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DISTANCE LABELING SCHEMES FOR K4-FREE BRIDGED GRAPHS

VICTOR CHEPOI, ARNAUD LABOUREL, AND SÉBASTIEN RATEL

Abstract. k-Approximate distance labeling schemes are schemes that label the vertices of a graph
with short labels in such a way that the k-approximation of the distance between any two vertices
u and v can be determined efficiently by merely inspecting the labels of u and v, without using any
other information. One of the important problems is finding natural classes of graphs admitting
exact or approximate distance labeling schemes with labels of polylogarithmic size. In this paper,
we describe a 4-approximate distance labeling scheme for the class of K4-free bridged graphs. This
scheme uses labels of poly-logarithmic length O(logn3) allowing a constant decoding time. Given
the labels of two vertices u and v, the decoding function returns a value between the exact distance
dG(u, v) and its quadruple 4dG(u, v).

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{victor.chepoi, arnaud.labourel, sebastien.ratel}@lis-lab.fr

1. Introduction

1.1. Distance labeling schemes. A (distributed) labeling scheme is a way of distributing the
global representation of a graph over its vertices, by giving them some local information. The goal
is to be able to answer specific queries using only local knowledge. Peleg [39] gave a wide survey
of the importance of such localized data structures in distributed computing and of the types of
queries based on them. Such queries can be of various types (see [39] for a comprehensive list), but
adjacency, distance, or routing can be listed among the most fundamental ones. The quality of a
labeling scheme is measured by the size of the labels of vertices and the time required to answer the
queries. Adjacency, distance, and routing labeling schemes for general graphs need labels of linear
size. Labels of size O(log n) or O(log2 n) are sufficient for such schemes on trees. Finding natural
classes of graphs admitting distributed labeling schemes with labels of polylogarithmic size is an
important and challenging problem.

In this paper we investigate distance labeling schemes. A distance labeling scheme (DLS for short)
on a graph family G consists of an encoding function CG : V → {0, 1}∗ that gives binary labels to
vertices of a graph G ∈ G and of a decoding function DG : {0, 1}∗ × {0, 1}∗ → N that, given the
labels of two vertices u and v of G, computes the distance dG(u, v) between u and v in G. For
k ∈ N∗, we call a labeling scheme a k-approximate distance labeling scheme if the decoding function
computes an integer comprised between dG(u, v) and k · dG(u, v). Finding natural classes of graphs
admitting exact or approximate distance labeling schemes with labels of polylogarithmic size is an
important and challenging problem. In this paper we continue the line of research we started in
[17] to investigate classes of graphs with rich metric properties, and we design approximate distance
labeling schemes of polylogarithmic size for K4-free bridged graphs.

1.2. Related work. By a result of Gavoille et al. [27], the family of all graphs on n vertices admits
a distance labeling scheme with labels of O(n) bits. This scheme is asymptotically optimal because
simple counting arguments on the number of n-vertex graphs show that Ω(n) bits are necessary.
Another important result is that trees admit a DLS with labels of O(log2 n) bits. Recently Freedman
et al. [22] obtained such a scheme allowing constant time distance queries. Several graph classes
containing trees also admit DLS with labels of length O(log2 n): bounded tree-width graphs [27],
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distance-hereditary graph [25], bounded clique-width graphs [19], or planar graphs of non-positive
curvature [11]. More recently, in [17] we designed DLS with labels of length O(log3 n) for cube-free
median graphs. Other families of graphs have been considered such as interval graphs, permutation
graphs, and their generalizations [6, 26] for which an optimal bound of Θ(log n) bits was given, and
planar graphs for which there is a lower bound of Ω(n

1
3 ) bits [27] and an upper bound of O(

√
n) bits

[28]. Other results concern approximate distance labeling schemes. For arbitrary graphs, Thorup
and Zwick [46] proposed (2k − 1)-approximate DLS, for each integer k ≥ 1, with labels of size
O(n1/k log2 n). In [23], it is proved that trees (and bounded tree-width graphs as well) admit
(1 + 1/ log n)-approximate DLS with labels of size O(log n log log n), and this is tight in terms of
label length and approximation. They also designed O(1)-additive DLS with O(log2 n)-labels for
several families of graphs, including the graphs with bounded longest induced cycle, and, more
generally, the graphs of bounded tree–length. Interestingly, it is easy to show that every exact DLS
for these families of graphs needs labels of Ω(n) bits in the worst-case [23].

1.3. Bridged graphs. Together with hyperbolic, median, and Helly graphs, bridged graphs con-
stitute the most important classes of graphs in metric graph theory [4, 8]. They occurred in the
investigation of graphs satisfying basic properties of classical Euclidean convexity: bridged graphs
are the graphs in which the neighborhoods of convex sets are convex and it was shown in [21, 45]
that they are exactly the graphs in which all isometric cycles have length 3. Bridged graphs rep-
resent a far-reaching generalization of chordal graphs. From the point of view of structural graph
theory, bridged graphs are quite general and universal: any graph H not containing induced C4 and
C5 may occur as an induced subgraph of a bridged graph. However, from the metric point of view,
bridged graphs have a rich structure. This structure was thoroughly studied and used in geometric
group theory and in metric graph theory.

The convexity of balls around convex sets and the uniqueness of geodesics between pairs of points
are two basic properties not only of Euclidian or hyperbolic geometries but also of all CAT(0) ge-
ometries. Introduced by Gromov in his seminal paper [30], CAT(0) (alias nonpositively curved)
geodesic metric spaces are fundamental objects of study in metric geometry and geometric group
theory. Graphs with strong metric properties often arise as 1-skeletons of CAT(0) cell complexes.
Gromov [30] gave a nice combinatorial local-to-global characterization of CAT(0) cube complexes.
Based on this result, Chepoi [10] established a bijection between the 1-skeletons of CAT(0) cube
complexes and the median graphs, well-known in metric graph theory [4]. A similar characterization
of CAT(0) simplicial complexes with regular Euclidean simplices as cells seems impossible. Nev-
ertheless, Chepoi [10] characterized the simplicial complexes having bridged graphs as 1-skeletons
as the simply connected simplicial complexes in which the neighborhoods of vertices do not con-
tain induced 4- and 5-cycles. Januszkiewicz and Swiatkowski [35], Haglund [31], and Wise [48]
rediscovered this class of simplicial complexes, called them systolic complexes, and used them in
the context of geometric group theory. Systolic complexes are contractible [10, 35] and they are
considered as good combinatorial analogs of CAT(0) metric spaces. One of the main results of
[35] is that systolic groups (i.e., groups acting geometrically on systolic complexes) have the strong
property of biautomaticity, which means that their Cayley graphs admit families of paths which
define a regular language. The papers [18, 20, 31, 32, 33, 34, 35, 36, 38, 42, 43, 48] represent a
small sample of papers on systolic complexes and of groups acting on them. Bridged graphs have
also been investigated in several graph-theoretical papers; cf. [1, 2, 12, 40, 41] and the survey [4].
In particular, in [1, 12] was shown that bridged graphs are dismantlable (a property stronger that
contractibility of clique complexes), which implies that bridged graphs are cop-win. At the differ-
ence of median graphs (which occur as domains of event structures in concurrency, as solution sets
of 2-SAT formulas in complexity, and as configuration spaces in robotics), bridged graphs have not
been extensively studied or used in full generality in Theoretical Computer Science. Notice however
the papers [13, 16], where linear time algorithms for diameter, center, and median problems were
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designed for planar bridged graphs (called trigraphs), i.e., planar graphs in which all inner faces are
triangles and all inner vertices have degrees ≥ 6. The trigraphs were introduced in [5] as building
stones in the decomposition theorem of weakly median graphs. The papers [15, 14] designed for
trigraphs exact distance and routing labeling schemes with labels of O(log2 n) bits.

A K4-free bridged graph is a bridged graph not containing 4-cliques. The triangular grid is
the simplest example of a trigraph and any trigraph is a K4-free bridged graph. In Fig. 1 we
present two examples of K4-free bridged graphs, which are not trigraphs. Since the clique-number
of a bridged graph G is equal to the topological dimension of its clique complex plus one, K4-free
bridged graphs are exactly the 1-skeletons of two-dimensional systolic complexes. Such complexes
have been investigated in geometric group theory in the papers [29, 32]. From the point of view
of structural graph theory, K4-free bridged graphs are quite general: any graph of girth ≥ 6 may
occur in the neighborhood of a vertex of a K4-free bridged graph (and any graph not containing
induced C4 and C5 may occur in the neighborhood of a vertex of a bridged graph). Weetman [47]
described a nice construction of (infinite) graphs in which the neighborhoods of all vertices are
isomorphic to a prescribed finite graph of girth ≥ 6. From the local-to-global characterization of
bridged graphs of [10] it follows that the resulting graphs are K4-free bridged graphs. Note also that
K4-free bridged graphs may contain any complete graph Kn as a minor. To see this, it suffices to
glue together n(n−1)

2 copies of equilateral triangles with enough large but identical side (say, side 2n)
of the triangular grid as we did in the left part of Fig. 1 that contains K6 as a minor (subdivision
of K6 indicated by edges in blue).

1.4. Our results. We continue with the main result of our paper:

Theorem 1. The class G of K4-free bridged graphs on n vertices admits a 4-approximate distance
labeling scheme using labels of O(log3 n) bits. These labels are constructed in polynomial O(n2 log n)
time and can be decoded in constant time, assuming that the distance matrix of G is provided.

The remaining part of this paper is organized in the following way. The main ideas of our distance
labeling scheme are informally described in Section 2. Section 3 introduces the notions used in this
paper. The next three Sections 4, 5, and 6 present the most important geometric and structural
properties of K4-free graphs, which are the essence of our distance labeling scheme. In particular,
we describe a partition of vertices of G defined by the star of a median vertex. In Section 7 we
characterize the pairs of vertices connected by a shortest path containing the center of this star.
The distance labeling scheme and its performances are described in Section 8.

Figure 1. Examples of K4-free bridged graphs.

2. Main ideas of the scheme

The global structure of our distance labeling scheme for K4-free bridged graphs is similar to
the one described in [17] for cube-free median graphs. Namely, the scheme is based on a recursive
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partitioning of the graph into a star and its fibers (which are classified as panels and cones). However,
the stars and the fibers of K4-free bridged graphs have completely different structural and metric
properties from those of cube-free median graphs. Therefore, the technical tools are completely
different from those used in [17].

Let G = (V,E) be a K4-free bridged graph with n vertices. The encoding algorithm first searches
for a median vertex m of G, i.e., a vertex minimizing x 7→

∑
v∈V dG(x, v). It then computes a

particular 2-neighborhood of m that we call the star St(m) of m such that every vertex of G is
assigned to a unique vertex of St(m). This allows us to define the fibers of St(m): for a vertex
x ∈ St(m), the fiber F (x) of x corresponds to the set of all the vertices of G associated to x.
The set of all fibers of St(m) defines a partitioning of G. Moreover, choosing m as a median vertex
ensures that every fiber contains at most half of the vertices of G. Up to this point the scheme is the
same as in [17], but here come the first differences. Namely, the fibers are not convex, nevertheless,
they are connected and isometric, and thus induce bridged subgraphs of G. Consequently, we can
apply recursively the partitioning to every fiber, without accumulating errors on distances at each
step. Finally, we study the boundary and the total boundary of each fiber, i.e., respectively, the
set of all vertices of a fiber having a neighbor in another fiber and the union of all boundaries of
a fiber. We will see that those boundaries do not induce actual trees but something close that we
call “starshaped trees”. Unfortunately, these starshaped trees are not isometric. This explains why
we obtain an approximate and not an exact distance labeling scheme. Indeed, distances computed
in the total boundary can be twice as much as the distances in the graph.

