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HELLY GROUPS

JÉRÉMIE CHALOPIN, VICTOR CHEPOI, ANTHONY GENEVOIS, HIROSHI HIRAI,

AND DAMIAN OSAJDA

Abstract. Helly graphs are graphs in which every family of pairwise intersecting balls has a

non-empty intersection. This is a classical and widely studied class of graphs. In this article

we focus on groups acting geometrically on Helly graphs – Helly groups. We provide numerous

examples of such groups: all (Gromov) hyperbolic, CAT(0) cubical, finitely presented graph-

ical C(4)−T(4) small cancellation groups, and type-preserving uniform lattices in Euclidean

buildings of type Cn are Helly; free products of Helly groups with amalgamation over finite

subgroups, graph products of Helly groups, some diagram products of Helly groups, some right-

angled graphs of Helly groups, and quotients of Helly groups by finite normal subgroups are

Helly. We show many properties of Helly groups: biautomaticity, existence of finite dimensional

models for classifying spaces for proper actions, contractibility of asymptotic cones, existence

of EZ-boundaries, satisfiability of the Farrell-Jones conjecture and of the coarse Baum-Connes

conjecture. This leads to new results for some classical families of groups (e.g. for FC-type

Artin groups) and to a unified approach to results obtained earlier.
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1. Introduction

1.1. Motivations and main results. A geodesic metric space is injective if any family of

pairwise intersecting balls has a non-empty intersection [AP56]. Injective metric spaces appear

independently in various fields of mathematics and computer science: in topology and metric

geometry – also known as hyperconvex spaces or absolute retracts (in the category of metric

spaces with 1-Lipschitz maps); in combinatorics – also known as fully spread spaces; in functional

analysis and fixed point theory – also known as spaces with binary intersection property ; in the

theory of algorithms – known as convex hulls, and elsewhere. They form a very natural and

important class of spaces and have been studied thoroughly. The distinguishing feature of

injective spaces is that any metric space admits an injective hull, i.e., the smallest injective

space into which the input space isometrically embeds; this important result was rediscovered

several times in the past [Isb64,Dre84,CL94].

A discrete counterpart of injective metric spaces are Helly graphs – graphs in which any family

of pairwise intersecting (combinatorial) balls has a non-empty intersection. Again, there are
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many equivalent definitions of such graphs, hence they are also known as e.g. absolute retracts

(in the category of graphs with nonexpansive maps) [BP89,BP91,JPM86,Qui85,Pes87,Pes88].

As the similarities in the definitions suggest, injective metric spaces and Helly graphs exhibit

a plethora of analogous features. A simple but important example of an injective metric space

is (Rn, d∞), that is, the n-dimensional real vector space with the metric coming from the

supremum norm. The discrete analog is ⊠n
1L, the direct product of n infinite lines L, which

embeds isometrically into (Rn, d∞) with vertices being the points with integral coordinates.

The space (Rn, d∞) is quite different from the ‘usual’ Euclidean n-space En = (Rn, d2). For

example, the geodesics between two points in (Rn, d∞) are not unique, whereas such uniqueness

is satisfied in the ‘nonpositively curved’ En. However, there is a natural ‘combing’ on (Rn, d∞) –

between any two points there is a unique ‘straight’ geodesic line. More generally, every injective

metric space admits a unique geodesic bicombing of a particular type (see Subsection 3.4 for

details). The existence of such a bicombing allows us to conclude many properties typical for

nonpositively curved – more precisely, for CAT(0) – spaces. Therefore, injective metric spaces

can be seen as metric spaces satisfying some version of ‘nonpositive curvature’. Analogously,

Helly graphs and the associated Helly complexes (that is, flag completions of Helly graphs), enjoy

many nonpositive-curvature-like features. Some of them were exhibited in our earlier work:

in [CCHO20] we prove e.g. a version of the Cartan-Hadamard theorem for Helly complexes.

Moreover, the construction of the injective hull associates with every Helly graph an injective

metric space into which the graph embeds isometrically and coarsely surjectively. For the

example presented above, the injective hull of ⊠n
1L is (Rn, d∞).

Exploration of groups acting nicely on nonpositively curved complexes is one of the main ac-

tivities in Geometric Group Theory. In the current article we initiate the study of groups acting

geometrically (that is, properly and cocompactly, by automorphisms) on Helly graphs. We call

them Helly groups. We show that the class is vast – it contains many large classical families

of groups (see Theorem 1.1 below), and is closed under various group theoretic operations (see

Theorem 1.3). In some instances, the Helly group structure is the only known nonpositive-

curvature-like structure. Furthermore, we show in Theorem 1.5 that Helly groups satisfy some

strong algorithmic, group theoretic, and coarse geometric properties. This allows us to derive

new results for some classical groups and present a unified approach to results obtained earlier.

Theorem 1.1. Groups from the following classes are Helly:

(1) groups acting geometrically on graphs with ‘near’ injective metric hulls, in particular,

(Gromov) hyperbolic groups;

(2) CAT(0) cubical groups, that is, groups acting geometrically on CAT(0) cube complexes;

(3) finitely presented graphical C(4)−T(4) small cancellation groups;

(4) groups acting geometrically on swm-graphs, in particular, type-preserving uniform lat-

tices in Euclidean buildings of type Cn.

As a result of its own interest, as well as a potentially very useful tool for establishing Hellyness

of groups (in particular, used successfully in the current paper) we prove the following theorem.

The coarse Helly property is a natural ‘coarsification’ of the Helly property, and the property

of β-stable intervals was introduced by Lang [Lan13] in the context of injective metric spaces

and is related to Cannon’s property of having finitely many cone types (see Subsection 1.4 of

this Introduction for further explanations).

Theorem 1.2. A group acting geometrically on a coarse Helly graph with β-stable intervals is

Helly.
3



Furthermore, it has been shown recently in [HO21] that FC-type Artin groups and weak

Garside groups of finite type are Helly. The latter class contains e.g. fundamental groups of

the complements of complexified finite simplicial arrangements of hyperplanes; braid groups of

well-generated complex reflection groups; structure groups of non-degenerate, involutive and

braided set-theoretical solutions of the quantum Yang-Baxter equation; one-relator groups with

non-trivial center and, more generally, tree products of cyclic groups. Conjecturally, there are

many more Helly groups – see the discussion in Section 9.

Theorem 1.3. Let Γ,Γ1,Γ2, . . . ,Γn be Helly groups. Then:

(1) a free product Γ1 ∗F Γ2 of Γ1,Γ2 with amalgamation over a finite subgroup F , and the

HNN-extension Γ1∗F over F are Helly;

(2) every graph product of Γ1, . . . ,Γn is Helly, in particular, the direct product Γ1×· · ·×Γn

is Helly;

(3) the □-product of Γ1,Γ2, that is, Γ1□Γ2 = ⟨Γ1,Γ2, t | [g, h] = [g, tht−1] = 1, g ∈ Γ1, h ∈
Γ2⟩ is Helly;

(4) the ⋊-power of Γ, that is, Γ⋊ = ⟨Γ, t | [g, tgt−1] = 1, g ∈ Γ⟩ is Helly;

(5) the quotient Γ/N by a finite normal subgroup N ◁ Γ is Helly.

Observe also that, by definition, finite index subgroups of Helly groups are Helly. Again, we

conjecture that Hellyness is closed under other group theoretic constructions – see the discussion

in Section 9. The items (2)-(4) in Theorem 1.3 are consequences of the following combination

theorem for actions on quasi-median graphs with Helly stabilisers. Further consequences of the

same result are presented in Subsection 6.8 in the main body of the article.

Theorem 1.4. Let Γ be a group acting topically-transitively on a quasi-median graph G. Sup-

pose that:

• any vertex of G belongs to finitely many cliques;

• any vertex-stabiliser is finite;

• the cubical dimension of G is finite;

• G contains finitely many Γ-orbits of prisms;

• for every maximal prism P = C1 × · · · × Cn, stab(P ) = stab(C1)× · · · × stab(Cn).

If clique-stabilisers are Helly, then Γ is a Helly group.

The results above show that the class of Helly groups is vast. Nevertheless, we may prove a

number of strong properties of such groups. One very interesting and significant aspect of the

theory is that the Helly group structure equips the group not only with a specific combinatorial

structure being the source of important algorithmic and algebraic features (as e.g. (1) in the

theorem below) but – via the Helly hull construction – provides a more concrete ‘nonpositively

curved’ object acted upon the group: a metric space with convex geodesic bicombing (see (5)

below). Such spaces might be approached using methods typical for the CAT(0) setting, and

are responsible for many ‘CAT(0)-like’ results on Helly groups, such as e.g. items (6)–(9) in the

following theorem.

Theorem 1.5. Let Γ be a group acting geometrically on a Helly graph G, that is, Γ is a Helly

group. Then:

(1) Γ is biautomatic.

(2) Γ has finitely many conjugacy classes of finite subgroups.

(3) Γ is (Gromov) hyperbolic if and only if G does not contain an isometrically embedded

infinite ℓ∞–grid.
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(4) The clique complex X(G) of G is a finite-dimensional cocompact model for the classifying

space EΓ for proper actions. As a particular case, Γ is always of type F∞ (see e.g.

[Geo08, Theorem 7.3.1]); and of type F when it is torsion-free.

(5) Γ acts geometrically on a proper injective metric space of finite combinatorial dimension,

and hence on a metric space with a convex geodesic bicombing.

(6) Γ admits an EZ-boundary ∂G.

(7) Γ satisfies the Farrell-Jones conjecture with finite wreath products.

(8) Γ satisfies the coarse Baum-Connes conjecture.

(9) The asymptotic cones of Γ are contractible.

As immediate consequences of the main theorems above we obtain new results on some

classical group classes. For example it follows that FC-type Artin groups and finitely presented

graphical C(4)−T(4) small cancellation groups are biautomatic. Further discussion of important

consequences of our main results is presented in Subsection 1.3 below. Note also that by

Theorem 1.5(5) further properties of Helly groups can be deduced from e.g. [DL15,DL16,Des16]

(see also the discussion in [HO21, Introduction]).

The above Theorems 1.1–1.5 are proved by the use of corresponding more general results on

Helly graphs. A fundamental property that we use is the following local-to-global characteriza-

tion of Helly graphs from [CCHO20]: A graph G is Helly if and only if G is clique-Helly (i.e.,

any family of pairwise intersecting maximal cliques of G has a non-empty intersection) and its

clique complex X(G) is simply connected. Here, we present some of the results we obtained

about Helly graphs (or complexes) in a simplified form (see Subsection 1.4 of this Introduction

for further explanations).

Theorem 1.6. The following constructions give rise to Helly graphs:

(1) A union of graph-products (UGP) of clique-Helly graphs satisfying the 3-piece condition

is clique-Helly. If its clique complex is simply connected then it is Helly.

(2) Thickenings of simply connected C(4)−T(4) graphical small cancellation complexes are

Helly.

(3) Rips complexes and face complexes of Helly graphs are Helly.

(4) Nerve complexes of the cover of a Helly graph or of a 7-systolic graph by maximal cliques

are Helly.

It was already known that the thickening operation allows to obtain Helly graphs from

several classes of graphs: the thickenings of locally finite median graphs [BvdV91], swm-

graphs [CCHO20], and hypercellular graphs [CKM20] are Helly. In fact all these three results

can be seen as particular cases of the following proposition.

Proposition 1.7. If G is a graph endowed with a cell structure X such that each cell of X is

gated in G and the family of cells satisfies the 3-cell and the graded monotonicity conditions,

then the thickening of the cells of G is a clique-Helly graph and each maximal clique of the

thickening corresponds to a cell of X.

The 3-piece condition from Theorem 1.6(1) and the 3-cell condition from Proposition 1.7 can

be viewed as generalizations of Gromov’s flagness condition for CAT(0) cube complexes [Gro87]

and as a strengthening of Gilmore’s condition for conformality of hypergraphs [Ber89].

