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Introduction

Given a linear representation (V, ρ) of a compact group G, the symmetry classes (or isotropy classes) are defined as the sets of conjugacy classes of the symmetry subgroups of G (see [START_REF] Bredon | Finiteness of number of orbit types[END_REF], for more details). Finding explicitly the isotropy classes of a given representation has always been a difficult task, but it is known that there exists only a finite number of them. This fact was first conjectured by Montgomery [5, problem 45] and proved by Mostow in the case of the action of a compact Lie group on a compact manifold [START_REF] Mostow | On a conjecture of Montgomery[END_REF] using the result of Floyd [START_REF] Floyd | Orbits of torus groups operating on manifolds[END_REF].

The explicit calculation of isotropy classes is an interesting problem not only in mathematics but also in mechanics because the symmetry classes are connected to material symmetries. The problem of classifying materials according to their symmetries goes back to the work of Lord Kelvin [START_REF] Kelvin | Mathematical and physical papers[END_REF]. Since then, many authors devoted a great effort to formulate the problem especially for SO [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF] and O(3) tensorial representations (used to model constitutive laws in mechanics). Surprisingly, it was only in 1996 that Forte and Vianello [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] solved definitively the problem for the Elasticity tensor (a fourth-order tensor). In that case, eight isotropy classes were found. Based on this method, the problem was solved for other constitutive laws. For instance, 16 isotropy classes were obtained for the Piezoelectricity tensor (a third-order tensor) [START_REF] Nye | Physical Properties of Crystals[END_REF][START_REF] Zheng | The description, classification, and reality of material and physical symmetries[END_REF][START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF][START_REF] Newnham | Properties of Materials: Anisotropy, Symmetry, Structure[END_REF][START_REF] Zou | Symmetry types of the piezoelectric tensor and their identification[END_REF]. Similar results were obtained for other constitutive tensor spaces [START_REF] Forte | Symmetry classes and harmonic decomposition for photoelasticity tensors[END_REF][START_REF] Quang | The number and types of all possible rotational symmetries for flexoelectric tensors[END_REF].

However, the Forte-Vianello approach requires rather fine calculations and reasoning to establish the classification. This complexity makes difficult its application to more involved situations, such as constitutive tensors of order greater than 4 or coupled constitutive laws involving a family of tensors [START_REF] Juretschke | Crystal physics; macroscopic physics of anisotropic solids[END_REF][START_REF] Eringen | Electrodynamics of Continua , tomes I et II[END_REF]. A systematic way to calculate the isotropy classes was proposed by Chossat and Guyard in [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF] using a binary operation between conjugacy classes. This operation was named the clips operation in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF][START_REF] Olive | Symmetry classes for odd-order tensors[END_REF][START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF][START_REF] Olive | Symmetry classes in piezoelectricity from second-order symmetries[END_REF], where it was generalized and used to determine isotropy classes for reducible representations.

Clips tables for SO(3)-subgroups were obtained first in [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF]. The problem is more complicated for O(3)-subgroups, since there exist three types of subgroups (see Appendix A), where type I corresponds to SO(3)-subgroups. Clips tables for O(3)-subgroups were calculated in [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF], except the ones between type II and type III subgroups. In this paper, we complete these results by providing these missing tables, which have never been obtained before. The clips tables 1 and 2 given in this paper, together with the tables provided in [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF], furnish an exhaustive list of clips tables between O(3)-subgroups. Since the isotropy classes are known for the irreducible representations of O(3) [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF][START_REF] Chossat | Steady-State bifurcation with 0(3)-Symmetry[END_REF], this allows, in practice, to determine the isotropy classes of any reducible representation of O [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF]. As an original application, we used these results to determine the 25 isotropy classes of the full 3D Piezoelectricity law, in which three constitutive tensors are involved: the Elasticity, the Piezoelectricity and the Permittivity tensors.

Organization of the paper. The paper is organized as follows. In section 2, we recall basic material on symmetry classes and we introduce the clips operation. In section 3, we provide (in tables 1 and 2) the list of clips between O(3)-subgroups of type II and III. The proofs and calculations for these clips are given in section 4. The application to the full Piezoelectricity law is detailed in section 5, where 25 symmetry classes are found. To be self-contained, the classification of closed O(3)-subgroups, up to conjugacy, is recalled in Appendix A.

Isotropy classes and Clips operation

In this section, we recall the notions of isotropy groups and isotropy classes of a group representation and we introduce clips operation for sets of conjugacy classes. We consider a linear representation (V, G, ρ) of a group G on a finite dimensional vector space V , i.e., a group morphism ρ : G → GL(V ) with GL(V ), the group of invertible linear mappings of V into itself.

The isotropy (or symmetry) group of v v v ∈ V is defined as

G v v v := {g ∈ G; ρ(g)v v v = v v v} ,
and the isotropy (or symmetry

) class of v v v is the conjugacy class [G v v v ] of its isotropy group [G v v v ] := gG v v v g -1 ; g ∈ G .
For a given subgroup H ⊂ G, the conjugacy class [H] is an isotropy class of the linear representation (V, G, ρ) if H is conjugate to some isotropy group G v v v . Let us then define J (V ) to be the set of all isotropy classes of the representation V

J (V ) := {[G v v v ]; v v v ∈ V } .
As mentioned in the introduction, the finiteness of J (V ) is proven when G is a compact Lie group and V is a compact manifold (see, for instance, [START_REF] Mostow | On a conjecture of Montgomery[END_REF], [START_REF] Bredon | Finiteness of number of orbit types[END_REF], [START_REF] Mann | Finite orbit structure on locally compact manifolds[END_REF]). The result for a linear representation of a compact Lie group on a vector space follows immediately, since, then, an invariant scalar product exists and the restriction of the representation to the unit sphere, which is a compact manifold, has the same isotropy classes as the full representation.

Theorem 2.1. Let (V, G) be a linear representation of a compact Lie group G on a vector space V . Then there exists a finite number of isotropy classes

J (V ) = {[H 1 ], . . . , [H n ]} .
Remark 2.2. The set of conjugacy classes [H] of closed subgroups of a compact group is endowed with a partial order relation (see [START_REF] Bredon | Introduction to compact transformation groups[END_REF]), given by

[H] [K] ⇐⇒ ∃g ∈ G, gHg -1 ⊂ K.
Given this finiteness result, it is important to explicitly calculate the isotropy classes of a given representation. In the specific case of SO(3) linear representations, Michel [START_REF] Michel | Symmetry defects and broken symmetry. configurations hidden symmetry[END_REF] obtained the isotropy classes for the irreducible representations and the ones for O(3) irreducible representations were obtained by Ihrig and Golubitsky [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF]. Thereafter, Chossat and Guyard [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF] get the isotropy classes of a direct sum of two irreducible SO(3) representations. To do so, they introduced a binary operations on conjugate SO(3)-subgroups that allows one to compute the set of isotropy classes 

J (V ) of a direct sum V = V 1 ⊕ V 2 of
[H 1 ] ⊚ [H 2 ] := [H 1 ∩ gH 2 g -1 ], g ∈ G .
This definition immediately extends to two families (finite or infinite) F 1 and F 2 of conjugacy classes

F 1 ⊚ F 2 = [H i ]∈F i [H 1 ] ⊚ [H 2 ].
The following lemma states a central result that is useful to find the isotropy classes of a reducible representation once we know the isotropy classes of irreducible ones (see [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF] for a proof). Lemma 2.4. Let V 1 and V 2 be two linear representations of G. Then the set

J (V 1 ⊕ V 2 ) of isotropy classes of the diagonal representation of G on V 1 ⊕ V 2 is given by J (V 1 ⊕ V 2 ) = J (V 1 ) ⊚ J (V 2 ).
Using this result, one can find the isotropy classes of any representation V provided we know (1) a stable decomposition

V = W 1 ⊕ • • • ⊕ W r ;
(2) the isotropy classes of each representations

W k ; (3) the clips table of [H 1 ] ⊚ [H 2 ]
for all subgroups of G. Lemma 2.4 has already been applied to find the isotropy classes of some O(3) reducible representations, which are essentially the standard O(3) representations on odd order tensor spaces on R 3 (see [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF][START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF]). To extend these results to all reducible O(3) representations, new clips table of closed O(3)-subgroups have to be calculated.