We distinguish two types of fibers F (x) depending on the distance between x and m: panels are
fibers leaving from a neighbor x of m; cones are fibers associated to a vertex x at distance 2 from
m. One of our main results towards obtaining a compact labeling scheme establishes that a vertex
in a panel admits two “exit” vertices on the total boundary of this panel and that a vertex in a
cone admits one “entrance” vertex on each boundary of the cone (and it appears that every cone
has exactly two boundaries). The median vertex m or those “entrances” and “exits” of a vertex u on
a fiber F (x) are guaranteed to lie on a path of length at most four times a shortest (u, v)-path for
any vertex v outside F (x). At each recursive step, every vertex u has to store information relative
only to three vertices (m, and the two “entrances” or “exits” of u). Since a panel can have a linear
number of boundaries, without this main property, our scheme would use labels of linear length
because a vertex in a panel could have to store information relative to each boundary to allow to
compute distances with constant (multiplicative) error. Since we allow a multiplicative error of 4 at
most, we will see that in almost all cases, we can return the length of a shortest (u, v)-path passing
through the center m of the star St(m) of the partitioning at some recursive step. Lemmas 16 and
17 indicate when this length corresponds to the exact distance between u and v and when it is an
approximation of this distance. The case where u and v belong to distinct fibers that are “too close”
are more technical and are the one leading to a multiplicative error of 4.

3. Preliminaries

3.1. General notions. All graphs G = (V,E) in this note are finite, undirected, simple, and
connected. We write u ∼ v if two vertices u and v are adjacent. For a subset A of vertices of G,
we denote by G[A] the subgraph of G induced by A. The distance dG(u, v) between u and v is
the length of a shortest (u, v)-path in G. For a subset A of V and for two vertices u, v ∈ A, we
denote by dA(u, v) the distance dG[A](u, v). The interval I(u, v) between u and v consists of all
the vertices on shortest (u, v)–paths. In other words, I(u, v) denotes all the vertices (metrically)
between u and v: I(u, v) := {w ∈ V : dG(u,w) + dG(w, v) = dG(u, v)}. Let H = (V ′, E′) be a
subgraph of G. Then H is called convex if I(u, v) ⊆ H for any two vertices u, v of H. The convex
hull of a subgraph H of G is the smallest convex subgraph conv(H) containing H. A connected
subgraph H of G is called isometric if dH(u, v) = dG(u, v) for any vertices u, v of H; if in addition
H is a cycle of G, we call H an isometric cycle. For a vertex x and a set of vertices A ⊆ V , let
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dG(x,A) := min{dG(x, a) : a ∈ A} be the distance for x to A. The metric projection of a vertex
x ∈ V on a set A ⊆ V (or on G[A]) is the set Pr(x,A) := {y ∈ A : dG(x, y) = dG(x,A)}. The
neighborhood of A in G is the set N [A] := A ∪ {v ∈ V \ A : ∃u ∈ A, v ∼ u}. The ball of radius k
centered at A is the set Bk(A) := {v : dG(v,A) ≤ k}. When A is a singleton a, then N [a] is the
closed neighborhood of a and Bk(a) := Bk(A). Note that B1(a) = N [a]. The sphere of radius k
centered at a is the set Sk(A) := {v : dG(v,A) = k}.

3.2. Bridged graphs and metric triangles. A graph G is bridged if any isometric cycle of G
has length 3. As shown in [21, 45], bridged graphs are characterized by one of the fundamental
properties of CAT(0) spaces: the neighborhoods of all convex subgraphs of a bridged graph are
convex. Consequently, balls in bridged graphs are convex. Bridged graphs constitute an important
subclass of weakly modular graphs: a graph family that unifies numerous interesting classes of
metric graph theory through “local-to-global” characterizations [8]. Weakly modular graphs are the
graphs satisfying the following quadrangle (QC) and triangle (TC) conditions [2, 9]:

(QC) ∀u, v, w, z ∈ V with k := dG(u, v) = dG(u,w), dG(u, z) = k+ 1, and vz, wz ∈
E, ∃x ∈ V s.t. dG(u, x) = k − 1 and xv, xw ∈ E.

(TC) ∀u, v, w ∈ V with k := dG(u, v) = dG(u,w), and vw ∈ E, ∃x ∈ V s.t.
dG(u, x) = k − 1 and xv, xw ∈ E.

Bridged graphs are exactly the weakly modular graphs with no induced cycle of length 4 or 5 [9].
Observe that, since bridged graphs do not contain induced 4-cycles, the quadrangle condition is
implied by the triangle condition.

A metric triangle u1u2u3 of a graph G = (V,E) is a triplet u1, u2, u3 of vertices such that for every
(i, j, `) ∈ {1, 2, 3}3, I(ui, uj) ∩ I(uj , u`) = {uj} [9]. A metric triangle u1u2u3 is equilateral of size k
if dG(u1, u2) = dG(u2, u3) = dG(u1, u3) = k. If k = 0, then the metric triangle consists of a single
vertex u1 = u2 = u3, and if k = 1 then the vertices u1, u2 and u3 are pairwise adjacent. A metric
triangle u1u2u3 is strongly equilateral if any x ∈ I(u1, u2), the equality dG(u3, x) = dG(u1, u2) holds.
Weakly modular graphs can be characterized via metric triangles in the following way :

Proposition 1. [9] A graph G is weakly modular if and only if any metric triangle of G is strongly
equilateral.

In particular, every metric triangle of a weakly modular graph is equilateral. A metric triangle
u′1u

′
2u
′
3 is called a quasi-median of a triplet u1, u2, u3 if for each pair 1 ≤ i < j ≤ 3 there exists a

shortest (ui, uj)-path passing via u′i and u
′
j . Each triplet u1, u2, u3 of vertices of any graph G admits

at least one quasi-median: it suffices to take as u′1 a furthest from u1 vertex from I(u1, u2)∩I(u1, u3),
as u′2 a furthest from u2 vertex from I(u2, u

′
1)∩ I(u2, u3), and as u′3 a furthest from u3 vertex from

I(u3, u
′
1) ∩ I(u3, u

′
2).

3.3. Gauss-Bonet formula. We conclude this section with the classical Gauss-Bonnet formula,
which will be useful in some our proofs. Let G = (V,E) be a plane graph and let ∂G denote the
cycle delimiting its outer face. We view the inner faces of G of length k as regular k-gons of the
Euclidean plane; each of their angles must be equal to k−2

k π. For all vertices v of G, let α(v) denote
the sum of the angles of the inner faces of G containing v. In other words, if C (v) denotes the set
of all inner faces of G containing v, then

α(v) :=
∑

C∈C (v)

|V (C)| − 2

|V (C)|
π.

For all v ∈ ∂G, we set τ(v) := π − α(v), and for all inner vertices v of G we set κ(v) := 2π − α(v).
The parameters κ(v) and τ(v) measure the “defect” of the angles around v (i.e., the gap between the
actual value α(v) of the angles around v, and the value π or 2π that should be the correct one if the
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Figure 2. Gauss-Bonnet’s Theorem, and values of τ and κ for the vertices of a
planar graph G. The displayed values are those of κ for the inner vertices (in red),
and those of τ for the others (corners in green, and remaining vertices in blue).
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polygons were “really embeddable” in the Euclidean plane). A discrete version of Gauss-Bonnet’s
Theorem (see [37]) establishes the following formula (an example is given on Fig. 2):

Theorem 2 (Gauss-Bonnet). Let G = (V,E) be a planar graph. Then,∑
v∈∂G

τ(v) +
∑

v∈V \∂G

κ(v) = 2π.

Appendix A contains a glossary with all notions and notations.

4. Metric triangles and intervals

4.1. Flat triangles and burned lozenges. From now on we suppose that G is a K4-free bridged
graph. The triangular grid is a tiling of the plane with equilateral triangles of side 1. A flat triangle is
an equilateral triangle in the triangular grid; for an illustration see Fig. 3 (left). The interval I(u, v)
between two vertices u, v of the triangular grid at distance ` induces a lozenge (see Fig. 3, right).
A burned lozenge is obtained from I(u, v) by iteratively removing vertices of degree 3; equivalently,
a burned lozenge is the subgraph of I(u, v) in the region bounded by two shortest (u, v)-paths. The
vertices of a burned lozenge are naturally classified into border and inner vertices. Border vertices
can be articulation points of the graph defined by I(u, v), see Figure 4. A non-articulation border
vertex is called a convex corner if it belongs to two triangles of I(u, v), and it is called a concave
corner if it belongs to four triangles, see Figure 3(right). The remaining non-articulation border
vertices belong to three triangles and are just called regular borders. Those vertices and the convex
corners are vertices of local convexity of the burned lozenge, while concave corners are vertices of
local concavity. A halved burned lozenge is the intersection of a burned lozenge with the ball Bk(u),
where 0 ≤ k ≤ `. Notice that all spheres Si(u) induce parallel paths of the triangular grid.

We denote the convex hull of a metric triangle uvw of G by ∆(u, v, w) and call it a deltoid.
We start with the following auxiliary result:

Lemma 1. Spheres Sk(u) of G cannot contain triangles K3.

Proof. Suppose by way of contradiction that the vertices x1, x2, x3 ∈ Sk(u) induce a K3. By triangle
condition, there exists a vertex y adjacent to x1, x2 at distance k − 1 from u. For the same reason,
there exists a vertex z adjacent to x2, x3 at distance k−1 from u. Since G does not contain induced
K4, y 6= z and y � x3, z � x1. Since y, z ∈ Bk−1(u) and x2 /∈ Bk−1(u), by the convexity of the ball
Bk−1(u), we have y ∼ z. But then the vertices y, z, x3, x1 induce a forbidden 4-cycle. �
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The following two lemmas were known before for K4-free planar bridged graphs (see for example,
[Proposition 3] [3] for the first lemma) but their proofs remain the same. For their full proofs, see
[44].

Lemma 2. Any deltoid ∆(u, v, w) of G is a flat triangle.

Proof. We only give here some hints on how to prove the result. We can first show that ∆(u, v, w)
contains a flat triangle. To do so, set k := dG(v, w) and consider a shortest (v, w)-path P . We
rename its vertices by v =: uk0, u

k
1, . . . , u

k
k := w, where uki denotes the vertex at distance i from

v = uk0 on P . By successively applying the triangle condition to vertices u0
0 := u, uki and uki+1 for

i ∈ {0, . . . , k − 1}, we derive vertices uk−1
i ∼ uki , u

k
i+1 at distance k − 1 from u0

0. Continuing so, we
obtain that ∆(u, v, w) contains a flat triangle of the form:

• Vk := {uji : 0 ≤ j ≤ k and 0 ≤ i ≤ j};
• Ek := {ujiu

j′

i′ : uji , u
j′

i′ ∈ Vk, (j = j′ and i′ = i− 1) or (j′ = j − 1 and i− 1 ≤ i′ ≤ i)}.
It then remains to show that this flat triangle is vertex-maximal. This is done by proving that it is
locally convex (and thus convex). �

u

v w

u
v

Figure 3. A flat triangle (left) and a burned lozenge (right). The concave corners
are in green and convex ones are drawn in blue. The border is in red and the inner
vertices in black.

u u u vu
v

vv u

v

Figure 4. The five red vertices indicate types of articulation points.

Lemma 3. Any interval I(u, v) of G induces a burned lozenge.

Proof. Let u and v be two vertices at distance ` of a K4-free bridged graph G. Let Ci := {w ∈
I(u, v) : dG(u,w) = i} for 0 ≤ i ≤ `. We first show the following claim.

Claim 1. For all 0 ≤ i ≤ `, Ci induces a convex path of G.