1.2. Historical note and general context. As already mentioned, injective metric spaces

have been introduced by Aronszajn and Panitchpakdi [AP56] and they show the equivalence

between injective metric spaces and hyperconvex spaces. Isbell [Isb64] proves that for any

metric space (X, d) there exists a smallest injective space which contains (X, d) as an isometric

subspace. This smallest injective space is called the injective hull of (X, d). Later, this result
5



was independently rediscovered by Dress [Dre84] and for finite metric spaces by Chrobak and

Larmore [CL94].

Dress provided other characterizations of injective hulls and developed the theory of combi-

natorial dimension of injective hulls viewed as cell complexes. This concept of dimension was

further developed by Lang [Lan13] who was also the first to use injective metric spaces in the

context of geometric group theory. Lang also introduced the important concept of β-stable

intervals [Lan13] and showed that the injective hulls of locally finite graphs with β-stable in-

tervals are proper and have the structure of a locally finite polyhedral complex with finitely

many isometry types of cells of each dimension. This result of Lang is particularly important

in the proof of Theorem 1.1(1) and Theorem 1.2. In these proofs, we also use his concept of

bounded distance property [Lan13], that we show to be equivalent to the coarse Helly property

introduced in [CE07]. As a matter of fact, δ-hyperbolic geodesic spaces and graphs satisfy the

bounded distance property [Lan13] and the coarse Helly property [CE07].

The fact that CAT(0) cubical groups are Helly (Theorem 1.1(2)) follows from the bijection

between CAT(0) cube complexes and median graphs [Che00,Rol98] and the result of Bandelt

and van de Vel [BvdV91] establishing that the thickenings of median graphs are Helly graphs.

This result was generalized in [CCHO20] to swm-graphs, thus yielding Theorem 1.1(4).

The Helly property is an ubiquitous property in combinatorics which is captured by the

concept of Helly hypergraphs [Ber89]. Berge and Duchet [BD75] presented a simple “local”

characterization of Helly hypergraphs that is useful to show that the maximal cliques of a

graph satisfy the Helly property. This result and the local-to-global characterization of Helly

graphs of Chalopin et al. [CCHO20] provide a useful tool to establish the Hellyness of a graph.

This method is used in the proof of Theorems 1.1 and 1.6 and of Proposition 1.7.

Besides the local-to-global characterization of Helly graphs, other characterizations of Helly

graphs have been obtained earlier in the papers [BP89,BP91,HR87] (see Theorem 4.1). The

proof of Theorem 1.5(2)-(9) uses other properties of Helly graphs and injective spaces. Theo-

rem 1.5(2) follows from Polat’s [Pol93] fixed point result for Helly graphs. Theorem 1.5(4) uses

the fact that Helly graphs are dismantlable [BP89] and that fixed point sets in dismantlable

graphs are contractible [BM12]. The proof of Theorem 1.5(3) relies on the characterization of

(Gromov) hyperbolic weakly modular graphs of [CCHO20,CDE+08].

Theorem 1.5(5) follows from the fact that a geometric action on a Helly graph extends to

a geometric action on its injective hull. The second assertion then follows from a property of

injective spaces of finite combinatorial dimension established by Descombes and Lang [DL15]

that they admit a convex geodesic bicombing. Theorem 1.5(6)-(9) follows from the existence of

this geodesic bicombing and results established in [DL15,KR17,FO20].

To establish the biautomaticity of Helly groups (Theorem 1.5(5)), we use the technique intro-

duced by Świa̧tkowski [Świ06] of locally recognized path systems in a graph. In this setting, one

design a canonical path system satisfying a combinatorial bicombing property (this bicombing

is different from the convex geodesic bicombing of [DL15]). That groups acting geometrically

on Helly graphs are different from groups acting on injective spaces follows from the recent

result of Hughes and Valiunas, [HV23] showing that there exist groups acting geometrically on

injective spaces that are neither Helly nor biautomatic.

1.3. Discussion of consequences of main results. Biautomaticity is an important algorith-

mic property of a group. It implies, among others, that the Dehn function is at most quadratic,

and that the Word Problem and the Conjugacy Problem are solvable; see e.g. [ECH+92].

Biautomaticity of classical C(4)−T(4) small cancellation groups was proved in [GS90]. Our

results (Theorem 1.1(3) and Theorem 1.5(1)) imply biautomaticity in the more general graphical

small cancellation case.
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Biautomaticity of all FC-type Artin groups is a new result of the current paper together

with [HO21]. Also new are the solution to the Conjugacy Problem and the quadratic bound

on the Dehn function. Altobelli [Alt98] showed that FC-type Artin groups are asynchronously

automatic, and hence have solvable Word Problem. Biautomaticity for few classes of Artin

groups was shown before in [Pri86, GS90, Cha92, Pei96, BM00, HO20] (see [HO21, Subsection

1.3] for a more detailed account).

Although the classical C(4)−T(4) small cancellation groups have been thoroughly investi-

gated and quite well understood (see e.g. [LS01, GS90]), there was no nonpositive curvature

structure similar to CAT(0) known for them. Note that Wise [Wis04] equipped groups satisfy-

ing the stronger B(4)−T(4) small cancellation condition with a structure of a CAT(0) cubical

group, but the question of a similar cubulation of C(4)−T(4) groups is open [Wis04, Problem

1.4]. Our results – Theorem 1.5 and Theorem 1.1(3) – equip such groups with a structure of

a group acting geometrically on an injective metric space. This allows us to conclude that the

Farrell-Jones conjecture and the coarse Baum-Connes conjecture hold for them. These results

are new, and moreover, we prove them in the much more general setting of graphical small

cancellation. Note that – although quite similar in definition and basic tools – the graphical

small cancellation theories provide examples of groups not achievable in the classical setting

(see e.g. [Osa20,Osa18,OP18] for details and references).

Important examples to which our theory applies are presented in [HO21]. These – besides

the FC-type Artin groups mentioned above – are the weak Garside groups of finite type. This

class includes among others: fundamental groups of the complements of complexified finite

simplicial arrangements of hyperplanes, spherical Artin groups, braid groups of well-generated

complex reflection groups, structure groups of non-degenerate, involutive and braided set-theore-

tical solutions of the quantum Yang-Baxter equation, one-relator groups with non-trivial center

and, more generally, tree products of cyclic groups. To our best knowledge there were no

other ‘CAT(0)-like’ structures known for these groups before. Consequently, such results as

the existence of an EZ-structure, the validity of the Farrell-Jones conjecture and of the coarse

Baum-Connes conjecture obtained by using our approach are new in these settings.

Yet another class to which our theory applies and provides new results are quadric groups

introduced and investigated in [Hod20b]. See e.g. [Hod20b, Example 1.4] for a class of quadric

groups that are a priori neither CAT(0) cubical nor C(4)−T(4) small cancellation groups.

Finally, we believe that many other groups are Helly – see the discussion in Section 9. Proving

Hellyness of those groups would equip them with a very rich discrete and continuous structures,

and would immediately imply a plethora of strong features described above. On the other hand,

there are still many other properties to be discovered, with the hope that most CAT(0) results

can be shown in this setting.

1.4. Organization of the article and further results. The proofs of items (1)–(4) in Theo-

rem 1.1 are provided as follows. Item (1) follows from Proposition 6.7 and Corollary 6.9. Items

(2) and (4) follow from Proposition 6.1 and Corollary 6.2. Item (3) is Corollary 6.20.

The coarse Helly property is discussed in Subsection 3.3, and the proof of Theorem 1.2

(appearing as Proposition 6.8 in the text) is presented in Subsection 6.3.

The proofs of items (1)–(5) in Theorem 1.3 are provided as follows. Item (1) is proved in

Subsection 6.6. Items (2)–(4) are consequences of Theorem 1.4 (i.e., Theorem 6.25 in the text)

and are shown in Subsection 6.8. There, we also show more general results: Theorem 6.28 on

diagram products of Helly groups, and Theorem 6.32 on right-angled graphs of Helly groups.

Item (5) follows directly from Theorem 6.22.
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Theorem 1.4 is the same as Theorem 6.25 in the main body of the article and is discussed

and proved in Subsection 6.8.

The proofs of items (1)–(9) in Theorem 1.5 are provided as explained below. The proof

of (1) is presented in Section 8. Item (2) follows from the Fixed Point Theorem 7.1, and is

proved in Subsection 7.1. The proof of (3) is presented in Subsection 7.2. Item (4) follows from

Corollary 7.4 in Subsection 7.3, (5) follows from Theorems 3.13 and 6.3, and (6), (7), (8), (9)

are proved, respectively, in Subsections 7.4, 7.5, 7.6, 7.7.

The proofs of items (1)–(4) in Theorem 1.6 are provided as follows. A union of graph-products

(UGP) is defined and studied in Subsection 5.1, and (1) is a part of Theorem 5.4 proved there.

Graphical small cancellation complexes are studied in Subsection 6.5, and (2) is proved there as

Theorem 6.19. Rips complexes and face complexes are discussed in, respectively, Subsection 5.5

and 5.6, and (3) is shown there. We discuss nerve complexes and prove (4) in Subsection 5.4.

This result is used in Subsection 6.4 to establish that 7-systolic groups are Helly.

In Section 2.6, we introduce the 3-cell and the graded monotonicity conditions and we es-

tablish that flag simplicial complexes, CAT(0) cube complexes, hypercellular complexes and

swm-complexes satisfy both conditions. Proposition 1.7 then follows from Proposition 5.10.

Due to the relevance to the subject of our paper, in Section 2.5 we present in details the Helly

property in the general setting of hypergraphs (set systems). We also discuss the conformality

property for hypergraphs, which is dual to the Helly property and which is an analog of flagness

for simplicial complexes. For the same reason, in Section 3.2 we present the main ideas of

Isbell’s proof of the existence of injective hulls.

2. Preliminaries

2.1. Graphs. A graph G = (V,E) consists of a set of vertices V := V (G) and a set of edges

E := E(G) ⊆ V × V . All graphs considered in this paper are undirected, connected, contain

no multiple edges, no loops, are not necessarily finite, but will be supposed to be locally finite.

(With the exception of the quasi-median graphs considered in Section 6.8, which are allowed to

be locally infinite.) That is, they are locally finite one-dimensional simplicial complexes. For two

distinct vertices v, w ∈ V we write v ∼ w (respectively, v ≁ w) when there is an (respectively,

there is no) edge connecting v with w, that is, when vw := {v, w} ∈ E. For vertices v, w1, . . . , wk,

we write v ∼ w1, . . . , wk (respectively, v ≁ w1, . . . , wk) or v ∼ A (respectively, v ≁ A) when

v ∼ wi (respectively, v ≁ wi), for each i = 1, . . . , k, where A = {w1, . . . , wk}. As maps between

graphs G = (V,E) and G′ = (V ′, E′) we always consider simplicial maps, that is functions of

the form f : V → V ′ such that if v ∼ w in G then f(v) = f(w) or f(v) ∼ f(w) in G′. A

(u,w)–path (v0 = u, v1, . . . , vk = w) of length k is a sequence of vertices with vi ∼ vi+1. If

k = 2, then we call P a 2-path of G. If xi ̸= xj for |i − j| ≥ 1, then P is called a simple

(a, b)–path. A k–cycle (v0, v1, . . . , vk−1) is a path (v0, v1, . . . , vk−1, v0). For a subset A ⊆ V, the

subgraph of G = (V,E) induced by A is the graph G(A) = (A,E′) such that uv ∈ E′ if and

only if uv ∈ E (G(A) is sometimes called a full subgraph of G). A square uvwz (respectively,

triangle uvw) is an induced 4–cycle (u, v, w, z) (respectively, 3–cycle (u, v, w)). The wheel Wk

is a graph obtained by connecting a single vertex – the central vertex c – to all vertices of the

k–cycle (x1, x2, . . . , xk).

The distance d(u, v) = dG(u, v) between two vertices u and v of a graph G is the length of a

shortest (u, v)–path. For a vertex v of G and an integer r ≥ 1, we denote by Br(v,G) (or by

Br(v)) the ball in G (and the subgraph induced by this ball) of radius r centered at v, that is,

Br(v,G) = {x ∈ V : d(v, x) ≤ r}.More generally, the r–ball around a set A ⊆ V is the set (or the

subgraph induced by) Br(A,G) = {v ∈ V : d(v,A) ≤ r}, where d(v,A) = min{d(v, x) : x ∈ A}.
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As usual, N(v) = B1(v,G) \ {v} denotes the set of neighbors of a vertex v in G. A graph

G = (V,E) is isometrically embeddable into a graph H = (W,F ) if there exists a mapping

φ : V → W such that dH(φ(u), φ(v)) = dG(u, v) for all vertices u, v ∈ V .