Clips operation between closed O(3)-subgroups

The clips tables have already been established for two type I subgroups in [3, table 1] and [22, Table 1] (see remark 3.2). As for two type III subgroups, the clips have already been calculated in [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF]Table 2]). The clips operation between a type I and a type III subgroup is deduced from [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF]Lemma 5.4]. The clips between a type I and a type II subgroup or two type II subgroups are deduced from the clips between two type I subgroups, see remark 1.

As recalled in Appendix A (see also [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF] 

= Γ ∩ SO(3), such that Γ = Γ + ∪ -γΓ + ; γ ∈ Γ \ Γ + . Note that Γ = Γ + ∪ γΓ + .
Five subgroups of type III can be deduced

Z - 2n = Z n ∪ (-r(e e e 3 , π n ))Z n ∀n ≥ 1. ( 3 
)
D z n = Z n ∪ (-r(e 1 , π))Z n ∀n ≥ 2. ( 4 
)
D d 2n = D n ∪ (-r(e e e 3 , π n ))D n ∀n ≥ 1. (5) O -= T ∪ (-r(e e e 3 , π 2 
))T. ( 6) O(2) -= SO(2) ∪ (-r(e e e 1 , π))SO( 2). [START_REF] Floyd | Orbits of torus groups operating on manifolds[END_REF] The notation r(n n n, θ), with θ ∈ [0; 2π[ and n n n = (n x , n y , n z ), a unit vector, denotes the Rodrigues formula to represent a rotation by angle θ around n n n, which is given by

r(n n n, θ) = exp(θj(n n n)) = Id + j(n n n) sin(θ) + j(n n n) 2 (1 -cos(θ))
where j(n n n) denotes the antisymmetric matrix with entries

j(n n n) =   0 -n z n y n z 0 -n x -n y n x 0   .
As said before, the clips tables for two type I subgroups can be found in [3, table 1] and [22, Table 1]. However, these two tables differ in some cases. In the following remark, we point out the differences between the two references and we recalculate the disputed clips.

Remark 3.2. The two tables regrouping the clips between two SO(3)-subgroups provided in [3, table 1] and [22, Table 1] differ in the following cases:

• Clips between [D n ] and [O(2)] (see equations [START_REF] Olive | Symmetry classes for even-order tensors[END_REF] and [START_REF] Weller | Etude des symétries et modèles de plaques en piézoélectricité linéarisée[END_REF] for details on these subgroups): the table given by Chossat [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF] is the correct one in this case

[D n ] ⊚ [O(2)] = {[1], [D n ], [D 2 ](if n is even), [Z 2 ]}
while Olive [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF] has [D 2 ] if n is odd. Indeed, the following intersection

D n ∩ gO(2)g -1 = r e e e 3 , 2kπ n , r(b i , π) ∩ {r(ge e e 3 , θ), r(gb, π)}
gives D 2 only if n is even (take for instance g = r e e e 2 , π 2 ). 1] is the correct one for this case

• Clips between [T] and [T]: the table of Olive [22, table

[T] ⊚ [T] = {[1], [Z 2 ], [D 2 ], [Z 3 ], [T]} since Chossat [3, table 1] omits the conjugacy class [D 2 ]. Indeed, [D 2 ] ∈ [T] ⊚ [T] since the intersection T ∩ gTg -1 , for T = 3 i=1 Z e e e i 2 ∪ 4 j=1 Z s s st j 3 (24),
gives D 2 for g = r e e e 2 , π 2 for example.

• Clips between [T] and [O]

: we follow the table given by Olive [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF] for this case

[T] ⊚ [O] = {[1], [Z 2 ], [D 2 ], [Z 3 ], [T]} since Chossat [3] omits the conjugacy class [Z 3 ] . Indeed, [Z 3 ] ∈ [T] ⊚ [O] since the intersection O ∩ gTg -1 , for T = 3 i=1
Z e e e i 2 ∪ gives Z 3 for g = r (e e e 2e e e 3 , arccos(-1 /3)) for example.

• Clips between [O] and [I]: we consider the table 1 of Olive [22]

[O]

⊚ [I] = {[1], [Z 2 ], [Z 3 ], [D 3 ], [T]} since [D 2 ] / ∈ [O] ⊚ [I]; the intersection O ∩ gIg -1 , for I = 6 i=1 Z u u u i 5 ∪ 10 j=1 Z v v v j 3 ∪ 15 k=1 Z w w w k 2 (27),
gives D 2 only if there exists three orthogonal w w w k , k = 1, . . . , 15, that turn to e e e 1 , e e e 2 , e e e 3 for some g. However, the only three orthogonal w w w k which match this condition are the triplet (w w w 4 , w w w 10 , w w w 12 ), and in that case the intersection gives T (since g is necessarily the identity rotation in that case). [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF] is the correct one in this case

• Clips between [I] and [I]: the table given by Olive

[I] ⊚ [I] = {[1], [Z 2 ], [Z 3 ], [D 3 ], [Z 5 ], [D 5 ], [I]}
since Chossat has the conjugacy class [T] contrary to Olive which can't be realized by any rotation using the intersection I ∩ gIg -1 (the only rotation that can realize T is the identity rotation which gives I instead).

Remark 3.3. Note that (1) If H 1 and H 2 are two closed subgroups of SO(3) then, [H 1 ] ⊚ [H 2 ⊕ Z c 2 ] = [H 1 ] ⊚ [H 2 ] and [H 1 ⊕ Z c 2 ] ⊚ [H 2 ⊕ Z c 2 ] = ([H 1 ] ⊚ [H 2 ]) ⊕ Z c 2 .
(2) For every closed subgroup H of SO(3) we have

[H] ⊚ [O(3)] = {[H]} and [1] ⊚ [H] = {[1]} .
We give, in tables 1 and 2, clips operations between type II and type III subgroups, where we have used the notations

d := gcd(m, n), d k := gcd(k, n), d ′ k := gcd(k, m), Z(n) := [Z 2 ] if n even [Z - 2 ] else and L O := [1], [Z 2 ], [D d 2 ], [Z - 2 ], [D z 2 ], [Z d 3 ], [D d 3 ], [D z d 3 ].
Remark 3.4. In tables we have used the conventions

[Z 1 ] := [1], [D 1 ] = [Z 2 ], [D z 1 ] = [Z - 2 ], [D z 2 ] = [D d 2 ].
Remark 3.5. Note that in [22, figure 3] it was stated that D z 2 ⊂ D d 2n only when n is odd. However, this is true for all n.

⊚ [Z - 2n ] [D z n ] [D d 2n ] [Zm ⊕ Z c 2 ] [1], [Z - 2d ] if m d even [1], [Z d ] else [1], [Z d ] if m odd [1], [Z d ], [Z - 2 ] else [1], [Z2], [Z - 2 ], [Z - 2d ] if m d even [1], [Z2], [Z - 2 ], [Z d ] if m even and m d odd [1], [Z d ] else [Dm ⊕ Z c 2 ] [1], [Z - 2d ], Z(n) if m d even [1], [Z d ], Z(n) else [1], [Z d ], [Z d 2 ] [Z - 2 ], [D z d 2 ], [D z d ] if m even [1], [Z d ] [Z d 2 ], [Z - 2 ], [D z d ] else [1], [Z2], [D d 2 ], [Z - 2 ] [Z - 2d ], [D z 2 ], [D d 2d ] if m d even [1], [Z2], [D2], [Z - 2 ] [D z 2 ], [Z d ], [D d ], [D z d ] if m even and m d odd [1], [Z2], [Z - 2 ], [Z d ], [D d ], [D z d ] else [O ⊕ Z c 2 ] [1], [Z2] [Z d 3 ], [Z4] if 4|n [1], [Z2] [Z d 3 ], [Z - 4 ]
if n even and 4 ∤ n

[1], [Z - 2 ], [Z d 3 ] else [1], [Z d 2 ], [Z d 3 ], [Z d 4 ] [Z - 2 ], [D z d 2 ], [D z d 3 ], [D z d 4 ] L O , [Z - 4 ] [Z4], [D4], [D z 4 ] if 4|n L O , [Z - 4 ], [D d 4 ]
if n even and 4 ∤ n