Proof. Observe that vertices of Ci are at distance `− i from v and so Ci = Bi(u) ∩ B`−i(v). Since
Bi(u) and B`−i(v) are both convex, Ci is also convex, and thus G[Ci] is a bridged subgraph. By
Lemma 1, G[Ci] cannot contains triangles, thus G[Ci] is a tree. Suppose that this tree contains a
vertex x with three neighbors x1, x2, x3. Let yj be the common neighbor of x and xj , j = 1, 2, 3, at
distance i− 1 from u (obtained by applying the triangle condition). Since Ci is convex, the vertices
y1, y2, y3 are pairwise distinct. Since y1, y2, y3 ∈ Bi−1(u) and x /∈ Bi−1(u), the convexity of Bi−1(u)
implies that y1, y2, y3 are pairwise adjacent. Together with x they induce a forbidden K4. This
establishes that Ci is a convex path. �
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Further, we will suppose that I(u, v) does not contain articulation points, otherwise, we can apply
the induction hypothesis to each 2-connected component of I(u, v). We now show by induction on
1 ≤ k ≤ ` that the intersection I(u, v) ∩ Bk(u) is a halved burned lozenge in which all spheres
I(u, v) ∩ Si(u), 1 ≤ i ≤ k are vertical paths. For this, suppose that u is identified with the origin
of the triangular grid. Note that I(u, v) ∩ B1(u) is a triangle u,w′, w′′. We embed this triangle
in the triangular grid in such a way that w′w′′ = I(u, v) ∩ S1(u) is a vertical edge to the right of
u. Assume by induction hypothesis that the desired embedding property is satisfied for k − 1, in
particular, that Ck−1 = I(u, v)∩Sk−1(u) is embedded as a vertical path. By Claim 1, Ck−1 and Ck
induce convex paths of G. From their definition and by Claim 1, each vertex of Ck−1 is adjacent
to at least one and to at most two vertices of Ck and, vice versa, each vertex of Ck is adjacent to
at least one and to at most two vertices of Ck−1. This implies that the lengths of paths Ck and
Ck−1 differ by at most 1. Suppose that Ck−1 induces the path P = (u0, u1, . . . , up) for some p ≥ 1.
For 1 ≤ i ≤ p, by the triangle condition, there exists a vertex vi ∈ Ck at distance `− k from v and
adjacent to ui−1, ui. By Claim 1, all vi are distinct. For 1 ≤ i ≤ p − 1, vi and vi+1 are adjacent
since they are both adjacent to ui+1 and Ck is convex by Claim 1. Hence, the vertices v1, . . . , vp
define a subpath P ′ of Ck. If Ck = P ′, then one can extends the halved burned lozenge representing
I(u, v) ∩Bk−1(u) to a one representing I(u, v) ∩Bk(u) by embedding the path P ′ vertically to the
right of the path P . Now suppose that P ′ 6= Ck. Since any vertex of Ck is adjacent to at least one
vertex of Ck−1 and each vertex of Ck−1 is adjacent to at most two vertices of Ck, we conclude that
Ck \ P ′ may contains either one vertex x or two vertices x, y. In the first case, x is adjacent to v1

(or to vp) and to u0 (or to up). In the second case, x is adjacent to v1 and u0 and y is adjacent to
vp and up. In the first case, we add the vertical edge xv1 or vpx to P ′. In the second edge, we add
the vertical edges xv1 and yvp to P ′. In both cases, we obtain the representation of I(u, v)∩Bk(u)
as a halved burned lozenge. If k = `, then this halved burned lozenge will be a burned lozenge. �

Lemma 4. If uvx′ is the quasi-median of the triplet uvx, and if w is a neighbor of u in I(u, v),
then dG(w, x) = dG(u, x) = dG(v, x).

Proof. From the definition of the quasi-median, and since uvx′ is a strongly equilateral metric tri-
angle, we deduce that dG(u, x) = dG(v, x) =: k and dG(w, x) ≤ k. Suppose by way of contradiction
that dG(w, x) < k, i.e., dG(w, x) = k − 1. Consider the following vertices of the deltoid ∆(u, v, x′):
u1 the common neighbor of u and w; w1 the common neighbor of w and u1; and u2 the common
neighbor of u1 and w1, see Figure 5. Since dG(w, x) = dG(u1, x) = k − 1, by triangle condition,
there exists a vertex t ∼ u1, w having distance k − 2 to x. Since w is not adjacent to u2, because
of Lemma 2, t is different from u2. By convexity of the ball Bk−2(x), we deduce that t ∼ u2. The
four-cycle {w, t, u2, w1} can not be induced. Since w 6∼ u2, we conclude that w1 ∼ t. Consequently,
the vertices w, t, u2, w1 induce a forbidden K4. �

4.2. Starshaped trees. We now introduce starshaped sets and trees, and we describe the structure
of the intersection of an interval and a starshaped tree. Let T be a tree rooted at a vertex z. A path
P of T is called increasing if it is entirely contained on a single branch of T , i.e., if ∀u, v ∈ P , either
IT (u, z) ⊆ IT (v, z), or IT (v, z) ⊆ IT (u, z). Equivalently, an increasing path is the shortest path
between two vertices that are in ancestor-descendant relation. A subset S of the vertices of a graph
G is said to be starshaped relatively to a vertex z ∈ S if I(z, s) ⊆ S for all s ∈ S. If, additionally,
every I(z, s) induces a single path of G, then S is called a starshaped tree (rooted at z ∈ S), and
each interval I(z, s) is called a branch of S. Taking the union of all branches, a starshaped tree S
rooted at z is a shortest-path spanning tree of G[S] rooted at z. Similarly to other shortest-path
trees (e.g., BFS trees), starshaped trees are not necessarily induced subgraphs of G, see Figure 9.

Let I(u, z) be a burned lozenge which is not a single shortest path of G. Then I(u, z) contains
a non-trivial block, i.e., a 2-connected component of G containing a triangle. Let B be such a
non-trivial block closest to z. Let z0 be the vertex of B the closest to z and let u0 be the vertex of
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u vw

u1 v1w1

x′

x

u2t

Figure 5. Illustration of Lemma 4.

B the closest to u. The boundary of B defines two shortest (z0, u0)-paths Q1 and Q2. Let v1 (resp.
v2) be the closest to z convex corner of I(u, z) belonging to Q1 (resp. to Q2). We call the convex
corners v1 and v2 extremal relatively to z.

Lemma 5. Let T be a starshaped tree of G (rooted at z), and let u ∈ V \T . Then T ′ := I(u, z)∩T
is a starshaped tree. Moreover, T ′ is a tripod consisting of the union of three increasing paths P0,
P1 and P2 such that (see Figure 6):

(i) P0 = I(z, z0), P1 = I(z0, v1), and P2 = I(z0, v2);
(ii) I(z, v1) = P0 ∪ P1 and I(z, v2) = P0 ∪ P2;
(iii) z0, v1, and v2 are defined with respect to the non-trivial block B closest to z.

Proof. Since T ′ ⊆ T , T ′ is a forest. Pick two vertices v and w of T ′. Then v ∈ I(u, z) implies that
I(v, z) ⊆ I(u, z). Since v belongs to T and T is starshaped, necessarily I(v, z) ⊆ T . It follows that
I(v, z) ⊆ T ′ and I(w, z) ⊆ T ′. Consequently, T ′ is a starshaped tree.

To prove the second assertion, first notice that, since u /∈ T ′, I(u, z) is not a single shortest path.
This means that the graph induced by I(u, z) contains non-trivial blocks. Therefore the vertices
z0, v1, v2 and the paths P0, P1, P2 are well defined. Moreover, P0 ∪ P1 ∪ P2 ⊆ T ′ as a consequence
of Lemma 3 and the definition of the paths P0, P1 and P2. To prove the converse inclusion T ′ ⊆
P0∪P1∪P2, suppose by way of contradiction that there exists a vertex v ∈ T ′ \ (P0∪P1∪P2). Then
I(v, z) is an increasing path. From the structure of I(u, z) given by Lemma 3 and from the choice
of v ∈ T ′ \ (P0 ∪ P1 ∪ P2), we conclude that v is a regular border or a convex corner of the block
B. Suppose without loss of generality that v belongs to the same border path as v1 (see Figure
6). Since v 6= v1, I(v, z) ∩ B is non-trivial, and thus I(v, z) is not a single path, contrary to the
assumption that v ∈ T ′. This establishes the converse inclusion, and thus T ′ = P0 ∪ P1 ∪ P2. �

u

vv1

v2

z0
z

B

T ′

u0
P0

P1

P2

Figure 6. Illustration of Lemma 5.
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5. Stars and fibers

5.1. Projections and stars. Let z ∈ V be an arbitrary vertex of G. Since G is bridged, N [z]
is convex. Note that for any u ∈ V \ N [z], z cannot belong to the metric projection Pr(u,N [z]).
Indeed, z necessarily has a neighbor z′ on a shortest (u, z)-path. This z′ is closer to u than z, and
it belongs to N [z]. The projections on N [z] have the following property.

Lemma 6. Pr(u,N [z]) consists of a single vertex or of two adjacent vertices. Moreover, if dG(u, z) =
k+ 1 and Pr(u,N [z]) = {y, y′}, then there exists a unique vertex x adjacent to y and y′ and having
distance k to u.

Proof. Notice first that z /∈ Pr(u,N [z]) because any neighbor of z in I(z, u) is closer to u than z.
Suppose that Pr(u,N [z]) contains two distinct vertices y and y′. Since y and y′ are different from z,
they have distance k to u. By convexity of the ball Bk(u), we conclude that y and y′ are adjacent.
If Pr(u,N [z]) contains a third vertex y′′, then y, y′, y′′, z induce a forbidden K4.

So, let Pr(u,N [z]) = {y, y′}. Then dG(u, y) = dG(u, y′) = k. Since y ∼ y′, by triangle condition,
there exists a vertex x ∼ y, y′ and having distance k − 1 to u. If there exists another such vertex
x′, since x and x′ belong to the ball Bk−1(u) and are adjacent y and y′, there must be adjacent
because Bk−1(u) is convex. Consequently, the vertices x, x′, y, y′ induce a forbidden K4. �

Let u ∈ V be a vertex with two vertices y, y′ in Pr(u,N [z]). By Lemma 6, there exists a vertex
u′ ∼ y, y′ at distance dG(y, u) − 1 from u. Moreover, I(u′, z) = {u′, z, y, y′} and y ∼ y′. The
star St(z) of a vertex z ∈ V consists of the neighborhood N [z] of z plus all u′ /∈ N [z] having
two neighbors y and y′ in N [z] (which are necessarily adjacent). Consequently, St(z) contains the
vertices of N [z] and all u′ that can be derived by the triangle condition applied to two adjacent
vertices y, y′ ∈ N [z] and a vertex u ∈ V . Figure 7 (1) and (2) presents two examples of stars in
K4-free bridged graphs.

5.2. Cones and panels. Let x ∈ St(z). If x ∈ N [z], we define the fiber F (x) of x with respect to
St(z) as the set of all vertices of G having x as unique projection on N [z] by Lemma 6. Otherwise
(if dG(x, z) = 2) F (x) denotes the set of all vertices u such that Pr(u,N [z]) consists of two adjacent
vertices v and w, and such that x is adjacent to v, w and is one step closer to u than v and w.
A fiber F (x) such that x ∼ z is called a panel. If dG(x, z) = 2, then F (x) is called a cone.
Figure 7 (3) illustrates cones and panels. Two fibers F (x) and F (y) are called k-neighboring if
dSt(z)\{z}(x, y) = k. Notice that any cone is 1-neighboring exactly two panels.

Lemma 7. Each fiber F (x), x ∈ St(z) is starshaped with respect to x.

Proof. Pick u ∈ F (x) and w ∈ I(u, x). Then Pr(w,N [z]) ⊆ Pr(u,N [z]). If F (x) is a panel then x
is the unique projection of u on N [z]. Since w ∈ I(u, x), x is also the unique projection of w on
N [z]. Thus w belongs to F (x). If F (x) is a cone, then the projection of u on N [z] consists of two
vertices x1, x2 both adjacent to z and x. Again, since w ∈ I(u, x), x1 and x2 are projections of w
on N [z], yielding w ∈ F (x). �

Lemma 8. Let u ∈ F (x), v ∈ F (y) and F (x) 6= F (y). If the fibers F (x) and F (y) are both cones
or are both panels, then the vertices u and v are not adjacent.

Proof. Suppose u ∼ v. Notice that this implies that dG(u, x) = dG(v, y) =: k. Indeed, if dG(u, x) >
k, then y ∈ Pr(u,St(z)) and if dG(u, x) < k, then x ∈ Pr(v,St(z)).