A retraction φ of a graph G is an idempotent nonexpansive mapping of G into itself, that is,

φ2 = φ : V (G) → V (G) with d(φ(x), φ(y)) ≤ d(x, y) for all x, y ∈ W (equivalently, a retraction

is a simplicial idempotent map φ : G → G). The subgraph of G induced by the image of G

under φ is referred to as a retract of G.

The interval I(u, v) between u and v consists of all vertices on shortest (u, v)–paths, that is,

of all vertices (metrically) between u and v: I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}. An
induced subgraph of G (or the corresponding vertex-set A) is called convex if it includes the

interval of G between any pair of its vertices. The smallest convex subgraph containing a given

subgraph S is called the convex hull of S and is denoted by conv(S). An induced subgraph H

(or the corresponding vertex-set of H) of a graph G is gated [DS87] if for every vertex x outside

H there exists a vertex x′ in H (the gate of x) such that x′ ∈ I(x, y) for any y of H. Gated

sets are convex and the intersection of two gated sets is gated. By Zorn’s lemma there exists a

smallest gated subgraph ⟨⟨S⟩⟩ containing a given subgraph S, called the gated hull of S.

Let Gi, i ∈ Λ be an arbitrary family of graphs. The Cartesian product
∏

i∈ΛGi is a graph

whose vertices are all functions x : i 7→ xi, xi ∈ V (Gi) and two vertices x, y are adjacent if

there exists an index j ∈ Λ such that xjyj ∈ E(Gj) and xi = yi for all i ̸= j. Note that a

Cartesian product of infinitely many nontrivial graphs is disconnected. Therefore, in this case

the connected components of the Cartesian product are called weak Cartesian products. The

direct product ⊠i∈ΛGi of graphs Gi, i ∈ Λ is a graph having the same set of vertices as the

Cartesian product and two vertices x, y are adjacent if xiyi ∈ E(Gi) or xi = yi for all i ∈ Λ.

We continue with definitions of weakly modular graphs and their subclasses. We follow the

paper [CCHO20] and the survey [BC08]. Recall that a graph is weakly modular if it satisfies

the following two distance conditions (for every k > 0):

• Triangle condition (TC): For any vertex u and any two adjacent vertices v, w at distance

k to u, there exists a common neighbor x of v, w at distance k − 1 to u.

• Quadrangle condition (QC): For any vertices u, z at distance k and any two neighbors

v, w of z at distance k − 1 to u, there exists a common neighbor x of v, w at distance

k − 2 from u.

Vertices v1, v2, v3 of a graph G form a metric triangle v1v2v3 if the intervals I(v1, v2), I(v2, v3),

and I(v3, v1) pairwise intersect only in the common end-vertices, that is, I(vi, vj) ∩ I(vi, vk) =

{vi} for any distinct 1 ≤ i, j, k ≤ 3. If d(v1, v2) = d(v2, v3) = d(v3, v1) = k, then this metric

triangle is called equilateral of size k. A metric triangle v1v2v3 of G is a quasi-median of the

triplet x, y, z if the following metric equalities are satisfied:

d(x, y) = d(x, v1) + d(v1, v2) + d(v2, y),

d(y, z) = d(y, v2) + d(v2, v3) + d(v3, z),

d(z, x) = d(z, v3) + d(v3, v1) + d(v1, x).

If v1, v2, and v3 are the same vertex v, or equivalently, if the size of v1v2v3 is zero, then this

vertex v is called a median of x, y, z. A median may not exist and may not be unique. On

the other hand, a quasi-median of every x, y, z always exists: first select any vertex v1 from

I(x, y) ∩ I(x, z) at maximal distance to x, then select a vertex v2 from I(y, v1) ∩ I(y, z) at

maximal distance to y, and finally select any vertex v3 from I(z, v1) ∩ I(z, v2) at maximal

distance to z. The following characterization of weakly modular graphs holds:
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Lemma 2.1. [Che89] A graph G is weakly modular if and only if for any metric triangle v1v2v3
of G and any two vertices x, y ∈ I(v2, v3), the equality d(v1, x) = d(v1, y) holds. In particular,

all metric triangles of weakly modular graphs are equilateral.

In this paper we use some classes of weakly modular graphs defined either by forbidden

isometric or induced subgraphs or by restricting the size of the metric triangles of G.

A graph is called median if |I(u, v)∩ I(v, w)∩ I(w, v)| = 1 for every triplet u, v, w of vertices,

that is, every triplet of vertices has a unique median. Median graphs can be characterized in

several different ways and they play an important role in geometric group theory. By a result

of [Che00, Rol98], median graphs are exactly the 1-skeletons of CAT(0) cube complexes (see

below). For other properties and characterizations of median graphs, see the survey [BC08]; for

some other results on CAT(0) cube complexes, see the paper [Sag95].

A graph is called modular if I(u, v)∩ I(v, w)∩ I(w, v) ̸= ∅ for every triplet u, v, w of vertices,

that is, every triplet of vertices admits a median. Clearly a median graph is modular. In view

of Lemma 2.1, modular graphs are weakly modular. Moreover, they are exactly the graphs

in which all metric triangles have size 0. The term “modular” comes from a connection to

modular lattices: Indeed, a lattice is modular if and only if its covering graph is modular. A

modular graph is hereditary modular if any of its isometric subgraph is modular. It was shown

in [Ban88] that a graph is hereditary modular if and only if all its isometric cycles have length 4.

A modular graph is called strongly modular if it does not contain K−
3,3 as an isometric subgraph.

Those graphs contain orientable modular graphs, that is, modular graphs whose edges can be

oriented is such a way that two opposite edges of any square have the same orientation. For

example, any median graph is orientable.

We will also consider a nonbipartite generalization of strongly modular graphs, called sweakly

modular graphs or swm-graphs, which are defined as weakly modular graphs without induced

K−
4 and isometric K−

3,3 (K−
4 is K4 minus one edge and K−

3,3 is K3,3 minus one edge). The

swm-graphs have been introduced and studied in depth in [CCHO20]. The cell complexes of

swm-graphs can be viewed as a far-reaching generalization of CAT(0) cube complexes in which

the cubes are replaced by cells arising from dual polar spaces.

According to Cameron [Cam82], the dual polar spaces can be characterized by the conditions

(A1)-(A5), rephrased in [BC08] in the following (more suitable to our context) way:

Theorem 2.2. [Cam82] A graph G is the collinearity graph of a dual polar space Γ of rank n

if and only if the following axioms are satisfied:

(A1) for any point p and any line ℓ of Γ (i.e., maximal clique of G), there is a unique point

of ℓ nearest to p in G;

(A2) G has diameter n;

(A3&4) the gated hull ⟨⟨u, v⟩⟩ of two vertices u, v at distance 2 has diameter 2;

(A5) for every pair of nonadjacent vertices u, v and every neighbor x of u in I(u, v) there

exists a neighbor y of v in I(u, v) such that d(u, v) = d(x, y) = d(u, y) + 1 = d(x, v) + 1.

We call a (non-necessarily finite) graph G a dual polar graph if it satisfies the axioms

(A1),(A3&A4), and (A5) of Theorem 2.2, that is, we do not require finiteness of the diam-

eter (axiom (A2)). By [CCHO20, Theorem 5.2], dual polar graphs are exactly the thick weakly

modular graphs not containing any induced K−
4 or isometric K−

3,3 (a graph is thick if the interval

between any two vertices at distance 2 has at least two other vertices). A set X of vertices of

an swm-graph G is Boolean-gated if X induces a gated and thick subgraph of G (the subgraph

induced by X is called a Boolean-gated subgraph of G). It was established in [CCHO20, Sec-

tion 6.3] that a set X of vertices of an swm-graph G is Boolean-gated if and only if X is a gated

set of G that induces a dual-polar graph.
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A graph G is called pseudo-modular if any three pairwise intersecting balls of G have a

non-empty intersection [BM86]. This condition easily implies both the triangle and quadran-

gle conditions, and thus pseudo-modular graphs are weakly modular. In fact, pseudo-modular

graphs are quite specific weakly modular graphs: from the definition also follows that all metric

triangles of pseudo-modular graphs have size 0 or 1. Pseudo-modular graphs can be also charac-

terized by a single metric condition similar to (but stronger than) both triangle and quadrangle

conditions:

Proposition 2.3. [BM86] A graph G is pseudo-modular if and only if for any three vertices

u, v, w such that 1 ≤ d(u,w) ≤ 2 and d(v, u) = d(v, w) = k ≥ 2, there exists a vertex x ∼ u,w

and d(v, x) = k − 1.

An important subclass of pseudo-modular graphs is constituted by Helly graphs, which is the

main subject of our paper and which will be defined below.

The quasi-median graphs are the K−
4 and K2,3–free weakly modular graphs; equivalently,

they are exactly the retracts of Hamming graphs (weak Cartesian products of complete graphs).

From the definition it follows that quasi-median graphs are pseudo-modular and swm-graphs.

For many results about quasi-median graphs, see [BMW94] and [Gen17] and for a theory of

groups acting on quasi-median graphs, see [Gen17].

Bridged graphs constitute another important subclass of weakly modular graphs. A graph G

is called bridged [FJ87, SC83] if it does not contain any isometric cycle of length greater than

3. Alternatively, a graph G is bridged if and only if the balls Br(A,G) = {v ∈ V : d(v,A) ≤ r}
around convex sets A of G are convex. Bridged graphs are exactly weakly modular graphs that

do not contain induced 4– and 5–cycles (and therefore do not contain 4– and 5–wheels) [Che89].

A graph G (or its clique-complex X(G)) is called locally systolic if the neighborhoods of vertices

do not induce 4- and 5-cycles. If additionally, the clique complex X(G) of G is simply connected,

then the graph G (or its clique-complex X(G)) is called systolic. If the neighborhoods of vertices

of a (locally) systolic graph G do not induce 6-cycles, then G is called (locally) 7-systolic. It

was shown in [Che00] that bridged graphs are exactly the 1-skeletons of systolic complexes of

[JŚ06]. In the following, we will use the name systolic graphs instead of bridged graphs.

A graph G = (V,E) is called hypercellular [CKM20] if G can be isometrically embedded into

a hypercube and G does not contain Q−
3 as a partial cube minor (Q−

3 is the 3-cube Q3 minus one

vertex). A graph H is called a partial cube minor of G if G contains a finite convex subgraph G′

which can be transformed into H by successively contracting some classes of parallel edges of G′.

Hypercellular graphs are not weakly modular but however, they represent another generalization

of median graphs [CKM20].

2.2. Complexes. All complexes considered in this paper are locally finite CW complexes.

Following [Hat02, Chapter 0], we call them simply cell complexes or just complexes. If all cells

are simplices (respectively, unit solid cubes) and the non-empty intersection of two cells is their

common face, then X is called a simplicial (respectively, cube) complex. For a cell complex

X, by X(k) we denote its k–skeleton. All cell complexes considered in this paper will have

graphs (that is, one-dimensional simplicial complexes) as their 1–skeleta. Therefore, we use the

notation G(X) := X(1). The star of a vertex v in a complex X, denoted St(v,X), is the set of

all cells containing v.

An abstract simplicial complex ∆ on a set V is a set of non-empty subsets of V such that each

member of ∆, called a simplex, is a finite set, and any non-empty subset of a simplex is also

a simplex. A simplicial complex X naturally gives rise to an abstract simplicial complex ∆ on

the set of vertices (0–dimensional cells) of X by setting U ∈ ∆ if and only if there is a simplex

in X having U as its vertices. Combinatorial and topological structures of X are completely
11



recovered from ∆. Hence we sometimes identify simplicial complexes and abstract simplicial

complexes.

