations between insertion rules. An insertion rule r = (u, x, v) matches the string w if uv is a substring of w. When |uv| > 1 this implies that an insertion (by using rule r) may happen inside w.

An insertion rule

r 1 = (u 1 , x 1 , v 1 ) matches an insertion rule r 2 = (u 2 , x 2 , u 2 ) if u 1 v 1 = u 2 v 2 .
We also define a notion of a perfect match between two rules where additionally to the match it is required that u 1 = u 2 and v 1 = v 2 . In a sense, matching rules compete for being applied on a string that they match. By definition, if r = (u, x, v) overlaps w, then there is a factorisation w ww = u uvv . Then, the condition |u u| > |w | implies that w starts before u ends. Similarly, the condition |vv | > |w | implies that v starts before w ends. Hence, there are 4 possible cases for positioning of w within u uvv (they are also depicted on Fig. 1): a. w starts before u starts and ends after v ends, hence uv is a substring of w, possibly uv = w, b. w starts after u starts and ends before v ends, hence w is a proper substring of uv but it is not a proper substring of either u or v, c. w starts before u starts and ends before v ends, hence Suff(w) ∩ u Pref(v) = ∅, d. w starts after u starts and ends after v ends, hence Suff(u Definition 3. A (pure) insertion grammar is given by a triple G = (V, A, R), where

)v ∩ Pref(w) = ∅. w u v (a) w u v (b) w u v (c) w u v (d)
• V is an alphabet, • A ⊆ V * is the set of axioms,
• R is a finite set of insertion rules over V .

We will also use the term insertion system as a synonym for an insertion grammar.

Definition 4. The derivation relation ⇒ ⊆ V * × V * of the insertion grammar G = (V, A, R) is defined as follows:

w 1 uvw 2 ⇒ w 1 uxvw 2 , if and only if ∃r = (u, x, v) ∈ R
It can be easily deduced that an insertion rule (u, x, v) corresponds to the rewriting rule uv → uxv. However, there is a small difference with traditional Chomsky grammars, where uv cannot be empty. There is no such restriction for insertion grammars. If uv = λ, then x can be inserted anywhere in the string, in particular, it can be appended to its left or right end.

We define the language generated by an insertion grammar G = (V, A, R) as the reflexive and transitive closure of the set of axioms:

L(G) = {w ∈ V * | ∃x ∈ A : x ⇒ * w}.
We define the size of an insertion grammar G = (V, A, R) as the triple (n, m, m ), where

n = max (u,x,v)∈R |x| , m = max (u,x,v)∈R
|u| and m = max

(u,x,v)∈R
|v| .

The family of insertion grammars of size (n, m, m ) is denoted as INS(n, m, m ). We now introduce an important notion of the independent rule set. The main idea is to capture the conditions that allow rules to be applied in any order (independently of each other). In turn, this allows us to consider particular rule application orders that greatly simplify the proofs. Definition 5. A set of insertion rules R is called independent if, for any two rules r 1 = (u 1 , x 1 , v 1 ), r 2 = (u 2 , x 2 , v 2 ) from R, one of the following two conditions holds:

• r 1 and r 2 perfectly match,

• r 1 does not overlap u 2 v 2 and r 2 does not overlap u 1 v 1 .

The independence property says that for two insertion rules r 1 = (u 1 , x 1 , v 1 ) and r 2 = (u 2 , x 2 , v 2 ), r 1 (resp. r 2 ) can never insert x 1 (resp. x 2 ) inside the site u 2 v 2 (resp. u 1 v 1 ), except the case when they perfectly match (and then u 1 = u 2 and v 1 = v 2 ). Neglecting symmetric cases, this leaves us with only 3 possibilities for the relation between contexts and they are depicted in Fig. 2.

u 1 v 1 u 2 v 2 (a) u 1 v 1 u 2 v 2 (b) u 1 v 1 u 2 v 2 (c)
Figure 2: Three possible rule relations for an independent rule set (we recall that these conditions are symmetric with respect to rules): (a) rules perfectly match, (b) rules do not overlap and Suff(u

1 v 1 ) ∩ Pref(u 2 v 2 ) = ∅, (c) rules do not overlap and Pref(u 2 ) ∩ Suff(v 1 ) = ∅.
We now show that the independence property allows rules to be applied in any order.