First, let F (x) and F (y) be two cones. If F (y) and F (y) are 1-neighboring F (x), then x ∼ y and
G will contain a forbidden C5, C4, or K4. If F (x) and F (y) are 2-neighboring, then there exists a
vertex w ∈ St(z) adjacent to x and y and at distance k + 1 to u and v. Then x, y ∈ Bk({u, v})
and w /∈ Bk({u, v}), contrarily to convexity of Bk({u, v}). Thus, the cones F (x) and F (y) are
r-neighboring for some r > 2. This implies that Pr(u,N [z]) ∩ Pr(v,N [z]) = ∅. By the triangle
condition, there exists a vertex t ∼ u, v at distance k + 1 from z. Since t ∈ I(u, z) ∩ I(v, z), we
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(1)

∅

{1} {2}

{3}

{4}{5}

{6}

{1, 2} {1, 2} {1, 2}

{2, 3}

{3, 4}

{4, 5}

{5, 6}

{1, 6}

(2)

u

(3)

Figure 7. Examples (1) and (2) of a star and the encoding of the vertices of a
star. Example (3) of cones (in blue) and panels (in green). The star of u is given in
red.

conclude that Pr(t,N [z]) ⊆ Pr(u,N [z]) ∩ Pr(v,N [z]). This is impossible since Pr(t,N [z]) 6= ∅ and
Pr(u,N [z]) ∩ Pr(v,N [z]) = ∅. Now, let F (x) and F (y) be two panels. Then Pr(u,N [z]) = {x}
and Pr(v,N [z]) = {y} and thus Pr(u,N [z]) ∩ Pr(v,N [z]) = ∅. Since dG(u, x) = dG(v, y) = k and
dG(u, z) = dG(v, z) = k + 1, x, y ∈ Bk({u, v}) and z /∈ Bk({u, v}). Since u ∼ v, Bk({u, v}) is
convex, x and y must be adjacent. Since u and v are adjacent and are at distance k + 1 from z, by
triangle condition, there exists a vertex t ∼ u, v with dG(t, z) = k. Since t ∈ I(u, z) ∩ I(v, z), we
have Pr(t,N [z]) ⊆ Pr(u,N [z]) ∩ Pr(v,N [z]) = ∅, which is impossible. �

Lemma 9. Let u ∈ F (x), v ∈ F (y), and u ∼ v. If F (y) is a cone and F (x) is a panel, then x ∼ y
and dG(u, y) = dG(u, x) ∈ {k, k + 1}, where k := dG(v, y).

Proof. Since u and v are adjacent, dG(u, y) ≤ k + 1. By Lemma 7 F (y) is starshaped with respect
to y and v ∈ F (y), u /∈ F (y), thus dG(u, y) ≥ k. Consequently, dG(u, y) ∈ {k, k+ 1}. Let y1 and y2

denote the two neighbors of y in St(z). Then dG(v, y1) = dG(v, y2) = k + 1 and dG(v, z) = k + 2.
First suppose that x coincides with y1 or y2, say x = y2. Therefore, x ∼ y and dG(v, x) = k + 1.

It remains to show that in this case dG(u, y) = dG(u, x). Let x′ be a neighbor of x in I(x, u). If
dG(u, x) = k, then y, x′ ∈ Bk(v) and x /∈ Bk(v). By the convexity of Bk(v), y and x′ are adjacent.
This implies that dG(u, y) ≤ k. Since dG(u, y) ≥ k, we conclude that dG(u, y) = k = d(u, x). Now
suppose that dG(u, x) = k + 1. If dG(u, y) = k, then this would imply that u must belong to the
cone F (y), a contradiction. This establishes the assertion of the lemma when x ∈ {y1, y2}.

We show that x ∈ {y1, y2}. Assume by contradiction that x is different from y1 and y2. This
implies that dG(v, x) > k+ 1 = dG(v, y1) = dG(v, y2) and since v ∼ u, we conclude that dG(u, x) ≥
k+1. Analogously, since dG(u, y1) ≤ k+2 and dG(u, y2) ≤ k+2 and are both longer than dG(u, x),
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u vw

u1 v1w1

x′

x

F (x)

Figure 8. Illustration of the proof of Lemma 10. The minimality hypothesis
implies that the blue part belongs to the fiber F (x). The proof aims to show that
the red shortest (u, v)-path also belongs to F (x).

we must have dG(u, x) = k+1 (and dG(u, y1) = dG(u, y2) = k+2). Thus dG(u, z) = k+2 = d(v, z).
Consider the ball Bk+1({u, v}) of radius k+ 1 around the convex set {u, v}, which must be convex.
Since y2, y2, x ∈ Bk+1({u, v}) and z /∈ Bk+1({u, v}), the convexity of Bk+1({u, v}) implies that
x ∼ y1, y2. Consequently, we obtain the forbidden K4 induced by the vertices y1, y2, z, x and thus
a contradiction. �

5.3. Partition of G into fibers. We continue by showing that the fibers of any star of G defines
a partition of G into cones and panels.

Lemma 10. Fz := {F (x) : x ∈ St(z)} defines a partition of G. Any fiber F (x) is a bridged
isometric subgraph of G and F (x) is starshaped with respect to x.

Proof. The fact that Fz is a partition follows from its definition. Since any isometric subgraph of a
bridged graph is bridged and each fiber F (x) is starshaped by Lemma 7, we have to prove that F (x)
is isometric. Let u and v be two vertices of F (x). We consider a quasi-median u′v′x′ of the triplet
u, v, x. Since F (x) is starshaped, the intervals I(u′, x′), I(x, x′), I(u, u′), I(v, v′), and I(v′, x′) are
all contained in F (x). Consequently, to show that u and v are connected in F (x) by a shortest
path, it suffices to show that the unique shortest (u′, v′)-path in the deltoid ∆(u′, v′, x′) belongs to
F (x). To simplify the notations, we can assume two things. First, since I(u, u′), I(v, v′) ⊆ F (x),
we can let u = u′ and v = v′. Second, we can assume that ∆(u, v, x′) is a minimal counterexample
with I(u, v) * F (x).

Let w be the vertex closest to u on the (u, v)-shortest path of ∆(u, v, x′) such that w /∈ F (x).
Then we can suppose that u is adjacent to w, otherwise, we can replace u by the neighbor u′ of w
in F (x) ∩∆(u, v, x′) and obtain a smaller counterexample ∆(u′, v, x′). By Lemma 4, we conclude
that dG(x, u) = dG(x,w) = dG(x, v) = k. By Lemma 2, there exist a vertex u1 ∼ w, u, a vertex
w1 ∼ u1, w, and a vertex v1 ∼ v such that w1 ∈ I(u1, v1). Applying Lemma 4 once again, we deduce
that dG(x, u1) = dG(x,w1) = dG(x, v1) = k − 1. By the minimality choice of the counterexample,
we also deduce that the vertices u1, v1 and w1 belong to F (x). Moreover, the deltoid ∆(u, v, x′) is
entirely contained in F (x) (see Fig. 8). Two cases have to be considered.
Case 1. F (x) is a panel. Then, by Lemma 8, w belongs to a cone F (y) 1-neighboring F (x). Since
dG(w, x) = k, dG(w, y) = k−1. Moreover, by Lemma 9, we know that dG(w1, y) = dG(w1, x) = k−1.
By triangle condition applied to w, w1, and y, there exists a vertex t ∼ w,w1 at distance k−2 from
y. Since F (y) is starshaped and t ∈ I(w, y), t ∈ F (y). Also, since F (y) is a cone, we obtain that
dG(t, x) = k − 1. By the convexity of Bk−1(x), t must coincide with u1 or with w1 (otherwise, the
quadruplet u1, w1, w, t would induce a K4). Since u1 and w1 belong to F (x), then t ∈ F (x), leading
to a contradiction.
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Case 2. F (x) is a cone. Then w belongs to a panel F (y) 1-neighboring F (x), and this case is quite
similar to the previous one. By Lemma 9, dG(w, y) = dG(w, x) = k. Recall that dG(w1, x) = k− 1,
w1 ∈ F (x) and F (x) is a cone. Consequently dG(w1, y) = k. We thus have dG(w, y) = dG(w1, y) = k
and, by triangle condition, there exists a vertex t ∼ w,w1 at distance k−1 from y. Still using Lemma
9, we deduce that dG(t, x) = k − 1. Since F (y) is starshaped, we obtain that t ∈ F (y), and from
the convexity of the ball Bk−1(x) we conclude that t = w1 or t = u1. Finally, t ∈ F (x). �

If we choose the star centered at a median vertex of G, then the number of vertices in each fiber
is bounded by |V |/2 (the proof is similar to the proof of [17, Lemma 10]). For an edge uv ∈ E(G),
let W (u, v) := {w : dG(u,w) < dG(v, w)}.

Lemma 11. If z is a median vertex of G, then for all x ∈ St(z), |F (x)| ≤ |V |/2.

Proof. Suppose by way of contradiction that |F (x)| > n/2 for some vertex x ∈ St(z). Let u be
a neighbor of z in I(x, z). If v ∈ F (x), then x ∈ I(v, z) and u ∈ I(x, z), and we conclude that
u ∈ I(v, z). Consequently, F (x) ⊆ W (u, z), whence |W (u, z)| > n/2. Therefore |W (z, u)| =
n − |W (u, z)| < n/2. But this contradicts the fact that z is a median of G. Indeed, since u ∼ z,
one can easily show that M(u)−M(z) = |W (c, z)| − |W (u, z)| < 0. �

6. Boundaries and total boundaries of fibers

6.1. Starshapeness of total boundaries. Let x and y be two vertices of St(z). The boundary
∂F (y)F (x) of F (x) with respect to F (y) is the set of all vertices of F (x) having a neighbor in F (y).
The total boundary ∂∗F (x) of F (x) is the union of all its boundaries (see Fig. 9).

xy z

∂F (x)F (y) ∂F (x)F (z)
∂∗F (x)

Figure 9. The boundaries ∂F (x)F (y) and ∂F (x)F (z) and of the total boundary
∂∗F (x). The edges of this starshaped tree are indicated in red. The black dotted
edge links two vertices of the starshaped tree but is not in the tree.

Lemma 12. The total boundary ∂∗F (x) of any fiber F (x) is a starshaped tree.

Proof. To show that ∂∗F (x) is a starshaped tree, it suffices to show that (1) for every v ∈ ∂∗F (x)
the interval I(v, x) is contained in ∂∗F (x), and (2) v has a unique neighbor in I(v, x). By Lemma
7, F (x) is starshaped, thus I(v, x) is contained in F (x).

First let F (x) be a cone. Then x has distance 2 to z, and x and z have exactly two common
neighbors y and y′. Let u be a neighbor of v in a fiber 1-neighboring F (x). By Lemma 8, u
necessarily belongs to a panel F (y) or F (y′), say u ∈ F (y). Also, we assume that u is a closest
to y neighbor of v in F (y). Let k := dG(v, x). By the definition of a cone, we have dG(v, y) =
dG(v, y′) = k+ 1 and dG(v, z) = k+ 2. This implies that dG(u, y) ≥ k. Since u belongs to the panel
F (y), dG(u, x) ≥ dG(u, y). Let u′ be an arbitrary neighbor of u in I(u, y). If dG(u, y) = k+ 1, from
dG(u′, y) = dG(v, x) = k, dG(u, x) ≥ dG(u, y) = k + 1, and from the convexity of Bk({x, y}), we
conclude that u′ ∼ v. This contradicts the choice of u. So dG(u, y) = k. Pick any neighbor w of v
in I(v, x) ⊂ F (x). We assert that w ∼ u. This would imply that w ∈ ∂∗F (x) and since G is K4-free
that v has a unique neighbor in I(v, x). Indeed, dG(y, w) = dG(y, u) = k and dG(y, v) = k + 1.
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From the convexity of the ball Bk(y), we obtain that w ∼ u. This establishes that I(v, x) is a
path included in ∂∗F (x). Notice also that the unique neighbor w of v in I(v, x) must be adjacent
to every neighbor u′ of u in I(u, y) because u′, w ∈ Bk−1({x, y}). Indeed, since u ∼ u′, w and
dG(u, x) = dG(u, y) = k, from the convexity of Bk−1({x, y}) we conclude that u′ ∼ w.

Now let F (x) be a panel and pick any vertex u ∈ ∂∗F (x). As in previous case, we have to show
that I(u, x) ⊆ ∂∗F (x) and that u has a unique neighbor in I(u, x). Let v be a neighbor of u in a
fiber F (y) 1-neighboring F (x). By Lemma 8, F (y) is a cone such that y ∼ x, x′, with x′ ∼ x and
z ∼ x, x′. Assume that v is a closest to y neighbor of u in F (y). Let dG(v, y) := k. By Lemma 9,
dG(u, x) ∈ {k, k + 1}. If dG(u, x) = k, then we deduce that u is adjacent to the neighbor w of v in
I(v, y), contrary to the choice of v. Thus dG(u, x) = k+ 1. In that case, if u′ denotes a neighbor of
u in I(u, x), then dG(u′, x) = dG(v, y) = k and dG(u, y) ≥ dG(u, x) = k + 1. From the convexity of
Bk({y, x}), we conclude that u′ ∼ v. This implies that, if u has two neighbors u′ and u′′ in I(u, x),
then u, u′, u′′, and v induce a forbidden K4. Consequently, I(u, x) is a path included in ∂∗F (x). �

Total boundaries of fibers are starshaped trees. The following result is a corollary of Lemma 12.