L O else [T ⊕ Z c 2 ] [1], [Z d 3 ], Z(n) [1], [Z - 2 ], [Z d 2 ], [Z d 3 ], [D z d 2 ] [1], [Z2], [Z - 2 ], [D d 2 ], [D z 2 ], [Z d 3 ] [I ⊕ Z c 2 ] [1], Z(n), [Z d 3 ], [Z d 5 ] [1], [Z d 2 ], [Z d 3 ] [Z d 5 ], [Z - 2 ], [D z d 2 ] [1], [Z2], [Z - 2 ], [D d 2 ], [D z 2 ],[Z d 3 ], [Z d 5 ] [SO(2) ⊕ Z c 2 ] [1], [Z - 2n ] [1], [Z - 2 ], [Zn] [1], [Z2], [Z - 2 ], [Z - 2n ] [O(2) ⊕ Z c 2 ] [1], Z(n), [Z - 2n ] [1], [Z - 2 ], [D z d 2 ], [D z n ] [1], [Z2], [Z - 2 ], [D d 2 ], [D z 2 ], [D d 2n ]
Table 1. Clips between type II and III O(3)-subgroups (part 1)

⊚ [O -] [O(2) -] [Zm ⊕ Z c 2 ] [1], [Z d ′ 3 ], [Z - 2 ], [Z - 4 ] if 4|m [1], [Z d ′ 2 ], [Z d ′ 3 ], [Z - d ′ 2 ] else [1], [Zm], [Z - d ′ 2 ] [Dm ⊕ Z c 2 ] [1], [Z2], [Z d ′ 3 ], [Z - 2 ] [Z - 4 ], [D z d ′ 3 ], [D z 2 ], [D d 4 ] if 4|m [1], [Z2], [Z d ′ 3 ], [Z - 2 ] [D2], [D z d ′ 3 ], [D z 2 ]
if m even and 4 ∤ m

[1], [Z2], [Z d ′ 3 ], [Z - 2 ], [D z d ′ 3 ] else [1], [Z - 2 ] [D z 2 ], [D z m ] if m even [1], [Z2] [Z - 2 ], [D z m ] else [O ⊕ Z c 2 ] [1], [Z2], [Z3], [Z - 2 ], [Z - 4 ], [D z 2 ], [D z 3 ], [D d 4 ], [O -] [1], [Z2], [Z - 2 ], [D z 2 ], [D z 3 ], [D z 4 ] [T ⊕ Z c 2 ] [1], [Z2], [Z3], [Z - 2 ], [D2], [D z 2 ], [T] [1], [Z2], [Z3], [Z - 2 ], [D z 2 ] [I ⊕ Z c 2 ] [1], [Z2], [Z - 2 ], [D2], [D z 2 ], [Z3], [T] [1], [Z2], [Z - 2 ], [D z 2 ] [SO(2) ⊕ Z c 2 ] [1], [Z3], [Z - 2 ], [Z - 4 ] [1], [Z - 2 ], [SO(2)] [O(2) ⊕ Z c 2 ] [1], [Z - 2 ], [D z 3 ], [D d 4 ] [D z 2 ], [O(2) -]
Table 2. Clips between type II and III O(3)-subgroups (part 2)

Proofs

In this section, we provide the details of the computation of clips between type II and type III O(3) subgroups. We recall from Appendix A that every type III subgroup of O(3) is constructed from a pair of SO(3) subgroups (Γ + , Γ) of index 2, where Γ + = Γ ∩ SO(3), such that

Γ = Γ + ∪ -γΓ + ; γ ∈ Γ \ Γ + . Note that Γ = Γ + ∪ γΓ + .
Let Γ = Γ + ∪ (-γΓ + ) be a subgroup of type III and H a subgroup of SO [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF]. By definition, the clips operation between a type II and a type III subgroups

[Γ] ⊚ [H ⊕ Z c 2 ] is given by the intersection Γ ∩ (gHg -1 ⊕ Z c 2 ) wich can be reduced to (8) Γ ∩ (gHg -1 ⊕ Z c 2 ) = (Γ + ∩ (gHg -1 )) ∪ (-(γΓ + ∩ (gHg -1 ))), -γ ∈ Γ \ Γ + Indeed, as we have H ⊕ Z c 2 = H ∪ (-H) we deduce that Γ ∩ (H ⊕ Z c 2 ) = (Γ + ∪ (-γΓ + )) ∩ (H ∪ (-H)) = (Γ + ∩ H) ∪ (Γ + ∩ (-H)) ∪ (-(γΓ + ) ∩ H) ∪ (-(γΓ + ) ∩ (-H)) = (Γ + ∩ H) ∪ (-((γΓ + ) ∩ H)).
In the following, we prove a theorem which describes the possible conjugacy classes belonging to the clips between a type II and type III subgroups of O(3). The computation of such classes can be complicated since it involves intersection of groups of type III which can be tricky sometimes and we risk to not cover all the groups resulting from this intersection. For this reason, we use a characterization of these conjugacy classes making use of the clips between type I subgroups that have already been calculated before. But, before, a preparatory lemma is needed.

Lemma 4.1. Let (K + , K) be a pair of subgroups of a group G of index 2 and H be a subgroup of G. Then, either

K + ∩ H = K ∩ H, or the pair (K + ∩ H, K ∩ H) is of index 2.
Proof. Consider the following exact sequence 

1 → K + i → K p → K/K + ≃ Z 2 → 1 Then p( K ∩ H) is a subgroup of Z 2 . Therefore, either p( K ∩ H) = Z 2 and in this case (K + ∩ H, K ∩ H) is a pair of index 2 (considering the exact sequence 1 → K + ∩ H → K ∩ H → Z 2 ) or p( K ∩ H) = 1 and then K ∩ H = K + ∩ H.
) such that [L] ∈ [Γ] ⊚ [H ⊕ Z c 2 ] then, either (1) L is of type I and [L] ∈ ([Γ + ] ⊚ [H]) ∩ ([ Γ] ⊚ [H]), (2) Or L is of type III built from a pair (L + , L) of index 2 such that [L + ] ∈ [Γ + ]⊚[H] and [ L] ∈ [ Γ] ⊚ [H].
Proof. First remark that -Id doesn't belong to the intersection between a type II and a type III subgroups and hence if

[L] ∈ [Γ] ⊚ [H ⊕ Z c 2 ] then L is either of type I or type III. Let [L] ∈ [Γ] ⊚ [H ⊕ Z c 2 ] then [L] is given by the union (8) L = Γ + ∩ gHg -1 ∪ (-(γΓ + ∩ gHg -1 ) g ∈ SO(3), γ ∈ Γ \ Γ + . If γΓ + ∩ gHg -1 = ∅ then L is of type I and L = Γ + ∩ gHg -1 = Γ ∩ gHg -1 . Hence, [L] ∈ ([Γ + ] ⊚ [H]) ∩ ([ Γ] ⊚ [H]).
If γΓ + ∩ gHg -1 = ∅ then L is of type III and Γ + ∩ gHg -1 = Γ ∩ gHg -1 . Since (Γ + , Γ) is a pair of index 2 then, by lemma 4.1, the pair (Γ + ∩ gHg -1 , Γ ∩ gHg -1 ) is of index 2. Hence, there exists σ ∈ Γ ∩ gHg -1 \ (Γ + ∩ gHg -1 ) such that

L = Γ + ∩ gHg -1 ∪ (-σ(Γ + ∩ gHg -1 ))
Hence, the result.

In the next subsections, we compute the clips operation between type II and type III subgroups of O(3) using theorem 4.2 which involves clips between type I O(3)-subgroups that have already been calculated in previous works ( [START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF][START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF], see also remark 3.2). Indeed, the classes for the clips operation between a subgroup H ⊕ Z c 4.1. Clips with Z - 2n . First, let us recall that Z - 2n is built from the couple (Z n , Z 2n ), where Z n is given by [START_REF] Olive | Effective computation of so (3) and o (3) linear representation symmetry classes[END_REF], as in the equation ( 16) of appendix A

Z - 2n = Z n ∪ (-γZ n ), γ = r e e e 3 ,
π n where we note Z 1 := {Id} when n = 1. Lemma 4.3. Let n ≥ 1 and m ≥ 2 be two integers and d = gcd(m, n). Then

[Z - 2n ] ⊚ [Z m ⊕ Z c 2 ] = [1], [Z - 2d ] if m d even {[1], [Z d ]} else .
Proof. We deduce from (8) that

Z - 2n ∩ (gZ m g -1 ⊕ Z c 2 ) = (Z n ∩ gZ m g -1 ) ∪ (-(γZ n ∩ gZ m g -1 )
), γ = r e e e 3 , π n .