Proposition 1. Consider an insertion grammar (V, {w 1 ww 2 }, R). If any rule r = (u, x, v) from R does not overlap w and if w is not a proper substring of u or v, then

• w is preserved in any derivation, i.e., no symbols will be inserted inside w;

• any derivation involving w 1 is independent of any derivation involving w 2 , i.e., if w 1 ww 2 ⇒ * w 1 ww 2 then w 1 w ⇒ * w 1 w and ww 2 ⇒ * ww 2 .

Proof. Since no rule overlaps w, this implies that no insertion may happen inside w. The second condition ensures that no rule contains w in its left or right context. This implies that w acts as a barrier for rules as they cannot check any letter beyond it. This implies the two claims.

Proposition 2. Consider an insertion grammar (V, A, R) having an independent rule set. Then for any rule r = (u, x, v) ∈ R and any derivation w 1 uvw 2 ⇒ * w 1 uvw 2 that does not apply r or any rule that perfectly matches it for the highlighted site uv, the evolution of w 1 and w 2 is independent, i.e., w 1 u ⇒ * w 1 u and vw 2 ⇒ * vw 2 .

Proof. This proposition is a consequence of Proposition 1, as the independence condition implies that any rule r = (u , x, v ) different from r (and its perfectly matching variants) will not overlap u and v and also u and v will not be proper substrings of u or v .

We would like to remark that for an insertion grammar with an independent rule set each substring uv corresponding to rule contexts marks a portion in the string that cannot be altered until the corresponding rule (or any rule perfectly matching it) is applied. When several such contexts are present in the string, it is possible to apply the corresponding rules in any order. This is formalized by the following theorem.

Theorem 1. Let G = (V, A, R) be an insertion grammar with an independent rule set. Then, for any derivation the rule application order is not important, i.e., a rule can be applied to some part of the string at any time starting from the moment it becomes applicable and yielding the same result.

Proof. Indeed, consider any derivation applying a rule r = (u, x, v):

w ⇒ * w 1 uvw 2 ⇒ * w 1 uvw 2 ⇒ r w 1 uxvw 2 ⇒ * w . ( 1 
)
Because R is independent, by Proposition 2 we have:

w 1 u ⇒ * w 1 u vw 2 ⇒ * vw 2
Then the initial derivation can be reorganized as follows, applying r immediately after the substring uv appears for the first time in a string of the derivation sequence:

w ⇒ * w 1 uvw 2 ⇒ r w 1 uxvw 2 ⇒ * w 1 uxvw 2 ⇒ * w .
Since derivation (1) does not impose any constraints on word w 1 uvw 2 , it may correspond to the first appearance of the substring uv or not. This allows us to conclude that rule r can be applied either immediately after substring uv is introduced, or deferred for the application at a later time. To conclude the proof we remark that because of rule independency the substring uv cannot be "broken" by an application of a rule inside it.

Taking into account the last theorem, we remark that one can always choose the leftmost (resp. rightmost) site in the string for the rule application, this corresponds to the leftmost (resp. rightmost) derivation.

Mark and migration technique

For the proof of the main result, we use a variant of the mark-and-migration technique introduced in [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF] and that is commonly used to obtain computational completeness results in the area of insertion systems. This technique is based on a simulation of a type-0 grammar. Since it is not possible to delete symbols in the derivation string, the main idea is to simulate the deletion of a non-terminal symbol X by adding a special marker $ to its left (in [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF] two markers # and $ were used). Such a sequence can be later easily filtered by an inverse morphism or other squeezing mechanism. After the introduction of the $ marker, the corresponding symbol X is treated as non-existing. We will also call a symbol X with a $ to its left a dead symbol. By contrast, a symbol X without $ to the left will be called active, or non-dead. When simulating context-free rules, dead symbols can be easily ignored by choosing insertion contexts that never allow an insertion between $ and X. However, for context-sensitive rules like AB → λ, it may happen that symbols A and B are separated by a sequence of dead symbols. To address this issue, the "migration" of B towards the left until it is placed right to its partner A is performed. The migration is performed by "jumping" over a dead symbol, i.e., a substring $XB is transformed to Bw 1 $Xw 2 $B, with w 1 , w 2 ∈ ($Z) * , with Z being an alphabet of some additional symbols. The iteration of this process allows us to obtain an adjacent pair of symbols A and B that can be further used for the simulation of an application of the corresponding rule AB → λ, by turning the neighboring symbols A, B into dead symbols.