Corollary 1. Let x be an arbitrary vertex of St(z). Then, for every pair u, v of vertices of ∂∗F (x),
dG(u, v) ≤ d∂∗F (x)(u, v) ≤ 2 · dG(u, v).

Proof. Let (u′, v′, x′) be a quasi-median of (u, v, x). Then dG(u, v) = dG(u, u′)+dG(u′, v′)+dG(v′, v).
Since ∂∗F (x) is a starshaped tree by Lemma 12, d∂∗F (x)(u, u

′) = dG(u, u′), d∂∗F (x)(v, v
′) = dG(v, v′),

d∂∗F (x)(u
′, x′) = dG(u′, x′), and d∂∗F (x)(x

′, v′) = dG(x′, v′). Moreover, x′ ∈ I(u, x) ∩ I(v, x) implies
that x′ is the nearest common ancestor of u and v in ∂∗F (x). Since metric triangles are equilateral
in bridged graphs, d∂∗F (x)(u

′, x′)+d∂∗F (x)(x
′, v′) = 2 dG(u′, v′), yielding the required inequality. �

6.2. Projections on total boundaries. We now describe the structure of metric projections of
the vertices on the total boundaries of fibers. Then in Lemma 15 we prove that vertices in panels
have a constant number of “exits” on their total boundaries, even if the panel itself may have an
arbitrary number of 1-neighboring cones.

Lemma 13. Let F (x) be a fiber and u ∈ V \F (x). Then the metric projection Π := Pr(u, F (x)) =
Pr(u, ∂∗F (x)) is an induced tree of G.

Proof. The metric projection of u on F (x) necessarily belongs to a boundary, that is a starshaped
tree by Lemma 12. As a consequence, Π is a starshaped forest, i.e., a set of starshaped trees. We
assert that in fact Π is a connected subgraph of T := ∂∗F (x). To prove this, we will prove the
stronger property that Π is an induced tree of G. Assume by way of contradiction that two vertices
v, w of Π are not connected in T by a path. First suppose that w is an ancestor of v in T . Then
every vertex z on the branch of v between v and w belongs to a shortest (v, w)-path (because T is
starshaped) and is at distance at most k := dG(u, v) = dG(u,w) from u (because the ball Bk(u) is
convex). But then we conclude that the whole shortest (v, w)-path belongs to Π, contrary to the
choice of v, w. Therefore, further we can suppose that v and w belong to distinct branches of T .

Let t be the nearest common ancestor of v and w in T . Let v′w′t′ be a quasi-median of v, w,
and t. Since T is a starshaped tree, t′ ∈ I(v, t) ∩ I(w, t), and t is the nearest common ancestor
of v and w, we conclude that t = t′. We assert that the set of all vertices of T between v and v′,
between v′ and w′, and between w′ and w belongs to Π. Indeed, such vertices belong to a shortest
(v, w)-path. The ball Bk(u) is convex and v, w ∈ Bk(u). Since all such vertices also belong to T ,
we conclude that they all have distance k from u. We now show that v′ = w′ = t. Assume by way
of contradiction that v′ 6= w′ and consider an edge ab on the path between v′ and w′ in ∆(v′, w′, t).
According to Proposition 1, dG(a, x) = dG(b, x) =: `. By the triangle condition applied to a, b and
x, there exists a vertex c ∼ a, b at distance `− 1 from x. Since a ∼ b and dG(a, u) = dG(b, u) = k,
there must exist a vertex d ∼ a, b at distance k − 1 from u and this vertex belongs to a fiber F (y)
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1-neighboring F (x). By Lemma 8, one of those two fibers has to be a panel and the other must be
a cone.

First, let F (x) be a panel and F (y) be a cone. By Lemma 9, two subcases have to be considered :
dG(d, y) = ` and dG(d, y) = `−1. If dG(d, y) = `, then dG(d, y) = dG(y, c) = ` and dG(b, y) = `+1.
The convexity of B`(y) implies that c ∼ d, and therefore {a, b, c, d} induce a forbidden K4. If
dG(d, y) = ` − 1, consider the vertex x′ ∼ y, x in I(z, y). Then dG(d, x′) = dG(c, x′) = `, but
dG(b, x′) = ` + 1. From the convexity of B`(x′), we deduce that c ∼ d. So {a, b, c, d} induces a
forbidden K4.

Now, let F (x) be a cone and F (y) be a panel. By Lemma 9, we have to consider the subcases
dG(d, y) = ` and dG(d, y) = ` + 1. If dG(d, y) = `, then dG(d, y) = dG(c, y) = ` and dG(b, y) =
` + 1 lead to c ∼ d by the convexity of B`(y). Consequently, {a, b, c, d} induces a K4. Finally, if
dG(d, y) = ` + 1, we consider a vertex e ∼ d in F (y) on a shortest (d, y)-path, and we consider
the vertex y′ ∼ x, y in I(x, z). Then dG(b, y′) = dG(e, y′) = ` + 1 and dG(d, y′) = ` + 2. From
the convexity of B`+1(y′), it follows that e ∼ b. With similar arguments, we show that a ∼ e.
Consequently, {a, b, d, e} induces a forbidden K4. Summarizing, we showed that in all cases the
assumption v′ 6= w′ leads to a contradiction. Therefore v′ = w′ = t and t ∈ Π. Since t is an ancestor
of v and w, by what has been shown above, v and w can be connected in Π to t by shortest paths.
This leads to a contradiction with the assumption that v and w are not connected in Π. �

Lemma 14. Let F (x) be a fiber and u ∈ V \ F (x). There exists a unique vertex u′ ∈ Π :=
Pr(u, F (x)) that is closest to x. Furthermore, dG(Π)(u

′, v) ≤ dG(u, u′) = dG(u, v) for all v ∈ Π.

Proof. The uniqueness of u′ follows from the fact that Π is a rooted starshaped subtree of T :=
∂∗F (x), which itself is a starshaped tree rooted at x. Indeed, every pair (a, b) of vertices of Π
admits a nearest common ancestor in Π that coincides with the nearest common ancestor in T .
This ancestor has to be closer to x than a and b (or at equal distance if a = x or b = x).

Pick v ∈ Π. The equality k := dG(u, u′) = dG(u, v) holds since Π is the metric projection of u on
F (x). Assume by way of contradiction that dG(u′, v) ≥ k + 1. Then I(v, u′) =: P is an increasing
path of length at least k + 1 in a starshaped tree. By triangle condition applied to u and to every
pair of neighboring vertices of P , we derive at least k vertices. We then can show that each of these
(at least k) vertices has to be distinct from every other (otherwise, P would contain a shortcut).
We also can prove that those vertices create a path and, by induction on the length of this new
shortest path, deduce that (u, v, t) forms a non-equilateral metric triangle, which is impossible. �

6.3. The distance lemma. Lemma 14 establishes that every branch of the tree Π has depth
smaller or equal to dG(u, u′). The vertex u′ defined in Lemma 14 will be called the entrance of
vertex u in the fiber F (x).

Lemma 15. Let u be any vertex of G and let T be a starshaped tree rooted at z ∈ V . Let u1 and
u2 be the two extremal vertices with respect to z in the two increasing paths of I(u, z)∩T (there are
at most two of them by Lemma 5). Then, for all v ∈ T , the following inequality holds

min{dG(u, u1) + dT (u1, v), dG(u, u2) + dT (u2, v)} ≤ 2 · dG(u, v).

Proof. Assume mini∈{1,2}{dG(u, ui) + dT (ui, v)} is reached for i = 1. Let x ∈ T be the nearest
common ancestor of u1 and v. By Lemma 5, we know that v /∈ I(u, z), unless v = x. We can
assume that v 6= x, otherwise dG(u, v) = dG(u, u1) + dT (u1, v) would be shown already. Consider a
quasi-median u′v′z′ of the triplet u, v, z (see Fig. 11, left). We can make the following two remarks:

(1) Since T is a starshaped tree and I(z, v) is one of its branches, v′ necessarily belongs to
I(z, v). If v′ ∈ I(z, x), then v′ ∈ I(u1, z) ∩ I(v, z) implies that v′ = x and that dG(u, u1) +
dT (u1, v

′) + dT (v′, v) = dG(u, v). Indeed, if v′ = x, then v′ ∈ I(u, z) (because x ∈ I(u, z)). So
dG(u, u1) + dG(u1, v

′) = dG(u, v′). Since T is starshaped, dG(u1, v
′) = dT (u1, v

′) and dT (v′, v) =
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dG(v′, v). Finally, since v′ belongs to a quasi-median of u, v, z, v′ lies on a shortest (u, v)-path. So
dG(u, u1) + dT (u1, v

′) + dT (v′, v) = dG(u, v′) + dG(v′, v) = dG(u, v). Therefore, v′ ∈ I(x, v).
(2) Since T is starshaped and z′ ∈ I(v, z), z′ belongs to the branch I(v, z) of T . Since z′ ∈ I(u, z)

I(x, v) ∩ I(u, z) = {x}, we conclude that z′ is between z and x. Since z′ ∈ I(u′, z) ∩ I(u1, z), and
u1, u

′ ∈ I(u, z), we assert that dG(u, u′) + dG(u′, z′) = dG(u, u1) + dT (u1, z
′). Indeed, u′ ∈ I(u, z′)

because it belongs to a quasi-median of u, v, z ; u1 ∈ I(u, z′) by definition, so the distance between
u and z′ passing through u1 and passing through u′ are equal: dG(u, u′) + dG(u′, z) = dG(u, u1) +
dG(u1, z

′). Finally, since T is starshaped (and z′ ∈ T ), dG(u1, z
′) = dT (u1, z

′).
Since the quasi-median u′v′z′ is an equilateral metric triangle, we have

2 · dG(u, v) ≥ dG(u, u′) + dG(u′, z′) + dT (z′, v)

= dG(u, u1) + dG(u1, z
′) + dT (z′, v)

= dG(u, u1) + dT (u1, v).

This concludes the proof. �

Stated informally, Lemma 15 asserts that if u ∈ F (x) and T := ∂∗F (x), then the shortest paths
from u to any vertex of T are “close” to a path passing via u1 or via u2. The vertices u1 and u2

are called the exits of vertex u. If u stores the information relative to the exits u1 and u2, then
approximate distances between u and all vertices of T can be easily computed.

Remark 1. The inequality of Lemma 15 is tight as shown by vertices u and v from Figure 10.

u

x y

v

z

Figure 10. The vertices u and v coincide with their respective exits.

u1

x

u

vu2

z

u′

v′

z′

Pr(v, F (x))

I(u, x)

v′

x

y

u
∂∗F (x)

v

u2u1

Figure 11. Notations of Lemma 15 (left) and illustration of the entrance and
exits used in Lemma 18 (right).
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7. Shortest paths and classification of pairs of vertices

In this section, we characterize the pairs of vertices of G which are connected by a shortest path
passing via the center z of St(z) (Lemma 16). We also exhibit the cases for which passing via z
can lead to a multiplicative error 2 (Lemma 17). Finally, we present the cases where our algorithm
could make an error of at most 4 (Lemma 18). In this last case, our analysis might not be tight.

Let x and y be two vertices of St(m) and let (u, v) ∈ F (x)×F (y). If F (x) = F (y), then u and v
are called close. When F (x) and F (y) are as described in Lemma 16, i.e., if z ∈ I(u, v), then u and
v are called separated. If F (x) and F (y) are 1-neighboring, one of the fibers being a panel and the
other a cone, then u and v are called 1pc-neighboring. If F (x) and F (y) denote two 2-neighboring
cones, then u and v are 2cc-neighboring. In remaining cases, u and v are said to be almost separated.

7.1. Separated vertices. For separated vertices u, v, clearly dG(u, z)+dG(z, v) is just the distance
dG(u, v). Next lemma establishes which pairs of vertices are separated.