In the case when ge e e 3 and e e e 3 are not colinear, such group reduces to 1, so we suppose now that ge e e 3 = ±e e e 3 . We thus have to consider

(Z n ∩ Z m ) ∪ (-(γZ n ∩ Z m ))
where

Z n ∩ Z m = Z d and γZ n ∩ Z m is obtained by solving the equations of unknown k 1 , k 2 ∈ Z 2k 1 + 1 n = 2k 2 m ⇐⇒ (2k 1 + 1)dm 1 = 2k 2 dn 1 , gcd(m 1 , n 1 ) = 1.
We get solutions only if m 1 = m d is even. By replacing m 1 by 2p we get that p devides k 2 hence k 2 = pk ′ with k ′ odd. On one hand, 2k 2 m = 2pk ′ 2pd and on the other hand, 2k 1 +1 n = k ′ n 1 dn 1 . We deduce that γZ n ∩ Z m = r e e e 3 , (2k + 1)π d

In the following, recall that ( 9)

Z(n) := Z - 2n ⊚ (Z 2 ⊕ Z c 2 ) = [Z 2 ] if n even [Z - 2 ] else . Lemma 4.4.
Let n ≥ 1 and m ≥ 2 be two integers and d = gcd(m, n). Then

[Z - 2n ] ⊚ [D m ⊕ Z c 2 ] = [1], [Z - 2d ], Z(n) if m d even {[1], [Z d ], Z(n)} else .
Proof. Recall from [START_REF] Olive | Symmetry classes for even-order tensors[END_REF] that We have

D m = Z m ∪ m i=1 Z b i 2 , Z b i 2 := {e,
Z - 2n ∩ (gD m g -1 ⊕ Z c 2 ) = Z n ∩ gD m g -1 -(γZ n ∩ (gD m g -1 )
.

The non tivial cases take place for ge e e 3 = ±e e e 3 and the union is deduced from lemma 4.3, and for gb i = ±e e e 3 in which case we get Z(n), so we can conclude.

Lemma 4.5. Let d 3 = gcd(3, n) and d 5 = gcd(5, n). We have

[Z - 2n ] ⊚ [T ⊕ Z c 2 ] = {[1], [Z d 3 ], Z(n)} , [Z - 2n ] ⊚ [I ⊕ Z c 2 ] = {[1], Z(n), [Z d 3 ], [Z d 5 ]} . [Z - 2n ] ⊚ [O ⊕ Z c 2 ] =      {[1], [Z 2 ], [Z d 3 ], [Z 4 ]} if n is even and 4|n [1], [Z 2 ], [Z d 3 ], [Z - 4 ] if n is even but 4 ∤ n [1], [Z - 2 ], [Z d 3 ] if n is odd .
Proof. By (8), we have to consider

(Z n ∩ (gHg -1 )) ∪ (-(γZ n ∩ (gHg -1 ))) for H = T, O, I.
Let us consider decomposition [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF] of the group T. Then the only non trivial cases are obtained for ge e e i = ±e e e 3 in which case we get Z(n) and for gs t j = ±e e e 3 and we get Z d 3 .

For the group O given in [START_REF] Olive | Symmetry classes in piezoelectricity from second-order symmetries[END_REF], the only non trivial cases are for ga c k = ±e e e 3 and gs t j = ±e e e 3 which have been calculated in the case of T and for ge e e i = ±e e e 3 in which case we get Z 4 if 4 | n, Z - 4 if n is even but 4 ∤ n and Z - 2 otherwise. For the group I, we consider the decomposition [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF] and we deduce the result following the same reasonning.

Finally, for the subgroups SO(2) and O(2) given in ( 28) and ( 29) and as a direct consequence of (8), Lemma 4.6. For any integer n ≥ 1 we have:

[Z - 2n ] ⊚ [SO(2) ⊕ Z c 2 ] = [1], [Z - 2n ] , [Z - 2n ] ⊚ [O(2) ⊕ Z c 2 ] = [1], Z(n), [Z - 2n
] with Z(n) given by (9).

Clips with D z

n . As explained in Appendix A, the subgroup D z n is obtained for -γ = -r(e 1 , π), so that Then

D z n = Z n ∪ -γZ n = Z n ∪ {-
[D z n ] ⊚ [Z m ⊕ Z c 2 ] = {[1], [Z d ]} if m is odd [1], [Z - 2 ], [Z d ] if m is even .
Proof. From ( 8) we have to consider

D z n ∩ (gZ m g -1 ⊕ Z c 2 ) = (Z n ∩ gZ m g -1 ) ∪ (-(γZ n ∩ gZ m g -1 )
), γ = r(e 1 , π), where γZ n = {r(b 1 , π), . . . , r(b n , π)}. Here, the only non-trivial cases are obtained when gZ m g -1 = Z n (see lemma 4.3) or Z b i 2 , which leads directly to the result. Lemma 4.8. Let m, n ≥ 2 be two integers and d = gcd(m, n) and d 2 = gcd(2, n). Then

[D z n ] ⊚ [D m ⊕ Z c 2 ] = [1], [Z d 2 ], [Z d ], [Z - 2 ], [D z d 2 ], [D z d ] if m is even [1], [Z d 2 ], [Z d ], [Z - 2 ], [D z d ] if m is odd .
Proof. We apply theorem 4.2 with Γ + = Z n and Γ = D n . We have from [22, table 1]

[Z n ] ⊚ [D m ] = {[1], [Z d 2 ], [Z d ]} and [D n ] ⊚ [D m ] = {[1], [Z 2 ], [D 2 ]( if m and n even), [Z d ], [D d ]} Hence, the classes of [D z n ]⊚[D m ⊕Z c 2 ]
, corresponding to type I subgroups, are among the following list

([Γ + ] ⊚ [H]) ∩ ([ Γ] ⊚ [H]) = {[1], [Z d 2 ], [Z d ]}
and the classes corresponding to type III subgroups are among

[Z - 2 ], [D z d 2 ]( if m is even), [D z d ] .
We can check that all the possibilities can occur by using ( 8):

(Z n ∩ gD m g -1 ) ∪ (-(γZ n ∩ gD m g -1 ))
where Lemma 4.9. Let n ≥ 2 be an integer, d 2 = gcd(2, n) and d 3 = gcd (3, n). We have

γZ n = {r(b i , π), i = 1, . . . , n} and D m = Z m ∪ m j=1 Z b j 2 , we get • [Z d 2 ]
[D z n ] ⊚ [T ⊕ Z c 2 ] = [1], [Z - 2 ], [Z d 2 ], [Z d 3 ], [D z d 2 ] .
Proof. We deduce from [22, table 1] and theorem 4.2 that the classes in

[D z n ] ⊚ [T ⊕ Z c 2 ]
, corresponding to type I subgroups, are among the following list

([Z n ] ⊚ [T]) ∩ ([D n ] ⊚ [T]) = {[1], [Z d 2 ], [Z d 3 ]}
and the classes corresponding to type III subgroups are among

[Z - 2 ], [D z d 2 ]
. We can check that all the possibilities can occur by using ( 8):

(Z n ∩ gTg -1 ) ∪ (-(γZ n ∩ gTg -1 ))
where γZ n = {r(b i , π), i = 1, . . . , n} and T = 3 i=1 Z e e e i 

d 4 = gcd(4, n). We have [D z n ] ⊚ [O ⊕ Z c 2 ] = [1], [Z d 2 ], [Z d 3 ], [Z d 4 ], [Z - 2 ], [D z d 2 ], [D z d 3 ], [D z d 4 ] . Proof. We deduce from [22, table 1] and theorem 4.2 that the classes in [D z n ] ⊚ [O ⊕ Z c 2 ]
, corresponding to type I subgroups, are among the following list We have