As shown in [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF][START_REF] Mutyam | On characterizing recursively enumerable languages by insertion grammars[END_REF][START_REF] Onodera | A note on homomorphic representation of recursively enumerable languages with insertion grammars[END_REF][START_REF] Kari | On the weight of universal insertion grammars[END_REF], the migration of B over $X can be implemented in two phases: "jumping" over $X and marking the rightmost B as dead. However, for such an approach contexts of length at least 3 are required, as with contexts of length 2 it is not possible anymore to "jump" over the sequence $X (as the sequence $XB should be in the right context of some insertion rule). So, in order to be able to decrease the length of the context more phases and a "jump" inside the sequence $X are required. But this can pose integrity problems, as temporarily X is not a dead symbol anymore. The papers [START_REF] Krassovitskiy | On the power of insertion P systems of small size[END_REF][START_REF] Krassovitskiy | On the power of small size insertion P systems[END_REF]4] solve these problems by using an additional control (graph or matrix) for the rule application that allows to apply only specific sequences of rules.

In this paper we show that by carefully choosing the contexts (of length 2) the temporary unmarking of a dead symbol cannot produce wrong derivations, so no additional control is required to achieve the claimed computational completeness. To achieve this, a barred copy of all non-terminal symbols (including the marker $) is used. They are inserted in between $ and X in order to split the "jump" and they also play the role of $ symbol by not allowing X to be active, thus blocking wrong derivations. The "jump" of B over $X is performed in three phases. First a new symbol B1 is inserted between $ and X and then B and X are marked as dead. Hence, the substring $XB is transformed to $ B1 $X$∇$B, where ∇ is a kind of separator symbol. Next, $ B1 $X$∇$B is transformed to B$∇ $ B2 $ B1 $X$∇$B, finishing the migration of B. Since such a migration introduces sequences of form $ Bi , 1 ≤ i ≤ 2 a symmetrical group of rules that allows to perform a migration over sequences $ X is added to the system. Finally, we remark that the construction from the current paper has an independent rule set, see the appendix for more details.

• Rules AB → λ and CD → λ are simulated by the following rules in P 1 :

r AB,1 = (LA, K AB $, B$) r AB,2 = (L, $, AK AB ) r AB,3 = ($A, $, K AB ), r CD,1 = (LC, K CD $, D$) r CD,2 = (L, $, CK CD ) r CD,3 = ($C, $, K CD ).
Finally, let h : S → V * be the morphism defined by

h(x) =          $x, x ∈ N , $x, x ∈ N , x, x ∈ T, ø, x = ø.
and g : S → T be the weak coding defined by

g(x) = x, x ∈ T, λ, otherwise. Now we show that L(G) = g(h -1 (L(G 1 ))).
First we show the inclusion L(G) ⊆ g(h -1 (L(G 1 ))). A sentential form w = w 1 . . . w n of G will be represented by a word of form øøD * w 1 D + w 2 D + . . . w n D + in G 1 . In particular, for the axiom, we find øøS$S ∈ øøD * SD + , as it represents the sentential form S of G. To simplify the presentation, we suppose that there exists a function c that, applied to a word w = w 1 . . . w n , gives the set of all strings of form D * w 1 D * w 2 D * . . . w n D + . Hence, the axiom of G 1 , øøS$S, belongs to øø c(S). We remark that the rules from G 1 ensure that there is at least one symbol different from $ and $ after the starting øø sequence. We highlight this in what follows by writing the sentential form uv in G as øø uc(v) in G 1 .

Consider an arbitrary derivation in G. As pointed out above, this derivation can be split into three phases. During the first two phases only rules of type X → bY or X → Y b can be executed and during the third phase, only rules AB → λ and CD → λ can be performed. The transition between the second and the third phases is done by the application of the rule S → λ. Consider the part of the derivation corresponding to the first or second phase. Suppose that the rule k : X → bY is applied:

uXv ⇒ ubY v
Then in G 1 there is the following derivation:

øø uXc(v) ⇒ r k,1 øø ubY Xc(v) ⇒ r k,2 øø ubY $Xc(v)
We remark that the first derivation is possible as øø u ⊆ L + , because uXv is of the form T * (N AC ) * (N \ N T )(N BD ) * . Also, it is clear that øø ubY $Xc(v) ⊆ øø c(ubY v) that corresponds to ubY v in G. Now suppose that the rule k :

X → Y b is applied in G: uXv ⇒ uY bv
Then in G 1 there is the following derivation:

øø uXc(v) ⇒ r k,3 øø uY Xc(v) ⇒ r k,4 øø uY b$Xc(v)
As before, the first derivation is possible as øø u ∈ L + . Let us consider now that the rule S → λ is applied:

uS v ⇒ uv
Then in G 1 there is the following derivation:

øø uS c(v) ⇒ r S øø u$S c(v) derivation ab$XB$ ⇒ r B,1 ab$ B1 XB$ ⇒ r B,2 ab$ B1 X∇$B$ ⇒ r B,3 ab$ B1 $X∇$B$ ⇒ r B,4 ab$ B1 $X$∇$B$
At this moment if ab ∈ F the derivation stops. So, we suppose that ab ∈ F (this is true in particular at the beginning of phase 2). Then the derivation continues as follows:

ab$ B1 $X$∇$B$ ⇒ r B,5 abB$$ B1 $X$∇$B$ ⇒ r B,6 abB$$ $ B1 $X$∇$B$ ⇒ r B,7 ⇒ r B,7 abB$∇$ $ B1 $X$∇$B$ ⇒ r B,8 abB$∇$∇ $ B1 $X$∇$B$
So, we have shown that ab$XB$ ⇒ * abB$∇$∇ $ B1 $X$∇$B$. We observe that all symbols at the right of B are dead and that there is a $ to the right of first B.

A similar computation happens for the case $ Ȳ B, as well as for the migration of symbol D.

After several migration steps, B becomes adjacent to the last alive A. At this point, only rule r AB,1 is applicable, which yields the following sequence of applications (a ∈ L):

aAB$ ⇒ r AB,1 aAK AB $B$ ⇒ r AB,2 a$AK AB $B$ ⇒ r AB,3 a$A$K AB $B$
This simulates one application of the rule AB → λ from G. We remark that we can choose to apply the last three rules in a row, because the set of all rules is independent. The case of the rule CD → λ is similar.

A successful derivation in G 1 implies that all symbols except terminals are dead. We remark that the sequence of rules in phase 1 always leaves one non-terminal that is not dead. Hence, according to the discussion above, in a successful derivation all rules from phase 1 need to be executed. Next, at the beginning of phase 2 there are always symbols from {A, B, C, D} that are not dead. We remark that the application of rule sequences of type r Z, * , rZ, * , Z ∈ {B, D} does not decrease the number of dead symbols. Only sequences of rules of type r AB, * and r CD, * can decrease this number (by two). In order to apply these last rules, corresponding symbols B and D need to be migrated to the left and then matched to corresponding symbols A and C. Hence, the sequence of used rules is described by the language k:X→bY • for each rule r k,1 or r k,3 , execute rule r k in G,

• for the rule r S , execute the rule S → λ in G,

• for the rule r AB,1 (resp. r CD,1 ) execute rule AB → λ (resp. CD → λ) in G.

This concludes the proof.

Corollary 1. For each recursively enumerable language L, there exists a regular language L 1 ∈ LOC(2), a weak coding g and a language L 2 ∈ INS(2, 2, 2) such that L = g(L 1 ∩ L 2 ).

Proof. Theorem 2 shows how to construct an insertion grammar G 1 = (V, A, R) that for any x ∈ L will generate øøxw, w ∈ D + , where D is defined as above. We add to G 1 a rule (x, $, y), x, y ∈ T ∪{ø} and change the axiom to $øøS$S. Then, the corresponding grammar will generate $ø$ø$x 1 . .

. $x n w, if x 1 . . . x n ∈ L. Consider L 1 = (D ∪ {$x | x ∈ L}) * . Clearly, L 1 ∈ LOC(2)
. The intersection L 1 ∩ L(G 1 ) will keep only strings that have all symbols dead; this corresponds to a successful derivation. To conclude the proof, we take the same mapping g as in Theorem 2.

Corollary 2. For each recursively enumerable language L, there exists a regular language L 1 ∈ LOC(2), and a language L 2 ∈ INS(2, 2, 2) such that L = L 2 /L 1 .

Proof. Let G = (N, T, S, P ) be the grammar describing L. We can suppose that it is in SGNF. Theorem 2 shows how starting from G it is possible to construct an insertion grammar G 1 = (V, A, R) that for any x ∈ L will generate øøxw, w ∈ D + , where D is defined as above. Since w is already in LOC(2) form, L(G 1 )/L 1 = {øøx | x ∈ L}, where L 1 = D * . To eliminate the sequence øø, it is sufficient to observe that it is used as a rule context only during the first steps, when no terminals are yet generated. This means that we can replace the axiom øøS$S by a set of axioms where the two first terminals are already generated: abS$Sw 1 $Sw 2 . . . $Sw n $S, where S ⇒ * abw 1 . . . w n in G and a, b ∈ T , w 1 , . . . , w n ∈ N . Since G is in SGNF, all corresponding strings can be obtained by considering derivations in G where the number of applications of "right-linear" rules (X → bY ) is two. Since in any derivation there cannot be infinite sequences of "leftlinear" rules, there is a finite number of such strings. To conclude, we shall also add all strings of length 1 and 0 from L to the set of axioms. Then, no sequence øø is present anymore at the beginning of the string and this concludes the proof.