The clique complex of a graph G is the abstract simplicial complex X(G) having the cliques

(i.e., complete subgraphs) of G as simplices. A simplicial complex X is a flag simplicial complex

if X is the clique complex of its 1–skeleton. Given a simplicial complex X, the flag-completion

X̂ of X is the clique complex of the 1–skeleton G(X) of X.

Let C be a cycle in the 1–skeleton of a complex X. Then a cell complex D is called a

singular disk diagram (or Van Kampen diagram) for C if the 1–skeleton of D is a plane graph

whose inner faces are exactly the 2–cells of D and there exists a cellular map φ : D → X

such that φ|∂D = C (for more details see [LS01, Chapter V]). According to Van Kampen’s

lemma [LS01, pp. 150–151], a cell complex X is simply connected if and only if for every cycle

C of X, one can construct a singular disk diagram. A singular disk diagram with no cut vertices

(that is, its 1–skeleton is 2–connected) is called a disk diagram. A minimal (singular) disk for

C is a (singular) disk diagram D for C with a minimum number of 2–faces. This number is

called the (combinatorial) area of C and is denoted Area(C). If X is a simply connected triangle,

(respectively, square, triangle-square) complex, then for each cycle C all inner faces in a singular

disk diagram D of C are triangles (respectively, squares, triangles or squares).

As morphisms between cell complexes we always consider cellular maps, that is, maps send-

ing the k–skeleton into the k–skeleton. An isomorphism is a bijective cellular map being a

linear isomorphism (isometry) on each cell. A covering (map) of a cell complex X is a cellular

surjection p : X̃ → X such that p|St(ṽ,X̃)
: St(ṽ, X̃) → St(p(ṽ), X) is an isomorphism for every

vertex ṽ in X̃; compare [Hat02, Section 1.3]. The space X̃ is then called a covering space.

2.3. CAT(0) spaces and Gromov hyperbolicity. Let (X, d) be a metric space. A geodesic

segment joining two points x and y from X is an isometric embedding ρ : R1 ⊃ [0, ℓ] → X such

that ρ(0) = x, ρ(ℓ) = y, and d(ρ(t), ρ(t′)) = |t− t′| for any t, t′ ∈ [0, ℓ] (d(x, y) = ℓ is the length

of the geodesic ρ). A metric space (X, d) is geodesic if every pair of points in X can be joined

by a geodesic segment. Every graph G = (V,E) equipped with its standard distance dG can

be transformed into a geodesic space (XG, d) by replacing every edge e = uv by a segment

γuv = [u, v] of length 1; the segments may intersect only at common ends. Then (V, dG) is

isometrically embedded in a natural way into (XG, d).

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X

(the vertices of ∆) and a geodesic between each pair of vertices (the edges of ∆). A comparison

triangle for ∆(x1, x2, x3) is a triangle ∆(x′1, x
′
2, x

′
3) in the Euclidean plane E2 = (R2, d2) such

that d2(x
′
i, x

′
j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic metric space (X, d) is defined to be a

CAT(0) space [Gro87] if all geodesic triangles ∆(x1, x2, x3) of X satisfy the comparison axiom

of Cartan–Alexandrov–Toponogov:

If y is a point on the side of ∆(x1, x2, x3) with vertices x1 and x2 and y′ is the unique point on

the line segment [x′1, x
′
2] of the comparison triangle ∆(x′1, x

′
2, x

′
3) such that d2(x

′
i, y

′) = d(xi, y)

for i = 1, 2, then d(x3, y) ≤ d2(x
′
3, y

′).

The CAT(0) property is also equivalent to the convexity of the function f : [0, 1] → X given by

f(t) = d(α(tℓα), β(tℓβ)), for any two geodesics α and β of respective lengths ℓα and ℓβ (which

is further equivalent to the convexity of the neighborhoods of convex sets). This implies that

CAT(0) spaces are contractible. Any two points of a CAT(0) space can be joined by a unique

geodesic. See the book [BH99] for a detailed account on CAT(0) spaces and their isometry

groups.

A cube complex X is CAT(0) if X endowed with the intrinsic ℓ2 metric is a CAT(0) metric

space. Gromov [Gro87] characterized CAT(0) cube complexes in a very nice combinatorial way:
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those are precisely the simply connected cube complexes such that the following cube condition

holds: if three (k+2)-dimensional cubes intersect in a k-dimensional cube and pairwise intersect

in (k + 1)-dimensional cubes, then they are all three contained in a (k + 3)-dimensional cube.

The cube condition is equivalent to the flagness condition that states that the geometric link of

any vertex is a flag simplicial complex. The 1-skeletons of CAT(0) cube complexes are precisely

the median graphs [Che00,Rol98].

A metric space (X, d) is δ–hyperbolic [Gro87,BH99] if for any four points u, v, x, y of X, the

two larger of the three distance sums d(u, v)+d(x, y), d(u, x)+d(v, y), d(u, y)+d(v, x) differ by

at most 2δ ≥ 0. A graph G = (V,E) is δ–hyperbolic if (V, dG) is δ–hyperbolic. A metric space

or a graph has bounded hyperbolicity if it is δ–hyperbolic for some finite δ. For geodesic metric

spaces and graphs, δ–hyperbolicity can be defined (up to the value of the hyperbolicity constant

δ) as spaces in which all geodesic triangles are δ–slim. Recall that a geodesic triangle ∆(x, y, z)

is called δ–slim if for any point u on the side [x, y] the distance from u to [x, z] ∪ [z, y] is at

most δ. Equivalently, δ–hyperbolicity can be defined via the linear isoperimetric inequality: all

cycles in a δ–hyperbolic graph or geodesic metric space admit a disk diagram of linear area and

vice-versa all graphs or geodesic metric spaces in which all cycles admit disk diagrams of linear

area are hyperbolic.

2.4. Group actions. For a set X and a group Γ, a Γ–action on X is a group homomorphism

Γ → Aut(X). If X is equipped with an additional structure then Aut(X) refers to the automor-

phisms group of this structure. We say then that Γ acts on X by automorphisms, and x 7→ gx

denotes the automorphism being the image of g. In the current paper X will be a graph or a cell

complex, and thus Aut(X) will denote graph automorphisms or cellular automorphisms. Let Γ

be a group acting by automorphisms on a cell complex X. Recall that the action is cocompact

if the orbit space X/G is compact. The action of Γ on a locally finite cell complex X is proper

if stabilizers of cells are finite. Finally, the action is geometric (or Γ acts geometrically on X) if

it is cocompact and proper. If a group Γ acts geometrically on a graph G or on a cell complex

X, then G and X are locally finite. This explains why in this paper we consider locally finite

graphs, complexes, and hypergraphs.

2.5. Hypergraphs (set families). In this subsection, we recall the main notions in hyper-

graph theory. We closely follow the book by Berge [Ber89] on hypergraphs (with the single

difference, that our hypergraphs may be infinite). A hypergraph is a pair H = (V, E), where V is

a set and E = {Hi}i∈I is a family of non-empty subsets of V ; V is called the set of vertices and

E is called the set of edges (or hyperedges) of H. Abstract simplicial complexes are examples of

hypergraphs. The degree of a vertex v is the number of edges of H containing v. A hypergraph

H is called edge-finite if all edges of H are finite and vertex-finite if the degrees of all vertices are

finite. H is called a locally finite hypergraph if H is edge-finite and vertex-finite. A hypergraph

H is simple if no edge of H is contained in another edge of H. The simplification of a hypergraph

H = (V, E) is the hypergraph H̆ = (V, Ĕ) whose edges are the maximal by inclusion edges of H.

The dual of a hypergraph H = (V, E) is the hypergraph H∗ = (V ∗, E∗) whose vertex-set V ∗ is

in bijection with the edge-set E of H and whose edge-set E∗ is in bijection with the vertex-set V ,

namely E∗ consists of all Sv = {Hj ∈ E : v ∈ Hj}, v ∈ V . By definition, (H∗)∗ = H. The dual of

a locally finite hypergraph is also locally finite. The hereditary closure Ĥ of a hypergraph H is

the hypergraph whose edge set is the set of all non-empty subsets F ⊂ V such that F ⊆ Hi for

at least one index i. Clearly, the hereditary closure Ĥ of a hypergraph H is a simplicial complex

and Ĥ =
̂̆H. The 2-section [H]2 of a hypergraph H is the graph having V as its vertex-set

and two vertices are adjacent in [H]2 if they belong to a common edge of H. By definition, the

2-section [H]2 is exactly the 1-skeleton Ĥ(1) of the simplicial complex Ĥ and the 2-section of
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H coincides with the 2-section of its simplification H̆. The line graph L(H) of H has E as its

vertex-set and Hi and Hj are adjacent in L(H) if and only if Hi ∩Hj ̸= ∅. By definition (see

also [Ber89, Proposition 1, p. 32]), the line graph L(H) of H is precisely the 2-section [H∗]2 of its

dual H∗. A cycle of length k of a hypergraph H is a sequence (v1, H1, v2, H2, v3, . . . ,Hk, v1) such

that H1, . . . ,Hk are distinct edges of H, v1, v2, . . . , vk are distinct vertices of V , vi, vi+1 ∈ Hi,

i = 1, . . . , k − 1, and vk, v1 ∈ Hk. A copair hypergraph is a hypergraph H in which V \Hi ∈ E
for each edge Hi ∈ E .

The nerve complex of a hypergraph H = (V, E) is the simplicial complex N(H) having E as

its vertex-set such that a finite subset σ ⊆ E is a simplex of N(H) if
⋂

Hi∈σ Hi ̸= ∅ (see [Bjö95]).

The nerve graph NG(H) of a hypergraph H is the 1–skeleton of the nerve complex N(H). The

following result is straightforward:

Lemma 2.4. For any hypergraph H, N(H) = Ĥ∗ and NG(H) = [H∗]2 = (Ĥ∗)(1).

A family of subsets F of a set V satisfies the (finite) Helly property if for any (finite) subfamily

F ′ of F , the intersection
⋂
F ′ =

⋂
{F : F ∈ F ′} is non-empty if and only if F ∩ F ′ ̸= ∅ for

any pair F, F ′ ∈ F ′. A hypergraph H = (V, E) is called (finitely) Helly if its family of edges E
satisfies the (finite) Helly property. We continue with a characterization of Helly hypergraphs.

In the finite case this result is due to Berge and Duchet [Ber89,BD75]. The case of edge-finite

hypergraphs follows from a more general result [BCE10, Proposition 1].

Proposition 2.5 ([Ber89,BD75]). An edge-finite hypergraph H is Helly if and only if for any

triplet x, y, z of vertices the intersection of all edges containing at least two of x, y, z is non-

empty.

We call the condition in Proposition 2.5 the Berge-Duchet condition.

A hypergraph H = (V, E) is conformal if all maximal cliques of the 2-section [H]2 are edges

of H. In other words, H is conformal if and only if its hereditary closure Ĥ is a flag simplicial

complex. The following result establishes the duality between conformal and Helly hypergraphs:

Proposition 2.6 ([Ber89, p. 30]). A hypergraph H is conformal if and only if its dual H∗ is

Helly.

Analogously to the Helly property, the conformality can be characterized in a local way, via

the following Gilmore condition (the proof follows from Propositions 2.5 and 2.6):

Proposition 2.7 ([Ber89, p. 31]). A vertex-finite hypergraph H is conformal if and only if for

any three edges H1, H2, H3 of H there exists an edge H of H containing the set (H1 ∩ H2) ∪
(H1 ∩H3) ∪ (H2 ∩H3).