([Z n ] ⊚ [O]) ∩ ([D n ] ⊚ [O]) = {[1], [Z d 2 ], [Z d 3 ], [Z d 4 ]}
[D z n ] ⊚ [I ⊕ Z c 2 ] = [1], [Z d 2 ], [Z d 3 ], [Z d 5 ], [Z - 2 ], [D z d 2 ] . Proof. We deduce from [22, table 1] and theorem 4.2 that the classes in [D z n ] ⊚ [I ⊕ Z c 2 ]
, corresponding to type I subgroups, are among the following list

([Z n ] ⊚ [I]) ∩ ([D n ] ⊚ [I]) = {[1], [Z d 2 ], [Z d 3 ], [Z d 5 ]}
and the classes corresponding to type III subgroups are among

[Z - 2 ], [D z d 2 ], [D z d 3 ], [D z d 5 ]
. We can check that all the possibilities can occur, except [D z d 3 ] and [D z d 5 ], by using ( 8):

(Z n ∩ gIg -1 ) ∪ (-(γZ n ∩ gIg -1 ))
where

I = 6 i=1 Z u u u i 5 10 j=1 Z v v v j 3 15 k=1 Z w w w k 2 (27), we get • [Z - 2 ]
for a rotation g such that gw w w k = b i for i = 1, . . . n and k = 1, . . . , 15;

• [Z d 2 ]
for a rotation g such that gw w w k = e e e 3 for k = 1, . . . , 15;

• [Z d 3 ] for a rotation g such that gv v v j = e e e 3 for j = 1, . . . , 10; • [Z d 5 ] for a rotation g such that gu u u i = e e e 3 for i = 1, . . . , 6;

• [D z d 2 ]
for a rotation g such that gw w w k = e e e 3 and two other axes w w w k turn to two orthogonal axes b i for i = 1, . . . , n (exists for n even) (the identity rotation works as well since w w w 4 , w w w 10 , w w w 12 are colinear to e e e 1 , e e e 2 , e e e 3 (e e e 2 = b i for some i for n even));

• [D z d 3 ]
for a rotation g such that gv v v j = e e e 3 and three other axes w w w j turn to three b i . However, there is no three coplanar w w w k seperated by an angle of π 3 ;

• [D z d 5 ]
for a rotation g such that ge e e i = e e e 3 and five axes w w w i turn to five b i . However, there is no five coplanar w w w k seperated by angle of π 5 .

Lemma 4.12. For any integer n ≥ 2, we have

[D z n ] ⊚ [SO(2) ⊕ Z c 2 ] = [1], [Z - 2 ], [Z n ] [D z n ] ⊚ [O(2) ⊕ Z c 2 ] = [1], [Z - 2 ], [D z d 2 ], [D z n ]
Proof. By theorem 4.2 we deduce that the classes in the clips

[D z n ] ⊚ [SO(2) ⊕ Z c 2 ] are among the following list [1], [Z - 2 ], [Z n ]
. All the classes of the above list can be realized by a rotation g using the union Z n ∩ gSO(2)g -1 ∪ (-(γZ n ∩ gSO(2)g -1 )) [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] where SO(2) consists of all the rotations around e e e 3 . Indeed, we get:

• [Z - 2 ]
for a rotation g such that ge e e 3 = b i for i = 1, . . . , n, • [Z n ] for the identity rotation for instance.

As for the classes in [D

z n ] ⊚ [O(2) ⊕ Z c 2 ]
, by theorem 4.2 we know that such classes are among the following list

[1], [Z d 2 ], [Z - 2 ], [D z d 2 ], [D z n ]
. By the same reasoning, the above classes can be all realized except for [Z d 2 ] using ( 8)

Z n ∩ gO(2)g -1 ∪ (-(γZ n ∩ gO(2)g -1 ))
where γZ n = {r(b i , π), i = 1, . . . , n} and gO(2)g -1 = {r(ge e e 3 , θ), r(gb, π), b ∈ (xy) plan}. Indeed, we get Then

• [Z - 2 ]
[D d 2n ] ⊚ [Z m ⊕ Z c 2 ] =      [1], [Z 2 ], [Z - 2 ], [Z - 2d ] if m d even [1], [Z 2 ], [Z - 2 ], [Z d ] if m even and m d odd {[1], [Z d ]} else .
Proof. From ( 8) we have to consider intersection

D d 2n ∩ (gZ m g -1 ⊕ Z c 2 ) = (D n ∩ gZ m g -1 ) ∪ (-(γD n ∩ gZ m g -1
)) γ = r e e e 3 , π n which can always reduces to 1. Otherwise we have only to consider three cases:

• ge 3 = ±e 3 and we deduce intersection from lemma 4.3;

• ge 3 = ±b 2l for some k and intersection reduces to Z - 2 for m even; • ge 3 = ±b 2l+1 for some k and intersection reduces to Z 2 for m even, and we can conclude the proof. Then

[D d 2n ] ⊚ [D m ⊕ Z c 2 ] =      [1], [Z 2 ], [D d 2 ], [Z - 2 ], [Z - 2d ], [D z 2 ], [D d 2d ] if m d is even [1], [Z 2 ], [D 2 ], [Z - 2 ], [D z 2 ], [Z d ], [D d ], [D z d ] if m d is odd and m is even [1], [Z 2 ], [Z - 2 ], [Z d ], [D d ], [D z d ] else .
Proof. We apply theorem 4.2 with Γ + = D n and Γ = D 2n . We deduce from [22, table 1]

[D n ] ⊚ [D m ] = {[1], [Z 2 ], [D 2 ](if m and n even), [Z d ], [D d ]} and [D 2n ] ⊚ [D m ] =      {[1], [Z 2 ], [D 2 ], [Z 2d ], [D 2d ]} if m d even {[1], [Z 2 ], [D 2 ], [Z d ], [D d ]} if m even and m d odd {[1], [Z 2 ], [Z d ], [D d ]} if m odd Hence, the classes in [D z n ]⊚[D m ⊕Z c 2 ]
, corresponding to type I subgroups, are among the following list

([D n ] ⊚ [D m ]) ∩ ([D 2n ] ⊚ [D m ]) =      {[1], [Z 2 ], [D 2 ]} if m d even {[1], [Z 2 ], [D 2 ], [Z d ], [D d ]} if m even and m d odd {[1], [Z 2 ], [Z d ], [D d ]} if m odd
and the classes corresponding to type III subgroups are among

     [Z - 2 ], [D z 2 ], [Z - 2d ], [D z 2d ] if m d even [Z - 2 ], [D z 2 ], [D z d ] if m even and m d odd [Z - 2 ], [D z d ] if m odd .
We can check that all the possibilities can occur by using ( 8):

(D n ∩ gD m g -1 ) ∪ (-(γD n ∩ gD m g -1 ))
where D n and γD n are given in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF] and [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF]. We obtain Lemma 4.29. We have

[O(2) -] ⊚ [SO(2) ⊕ Z c 2 ] = [1], [Z - 2 ], [SO(2)] . [O(2) -] ⊚ [O(2) ⊕ Z c 2 ] = [D z 2 ], [O(2) -] .

Application to Piezoelectricity

We propose here to apply clips operation to the specific case of the Piezoelectricity law. We introduce the space of constitutive tensors occurring in the mechanical description of Piezoelectricity, which describes the electrical behavior of a material subject to mechanical stress. It is defined by a triplet of tensors given by an elasticity tensor, a Piezoelectricity tensor and a permittivity tensor. Such a space is naturally endowed with an O(3) representation, and the finite set of isotropy classes is obtained in theorem 5.1 below.

We recall now the Piezoelectricity law, while details can be found in [START_REF] Schouten | Tensor Analysis for Physicists[END_REF][START_REF] Landau | Electrodynamics of Continuous Media[END_REF][START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF][START_REF] Meitzler | IEEE standard on piezoelectricity[END_REF]. First, the mechanical state of a material is characterized by two fields of symmetric second order tensors: the stress tensor σ and the strain tensor ε. The relation between these two fields forms the constitutive law that describes the mechanical behavior of a specific material. In linear elasticity, the relation is linear, given by σ = E : ε which is known as the generalized Hooke's law. Such fourth order elasticity tensor E have the index symmetries E ijkl = E jikl = E ijlk = E klij and we define the associated space of elasticity tensors Ela, which is a 21 dimensional vector space.