Corollary 3. For each recursively enumerable language L, there exists a regular language L 1 ∈ LOC(2), and a language L 2 ∈ INS(2, 2, 2) such that L = L 1 \L 2 .

The left quotient proof is a consequence of the previous corollary, as we can reverse all the rules and axioms.

Conclusions

In this paper, we have shown computational completeness of insertion grammars of size 2 enriched with different squeezing mechanisms. Since insertion grammars of size (n, 1, 1) are known to be context-free [START_REF] Pȃun | DNA Computing: New Computing Paradigms[END_REF], only cases (1, 2, 2), (n, m, p), 1 ≤ n ≤ 2, 0 ≤ p ≤ 1, m ≥ 0 as well as their symmetric variants remain to be investigated for computational completeness.

The proof of the result was greatly simplified using the concept of an independent rule set. We have checked that the rules given in Theorem 2 are independent and then by Theorem 1 we could use them in the order we preferred in order to achieve a simpler proof. We think that this notion can be very useful in the area of insertion grammars and insertion-deletion systems from DNA computing [START_REF] Verlan | Recent developments on insertion-deletion systems[END_REF] and it can help obtain results improving the existing ones. Another challenging application of the independence property is related to the modelling of the CRISPR-Cas9 mechanism [1] used for genome editing and that is very close to insertion grammars. Ensuring the independence of the target sequences can lead to a better control of the iteration of the editing process. Common prefixes/suffixes between rules from Theorem 2. At the intersection of row u = u 1 . . . u n and column v = v 1 . . . v k , there is a pair of lists or empty space if both lists are empty. The first (resp. second) list indicates positions P such that for each p ∈ P : u i = v p+i-1 , 1 ≤ i ≤ k -p + 1 (resp. v i = u p+i-1 , 1 ≤ i ≤ n -p + 1); e.g., if u = aacaa and v = aac, then the corresponding cell will contain [1], [4,[START_REF] Freund | Graph-controlled insertion-deletion systems[END_REF] (see also the picture below). 

Definition 2 .

 2 An insertion rule r = (u, x, v) overlaps string w (for a given alphabet V ) if there exist strings w , w , u , v ∈ V * such that w ww = u uvv and |u u| > |w | and |vv | > |w |.The notion of overlap expresses the potential possibility to apply r modifying the string w. It is clear that the notion of overlap makes sense only for |w| > 1.

Figure 1 :

 1 Figure 1: Four possible cases for string overlap: (a) uv is a substring of w, (b) w is a substring of uv, (c) Suff(w)∩u Pref(v) = ∅, (d) Suff(u)v ∩ Pref(w) = ∅.

r k, 1

 1 r k,2 ∪ k:X→Y b r k,3 r k,4 * r S (z M,1 . . . z M,8 ) + r P M,1 r P M,2 r P M,3 * , where z ∈ {r, r}, P M ∈ {AB, CD} . Then we can construct the derivation in G yielding to the same terminal string as follows (we recall that there is at most one non-terminal from N \ {A, B, C, D} or a sequence AB or CD in any sentential form of G):

Notations: B =

 B {B, D}, A = {A, C}, K = {KAB , KCD}, X ∈ N , Y ∈ N , X , Y ∈ N .

Main Results

Theorem 2. For each recursively enumerable language L, there exists a morphism h, a weak coding g and a language L 1 ∈ INS(2, 2, 2) such that L = g(h -1 (L 1 )).

Proof. Let G = (N, T, P, S) be a type-0 grammar in SGNF. We construct the insertion grammar G 1 = (V, {øøS$S}, P 1 ), where

The set of rules P 1 is constructed as follows. Consider the following sets:

• For any rule k : X → bY ∈ P we add the following rules to P 1 (we recall that b ∈ T ∪ {A, C}):

• For any rule k : X → Y b ∈ P we add the following rules to P 1 (we recall that b ∈ {B, D}):

• Rule S → λ is simulated by the following rule in P 1 :

r S = (L, $, S ).