A hypergraph H is balanced [Ber89] if any cycle of H of odd length has an edge containing

three vertices of the cycle. Balanced hypergraphs represent an important class of hypergraphs

with strong combinatorial properties (the König property) [Ber89, BLV70]. It was noticed

in [Ber89, p. 179] that the finite balanced hypergraphs are at the same time Helly and conformal;

the duals of balanced hypergraphs are also balanced. In fact, those three fundamental properties

still hold for a larger class of hypergraphs: we call a hypergraph H triangle-free if any cycle

of H of length three has an edge containing the three vertices of the cycle, that is, for any

three distinct vertices x, y, z and any three distinct edges H1, H2, H3 such that x, y ∈ H1, y, z ∈
H2, z, x ∈ H3, one of the edges H1, H2, H3 contains the three vertices x, y, z. Equivalently,

a hypergraph H is triangle-free if and only if it satisfies a stronger version of the Gilmore

condition: for any three edges H1, H2, H3 of H there exists an edge Hi in {H1, H2, H3} that

contains (H1 ∩H2)∪ (H1 ∩H3)∪ (H2 ∩H3). Since the dual of a triangle-free hypergraph is also

triangle-free, the following holds:
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Proposition 2.8 ([BLV70,Ber89]). Locally finite triangle-free hypergraphs are conformal and

Helly.

Another important class of Helly hypergraphs, extending the class of balanced hypergraphs is

the class of normal hypergraphs. A hypergraph H is called normal [Ber89,Lov79] if it satisfied

the Helly property and its line graph L(H) is perfect (i.e., by the Strong Perfect Graph Theorem,

L(H) does not contain odd cycles of length > 3 and their complements as induced subgraphs).

With any graph G = (V,E) one can associate several hypergraphs, depending on the studied

problem and of the studied class of graphs. In the context of our current work, we consider

the following combinatorial and geometric hypergraphs: (1) the clique-hypergraph X (G) of all

maximal cliques of G, (2) the ball-hypergraph B(G) of all balls of G, and (3) the r-ball-hypergraph

Br(G) of all balls of a given radius r ofG. The ball-hypergraph can be considered for an arbitrary

metric space (X, d). The clique-hypergraph X (G) of any graph G is simple and conformal and

its hereditary closure X̂ (G) coincides with the clique complex X(G) of G. In the case of median

graphs G (and CAT(0) cube complexes), together with the cube complex (cube hypergraph) an

important role is played by the copair hypergraph H(G) of all halfspaces of G (convex sets with

convex complements). Since convex sets of median graphs are gated [Isb80, Theorem 1.22] and

gated sets satisfy the finite Helly property, the hypergraph H(G) is finitely Helly. For a graph

G we will also consider the nerve complex N(X (G)) of the clique-hypergraph X (G) as well as

the nerve complex N(Br(G)) of the r-ball-hypergraph Br(G) for r ∈ N.

2.6. Abstract cell complexes. An abstract cell complex X (also called convexity space or

closure space) is a locally finite hypergraph H(X) = (V, E) with ∅ ∈ E and whose edges are

closed under intersections, i.e., if Hi, i ∈ I are edges H, then ∩i∈IHi is also an edge of H(X).

We call the edges of H(X) the cells of X and H(X) the cell-hypergraph of X. The cells of X

contained in a given cell C are called the faces of C. The faces of a cell C ordered by inclusion

define the face-lattice F (C) of C. C ′ ⊊ C is a facet of C if C ′ is a maximal by inclusion proper

face of C; in other words, C ′ is a coatom of the face-lattice F (C). The dimension dim(C)

of a cell C is the length of the longest chain in the face-lattice of C. Locally finite abstract

simplicial complexes are examples of abstract cell complexes. In fact, simplicial complexes are

the cell complexes in which the face-lattices are Boolean lattices. The dimension of a simplex

with d + 1 vertices is d. Cube complexes also lead to abstract cell complexes: it suffices to

consider the vertex-set of each cube as an edge of the cell-hypergraph; the dimension of a cube

is the standard dimension.

Abstract cell complexes also arise from swm-graphs and hypercellular graphs. The cells of an

swm-graph are its Boolean-gated sets and the dimension of a Boolean-gated set is its diameter.

Observe that in a swm-graph, any maximal clique is boolean-gated. In the corresponding

abstract cell complex, each such clique is a 1-dimensional cell whose 0-cells are the vertices

of the clique. It was shown in [CCHO20] that one can also associate a contractible geometric

cell complex to any swm-graph G, in which the cells are the orthoscheme complexes of the

Boolean-gated subgraphs of G. Note that the geometric dimension of this geometric complex is

larger than the dimension of the abstract cell complex. The cells of a hypercellular graph G are

the gated subgraphs of G which are the convex hulls of the isometric cycles of G. It was shown

in [CKM20] that those cells are Cartesian products of edges and even cycles. It was established

in [CKM20] that the geometric realization of the abstract cell complex of a hypercellular graph is

contractible. The dimension of such a cell is the number of edge-factors plus twice the number of

cycle-factors. Notice that swm-graphs and hypercellular graphs represent two far-reaching and

quite different generalizations of median graphs. Swm-graphs do not longer have hyperplanes

(i.e., classes of parallel edges) and halfspaces, and their cells (Boolean-gated subgraphs) have

a complex combinatorial structure; nevertheless, they are still weakly modular and admit a
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local-to-global characterization. On the other hand, hypercellular graphs are no longer weakly

modular but they still admit hyperplanes (whose carriers are gated) and halfspaces, and each

triplet of vertices admit a unique median cell.

We say that an abstract cell complex X satisfies the 3-cell condition if for any three cells

C1, C2, C3 such that

• C1 ∩ C2 is a facet of C1 and C2;

• C1 ∩ C3 is a facet of C1 and C3;

• C2 ∩ C3 is a facet of C2 and C3;

• C1 ∩ C2 ∩ C3 is a facet of C1 ∩ C2, C1 ∩ C3, and C2 ∩ C3;

then the union C1∪C2∪C3 is contained in a common cell C of X. For cube complexes, observe

that the 3-cell condition is equivalent to the cube condition. Simplicial complexes do not always

satisfy the 3-cell condition, but we show in Lemma 2.11 that flag simplicial complexes do. For

hypercellular complexes, the 3-cell condition has been established in [CKM20, Theorem B]. We

establish that swm-complexes satisfy the 3-cell condition in Lemma 2.16.

We say that an abstract cell complex X satisfies the graded monotonicity condition (GMC) if

for any cell C of X and any two intersecting faces A,B of C with B ̸⊆ A, there exists a face D

of C such that A is a facet of D with dim(D) = dim(A)+ 1 and dim(D∩B) = dim(A∩B)+ 1.

Note that (GMC) is only about intersecting subcells of a cell and in particular, it does not imply

that the face-lattice F (C) of a cell C is graded (i.e., that all maximal chains in F (C) have the

same length). We establish that simplicial complexes, cube complexes, hypercellular complexes,

and swm complexes satisfy the graded monotonicity condition in Lemmas 2.12, 2.13, and 2.17.

Since the cells of X are finite, we can apply iteratively the graded monotonicity condition to

get the following lemma:

Lemma 2.9. If an abstract cell complex X satisfies the graded monotonicity condition, then

for any cells A,B,C such that A ∩ B ̸= ∅, A ∪ B ⊆ C, and B ̸⊆ A, there exists a face E of C

such that A ∪B ⊆ E with dim(E)− dim(A) = dim(E ∩B)− dim(A ∩B).

We say that an abstract cell complex satisfies the Helly property for three cells if any three

pairwise intersecting cells have a non-empty intersection.

Proposition 2.10. If an abstract cell complex X satisfies the 3-cell condition, the graded mono-

tonicity condition, and the Helly property for three cells, then its cell-hypergraph H(X) is con-

formal.

Proof. We show that H(X) satisfies the Gilmore condition. Let C1, C2, C3 be three arbitrary

cells of X. We proceed by induction on α(C1, C2, C3) := dim(C1) + dim(C2) + dim(C3) −
dim(C1 ∩ C2)− dim(C1 ∩ C3)− dim(C2 ∩ C3) and then on β(C1, C2, C3) := |C1|+ |C2|+ |C3|.

If any of the pairwise intersections C1∩C2, C1∩C3, C2∩C3 is empty, then (C1∩C2)∪(C1∩C3)∪
(C2 ∩ C3) is contained in one of the three cells C1, C2, C3. Thus, we suppose that the pairwise

intersections are non-empty and, by the Helly property for three cells, we can assume that

C1∩C2∩C3 ̸= ∅. If C1∩C2∩C3 is not a proper face of C1∩C2, i.e., if C1∩C2∩C3 = C1∩C2, then

C1∩C2 ⊆ C3 and (C1∩C2)∪(C1∩C3)∪(C2∩C3) ⊆ C3. Thus, we can assume that C1∩C2∩C3

is a proper face of C1 ∩ C2, and for similar reasons of C1 ∩ C3 and of C2 ∩ C3. If there exists a

proper face D1 of C1 such that (C1 ∩C2)∪ (C1 ∩C3) ⊆ D1, then α(D1, C2, C3) < α(C1, C2, C3)

and by the induction hypothesis applied to D1, C2, C3, we are done. Thus we can assume that

there is no proper face Di of Ci such that (Ci∩Cj)∪ (Ci∩Ck) ⊆ Di for any {i, j, k} = {1, 2, 3}.
Suppose that C1 ∩C2 is a facet of C1 and C2, C1 ∩C3 is a facet of C1 and C3, C2 ∩C3 is a facet

of C2 and C3. By GMC applied to the faces C1 ∩ C2 and C1 ∩ C3 of C1, there exists a face D1

of C1 containing strictly C1 ∩ C2 such that C1 ∩ C2 ∩ C3 is a facet of D1 ∩ C3. Since C1 ∩ C2
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is a facet of C1, necessarily, D1 = C1. Consequently, C1 ∩ C2 ∩ C3 is a facet of C1 ∩ C3 and

for similar reasons of C1 ∩ C2 and C2 ∩ C3. Then the Gilmore property follows from the 3-cell

condition applied to C1, C2, and C3. Therefore, without loss of generality, we can suppose that

C1 ∩ C2 is not a facet of C1.

By GMC applied to the faces C1 ∩ C2 and C1 ∩ C3 of C1, there exists a face D1 of C1 such

that C1 ∩ C2 ⊊ D1, dim(D1) = dim(C1 ∩ C2) + 1, and dim(D1 ∩ C3) = dim(C1 ∩ C2 ∩ C3) + 1.

We assert that α(D1, C2, C3) = α(C1, C2, C3). Indeed, first observe that

α(C1, C2, C3)− α(D1, C2, C3) = dim(C1)− dim(D1)− dim(C1 ∩ C2) + dim(D1 ∩ C2)

− dim(C1 ∩ C3) + dim(D1 ∩ C3).

Note that D1 ∩ C2 = C1 ∩ C2. Moreover, by applying Lemma 2.9 to D1, C1 ∩ C3, and C1, we

can find a face E1 of C1 such that D1 ∪ (C1 ∩ C3) ⊆ E1 and dim(E1) − dim(D1) = dim(E1 ∩
C3) − dim(D1 ∩ C3). Since E1 cannot be a proper face of C1, we conclude that E1 = C1, and

thus dim(C1)−dim(D1) = dim(C1∩C3)−dim(D1∩C3). Consequently, we get α(C1, C2, C3) =

α(D1, C2, C3), establishing our assertion. Since C1 ∩ C2 is a facet of D1 but not of C1, D1

is a proper face of C1 and thus β(D1, C2, C3) < β(C1, C2, C3). Therefore we can apply the

induction hypothesis to D1, C2, and C3, and conclude that there exists a cell D′
2 such that

(D1 ∩ C2) ∪ (D1 ∩ C3) ∪ (C2 ∩ C3) ⊆ D′
2.

We assert that C2 ⊊ D′
2. Indeed, C2∩D′

2 is a face of C2 containing (C1∩C2)∪ (C2∩C3) and

since it cannot be a proper face of C2, we have C2∩D′
2 = C2. Since C1∩C2∩C3 ⊊ D1∩C3 ⊆ D′

2,

the inclusion of C2 in D′
2 is strict. We apply GMC to C2, D1 ∩ C3, and D′

2 to get a face D2 of

D′
2 such that C2 ⊊ D2, dim(D2) = dim(C2) + 1, dim(D2 ∩D1 ∩ C3) = dim(C2 ∩D1 ∩ C3) + 1.

Observe that

α(C1, C2, C3)− α(C1, D2, C3) = dim(C2)− dim(D2)− dim(C1 ∩ C2) + dim(C1 ∩D2)

− dim(C2 ∩ C3) + dim(D2 ∩ C3).