Similarly to the mechanical state, the electrical state of a material is described by two vector fields: the electric displacement field d and the electric field e. These two fields are related and the relation between them forms the constitutive law that describes the electrical behavior of a material. In the linear case, it is given by d = S.e where the second order symmetric tensor S is the permittivity tensor. We define S to be the vector space of the permittivity tensors, which is of dimension 6.

Finally, the Piezoelectricity law is given by the coupled law σ = E : εe.P d = P : σ + S.e which involves a third order tensor P called the Piezoelectricity tensor, satisfying the index symmetry P ijk = P ikj The vector space of Piezoelectricity tensors is an 18 dimensional vector space, noted Piez.

As a consequence, the linear electromechanical behavior of any homogeneous material is defined by a triplet P of constitutive tensors P := (E, P, S) ∈ Ela ⊕ Piez ⊕ S and we define Piez to be the space of Piezoelectricity constitutive tensors:

Piez = Ela ⊕ Piez ⊕ S.
The natural O(3) representation on (E, P, S) ∈ Piez is given in any orthonormal basis by (ρ(g)E) ijkl := g ip g jq g kr g ls E pqrs , (ρ(g)P) ijk := g ip g jq g kr P pqr , (ρ(g)S) ij := g ip g jq S pq [START_REF] Quang | The number and types of all possible rotational symmetries for flexoelectric tensors[END_REF] where g ∈ O(3).

As a consequence of lemma 2.4, the isotropy classes J (Piez) can be deduced from isotropy classes Ela, Piez and S: J (Piez) = (J (Ela) ⊚ J (Piez)) ⊚ J (S).

We propose in Table 3 We give now some useful decompositions of subgroups T, O and I. To do so, first introduce subgroups where u u u, v v v are a non-zero orthogonal vectors. In such notations, the axis u u u generated by u u u is said to be the primary axis of Z u u u n and D u u u,v v v n , while v v v is said to be a secondary axis of D u u u,v v v n . In fact we have First we have (see [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF] for instance) 

Theorem 4 . 2 .

 42 Let Γ be a type III subgroup of O(3), built from the pair of SO(3) subgroups (Γ + , Γ) of index 2 and let H be a subgroup of SO(3). Let L be a subgroup of O(3

2

 2 of type II and a subgroup Γ of type III are deduced from the knowledge of the tables of the clips [Γ + ] ⊚ [H] and [ Γ] ⊚ [H]. By eliminating the classes that can't be realised by any g ∈ SO(3), we deduce the clips operation between [Γ] and [H ⊕ Z c 2 ].

  r(b i , π)} where b i are called the secondary axes of the subgroup D m , with b 1 = e e e 1 , b k = r e e e 3 , π m b k-1 , k = 2, . . . , m.

Lemma 4 . 7 .

 47 r(b 1 , π), . . . , -r(b n , π)} , b 1 = e e e 1 , b k = r e e e 3 , π n b k-1 where b i are called secondary axes of the dihedral subgroup D n (see [22, Appendix A]). Let m, n ≥ 2 be two integers and d = gcd(m, n).

  for a rotation g such that gb j = e e e 3 for j = 1, . . . , m (take for instance g = r e e e 3 , π 3 • r e e e 2 , π 2 that turns only e e e 1 to e e e 3 and nothing else); • [Z d ] for a rotation g such that ge e e 3 = e e e 3 (for instance g = r e e e 3 , π 3 ); • [Z - 2 ] for a rotation g such that gb j = b i for i = 1, . . . n and j = 1, . . . , m (for instance g = r e e e 1 , π 3 ); • [D z d ] for the identity rotation for instance; • [D z d 2 ] if m is even and in this case we can take g = r e e e 2 , π 2 for instance so we have ge e e 3 = e e e 1 = b 1 and gb 2 = b 2 = e e e 2 .

j 3 (

 3 [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF], we get• [Z - 2 ]for a rotation g such that ge e e 1 = b i for i = 1, . . . n (take for instance g = r e e e 1 , π 3 );• [Z d 2 ]for a rotation g such that ge e e i = e e e 3 for i = 1, . . . , 3 (take for instance g = r e e e 3 , π3 ); • [Z d 3 ] for a rotation g such that gs s s t j = e e e 3 ;• [D z d 2 ]for a rotation g such that ge e e i = e e e 3 for i = 1, 2, 3 and the two remaining e e e i turn to two orthogonal b i (exists for n even).

Lemma 4 . 10 .

 410 Let n ≥ 2 be an integer, d 2 = gcd(2, n), d 3 = gcd(3, n) and

k 2 ( 25 )Lemma 4 . 11 .

 225411 and the classes corresponding to type III subgroups are among [Z - 2 ], [Dd 2 z ], [D z d 3 ], [D z d 4 ]. We can check that all the possibilities can occur by using (8):(Z n ∩ gOg -1 ) ∪ (-(γZ n ∩ gOg -1 ))where O = 3 i=1 Z e e e i , we get• [Z - 2 ]for a rotation g such that ga a a c k = b i for i = 1, . . . n and k = 1, . . . , 6 (for instance take g = r e e e 1 , π 3 • r e e e 3 , -π 4 that turns only a a a c 1 to e e e 1 ); • [Z d 2 ] for a rotation g such that ga a a c k = e e e 3 for k = 1, . . . , 6; • [Z d 3 ] for a rotation g such that gs s s t j = e e e 3 ; • [Z d 4 ] for a rotation g such that ge e e i = e e e 3 for i = 1, . . . , 3 (take for instance g = r e e e 3 , π 3 • r e e e 1 , π 2 ); • [D z d 2 ] for a rotation g such that ga a a c k = e e e 3 and two other edge axes a a a c k turn to two orthogonal axes ±b i for i = 1, . . . , n (exists for n even) ; • [D z d 3 ] for a rotation g such that gs s s t j = e e e 3 and three other edge axes a a a c k (for instance a a a c 1 , a a a c 4 and a a a c 5 are three coplanar edge axes seperated by an angle of π 3 ) turn to three ±b i ; • [D z d 4 ] for g = r e e e 3 , π 4 for example. Let n ≥ 2 be an integer, d 2 = gcd(2, n), d 3 = gcd(3, n) and d 5 = gcd(5, n).

4 . 3 .b 1 = e e e 1 and b l = r e e e 3 , π n b l- 1 . 4 . 13 .

 4311413 for a rotation g such that gb = b i for i = 1, . . . n (take for instance g = r e e e 1 , π 3 • r e e e 3 , π 2 that turns only e e e 2 to e e e 1 ); • [D z d 2 ] for g = r e e e 2 , π 2 for example; • [D z n ] for the identity rotation for example; Clips with D d 2n . First we have (see Appendix A) D d 2n = D n ∪ (-γD n ), γ = r e e e 3 , π n where we can write D n = r e e e 3 , 2k 1 π n , r(b 2l+1 , π); k 1 = 0, . . . , n -1 (10) -γD n = -r e e e 3 , (2k 2 + 1)π n , -r(b 2l , π); k 2 = 0, . . . , n -1 Lemma Let m, n ≥ 2 be two integers and d = gcd(m, n).

Lemma 4 . 14 .

 414 Let m, n ≥ 2 be two integers, d = gcd(m, n) and d 2 = gcd(2, n).

2 2

 2 generators of type I and type III closed O(3)-subgroups. Type I subgroup Order Generators Z n , n ≥ 2 n r (e e e 3 , 2π /n) D n , n ≥ 2 2n r (e e e 3 , 2π /n) , r(e e e 1 , π) T 12 r(e e e 3 , π), r(e e e 1 , π), r(e e e 1 + e e e 2 + e e e 3 , 2π /3) O 24 r(e e e 3 , π /2), r(e e e 1 , π), r(e e e 1 + e e e 2 + e e e 3 , 2π /3) I 60 r(e e e 3 , π), r(e e e 1 + e e e 2 + e e e 3 , 2π /3), r(e e e 1 + φe e e 3 , 2π /5) φ := (e e 3 , θ), θ ∈ [0, 2π] O(2) ∞ SO(2), r(e e e 1 , π) Type III subgroup Z - -r(e e e 3 , π) Z - 2n , n ≥ 2 2n -r (e e e 3 , π /n) D d 2n , n ≥ 2 4n -r (e e e 3 , π /n) , r(e e e 1 , π) D z n , n ≥ 2 2n r (e e e 3 , 2π /n) , -r(e e e 1 , π) O - 24 -r(e e e 3 , π /2), -r(e e e 2e e e 3 , π) O(2) - ∞ SO(2), -r(e e e 1 , π)

Z n = Z e e e 3 n , D n = D e e e 3 ,e e e 1 n.