Lemma 16. Let u ∈ F (x) and v ∈ F (y). Then z ∈ I(u, v) iff F (x) and F (y) are distinct and
either: (i) both are panels and are k-neighboring, for k ≥ 2; (ii) one is a panel and the other is a
k-neighboring cone, for k ≥ 3; (iii) both are cones and are k-neighboring, for k ≥ 4.

Proof. Consider a quasi-median u′v′z′ of the triplet u, v, z. The vertex z belongs to a shortest (u, v)-
path if and only if u′ = v′ = z′ = z. In that case, let s ∈ I(u, z) and t ∈ I(v, z) be two neighbors
of z. Since z belongs to a shortest (u, v)-path, s and t cannot be adjacent. It follows (see Fig. 12)
that F (x) and F (y) are k-neighboring with: (i) k ≥ 2 if F (x) and F (y) are both panels; (ii) k ≥ 3 if
one of F (x) and F (y) is a cone, and the other a panel; (iii) k ≥ 4 if F (x) and F (y) are both cones.

For the converse implication, we consider the cases where z does not belong to a shortest (u, v)-
path. First notice that if F (x) = F (y), then z cannot belong to such a shortest path because, then,
dG(u, v) ≤ dG(u, x) + dG(x, v) < dG(u, z) + dG(z, v). We now assume that F (x) 6= F (y). Three
cases have to be considered depending on the type of F (x) and F (y).
Case 1. F (x) and F (y) are both panels. If z = z′, then according to Lemma 2, x and y must be
the two neighbors of z, respectively lying on the shortest (z, u′)- and (z, v′)-paths, and x ∼ y, i.e.,
F (x) and F (y) are 1-neighboring. If z 6= z′, we consider a vertex z′′ ∈ I(z, z′) adjacent to z. Then
z′′, x ∈ I(u, z) and, since u belongs to a panel, z′′ = x. With the same arguments, we obtain that
z′′ = y. Consequently, F (x) = F (y), contrary to our assumption.
Case 2. F (x) is a cone and F (y) is a panel (the symmetric case is similar). Let x′ and x′′ denote
the two neighbors of x in the interval I(x, z). If z = z′, then by Lemma 2, y and x′ (or x′′) must
belong to the deltoid ∆(u′, v′, z′) and then x′ ∼ y (or x′′ ∼ y). It follows that F (x) and F (y) are
2-neighboring. If z 6= z′, we consider again a neighbor z′′ of z in I(z, z′). Since x′, x′′ ∈ I(u, z), z′′
must coincide with x′ or with x′′, say z′′ = x′. Also, z′′ = y. Consequently, F (x) and F (y) are
1-neighboring.
Case 3. F (x) and F (y) are both cones. Let x′ and x′′ denote the two neighbors of x in I(x, z),
and let y′ and y′′ be those of y in I(z, y). Again, if z = z′, then x′ (or x′′) and y′ (or y′′) belong to
the deltoid ∆(u′, v′, z′), leading to x′ ∼ y′ and to the fact that F (x) and F (y) are 3-neighboring.
If z 6= z′, we consider z′′ ∈ I(z, z′), z′′ ∼ z. By arguments similar to those used in previous cases,
we obtain that z′′ = x′ = y′ (up to a renaming of the vertices x′′ and y′′). It follows that F (x) and
F (y) are 2-neighboring. �

7.2. Almost separated vertices. The following lemma show that in case of almost separated
vertices, dG(u, z) + dG(z, v) is still a good approximation of the distance dG(u, v):

Lemma 17. Let u ∈ F (x) and v ∈ F (y) be almost separated. Then, dG(u, v) ≤ dG(u, z)+dG(z, v) ≤
2 · d(u, v).
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z z z
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u u uv v v

sx=s x=s=y t t t

(1) (2) (3)

Figure 12. Illustration of the proof of Lemma 16.

Proof. Let u′v′z′ be a quasi-median of the triplet u, v, z. We have to show that z = z′. According to
Lemma 16, four cases must be considered: F (x) and F (y) are two 1-neighboring or 2-neighboring
fibers of distinct types and F (x) and F (y) are two 3-neighboring cones.

First, let F (x) and F (y) be 1-neighboring, one of them being a panel and the other a cone. If x
and y belong to a shortest (u, v)-path, then z = z′. Let us assume that this is not the case. Then
there exists a cone F (w) ∼ F (x), F (y) such that I(u, v) ∩ F (w) 6= ∅. We claim that, if z′ /∈ F (w),
then z = z′. Indeed, this directly follows from the fact that z′ ∈ I(u, z) ∩ I(v, z), x /∈ I(v, z)
and y /∈ I(u, z). We now show that z′ /∈ F (w). Indeed, notice that x /∈ I(v, z), y /∈ I(u, z), and
x, y ∈ I(w, z) imply that w /∈ I(u, z)∪I(v, z). By the definition of u′v′z′, we obtain that z′ ∈ I(u, z).
If z′ ∈ F (w), this would contradicts that w ∈ I(z′, z) ⊆ I(u, z). Hence z = z′ in this case as well.

Let now F (x) and F (y) be 2-neighboring, one of them being a panel and the other a cone. Suppose
that F (y) is the panel and denote by x1 and x2 the two neighbors of x in I(x, z). Then in the same
way as before, we show that z = z′. Indeed, z′ ∈ I(u, z) requires that z′ ∈ F (x)∪F (x1)∪F (x2)∪{z},
and z′ ∈ I(v, z) requires that z′ ∈ F (y) ∪ {z}. Consequently, z = z′.

Finally, let F (x) and F (y) be two 3-neighboring cones. Let x1, x2 ∈ I(x, z) and y1, y2 ∈ I(y, z) be
distinct from x, y, z, and each others. Again, z′ ∈ I(u, z) leads to z′ ∈ F (x)∪F (x1)∪F (x2)∪ {z},
and z′ ∈ I(v, z) leads to z′ ∈ F (y) ∪ F (y1) ∪ F (y2) ∪ {z}. These sets intersect only in the vertex z,
so z′ = z. �

7.3. 1pc-Neighboring vertices. Let F (x) be a panel and let F (y) be a cone 1-neighboring F (x).
We set T := ∂∗F (x). Let u ∈ F (x) and v ∈ F (y). Recall that by Lemma 13, Π := Pr(v, T ) induces
a tree. The vertex v′ of Π closest to x is called the entrance of v on the total boundary T . Similarly,
two vertices u1 and u2 such as described in Lemma 15 are called the exits of u on the total boundary
T . See Fig. 11 (right) for an illustration of the notations of this paragraph.

Lemma 18. Let u ∈ F (x) and v ∈ F (y) be two 1pc-neighboring vertices, where F (x) is a panel and
F (y) a cone. Let T , u1, u2 and v′ be as described above. Then,

dG(u, v) ≤ min{dG(u, u1) + dT (u1, v
′),dG(u, u2) + dT (u2, v

′)}+ dG(v′, v)

≤ 4 · dG(u, v).

Proof. Assume min{dG(u, u1) + dT (u1, v
′), dG(u, u2) + dT (u2, v

′)} is reached for u1. Let u′ ∈
I(u, v)∩T be closest possible from Π. Then the exact distance between u and v is dG(u, u′)+dG(u′, v)
and we have to compare it with dG(u, u1)+dT (u1, v

′)+dG(v′, v). By triangle inequality, we obtain:

dG(u, u1) + dT (u1, v
′) ≤ dG(u, u1) + dT (u1, u

′) + dT (u′, v′).

Since v′ ∈ Π, we obtain dG(v′, v) ≤ dG(u′, v). By the choice of u1 and by Lemma 15, we also know
that dG(u, u1) + dT (u1, u

′) ≤ 2 · dG(u, u′). It remains to compare dT (u′, v′) with dG(u′, v).
Suppose first that u′ and v′ belong to a same branch of T and consider a quasi-median u′0v′0v0

of u′, v′, v. Then I(u′, v′) ⊆ T (because T is starshaped) leads to u′0, v′0 ∈ T . The vertex u′ being
the closest possible to Π, we have u′ = u′0. Since v′0 ∈ I(v, v′), v′0 ∈ Π. Also, since v′ is the closest
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possible to u′ vertex, we have v′ = v′0. Finally, since each quasi-median is an equilateral metric
triangle, we conclude that dG(u, u′) = dG(u, v′). Consequently, u′ ∈ Π. All this allows us to obtain
the inequalities dT (u′, v′) ≤ dG(u′, v) (Lemma 14), and

dG(u, v) ≤ dG(u, u1) + dT (u1, v
′) + dG(v′, v)

≤ dG(u, u1) + dT (u1, u
′) + dT (u′, v′) + dG(v′, v)

≤ 2 · dG(u, u′) + dG(u′, v) + dG(u′, v)
= 2 · dG(u, v).

Suppose now that u′ and v′ belong to distinct branches of T , and denote by t their nearest common
ancestor in this starshaped tree. Let u′′ be the closest vertex to t in the metric projection of v on the
branch of u′. Consider a quasi-median u′0v′0t0 of u′, v′, t. Since T is starshaped, t0 ∈ I(u′, t)∩I(v′, t),
and t nearest common ancestor of u′ and v′, we conclude that t = t0. Moreover, u′0 and v′0 belong to
the branches of u′ and of v′, respectively. We distinguish five cases, illustrated in Fig. 13. Blue lines
correspond to the exact distance dG(u′, v), and red ones correspond to the approximate distance
that we are comparing to it.

v

v′

v′0
u′

u′′

u′0

t

v

v′

v′0

u′

u′′

u′0

t

v

v′

v′0

u′

u′′
u′0

t

v

v′

v′0

u′

u′′

u′0

t

v

v′

v′0

u′

u′′
u′0

t

(1) (3)(2) (4) (5)

Figure 13. Illustration of the proof of Lemma 18.

In fact, we can notice that the error will be maximal if u′ is the extremity opposite to u′′ in
the projection of v on the branch of u′. Indeed, in every considered case the error occurs on the
fragment of the path between u′ and u′′ that does not belong to the shortest (u, v)-path. The length
of this fragment is maximal in that case. We now assert that the two following inequalities hold:

Claim 2. dG(t, v′) ≤ dG(v, u′′), and dG(t, u′′) ≤ dG(v, v′).

Proof. Begin by noticing that u′′ and v′ belong to I(v, t). Notice also that I(t, u′′) ∩ I(t, v′) = {t},
but the intervals I(v, u′′) and I(v, v′) may intersect on some part of I(v, t), not only in {v}. Let
s be a furthest from v vertex in this intersection (v and s might coincide, as is the case in the
illustration of the five cases above, to make it simpler). We will prove that dG(s, u′′) = dG(v′, t),
and that dG(s, v′) = dG(u′′, t).

By Lemma 3, the interval I(s, t) induces a burned lozenge, thus a plane graph. We call bigon a
subgraph D of this burned lozenge I(s, t) bounded by two shortest s, t-paths, the first one passing
via u′′ and the second one passing via v′ (for illustration, see Fig. 14). Note that each bigon is a
burned lozenge. The area of D is the number inner faces (all triangles) of I(s, t) belonging to D.

Assume now that D is a bigon with minimal area. The boundary ∂D of D consists of a shortest
(s, u′′)-path P1, shortest (s, v′)-path P2, shortest (t, u′′)-pathQ1, and shortest (t, v′)-pathQ2. Notice
that each corner of D is either a vertex of ∂D with two neighbors (corner of type 1 ) or a vertex of
∂D with three neighbors (corner of type 2 ). The two neighbors of a corner of type 1 are adjacent
and the three neighbors of a corner of type 2 induce a 3-path. The vertices s and t are corners
of type 1 because they have exactly two neighbors in I(s, t) by Lemma 3. We now assert that,
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among the remaining vertices of ∂D of D, only u′′ and v′ can be corners. Indeed, the paths Q1

and Q2 between t and u′′, v′ are convex (because they belong to the branches of a starshaped tree).
Consequently, Q1 and Q2 cannot contain corners different from t, u′′, or v′. Concerning the paths
P1 and P2 between s and u′′, v′, suppose by way of contradiction that one of them, say P1, contains
a corner (distinct from u′′ and s). If this corner is of type 1, we directly obtain a contradiction
with the fact that it belongs to a shortest (s, t)-path. If this corner is of type 2, denote it by a,
denote by a′ its unique neighbor in the interior of D, and by b and c its neighbors in ∂D. Since a′ is
adjacent to b and c, a′ belong to a shortest (s, t)-path, obtained by replacing a by a′. Consequently,
we created a bigon D′ with two triangles less than D, contradicting the minimality of D.