Since C1 ∩C2 ⊊ C1 ∩D2 and C2 ∩C3 ⊊ D2 ∩C3, we have dim(C1 ∩D2)− dim(C1 ∩C2) ≥ 1

and dim(D2 ∩ C3) − dim(C2 ∩ C3) ≥ 1. Since dim(D2) − dim(C2) = 1, we get α(C1, C2, C3) −
α(C1, D2, C3) ≥ 1. Therefore, we can apply the induction hypothesis to C1, D2, C3 and find a

cell C containing (C1 ∩D2) ∪ (C1 ∩ C3) ∪ (D2 ∩ C3). Since D2 contains C2, we conclude that

(C1 ∩ C2) ∪ (C1 ∩ C3) ∪ (C2 ∩ C3) ⊆ C, and we are done. □

We now show that flag simplicial complexes satisfy the 3-cell condition.

Lemma 2.11. Flag simplicial complexes satisfy the 3-cell condition.

Proof. Consider a flag simplicial complex X and any three simplices C1, C2, C3 such that C1∩C2

(respectively, C1 ∩ C3, C2 ∩ C3) is a facet of C1 and C2 (respectively, C1 and C3, C2 and C3)

and C1 ∩ C2 ∩ C3 is a facet of C1 ∩ C2, C1 ∩ C3, C2 ∩ C3. If there exists v ∈ C1 \ (C2 ∪ C3),

then C1 ∩ C2 = C1 ∩ C3 = C1 \ {v} and C1 ∩ C2 ∩ C3 is not a facet of C1 ∩ C2 or C1 ∩ C3.

Consequently, C1 = (C1 ∩ C2) ∪ (C1 ∩ C3) and similarly, C2 = (C1 ∩ C2) ∪ (C2 ∩ C3) and

C3 = (C1 ∩ C3) ∪ (C2 ∩ C3). Therefore, any two vertices of C1 ∪ C2 ∪ C3 both belong to a

common Ci, i ∈ {1, 2, 3}. Since X is a flag simplicial complex, C1 ∪ C2 ∪ C3 is a simplex of X,

establishing the 3-cell condition for X. □

We now establish that simplicial complexes, cube complexes, and hypercellular complexes

satisfy the graded monotonicity condition.

Lemma 2.12. Simplicial complexes and cube complexes satisfy the graded monotonicity condi-

tion.
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Proof. We need to show that for any cell C of X, if A,B are two intersecting faces of C with

B ̸⊆ A, then there exists a face D of C such that A is a facet of D with dim(D) = dim(A) + 1

and dim(D ∩ B) = dim(A ∩ B) + 1. If X is a simplicial complex, as D it suffices to take

A ∪ {x} for any x ∈ B \ A. If X is a cube complex, then as D we can take the smallest face

of C containing A ∪ {x}, where x is a vertex of B \ A adjacent to a vertex of A ∩ B (D can

be viewed as the gated hull of A ∪ {x}). Such x exists because A and B are convex and thus

connected. Indeed, from the definition of D it follows that A is a facet of D and A ∩ B is a

facet of D ∩B. □

Lemma 2.13. Hypercellular complexes satisfy the graded monotonicity condition.

Proof. Consider a cell C in a hypercellular complex X. Then C, viewed as a graph, is the

Cartesian product C = F1□ · · ·□Fk of even cycles and edges. Since each cell C ′ of C is a gated

subgraph of C, C ′ is a Cartesian product F ′
1□ · · ·□F ′

k, where each F ′
i is a gated subgraph of

Fi, i = 1, . . . , k. Since each proper gated subgraph of an even cycle is a vertex or an edge,

each F ′
i either coincides with Fi or is a vertex or an edge of Fi. The dimension dim(C ′) of

C ′ = F ′
1□ · · ·□F ′

k is the number of edge-factors F ′
i plus twice the number of cycle-factors F ′

i .

Let A = F ′
1□ · · ·□F ′

k and B = F ′′
1 □ · · ·□F ′′

k , where F ′
i and F ′′

i are gated subgraphs of

Fi. Notice also that A ∩ B = F ′′′
1 □ · · ·□F ′′′

k , where F ′′′
i = F ′

i ∩ F ′′
i for i = 1, . . . , k. As for

cube complexes, let x be a vertex of B \ A adjacent to a vertex y of A ∩ B and suppose

that the edge xy of C arises from the factor Fj . Let D be the gated hull of A ∪ {x}. Then

one can see that D = F ′
1□ · · ·□F+

j □ · · ·□F ′
k, where F+

j is the edge of Fj corresponding to

the edge xy if F ′
j is a single vertex and F+

j = Fj if F ′
j is an edge. One can also see that

D ∩ B = F ′′′
1 □ · · ·□F+

j □ · · ·□F ′′′
k . Therefore, A is a facet of D and A ∩ B is a facet of D ∩ B.

This establishes that hypercellular complexes satisfy the graded monotonicity condition. □

We now establish that swm-complexes satisfy the 3-cell condition and the graded mono-

tonicity condition. Recall that in swm-complexes the cells are the Boolean-gated sets of the

corresponding swm-graphs and that they induce dual polar graphs. We first establish some

useful properties satisfied by the cells of swm-complexes.

Lemma 2.14. For any cell A of an swm-graph G and any x ∈ A, there exists y ∈ A such that

A = ⟨⟨x, y⟩⟩.

Proof. Since A is a cell of G, A is a gated set inducing a dual polar subgraph of G. By [CCHO20,

Lemma 5.12], for any x, y ∈ A, ⟨⟨x, y⟩⟩ = A if and only if d(x, y) = diam(A), where diam(A) is

the diameter of A.

Given a vertex x ∈ A, we choose x′, y′ ∈ A such that d(x′, y′) = diam(A) and d(x, x′) is

minimized. If x = x′, we are done by [CCHO20, Lemma 5.12]. Suppose now that x ̸= x′.

Pick a neighbor u of x′ in I(x′, x). By our choice of x′ and y′ and since d(x, u) < d(x, x′), we

must have d(u, y′) = d(x′, y′)− 1, i.e., u ∈ I(x′, y′). But then, by the axiom (A5) of dual polar

graphs, there exists v ∼ y′ such that d(u, v) = d(x′, y′), contradicting our choice of x′, y′ since

d(u, x) < d(x, x′). □

Lemma 2.15. Consider two cells A,B of an swm-graph G such that B ⊆ A and any two

vertices x ∈ B and y ∈ A. If A = ⟨⟨x, y⟩⟩, then B = ⟨⟨x, y∗⟩⟩ where y∗ is the gate of y on B.

Proof. Let S denotes the set of all maximal cliques of the gated dual polar subgraph A of G.

Since dual polar graphs are K−
4 –free, |K ∩K ′| ≤ 1 for all K,K ′ ∈ S. For a vertex u, let S(u)

denote the set of all maximal cliques of A containing u. For two vertices u, v of A, let S(u, v)
denote the set of cliques K of S(u) meeting I(u, v) \ {u}. Note that S(u, u) = ∅. The gated

hull ⟨⟨
⋃

K∈S(u,v)K⟩⟩ will be denoted by ⟨⟨S(u, v)⟩⟩. From [CCHO20, Lemmas 5.10 & 5.11], we
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know that ⟨⟨u, v⟩⟩ = ⟨⟨S(u, v)⟩⟩ = {z ∈ A : S(u, z) ⊆ S(u, v)} induces a dual polar graph of

diameter d(u, v).

Since B is gated and since x, y∗ ∈ B, we have ⟨⟨x, y∗⟩⟩ ⊆ B. In order to establish the reverse

inclusion, we show that for any z ∈ B, S(x, z) ⊆ S(x, y∗). Since x, z ∈ B, B is gated, and⋃
K∈S(x,z)K ⊆ ⟨⟨S(x, z)⟩⟩ = ⟨⟨x, z⟩⟩ ⊆ B, any maximal clique K ∈ S(x, z) is contained in B.

Pick any clique K ∈ S(x, z). Since z ∈ A = ⟨⟨x, y⟩⟩, we have K ∈ S(x, z) ⊆ S(x, y). Thus

there exists a neighbor t of x in K ∩ I(x, y). Since t ∈ K ⊆ B and since y∗ is the gate of y

in B, we have y∗ ∈ I(t, y). Since t ∈ I(x, y), we thus have t ∈ I(x, y∗), yielding K ∈ S(x, y∗).
Consequently, S(x, z) ⊆ S(x, y∗) and thus B = ⟨⟨x, y∗⟩⟩. □

Lemma 2.16. Swm-complexes satisfy the 3-cell condition.

Proof. Consider three cells C1, C2, C3 such that C1∩C2 is a facet of C1 and C2, C1∩C3 is a facet

of C1 and C3, C2∩C3 is a facet of C3, and, finally, C1∩C2∩C3 is a facet of C1∩C2, C1∩C3, C2∩C3.

This implies that dim(C1) = dim(C2) = dim(C3) = dim(C1 ∩ C2) + 1 = dim(C1 ∩ C3) + 1 =

dim(C2 ∩ C3) + 1 = dim(C1 ∩ C2 ∩ C3) + 2. Let k = dim(C1 ∩ C2).

Since cells of swm-complexes are gated, they satisfy the Helly property and there exists

z ∈ C1 ∩ C2 ∩ C3. By Lemma 2.14, there exists u ∈ C1 such that C1 = ⟨⟨u, z⟩⟩, i.e., such that

d(u, z) = k+1. Since C1∩C2 and C1∩C3 are Boolean-gated sets of diameter k, u /∈ C2∪C3. Let

u2 and u3 be the gates of u in C2 and C3, respectively. By Lemma 2.15, C1∩C2 = ⟨⟨z, u2⟩⟩ and
C1 ∩ C3 = ⟨⟨z, u3⟩⟩. Consequently, d(z, u2) = d(z, u3) = k and u ∼ u2, u3. Since C1 ∩ C2 ∩ C3

is a facet of C1 ∩ C2 and C1 ∩ C3, necessarily u2 /∈ C3, and u3 /∈ C2, and thus u2 ̸= u3. By the

quadrangle condition, there exists v ∼ u2, u3 with d(z, v) = k−1. Since C1, C2 and C3 are gated

and thus convex, v ∈ C1∩C2∩C3. By Lemma 2.14, there exists w ∈ C2∩C3 such that ⟨⟨v, w⟩⟩ =
C2∩C3 and d(v, w) = k. Since u2 /∈ C3, u2 /∈ ⟨⟨v, w⟩⟩ = C2∩C3 and since v ∼ u2, v is the gate of

u2 on C2∩C3. Consequently, d(w, u2) = d(w, v)+1 = k+1 and similarly d(w, u3) = k+1. Since

d(w, u2) = d(w, u3) = k + 1, ⟨⟨w, u2⟩⟩ = C2 and ⟨⟨w, u3⟩⟩ = C3 by [CCHO20, Lemma 5.12].

Consequently, ⟨⟨w, u2⟩⟩ and ⟨⟨w, u3⟩⟩ are Boolean-gated sets of G. Since C2 is gated, u /∈ C2,

u2 ∈ C2 and u ∼ u2, we get that d(w, u) = k+2. By [CCHO20, Proposition 6.5 & Lemma 6.6],

⟨⟨w, u⟩⟩ is thus a Boolean-gated set of G of diameter k + 2.

Since w, u2 ∈ I(w, u) ⊆ ⟨⟨w, u⟩⟩, we have C2 = ⟨⟨w, u2⟩⟩ ⊆ ⟨⟨w, u⟩⟩ and similarly,

C3 ⊆ ⟨⟨w, u⟩⟩. Since z ∈ C2 ⊆ ⟨⟨w, u⟩⟩ and since C1 = ⟨⟨u, z⟩⟩, we also have C1 ⊆ ⟨⟨w, u⟩⟩.
Consequently, ⟨⟨w, u⟩⟩ is a cell of dimension k + 2 containing C1 ∪ C2 ∪ C3. □

Lemma 2.17. Swm-complexes satisfy the graded monotonicity condition.