• The move of symbols B and D to the left of the sequence $X, X ∈ N is performed using the following rules in P 1 (we remark that rules r D,i are obtained from rules r B,i by replacing B by D):

• The move of symbols B and D to the left of the sequence $ Ȳ , Ȳ ∈ N is performed using following rules in P 1 (we remark that rules rD,i are obtained from rules rB,i by replacing B by D):

We remark that rules r B,i (resp. r D,i ), 1 ≤ i ≤ 8 are very similar to rules rB,i (resp. rD,i ) -they are obtained one from another by removing the bar (if present) or adding the bar (if not present) to symbols inserted or used as contexts inside the sequence $X or $ Ȳ .

Again, we remark that this derivation is possible as øø u ∈ L + . Now consider the third phase of the derivation in G. We recall that during this phase exactly one of rules AB → λ or CD → λ is applicable. We will consider below only the first case, the other one being symmetrical. Hence, consider the derivation uABv ⇒ uv in G. Suppose that corresponding symbols A and B from øø uc(ABv) are adjacent to each other. Then there exists the following derivation in G :

We remark that the first two rules are applicable, because for a grammar in SGNF it holds that u ∈ L + , hence øø u ∈ L + as well. Now suppose that symbols A and B are not adjacent. In this case, consider the leftmost B that is not dead. It is clear that there are only dead symbols between A and that B. We will show below how it is possible to transfer B over a dead symbol $X. We suppose that the two symbols ab to the left of $X correspond either to a dead symbol ($Y or $ Ȳ ) or to a pair of symbols from L. This corresponds to ab ∈ F. We will show below that the transformation we perform keeps this property.

We remark that in the last string all symbols to the right of the first B are dead, that ensures that for the migration of the next symbol B it will encounter the left context from F.

By repeating the above process it is possible to migrate to the left all symbols B and D that are not dead. Then because the derivation in G is terminal, all these symbols will be marked as dead together with the corresponding symbols A and C. Hence, for any terminal derivation S ⇒ * u in G we obtain the derivation øøS$S ⇒ * øøuv, with v ∈ D + . Hence, L(G) ⊆ g(h -1 L(G 1 )). Now let us show the converse inclusion, g(h

First, we remark that all rules from G 1 are independent, see the appendix for more details. This implies that the rules can be applied at any moment as soon as the corresponding context appears in the string.

Next we remark that the computation in G 1 can be split into two phases: in the first phase only rules r k, * are applied and in the second phase only rules r Z, * , rZ, * , Z ∈ {B, D, AB, CD} are applied. Indeed, the initial configuration is øøS$S, so no rule from the second group can be applied. The application of rules r k,1 or r k,3 leaves in the string a single occurrence of LZX$, Z, X ∈ N \ N T . This substring can only be matched by a rule r k,2 or r k,4 . Because the rules are independent, we can immediately perform the corresponding rule. Because of the form of the rules, there are only symbols from L at the left of the leftmost (active) nonterminal from N \ N T and no symbols from L at the right of it. Hence, the sentential form can be described by the expression øøT * {A, C} * (N \ N T )w, with w ∈ (N \ N AB ) * . Because of the rule independence, by Theorem 1, we can first apply again r k,1 or r k,3 , etc. Hence, it is possible to reorganize the derivation and to execute first rules from the first group and after that the rule r S and after that use only rules from the second group. This means that the first part of the derivation follows the following rule sequence:

* r S . To conclude, we finally remark that the rule r S should be applied in a successful derivation, otherwise the string cannot pass the filter h -1 .

Consider now the second phase. At the beginning of it, the current string is of the following form: øøT * N * AC $S ($(N \ N T ) * N BD ) * $S (T and N AC followed by a sequence containing dead nonterminals from N \ N T mixed with symbols from N BD ). We will show now how the migration is performed. For simplicity, let us suppose that the rightmost symbol of the N * AC part is equal to A and that the leftmost alive symbol from N BD is B. Since it is not adjacent to A it should be migrated to the left.

Let us consider the migration of B over $X, X ∈ N \ N T . It is performed by rules r B, * . Since the rules are independent, by Theorem 1, we chose to apply them in the rightmost manner. Denote by ab the two symbols at the left of $X. If b ∈ {$, $} then no rule is applicable. So, we suppose that b ∈ S (which is initially true). We will also show that there is always a $ to the right of B. So, we have the following