Thus, D has at most four corners, s, t, u′′, and v′. We apply to D the Gauss-Bonnet formula.
Since D is a burned lozenge, for every w ∈ D \ ∂D, κ(w) = 0, and for every w ∈ ∂D \ {s, t, v′, u′′},
τ(w) = 0. Since τ(s) = τ(t) = 2π

3 by the Gauss-Bonnet formula (Theorem 2), τ(u′′) + τ(v′) = 2π
3 .

It follows that either v′ and u′′ are both corners of type 2, or one of them is a corner of type 1 and
the other is not a corner. We can easily observe that the second case is impossible because, if one
vertex is a corner of type 1, it cannot belong to a shortest (s, t)-path. Thus both u′′ and v′ are
corners of type 2. Consequently, D is a full lozenge and we conclude that dG(s, u′′) = dG(v′, t) and
dG(s, v′) = dG(u′′, t). This finishes the proof of the claim. �

Returning to the proof of the lemma, from the equalities dG(v, t) = dG(v, u′′) + dG(u′′, t) =
dG(v, v′) + dG(v′, t) = dG(v, u′) + dG(u′′, t), we deduce that dG(v, v′) + dT (v′, u′) < 4 dG(v, u′).
Consequently,

dG(u, v) ≤ dG(u, u1) + dT (u1, u
′) + dT (u′, v′) + dG(v′, v)

≤ 2 · dG(u, u′) + 3 · dG(u′, v) + dG(u′, v)
≤ 4 · dG(u, v).

�

v

v′

s

t

u′′

u′

D

Figure 14. Illustration of the proof of Claim 2.

7.4. 2cc-Neighboring vertices. Finally, we consider the case of 2cc-neighboring vertices.

Lemma 19. Let u and v be two 2cc-neighboring vertices respectively belonging to the cones F (x)
and F (y). Let F (w) denote the panel 1-neighboring F (x) and F (y), and set T := ∂∗F (w). Let u′
and v′ be the respective entrances of u and v on T . Then

dG(u, v) ≤ dG(u, u′) + dT (u′, v′) + dG(v′, v) ≤ 4 · dG(u, v).
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Proof. First we prove that there exists a shortest (u, v)-path traversing the panel F (w). Let w′ be
the second common neighbor of x and z and w′′ be the second common neighbor of y and z. Let
u∗v∗w∗ be a quasi-median of the triplet u, v, w and let P (u, v) be a shortest (u, v)-path passing
via u∗ and v∗. Finally, let w0 be a neighbor of w in I(w,w∗). Since w ∈ I(u, z) ∩ I(v, z) and u∗
belongs to a shortest (u,w)-path, we conclude that w ∈ I(u∗, z). Moreover, w ∈ I(t, z) for any
t ∈ I(u, u∗). Analogously, w ∈ I(t, z) for any t ∈ I(v, v∗). This implies that each of the vertices
of I(u, u∗) ∪ I(v∗, v) belongs either to the panel F (w) or to a cone defined by w and a common
neighbor of w and z.

While moving along P (u, v) from u to v, at some point we have to leave the cone F (x). Since two
cones cannot be adjacent (Lemma 8), necessarily we have to move to a panel. If the first change of a
fiber happens on the portion of P (u, v) between u and u∗, then by previous discussion, we conclude
that we have to enter the panel F (w) and we are done. So, suppose that u∗ ∈ F (x). Analogously,
we can suppose that v∗ ∈ F (y). Thus, further we suppose that u = u∗ and v = v∗ (see Figure 15
for the notations of this proof).

Since G does not contain induced C4, C5, and K4, one can easily see that w0 6= x, y. Since
w0, x ∈ I(w, u) and w0, y ∈ I(w, v), we conclude that w0 ∼ x, y. By triangle condition applied
to the edge xw0 and u, we conclude that there exists x1 ∼ x,w0 one step closer to u than x and
w0. Analogously, there exists a vertex y1 ∼ w0, y one step closer to v. Let w1 be a neighbor
of w0 in I(w0, w

∗). If w1 coincides with x1 or y1 we will obtain a forbidden C4, C5, and K4.
Otherwise, since x1, w1 ∈ I(w0, u) and y1, w1 ∈ I(w0, v) we conclude that w1 ∼ x1, y1. Continuing
this way, i.e., applying the triangle condition and the forbidden graph argument, we will construct
the vertices xi ∈ I(xi−1, u)∩ I(wi−1, u), yi ∈ I(yi−1, v)∩ I(wi−1, v), and wi ∈ I(wi−1, w

∗), such that
xi ∼ xi−1, wi−1, yi ∼ yi−1, wi−1, and wi ∼ xi, yi, and wi−1. After p = dG(w0, w

∗) steps, we will
have wp = w∗. Let a and b be the unique neighbors of w∗ in I(w∗, u) and I(w∗, v), respectively
(uniqueness follows from Lemma 2). Since xp, wp = w∗ have the same distance to u, by triangle
condition, xp ∼ a. Analogously, we conclude that yp ∼ b. By Lemma 2, a ∼ b. The vertices
xp, a, b, yp, wp−1, wp define a 5-wheel, which cannot be induced. But any additional edge leads to a
forbidden K4 or C4. This contradiction shows that one of the portions of P (u, v) between u and u∗
or between v∗ and v contains a vertex v′′ of the panel F (w) adjacent to a vertex of F (x) or of F (y).
Clearly, this vertex v′′ must belong to the total boundary ∂∗F (w).

Then, dG(u, v) = dG(u, v′′) + dG(v′′, v). According to Lemma 18, the two following inequalities
hold:

dG(u, u′) + dT (u′, v′′) ≤ 4 · dG(u, v′′)
dT (v′′, v′) + dT (v′, v) ≤ 4 · dG(v′′, v)

It follows that

dG(u, u′) + dT (u′, v′) + dG(v′, v) ≤ dG(u, u′) + dT (u′, v′′) + dT (v′′, v′) + dG(v′, v)
≤ 4 · dG(u, v′′) + 4 · dG(v′′, v)
= 4 · dG(u, v).

�

Remark 2. Lemma 19 covers a case which was not correctly considered in the short version of this
paper.

8. Distance labeling scheme

We now describe the 4-approximate distance labeling scheme for K4-free bridged graphs. In this
section, G = (V,E) is a K4-free bridged graph with n vertices.
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Figure 15. Illustration of the proof of Lemma 19.

8.1. Encoding. We begin with a brief description of the encoding of the star St(m) of a median
vertex m of G (in Section 8.2, we explain how to use it to decode the distances). Then we describe
the labels L(u) given to vertices u ∈ V by the encoding algorithm.

Encoding of the star. Letm be a median vertex ofG and let St(m) be the star ofm. The star-label
of a vertex u ∈ St(m) is denoted by LSt(m)(u). We set LSt(m)(m) := 0 (where 0 will be considered
as the empty set ∅). Each neighbor of m takes a distinct label in the range {1, . . . ,deg(m)}
(interpreted as singletons). The label LSt(m)(u) of a vertex u at distance 2 from m corresponds to
the concatenation of the labels LSt(m)(u

′) and LSt(m)(u
′′) of the two neighbors u′ and u′′ of u in

I(u,m), i.e., LSt(m)(u) is a set of size 2.

Remark 3. The labels of the vertices of St(m) not adjacent to m are not necessarily unique
identifiers of these vertices. Moreover, the labeling of St(m) does not allow to determine adjacency
of all pairs of vertices of St(m). Indeed, adjacency queries between vertices encoded by a singleton
cannot be answered; a singleton label only tells that the corresponding vertex is adjacent to m, see
Fig. 7, right.

Encoding of the K4-free bridged graphs. Let u denote any vertex of G. Let L0(u) be the
unique identifier of u. We describe here the part Li(u) of the label of u built at step i ≥ 1 of the
recursion by the encoding procedure (see Enc_Dist). Li(u) consists of three parts: “St”, “1st”,
and “2nd”. The first part LSt

i contains information relative to the star St(m) around the median m
chosen in the corresponding step: the unique identifier id(m) =: LSt[Med]

i (u) of m in G; the distance
dG(u,m) =: LSt[Dist]

i (u) between u and m; and a star labeling LSt(m)(x) =: LSt[Root]
i (u) of u in St(m)

(where x ∈ St(m) is such that u ∈ F (x)). This last identifier is used to determine to which type of
fibers the vertex u belongs, as well as the status (close, separated, 1pc-neighboring, or other) of the
pair (u, v) for any other vertex v ∈ V . Recall that any cone has exactly two 1-neighboring panels.

The two subsequent parts, L1st
i and L2nd

i , depend whether F (x) is a cone or a panel. If F (x) is a
panel, then L1st

i and L2nd
i contain information relative to the two exits u1 and u2 of u on the total

boundary ∂∗F (x) of F (x). The part L1st
i contains (1) an exact distance labeling L∂∗F (x)(u1) =:

L1st[Rep]
i (u) of u1 in the total boundary of F (x) and (2) the distance dG(u, u1) =: L1st[Dist]

i (u)

between u and u1 in G. The part L2nd
i is the same as L1st

i with u2 replacing u1.
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If F (x) is a cone, then L1st
i and L2nd

i contain information relative to the entrances u+
1 and u+

2
of u on (i) the total boundaries ∂∗F (w1) and ∂∗F (w2) of the two 1-neighboring fibers F (w1) and
F (w2) of F (x). The part L1st

i contains (1) an exact distance labeling L∂∗F (w1)(u
+
1 ) =: L1st[Rep]

i (u)

of u+
1 in the starshaped tree ∂∗F (w1) (the DLS described in [22], for example) and (2) the distance

dG(u, u+
1 ) =: L1st[Dist]

i (u) between u and u+
1 in G. Finally, the part L2nd

i is the same as L1st
i with

u+
2 replacing u+

1 and ∂∗F (w2) instead of ∂∗F (w1).
Algorithm 1: Enc_Dist (G, L(V ))
Input: A K4-free bridged graph G = (V,E), and a list

L(V ) := {L(u) := L0(u) = (id(u)) : u ∈ V } of unique identifiers of its vertices.

1 if V = {v} then stop;

2 Find a median vertex m of G ;
3 LSt(m)(St(m)) ← Enc_Star (St(m)) ;
4 foreach panel F (x) ∈ Fm do
5 L∂∗F (x)(∂

∗F (x)) ← Enc_Tree (∂∗F (x));
6 foreach u ∈ F (x) do
7 Find the exits u1 and u2 of u on ∂∗F (x) ;
8 LSt ← (id(m), dG(u,m), LSt(m)(x)) ; // LSt ← (LSt[Med], LSt[Dist], LSt[Root])

9 L1st ← (L∂∗F (x)(u1), dG(u, u1)) ; // L1st ← (L1st[Rep], L1st[Dist])

10 L2nd ← (L∂∗F (x)(u2), dG(u, u2)) ; // L2nd ← (L2nd[Rep], L2nd[Dist])

11 L(u)← L(u) ◦ (LSt, L1st, L2nd) ;
12 Enc_Dist (G[F (x)], L(F (x))) ;
13 foreach cone F (x) ∈ Fm do
14 foreach u ∈ F (x) do
15 Find w1, w2 ∈ St(m) s.t. F (w1) and F (w2) are the two panels 1-neighboring F (x) ;
16 Let u+

1 and u+
2 be the two entrances of u on F (w1) and F (w2) ;

17 LSt ← (id(m), dG(u,m), LSt(m)(x)) ; // LSt ← (LSt[Med], LSt[Dist], LSt[Root])

18 L1st ← (L∂∗F (w1)(u
+
1 ), dG(u, u+

1 )) ; // L1st ← (L1st[Rep], L1st[Dist])

19 L2nd ← (L∂∗F (w2)(u
+
2 ), dG(u, u+

2 )) ; // L2nd ← (L2nd[Rep], L2nd[Dist])