Proof. Consider two intersecting cells A,B that are faces of a cell C such that B ̸⊆ A. As in case

of cube complexes, pick a vertex x ∈ B\A that is adjacent to a vertex y ∈ A∩B. By Lemma 2.14,

there exists y′ ∈ A such that ⟨⟨y, y′⟩⟩ = A. Let y′′ be the gate of y′ on B (and on A∩B) and note

that by Lemma 2.15, ⟨⟨y, y′′⟩⟩ = A ∩B. Let D′ = ⟨⟨x, y′⟩⟩ and D′′ = ⟨⟨x, y′′⟩⟩. By Lemma 2.15

applied to D′ and D′ ∩ B, we have D′′ = D′ ∩ B. By [CCHO20, Lemma 5.11], D′ = ⟨⟨x, y′⟩⟩
and D′′ = ⟨⟨x, y′′⟩⟩ are dual polar graphs of dimensions d(x, y′) = d(y, y′)+ 1 = dim(A)+ 1 and

d(x, y′′) = d(y, y′′)+1 = dim(A∩B)+1, respectively. This establishes the graded monotonicity

condition for swm-complexes. □

2.7. Helly graphs and Helly groups. We continue with the definitions of the main objects

studied in this article: Helly and clique-Helly graphs, Helly and clique-Helly complexes, and

Helly groups.

Definition 2.18. A graph G is a Helly graph if the ball-hypergraph B(G) is Helly. A graph G

is a 1–Helly graph if the 1-ball-hypergraph B1(G) is Helly. A clique-Helly graph is a graph G in

which the hypergraph X (G) of maximal cliques is Helly.
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Observe that a Helly graph is 1–Helly and that a 1–Helly graph is clique-Helly but that the

reverse implications do not hold: a cycle of length at least 7 is 1–Helly but not Helly and a cycle

of length 4 is clique-Helly but is not 1–Helly. Notice also that Helly graphs are pseudo-modular

and thus weakly-modular.

For arbitrary graphs, the following compactness result for the Helly property has been proved

by Polat and Pouzet:

Proposition 2.19. [Pol01] A graph G not containing infinite cliques is Helly if and only if G

is finitely Helly.

Definition 2.20. A Helly complex is the clique complex of some Helly graph. A clique-Helly

complex is the clique complex of some clique-Helly graph.

Remark 2.21. If in Definitions 2.18 and 2.20 instead of a Helly property we consider the

corresponding finite Helly property, then the graphs satisfying it are called finitely Helly. For

example, finitely clique-Helly graphs are graphs G in which the hypergraph X (G) has the finite

Helly property. For locally finite graphs, the finite Helly properties for balls and cliques implies

the Helly property, thus finitely Helly (respectively, clique-Helly) graphs and complexes are

Helly (respectively, clique-Helly). By Proposition 2.19, the same implication holds for arbitrary

graphs not containing infinite cliques.

We continue with the definition of Helly groups:

Definition 2.22. A group Γ is Helly if it acts geometrically on a Helly complex X.

If a group Γ acts geometrically on a Helly complex X, then X is locally finite, moreover X

has uniformly bounded degrees.

In case of the clique-Helly property, the Berge-Duchet condition in Proposition 2.5 can be

specified in the following way:

Proposition 2.23 ([Dra89,Szw97]). A graph G with finite cliques is clique-Helly if and only if

for any triangle T of G the set T ∗ of all vertices of G adjacent with at least two vertices of T

contains a vertex adjacent to all remaining vertices of T ∗.

Remark 2.24. Proposition 2.23 does not hold for graphs containing infinite cliques. For

example, consider the graph G defined as follows. First, consider an infinite clique K =

{v0, v1, v2, . . . , vk, . . .} whose vertex-set is indexed by N. For each i ∈ N, we add a vertex

ui that is adjacent to all vj such that j ≥ i. Observe that any two maximal cliques of G have

a non-empty intersection but there is no universal vertex in G. Consequently, G is not clique-

Helly. On the other hand, one can easily check that G satisfies the criterion of Proposition 2.23.

For any locally finite graph G, the clique-hypergraph X (G) is conformal and G is isomorphic

to the 2-section of X (G). Moreover, if G is clique-Helly, then X (G) is Helly. We conclude

this subsection with the following simple but useful converse result that is well-known (see e.g.

[BP91]).

Proposition 2.25. For a locally finite hypergraph H = (V, E) the following conditions are

equivalent:

(i) the 2-section [H]2 of H is a clique-Helly graph and H is conformal (i.e., each maximal

clique of [H]2 is an edge of H);

(ii) the simplification H̆ of H is conformal and Helly;

(iii) H̆ satisfies Berge-Duchet and Gilmore conditions.

In particular, the 2-section of any locally finite triangle-free hypergraph is clique-Helly.
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Proof. Since [H]2 = [H̆]2, we can suppose that H is simple. The equivalence (ii)⇔(iii) follows

from Propositions 2.5 and 2.7. If (i) holds, then H coincides with the hypergraph of maximal

cliques of [H]2, thus H is Helly. Also H is conformal as the clique-hypergraph of a graph. This

establishes (i)⇒(ii). Conversely, if (ii) holds, since H is conformal, each clique of [H]2 is included

in an edge of H. Thus the maximal cliques of [H]2 are in bijection with the edges of H. This

shows that [H]2 is clique-Helly. □

From Propositions 2.10 and 2.25 we obtain the following result:

Proposition 2.26. If X is an abstract cell complex for which the cell-hypergraph H(X) satisfies

the Helly property, the 3-cell and the graded monotonicity conditions, then the 2-section [H]2 of

H is a clique-Helly graph and each maximal clique of [H]2 is an edge of H.

2.8. Hellyfication. There is a canonical way to extend any hypergraph H = (V, E) to a confor-

mal hypergraph conf(H) = (V, E ′): E ′ consists of E and all maximal by inclusion cliques C in the

2-section [H] of H. Any conformal hypergraph H′′ extending H and having the same 2-section

[H′′] = [H] as H also contains conf(H) as a sub-hypergraph, thus conf(H) can be called the

conformal closure of H. Since the Helly property and conformality are dual to each other, any

hypergraph H = (V, E) can be extended to a Helly hypergraph Helly(H) = (V ′, E ′): for every

maximal pairwise intersecting set F of edges of H with empty intersection, add a new vertex

vF to V and to each member of F . In the thus extended hypergraph Helly(H) any two edges

intersect exactly when their traces on V intersect. Hence Helly(H) satisfies the Helly property

and we call Helly(H) the Hellyfication of H. Again, Helly(H) is contained in any hypergraph

satisfying the Helly property, extending H and having the same line graph as H. This kind of

Hellyfication approach was used in [BCE10] to Hellyfy discrete copair hypergraphs and to relate

this Hellyfication procedure with the cubulation (median hull) of the associated wall space; see

[BCE10, Proposition 3].

3. Injective spaces and injective hulls

In this section we discuss injective metric spaces and Isbell’s construction of injective hulls.

Those notions are strongly related to Helly graphs: roughly, Helly graphs and ball-Hellyfication

can be seen as discrete analogues of, respectively, (continuous) injective metric spaces and

injective hulls.

3.1. Injective spaces. Recall that a metric space (X, d) is called hyperconvex if every family

of closed balls Bri(xi) of radii ri ∈ R+ with centers xi satisfying d(xi, xj) ≤ ri + rj , has a

non-empty intersection. Rephrasing the definition, (X, d) is hyperconvex if it is Menger-convex

(that is, Br(x) ∩ Bd(x,y)−r(y) ̸= ∅, for all x, y ∈ X and r ∈ [0, d(x, y)]) and the family of

closed balls in (X, d) satisfies the Helly property. A metric space (X, d) is called integer-valued

if d(x, y) is an integer for any x, y ∈ X. An integer-valued metric space (X, d) is discretely

geodesic if for any two points x, y ∈ X with d(x, y) = n there exists a sequence of points

x0 := x, x1, x2, . . . , xn := y such that d(xi, xi+1) = 1. The set of vertices of a connected graph

equipped with a graph distance is an example of an integer-valued and discretely geodesic metric

space.

Let (Y, d′) and (X, d) be two metric spaces. For A ⊂ Y , a map f : A → X is 1-Lipschitz if

d(f(x), f(y)) ≤ d′(x, y) for all x, y ∈ A. The pair (Y,X) has the extension property if for any

A ⊂ Y , any 1-Lipschitz map f : A → X admits a 1-Lipschitz extension, i.e., a 1-Lipschitz map

f̃ : Y → X such that f̃ |A = f . A metric space (X, d) is injective if for any metric space (Y, d′),

the pair (Y,X) has the extension property.
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For Y ⊂ X, the map f : X → Y is a (nonexpansive) retraction if f is 1-Lipschitz and f(y) = y

for any y ∈ Y . A metric space (Y, d′) is an absolute retract if whenever (Y, d′) is isometrically

embedded in a metric space (X, d), there exists a retraction f from X to Y .

In 1956, Aronszajn and Panitchpakdi established the following equivalence between hyper-

convex spaces, injective spaces, and absolute retracts (in the category of metric spaces with

1-Lipschitz maps):

Theorem 3.1 ([AP56]). A metric space (X, d) is injective if and only if (X, d) is hyperconvex

if and only if (X, d) is an absolute (1-Lipschitz) retract.

3.2. Injective hulls. By a construction of Isbell [Isb64] (rediscovered twenty years later by

Dress [Dre84] and yet another ten years later by Chrobak and Larmore [CL94] in computer

science), for every metric space (X, d) there exists a smallest (wrt. inclusions) injective metric

space containing X. More precisely, an injective hull (or tight span, or injective envelope, or

hyperconvex hull) of (X, d) is a pair (e, E(X)) where e : X → E(X) is an isometric embedding

into an injective metric space E(X), and such that no injective proper subspace of E(X) contains

e(X). Two injective hulls e : X → E(X) and f : X → E′(X) are equivalent if they are related

by an isometry i : E(X) → E′(X). Below we describe Isbell’s construction in some details and

we remind few important features of injective hulls — all this will be of use in Section 6.

Theorem 3.2 ([Isb64]). Every metric space (X, d) has an injective hull and all its injective

hulls are equivalent.

We continue with the main steps in the proof of Theorem 3.2. We follow the proof of Isbell’s

paper [Isb64] but also use some notations and results from Dress [Dre84] and Lang [Lan13])

(see these three papers for a full proof). Let (X, d) be a metric space. A metric form on X is a

real-valued function f on X such that f(x) + f(y) ≥ d(x, y), for all x, y ∈ X. Denote by ∆(X)

the set of all metric forms on X, i.e., ∆(X) = {f ∈ RX : f(x)+f(y) ≥ d(x, y) for all x, y ∈ X}.
For f, g ∈ ∆(X) set f ≤ g if f(x) ≤ g(x) for each x ∈ X. A metric form is called extremal on

X (or minimal) if there is no g ∈ ∆(X) such that g ̸= f and g ≤ f . Let E(X) = {f ∈ ∆(X) :

f is extremal}.

Claim 3.3. If f ∈ E(X), then f(x) + d(x, y) ≥ f(y) for any x, y ∈ X, i.e., f is 1-Lipschitz.

Indeed, if this was false for some x, y ∈ X, then defining g to coincide with f everywhere

except at y, where g(y) = f(x) + d(x, y), we conclude that g ∈ ∆(X). Since g ≤ f , we must

conclude g = f .

The difference d∞(f, g) = supx∈X |f(x) − g(x)| between any two extremal forms f, g is

bounded; any number f(x) + g(x) is a bound. Thus (E(X), d∞) is a metric space. For a

point x ∈ X, let dx be defined by setting dx(y) = d(x, y) for any y ∈ X.

Claim 3.4. For any x ∈ X, the map dx : y 7→ d(x, y) is extremal on X and the map e : X →
E(X) sending x to dx is an isometric embedding of (X, d) into (E(X), d∞).

The map e is often called the Kuratowski embedding.