 331 and for any g ∈ SO[START_REF] Chossat | A classification of 2-modes interactions with so (3) symmetry and applications[END_REF] gZ n g -1 = Z ge e e 3 n , gD n g -1 = D ge e e 3 ,ge e e 1 n In particular, Z n is given by (22)Z n =r e e e 3 , 2kπ n , k = 0, . . . , n -1 And D n by (23) D n = r e e e 3 , 2kπ n , r(b i , π); k = 0, . . . , n -1, i = 1, . . . , n with b i being the secondary axis of D n in the (xy)-plane such that b 1 = e e e 1 and b i = r e e e 3 , π n b i-1 , for i ≥ 2. We propose now details on compositions of the subgroups T, O and I, with explicit axes for all cyclic and dihedral subgroups they contain.

j 3 with s s s t 1 =Fork 2 with vectors a k given by a c 1 = 15 k=1Z w w w k 2 - 1 φ e e e 3 v v v 5 : 3 v v v 9 := - 1 φ e e e 1 -+ 1 φ e e e 3 , w w w 2 := 1 + 1 φ e e e 1 + e e e 2 + (φ + 1 )e e e 3 w w w 3 := (φ + 1 )e e e 1 + 1 + 1 φ e e e 2 ++ 1 φ e e e 2 -e e e 3 w w w 6 := (φ + 1 )e e e 1 -1 + 1 φ e e e 2 + e e e 3 , w w w 7 := 1 + 1 φ e e e 1 -φ e e e 2 -φ e e e 3 w w w 10 :

 31211523531321213312236123712310 e e e 1 + e e e 2 + e e e 3 , s s s t 2 = e e e 1e e e 2e e e 3 , s s s t 3 = -e e e 1 + e e e 2e e e 3 , s s s t 4 = -e e e 1e e e 2 + e e e 3 . e 1 + e 2 , a c 2 = e 1e 2 , a c 3 = e 1 + e 3 (26) a c 4 = e 1e 3 , a c 5 = e 2 + e 3 , a c 6 = e 2e 3 . Taking φ := (1 + √ 5)/5 to be the golden ratio, vectors u u u i are obtained as centers of icosahedron faces ( [22, Figure 11]): u u u 1 := (1 + 3φ)e e e 1 + (2 + φ)e e e 3 , u u u 2 := (2 + φ)e e e 1 + (1 + 3φ)e e e 2 , u u u 3 := (2 + φ)e e e 2 -(1 + 3φ)e e e 3 u u u 4 := -(2 + φ)e e e 2 -(1 + 3φ)e e e 3 , u u u 5 = (1 + 3φ)e e e 1 -(2 + φ)e e e 3 , u u u 6 := (2 + φ)e e e 1 -(1 + 3φ)e e e 2 . Then vectors v v v j are obtained from vertices of icosahedron: v v v 1 := e e e 1 + e e e 2 + e e e 3 , v v v 2 := φe e e 1 + 1 φ e e e 2 , v v v 3 := e e e 1 + e e e 2e e e 3 , v v v 4 := φe e e 2 = φe e e 2 + 1 φ e e e 3 , v v v 6 := -e e e 1 + e e e 2 + e e e 3 , v v v 7 := -φe e e 1 + 1 φ e e e 2 , v v v 8 := -e e e 1 + e e e 2e e e φe e e 3 , v v v 10 := 1 φ e e e 1φe e e 3 while vectors w w w k are obtained from its edges: w w w 1 := e e e 1 + (φ + 1)e e e 2 + 1 e e e 3 , w w w 4 := φe e e 1 , w w w 5 := (φ + 1)e e e 1 + 1 e e e 2 + (φ + 1)e e e 3 , w w w 8 := (φ + 1)e e e 1 -1 + 1 e e e 3 , w w w 9 := e e e 1 + (φ + 1)e e e 2 -1 + 1 = φe e e 2 , w w w 11 := -e e e 1 + (φ + 1)e e e 2 + 1 + 1 φ e e e 3 , w w w 12 = φe e e 3 w w w 13 := -1 + 1 φ e e e 1 + e e e 2 + (φ + 1)e e e 3 , w w w 14 := -e e e 1 + (φ + 1)e e e 2 -1 + 1 φ e e e 3 , w w w 15 := -1 + 1 φ e e e 1e e e 2 + (φ + 1)e e e 3 . Finally, the subgroups SO(2) and O(2) are given by (28) SO(2) = {r(e e e 3 , θ), θ ∈ [0, 2π]} and (29) O(2) = {r(e e e 3 , θ), r(b, π), θ ∈ [0, 2π], b ∈ (xy) -plane} .

  linear representations of a group G, if we know the isotropy classes for each individual irreducible representations. Such an operation is generalized to a binary operation on all conjugacy classes of subgroups of a given group G and is defined as follows Definition 2.3. For two subgroups H 1 and H 2 of a group G, we define the clips operation of the conjugacy classes [H 1 ] and [H 2 ] as the subset of conjugacy classes

Table 3 .

 3 Generators of closed O(3)-subgroups

• [D d

2d ] if m/d is even and [D d ] otherwise for a rotation g such that ge e e 3 = e e e 3 and gb i = ±b 2l+1 for some l;

• [D d 2d ] if m/d is even and [D z d ] otherwise for a rotation g such that ge e e 3 = e e e 3 and gb i = ±b 2l for some l;

• [Z - 2d ] if m/d is even and [Z d ] otherwise for a rotation g such that ge e e 3 = e e e 3 only;

if m odd and n even [Z - 2 ] if m and n odds for a rotation g such that ge e e 3 = ±b 2l+1 for some l,

• [Z 2 ] for a rotation g such that ge e e 3 = ±b 2l+1 for some l;

if m odd and n even [Z - 2 ] if m and n odds for a rotation g such that ge e e 3 = b 2l and gb i = e e e 3 ;

• [Z - 2 ] if m is even for a rotation g such that ge e e 3 = b 2l .

Lemma 4.15. For any integer n ≥ 2 and d k = gcd(n, k) for k = 2, 3, we have

Proof. We deduce from [22, table 1] and theorem 4. . We can check that all the possibilities can occur by using [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]:

where D n and γD n are given in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF] and [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF] and T in [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF]. We get • [Z d 3 ] for a rotation g such that gs s s t j = ±e e e 3 ;

• [Z 2 ] for a rotation g such that ge e e i = b 2l+1 for i = 1, . . . , 3 (take for instance g = r e e e 1 , π 3 • r e e e 3 , π 2l );

for a rotation g such that ge e e i = b 2l for i = 1, . . . 3;

for a rotation g such that ge e e i = e e e 3 for i = 1, 2, 3 and the two remaining e e e i turn to two b 2l+1 for some l;

for a rotation g such that ge e e i = e e e 3 for i = 1, 2, 3 and the two remaining e e e i turn to two b 2l for some l. 