20 L(u)← L(u) ◦ (LSt, L1st, L2nd) ;
21 Enc_Dist (G[F (x)], L(F (x))) ;

8.2. Distance queries. Given the labels L(u) and L(v) of two vertices u and v, the distance decoder
(see Distance below) starts by determining the state of the pair (u, v). To do so, it looks up for the
first median m that separates u and v, i.e., such that u and v belong to distinct fibers with respect
to St(m). More precisely, it looks for the part i of the labels corresponding to the step in which m
became a median. As noticed in [17, Section 6.4.6], it is possible to find this median vertex m in
constant time by adding particular O(log2 n) bits information to the head of each label (consisting
of a lowest common ancestor scheme defined on the tree of median vertices). Once the right parts
of label are found, the decoding function determines that two vertices are 1pc-neighboring if and
only if the identifier (i.e., the star-label in St(m) of the fiber of one of the two vertices u, v is strictly
included in the identifier of the other). In that case, the decoding function calls a procedure based
on Lemma 18 (see Dist_1pc-neighboring below). More precisely, the procedure returns

min{dG(u, u1) + dT (u1, v
′),dG(u, u2) + dT (u2, v

′)}+ dG(v′, v),

where we assume that u belongs to a panel (and v belongs to a cone), where u1, u2 are contained
in the label parts L2nd

i (u), L1st
i (u) and v′ is contained in the label part L2nd

i (v) or L1st
i (v). The

distances dT (u1, v
′) and dT (u2, v

′) are obtained by decoding the tree distance labels of u1, u2, and
v′ in T (also available in these label parts). We also point out that we assume that L1st

i (v) always
contains the information to get to the panel whose identifier corresponds to the minimum of the two
values identifying the cone of v. The vertices u and v are classified as 2cc-neighboring if and only
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if the identifier of their respective fibers intersect in a singleton. In that case, Distance calls the
procedure Dist_2cc-neighboring, based on Lemma 19. In all the remaining cases (i.e., when u and
v are separated or almost separated), the decoding algorithm will return dG(u,m) + dG(v,m). By
Lemmas 16 and 17, this sum is sandwiched between dG(u, v) and 2 · dG(u, v). We now give the two
main procedures used by the decoding algorithm Distance: Dist_1pc-neighboring and Dist_
2cc-neighboring. Note that Dist_1pc-neighboring assumes that its first argument u belongs to
a panel and the second v belongs to a cone.

function Dist_1pc-neighboring(Li(u), Li(v)):
dir← 2nd ; // If LSt[Root]

i (u) = max{j : j ∈ LSt[Root]
i (v)}

if LSt[Root]
i (u) = min{j : j ∈ LSt[Root]

i (v)} then dir← 1st ;
v′ ← Ldir[Rep]

i (v) ;
u1, u2 ← L1st[Rep]

i (u), L2nd[Rep]
i (u) ;

d1, d2 ← Dist_Tree(v′, u1), Dist_Tree(v′, u2) ;

return Ldir[Dist]
i (v) + min

{
d1 + L1st[Dist]

i (u), d2 + L2nd[Dist]
i (u)

}
;

Recall that in the following procedure, u and v both belong to cones at step i.
function Dist_2cc-neighboring(Li(u), Li(v)):
{x} ← LSt[Root]

i (u) ∩ LSt[Root]
i (v) ;

dirU, dirV← 2nd, 2nd ;
if x = min{j : j ∈ LSt[Root](u)

i } then dirU← 1st ;
if x = min{j : j ∈ LSt[Root](v)

i } then dirV← 1st ;
u′, v′ ← LdirU[Rep]

i (u), LdirV[Rep]
i (v) ;

du, dv ← LdirU[Dist]
i (u), LdirV[Dist]

i (v) ;
d← Dist_Tree(u′, v′) ;
return du + d+ dv ;

The following algorithm Distance finds the first step where the given vertices u and v have be-
longed to distinct fibers for the first time. If they are 1pc-neighboring or 2cc-neighboring at this step,
then Distance respectively calls procedure Dist_1pc-neighboring or Dist_2cc-neighboring.
Otherwise, it returns the sum of their distances to the median of the step. The occurring cases are
illustrated by Figure 16.

Algorithm 2: Distance (L(u), L(v))
Input: The labels L(u) and L(v) of two vertices u and v of G
Output: A value between dG(u, v) and 4 · dG(u, v)

1 if L0(u) = L0(v) /* u = v */ then return 0 ;

2 Let i be the greatest integer such that LSt[Med]
i (u) = LSt[Med]

i (v) ;
// If u is in a panel 1-neighboring the cone of v

3 if LSt[Root]
i (u) ( LSt[Root]

i (v) then
4 return Dist_1pc-neighboring(Li(u),Li(v)) ;
// If v is in a panel 1-neighboring the cone of u

5 if LSt[Root]
i (v) ( LSt[Root]

i (u) then
6 return Dist_1pc-neighboring(Li(v),Li(u)) ;
// If u is in a cone 2-neighboring the cone of v

7 if |LSt[Root]
i (u) ∩ LSt[Root]

i (v)| = 1 and LSt[Root]
i (u) 6= LSt[Root]

i (v) then
8 return Dist_2cc-neighboring(Li(u),Li(v)) ;
// In every other case

9 return LSt[Dist]
i (u) + LSt[Dist]

i (v) ;

8.3. Correctness and complexity. Since by Lemma 11 the number of vertices in every part is
each time divided by 2, the recursion depth is O(log n). At each recursive step, the vertices add to
their label a constant number of information among which the longest consists in a distance labeling
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Figure 16. Decoding of the distances between separated, almost separated, 1pc-
neighboring, and 2cc-neighboring vertices. An exact shortest path is given in orange,
and the path considered by our decoding algorithm appears in green.

scheme for trees using O(log2 n) bits. It follows that our scheme uses O(log3 n) bits for each vertex.
We show, by induction on n, that the time complexity is T (n) := a(n2 log n+ n) for some constant
a. This is trivially true for n = 1. For a graph G = (V,E) on n vertices, we can compute a median
vertex m of G, and its partition into fibers F (x1), . . . , F (xk) (with n1, . . . , nk vertices respectively)
in time O(n2) by using the distance matrix of G. A vertex u belongs to the total boundary of
its fiber F (xi) if one of its neighbors belongs to another fiber. This can be determined in time
O(n). Therefore, the total boundary of all the fibers can be computed in time O(n2). Let u be
a vertex of a panel F (xj), the interval I(xj , u) can be computed in time O(n), and thus the two
exits of u (i.e., the two extremal vertices of I(xj , u)∩ ∂∗F (xj)) can also be computed in time O(n).
Let v be a vertex of a cone F (x`). The projections Pr(v, F ) and Pr(v, F ′) of v on the two panels
1-neighboring F (x`) can be computed in time O(n), hence the two entrances of v (i.e., the roots of
Pr(v, F ) ∩ ∂∗F and Pr(v, F ′) ∩ ∂∗F ′) can also be computed in time O(n). Consequently, the first
step of the induction requires time an2. By induction, computing the label of all u in F (xi) takes
time T (ni). Therefore, T (n) = an2 +

∑k
i=1 T (ni). By Lemma 11, ni ≤ n/2 for all i ∈ {1, . . . , k}.

Consequently,

T (n) = an2 +
∑k

i=1(an2
i log ni + ni)

≤ an2 + an2 log(n2 ) + an
≤ a(n2 log n+ n).

We conclude that the total complexity of Algorithm 1 is O(n2 log n).
That the decoding algorithm returns distances with a multiplicative error at most 4 directly

follows from Lemmas 16 and 17 for separated and almost separated vertices, and from Lemmas 18
and 19 for the 1pc-neighboring and 2cc-neighboring vertices. Those results are based on Lemmas
14 and 15 that respectively indicate the entrances and exits to store in total boundaries of panels.
This concludes the proof of Theorem 1.
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9. Conclusion

We would like to finish this paper with some open questions. First of all, the problem of finding
a polylogarithmic (approximate) distance labeling scheme for general bridged graphs remains open.
We formulate it in the following way:

Question 1. Do there exist constants c and b such that any bridged graph G admits a c-approximate
distance labeling scheme with labels of size O(logb n) ?

One of the first obstacles in adapting our labeling scheme to general bridged graphs is that it is
not clear how to define the star and the fibers. In all bridged graphs, since the neighborhood N [z] of
a vertex z is convex, the metric projection of any vertex u on N [z] induces a clique. Therefore, we
could define the fiber F (C) for a clique C of N [z] as the set of all u having C as metric projection
on N [z]. This induces a partitioning of V (G)\N [z], however the interaction between different fibers
of N [z] seems intricate.

The same question can be asked for bridged graphs of constant clique-size and for hyperbolic
bridged graphs (via a result of [8], those are the bridged graphs in which all deltoids have constant
size). A positive result would be interesting since Gavoille and Ly [24] established that general
graphs of bounded hyperbolicity do not admit poly-logarithmic distance labeling schemes unless we
allow a multiplicative error of order Ω(log log n), at least.

Question 2. Do there exist linear functions f and g such that every δ-hyperbolic bridged graph G
admits a f(δ)-approximate distance labeling scheme with labels of size O(logg(δ) n) ?

In the full version of [17], we managed to encode the cube-free median graphs in O(n log n)
time instead of O(n2 log n). This improvement uses a recent result of [7] allowing to compute a
median vertex of a median graph in linear time. We also compute in cube-free median graphs
the partition into fibers, the gates (equivalent of the entrances) and the imprints (equivalent to
the exits) in fibers in linear time, with a BFS-like algorithm. Altogether, this improvement of the
preprocessing time for cube-free median graphs was technically non-trivial. In the case of K4-free
bridged graph, a similar result can be expected. The first step will be to design a linear-time
algorithm for computing medians in K4-free bridged graphs. For planar K4-free bridged graphs,
such an algorithm was described in [16].
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Appendices

Appendix A. Glossary

In the following glossary, G denotes a graph of vertex set V and edge set E ; unless it is explicitly
defined otherwise, T denotes a starshaped tree rooted at z; H = (V (H), E(H)) denotes a subgraph
of G.

Notions and notations Definitions
Ball Bk(S) {x ∈ V : ∃s ∈ S,dG(x, s) ≤ k}.
Boundary ∂yF (x) {u ∈ F (x) : ∃v ∈ F (y), uv ∈ E}.
Closed neighborhood N [u] of u {v ∈ V : uv ∈ E} ∪ {u}.
Cone F (x) w.r.t. to St(z) Fiber F (x) w.r.t. St(z) with dG(x, z) = 2.
Convex subgraph H ∀u, v ∈ V (H), I(u, v) ⊆ V (H).
Distance dG(u, v) Number of edges on a shortest (u, v)-path of G.
Entrance of u on T := ∂∗F (x) Closest vertex to x in Pr(u, T ).
Exit of u on T := ∂∗F (x) Extremal vertex w.r.t. z in an increasing path of I(u, z) ∩ T .
Extremal vertex of I(u, z) ∩ T . First convex corner in an increasing path starting at z.
Fiber F (x) w.r.t. H {u ∈ V : x is the gate of u in H}.
Increasing path P of T Path entirely contained in a single branch of T .
Interval I(u, v) {w ∈ V : dG(u, v) = dG(u,w) + dG(w, v)}.
Isometric subgraph H ∀u, v ∈ V (H),dH(u, v) = dG(u, v).
Locally convex subgraph H ∀u, v ∈ V (H), with dG(u, v) ≤ 2, I(u, v) ⊆ V (H).
Median vertex m Vertex minimizing u 7→

∑
v∈V dG(u, v).

Metric projection Pr(x,H) {u ∈ V (H) : ∀v ∈ V (H), dG(v, x) ≥ dG(u, x)}.
Metric triangle u1u2u3 of G u1, u2, u3 ∈ V s.t. ∀i, j, k ∈ {1, 2, 3}, I(ui, uj) ∩ I(uj , uk) = {uj}.
Panel F (x) w.r.t. to St(z) Fiber F (x) w.r.t. St(z) with dG(x, z) = 1.
Star St(z) Union of N [z] and of all the triangles derived from N [z] using (TC).
Starshaped H w.r.t. z ∀u ∈ V (H), I(u, z) ⊆ V (H).
Starshaped tree T ⊆ G w.r.t. z ∀u ∈ V (T ), I(u, z) is a path of T .
Total boundary ∂∗F (x)

⋃
y∼x ∂yF (x).

Triangle condition (TC) ∀u, v, w ∈ V with k := dG(u, v) = dG(u,w), and vw ∈ E, ∃x ∈ V
s.t. dG(u, x) = k − 1 and xv, xw ∈ E.
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