We deduce, by theorem 4.2, that the classes in [D d 2n ]⊚[O⊕Z c 2 ], corresponding to type I subgroups, are among the following list

and the classes corresponding to type III subgroups are among

( if n is even and 4 ∤ n) . We can check that all the possibilities can occur by using ( 8):

where D n and γD n are given in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF] and [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF] and O in [START_REF] Olive | Symmetry classes in piezoelectricity from second-order symmetries[END_REF]. We get

for a rotation g such that ga a a c k = e e e 3 and two other edge axes a a a c k turn to two orthogonal axes b 2l+1 (exists for n even) for some l; Lemma 4.17. For any integer n ≥ 2 and d k = gcd(n, k) for k = 2, 3, 5, we have

Proof. We deduce from [22, 

] and the classes corresponding to type III subgroups are among

. We can check that all the possibilities can occur except

for the same argument as in lemma 4.11 by using (8):

where D n and γD n are given in [START_REF] Olive | Symmetry classes for even-order tensors[END_REF] and [START_REF] Ihrig | Pattern selection with O(3) symmetry[END_REF] and I in [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF]. We get 

Proof. By theorem 4.2 we deduce that the classes in the clips

. All the classes of the above list can be realized by a rotation g using the union

Indeed, we get:

• [Z 2 ] for a rotation g such that ge e e 3 = b 2l+1 ;

for a rotation g such that ge e e 3 = b 2l ;

for the identity rotation for instance.

As for the classes in [D

, by theorem 4.2 we know that such classes are among the following list

. By the same reasoning, the above classes can be all realized by a rotation g using ( 8)

where gO(2)g -1 = {r(ge e e 3 , θ), r(gb, π), b ∈ xy plane}. We get,

• [Z 2 ] for a rotation g such that g = r e e e 1 , π 3 •r e e e 2 , π 2 that turns only e e e 3 to e e e 1 for instance; 

Proof. From (8) we have to consider intersection

π n which can always reduces to 1. Otherwise we have only to consider three cases:

• ge e e ].

Lemma 4.20. Let m ≥ 2 be an integer. We have

Proof. We apply theorem 4.2 with Γ + = T and Γ = O. We deduce from [22, table 1]

, corresponding to type I subgroups, are among the following list

] and the classes corresponding to type III subgroups are among

We can check that all the possibilities can occur by using ( 8 where γT is given by [START_REF] Landau | Electrodynamics of Continuous Media[END_REF]. We obtain

for a rotation g such that gb i = e e e j for i = 1, . . . , m and j = 1, . . . , 3 (take for instance g = r e e e 2 , π 3 • r e e e 3 , π 2 );

for a rotation g such that gb i = a a a c k for i = 1, . . . , m (take for instance g = r a a a c k , π 3 • r e e e 3 , π 4 ); Lemma 4.21. We have

Proof. We deduce from [22, table 1] and theorem 4.2 that the classes in

, corresponding to type I subgroups, are among the following list

and the classes corresponding to type III subgroups are among

. We can check that all the possibilities can occur by using ( 8):

where γT is given by ( 14) and T in [START_REF] Olive | Symmetry classes for odd-order tensors[END_REF]. We get

for a rotation g such that gs s s t j = s s s t l ; • [D 2 ] for a rotation g = r e e e 2 , π 2 for instance; • [Z 2 ] for a rotation g = r e e e 3 , π 3 • r e e e 2 , π 2 for instance;

for a rotation g such that ge e e i = e e e j for i = 1, . . . , 3 and the two remaining e e e i turn to two a a a c k (for instance g = r e e e 3 , π 4 );

for a rotation g such that ge e e i = a a a c k for i = 1, . . . 3 (for instance g = r a a a c 1 , π 3 • r e e e 3 , π

2 ); • [T] for the identity rotation for instance. Lemma 4.22. We have

Proof. We deduce, by theorem 4.2, that the classes in

, corresponding to type I subgroups, are among the following list

and the classes corresponding to type III subgroups are among

We can check that all the possibilities can occur by using ( 8) except [D 2 ] since to get [D 2 ] we need a rotation g such that ga a a c k = e e e i and ge e e i = e e e i which will give [Z - 4 ]. We have

where γT is given by ( 14) and O in (25):

for a rotation g such that ga a a c k = e e e i for i = 1, . . . , 3 (take for instance g = r e e e 1 , π 3 • r e e e 3 , -π 4 );

for a rotation g = r e e e 3 , π 2 for example;

for a rotation g such that gs s s t j = s s s t l and three edge axes a a a c k turn to three a a a c k ; • [Z - 4 ] for a rotation g such that ge e e i = e e e j for some i, j = 1, . . . , 3 (take for instance g = r e e e 3 , π

3 );

for a rotation g = r e e e 3 , π 2 for example; • [O -] for the identity rotation for instance. Lemma 4.23. We have

Proof. We deduce from [22, table 1] and theorem 4.2 that the classes in

, corresponding to type I subgroups, are among the following list

and the classes corresponding to type III subgroups are among

We can check that all the possibilities can occur except [D z 3 ] (same argument as in lemma 4.11) by using ( 8):

where γT is given by ( 14) and I in [START_REF] Royer | Elastic waves in solids I: Free and guided propagation[END_REF]. Hence, we get

for a rotation g such that gw w w k = e e e i for k = 1, . . . , 15 and i = 1, . . . , 3;

for a rotation g such that gw w w k = e e e i and two other axes w w w k turn to two orthogonal axes a a a c k (take for instance g = r e e e 3 , π 4 ); • [Z 3 ] for a rotation g such that gv v v j = s s s t j ; • [T] for the identity rotation for instance. Lemma 4.24. We have

Proof. By theorem 4.2 we deduce that the classes in the clips

. All the classes of the above list can be realized by a rotation g using the union T ∩ gSO(2)g -1 ∪ (-(γT ∩ gSO(2)g -1 )) (8) except [Z 2 ]. Indeed, we get:

for a rotation g such that ge e e 3 = s s s t j ;

for a rotation g such that ge e e 3 = a a a c k ; • [Z - 4 ] for the identity rotation for instance.

Lemma 4.25. We have

Proof. By theorem 4.2 we deduce that the classes in the clips

Using the union T ∩ gO(2)g -1 ∪ (-(γT ∩ gO(2)g -1 )) [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] where gO(2)g -1 = {r(ge e e 3 , θ), r(gb, π), b ∈ xy plan} , we deduce the classes that can be realized by a rotation g:

for a rotation g such that ge e e 3 = a a a c k ;

3 ] for a rotation g such that ge e e 3 = s s s t j and three axes b of the (xy)-plane turn to a a a c k (take for instance g = r (< -1, 1, 0 >, arccos (

for the identity rotation for instance. where r(b, π) represent the symmetry with respect to all the axes in the xy plane.

Lemma 4.26. Let m ≥ 2 be an integer and d ′ 2 = gcd(2, m). We have

Proof. We get the result by considering the following intersection (from [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF])

)) where γ = r(e e e 1 , π) and γSO(2) = {r(b, π)}.

The proof of the following lemma is similar to the proof of lemma 4.8. Lemma 4.27. For any integer m ≥ 2, we have

Proof. We apply theorem 4.2 with Γ + = SO(2) and Γ = O(2). We deduce from [22, table 1] The argumentation for the calculation of the clips with O(2) -is very similar to the ones for D z n exposed in subsection 4.2. Lemma 4.28. We have

. And finally we deduce the clips with SO(2) ⊕ Z c 2 and O(2) ⊕ Z c 2 in the same way as in lemma 4.12.

Recall from [START_REF] Olive | Symmetry classes in piezoelectricity from second-order symmetries[END_REF] the isotropy classes of Piez (the notations and definitions of O(3)-subgroups have been moved to Appendix A)

The symmetry classes for O(3) representation on Ela and S are the same as the symmetry classes for SO(3) representation which can be found in [START_REF] Forte | Symmetry classes and harmonic decomposition for photoelasticity tensors[END_REF] and [START_REF] Olive | Characterization of the symmetry class of an elasticity tensor using polynomial covariants[END_REF], except that each type I subgroup occurring in the list of isotropy classes has to be replaced by the corresponding type II subgroup (see Appendix A). Indeed, -Id acts trivially on Ela and S, and we have

} . We deduce the isotropy classes of the Piezoelectricity law Piez = Ela⊕Piez⊕S from lemma 2.4 by calculating the clips operations between the isotropy classes of Ela, Piez and S (see Table 1 and Table 2 for clips between type II and III O(3)-subgroups and [22, table 1] for clips between two type I and remark 3.1 (1) for type I with type II and two type II). Then Γ = Γ + ∪ Γ -and we have the following classification (see [START_REF] Golubitsky | Singularities and groups in bifurcation theory[END_REF]).