From the definition of extremal metric forms, the following useful property of E(X) easily

follows (this explains why extremal maps have been called tight extentions in [Dre84]):

Claim 3.5. If (X, d) is compact then for any f ∈ E(X) and x ∈ X, there exists y in X such

that f(x) + f(y) = d(x, y). In general metric spaces, for any x ∈ X and any ϵ > 0 there exists

y in X such that f(x) + f(y) < d(x, y) + ϵ.

The inequalities f(x) + f(y) ≥ d(x, y) and f(x) + d(x, y) ≥ f(y) together are equivalent to:

Claim 3.6. If f ∈ E(X), then f(x) = d∞(f, e(x)) for all x ∈ X.
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The following claim is the main technical tool in Isbell’s proof. Let ∆(E(X)) denote the set

of all metric forms on E(X) and let E(E(X)) denote the set of all extremal metric forms on

E(X).

Claim 3.7. If s is extremal on E(X), then se is extremal on X.

First notice that se ∈ ∆(X). To prove Claim 3.7, we suppose by way of contradiction that

se is not extremal and we obtain a contradiction with the assumption that s is extremal on

E(X). Then there exists h ∈ E(X) such that h ≤ se and h(x) < se(x) for some x ∈ X.

Define the map t : E(X) → R by setting t(f) = s(f) for all f ∈ E(X) different from e(x).

Set t(e(x)) = h(x) < s(e(x)). Since t < s, to contradict the extremality of s on E(X), it

remains to show that t ∈ ∆(E(X)), i.e., t(f) + t(g) ≥ d∞(f, g) for any f, g ∈ E(X). Since

s ∈ ∆(E(X)), from the definition of t it suffices to establish the previous inequality for any

f ∈ E(X) and g = e(x) with f ̸= e(x), i.e., to show that te(x) + t(f) ≥ d∞(f, e(x)). This

is done using the definition of e(x) and the Claims 3.3 and 3.6. Indeed, for any ϵ > 0 pick

y ∈ X such that f(x) + f(y) < d(x, y) + ϵ. Then te(x) + t(f) = te(x) + se(y)− se(y) + s(f) ≥
h(x)+h(y)−d∞(e(y), f) ≥ d(x, y)−f(y) > f(x)− ϵ = d∞(e(x), f)− ϵ. Since ϵ > 0 is arbitrary,

te(x) + t(f) ≥ d∞(f, e(x)), as required.

Claim 3.8. The metric space (E(X), d∞) is injective.

To prove Claim 3.8, in view of Theorem 3.1 it suffices to show that (E(X), d∞) is hyperconvex,

i.e., if fi ∈ E(X), ri ∈ R+, i ∈ I such that d∞(fi, fj) ≤ ri + rj , then
⋂

i∈I B(fi, ri) ̸= ∅. We may

suppose that r : E(X) → ∆(E(X)) is a metric form on E(X) extending the radius function ri,

i.e., r(fi) = ri (this extension exists by Zorn lemma). Let s ∈ E(E(X)) such that s ≤ r. By

Claim 3.7, se belongs to E(X). We assert that se belongs to any r(f)-ball centered at f ∈ E(X).

Indeed, for any x ∈ X, we have se(x) − f(x) = se(x) − d∞(f, e(x)) ≤ s(f) ≤ r(f), where the

equality follows from Claim 3.6 and the first inequality follows from Claim 3.3 (applied to E(X)

and E(E(X)) instead of X and E(X)). On the other hand, f(x)−se(x) = d∞(f, e(x))−se(x) ≤
s(f) ≤ r(f), where the equality follows from Claim 3.6 and the inequality follows by the choice

of s in ∆(E(X)). This establishes Claim 3.8.

Claim 3.9. e : X → E(X) is an injective hull and is equivalent to every injective hull of X.

Let α : E(X) → E(X) be a 1-Lipschitz map such that α(e(x)) = e(x) for any x ∈ X.

Let f ∈ E(X) and let g = α(f). By Claim 3.6, for any x ∈ X we have g(x) = d∞(g, e(x)) =

d∞(α(f), α(e(x))) ≤ d∞(f, e(x)) = f(x). Hence g ≤ f , whence α is the identity map. Therefore

E(X) cannot be retracted to any proper subset S ⊂ E(X) containing the image of X under e,

hence S is not injective.

Finally, consider an arbitrary injective hull e′ : X → E′(X) of (X, d). Let f be an isometry

from e(X) to e′(X) and let f ′ be its inverse. Since both E(X) and E′(X) are injective spaces,

there exist 1-Lipschitz maps f̃ : E(X) → E′(X) and f̃ ′ : E′(X) → E(X) extending respectively

f and f ′. Observe that the composition f̃ ′f̃ is a 1-Lipschitz map from E(X) to E(X) that is the

identity on e(X). Therefore, f̃ ′f̃ is the identity map by what has been shown above and thus f̃

is injective and f̃ ′ is surjective. Since f̃ and f̃ ′ are 1-Lipschitz and since f̃ ′f̃ is the identity on

E(X), necessarily f̃ is an isometric embedding of E(X) in E′(X). Then since E(X) is injective,

the image of f̃ contains e′(X) = f̃(e(X)) and E′(X) is an injective hull, necessarily f̃ must

be surjective and thus f̃ is an isometry. Necessarily f̃ ′ is injective as otherwise, f̃ ′f̃ cannot be

the identity map on E(X). Thus both f̃ and f̃ ′ are isometries. This concludes the proof of

Theorem 3.2.
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Dress [Dre84] defined E(X) as the set of all maps f ∈ RX such that f(x) = sup{d(x, y)−f(y) :

y ∈ X} for all x ∈ X. He established the following nice property of E(X) (which in fact

characterizes E(X), see [Dre84, Theorem 1]):

Claim 3.10. If f, g ∈ E(X), then d∞(f, g) = sup{d∞(e(x), e(y))− d∞(e(y), f)− d∞(e(x), g) :

x, y ∈ X}.

For simplicity, we will prove the Claim 3.10 for compact metric spaces, for which the supre-

mum can be replaced by maximum. The claim asserts that any pair of extremal functions

f, g lies on a geodesic between the images e(x), e(y) in E(X) of two points x, y of X. Let

x be a point of X such that d∞(f, g) = f(x) − g(x). By Claim 3.5 there exists y ∈ X

such that f(x) = d(x, y) − f(y). Hence d∞(f, g) = f(x) − g(x) = d(x, y) − f(y) − g(x) =

d∞(e(x), e(y)) − f(y) − g(x). By Claim 3.6, f(y) = d∞(f, e(y)) and g(x) = d∞(g, e(x)). Con-

sequently, d∞(f, g) = d∞(e(x), e(y))− f(y)− g(x) = d∞(e(x), e(y))− d∞(f, e(y))− d∞(g, e(x))

and we are done.

One interesting property of injective hulls is their monotonicity:

Corollary 3.11. If (X, d) is isometrically embeddable into (X ′, d′), then E(X) is isometrically

embeddable into E(X ′).

Proof. (X, d) is isometrically embeddable into (X ′, d′) and into E(X) and (X ′, d′) is isometrically

embeddable into E(X ′). Therefore there exists an isometric embedding of e(X) ⊂ E(X) into

E(X ′). Since E(X ′) is injective, this isometric embedding extends to a 1-Lipschitz map α

from E(X) to E(X ′). If d∞(α(f), α(g)) < d∞(f, g) for f, g ∈ E(X), we will deduce that

d∞(α(e(x)), α(e(y))) < d∞(e(x), e(y)) for points x, y ∈ X occurring in Claim 3.10, contrary to

the assumption that α isometrically embeds e(X). □

Dress [Dre84] described the combinatorial types of injective hulls of metric spaces on 3, 4,

and 5 points. Sturmfels and Yu [SY04] described all 339 combinatorial types of injective hulls

of 6-point metric spaces.

As shown by Dress [Dre84], the injective hull of a finite metric space is a finite polyhedral

complex. Using this, he defined the combinatorial dimension of a general metric space X as

the supremum of the dimensions of the polyhedral complexes E(Y ) for all finite subspaces Y

of X. Any f ∈ E(X) belongs to the interior of a unique cell of the polyhedral complex. Dress

characterized combinatorially the cells of E(X). Goodman and Moulton gave a presentation

of Dress’s result in the finite case [GM00]. Lang presented Dress’s result in the case of general

metric spaces and formulated conditions under which the injective hull is finite dimensional or

has a finite number of types of cells for each dimension [Lan13]. In the following, we continue

with this combinatorial description following the presentation of [Lan13,DL15].

For any f ∈ ∆(X), we consider the graph (X,A(f)) where A(f) is the set of all unordered

pairs {x, y} of points in X with the property that f(x) + f(y) = d(x, y). If X is finite (or

compact), then f belongs to E(X) if and only if (X,A(f)) has no isolated vertices. This is no

longer true when X is not compact (see Claim 3.5). For this, Dress and Lang introduced the

subset E′(X) = {f ∈ ∆(X) :
⋃
A(f) = X} of E(X). They show that E′(x) is dense in E(X)

if the metric on X is integer-valued.

A set A of unordered pairs of points in X is called admissible if there exists f ∈ E′(X) with

A(f) = A, and denote by A(X) the set of all such admissible sets. The family of polyhedral

faces of E(X) is then given by {P (A)}a∈A(X) where P (A) = {f ∈ ∆(X) : A ⊆ A(f)}. As

noticed in [Lan13], P (A) = P (A) ∩ E(X) = P (A) ∩ E′(X). The rank rk(A) of an admissible

set A is the dimension of P (A). The rank rk(A) can be characterized as follows. If f, g ∈ P (A),

then f(x) + f(y) = d(x, y) = g(x) + g(y) for {x, y} ∈ A and thus f(y)− g(y) = −(f(x)− g(x)).
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Thus the difference f−g has alternating sign along all paths in the graph (X,A). Consequently,

for each connected component of (X,A), there is at most one degree of freedom for the values

of f ∈ P (A). If the connected component C contains an odd cycle, then f and g coincide on

all vertices of C. Alternatively, if the connected component C is bipartite, then the restrictions

of all functions f ∈ P (A) on the vertices of C form a 1-parameter family: given the value

f(x) on one vertex of C, one can deduce all the other values of f on C. Then, the rank

rk(A) = dim(P (A)) is precisely the number of bipartite components of the graph (X,A)

Dress [Dre84] charaterized spaces of combinatorial dimension at most n by a 2(n+ 1)-point

inequality. These notions are important to state and establish some results of Lang [Lan13]

that we will present and use in Section 6.3.

3.3. Coarse Helly property. A metric space (X, d) is coarsely hyperconvex if there exists

some δ ≥ 0 such that for any set of centers {xi}i∈I in X and any set of radii {ri}i∈I in R+

satisfying d(xi, xj) ≤ ri + rj , there exists x ∈ X such that d(x, xi) ≤ ri + δ for all i ∈ I,

i.e., the intersection
⋂

i∈I Bri+δ(xi) is not empty. A metric space (X, d) has the coarse Helly

property if there exists some δ ≥ 0 such that for any family B = {Bri(xi) : i ∈ I} of pairwise

intersecting closed balls of X, the intersection
⋂

i∈I Bri+δ(xi) is not empty. If the space (X, d)

is Menger-convex (in particular, if (X, d) is geodesic), both properties are equivalent. In a

discretely geodesic metric space (in particular, in a graph), if d(xi, xj) ≤ ri + rj , then the balls

B⌈ri⌉(xi) and B⌈rj⌉(xj) intersect. In particular if the {ri}i∈I are integers, then d(xi, xj) ≤ ri+rj
if and only if Bri(xi) and Brj (xj) intersect. Consequently, a discretely geodesic metric space

(X, d) is coarsely hyperconvex with some constant δ if and only if it satisfies the coarse Helly

property with some constant δ′, where δ and δ′ differ by at most 1. The injective hull E(X) of

a metric space (X, d) has the bounded distance property if there exists δ ≥ 0 such that for any

f ∈ E(X) there exists a point x ∈ X such that d∞(f, e(x)) ≤ δ. The coarse Helly property has

been introduced in [CE07] and the bounded distance property has been introduced in [Lan13],

in both cases, for δ-hyperbolic spaces and graphs.

We show that the coarse hyperconvexity of a metric space is equivalent to the fact that its

injective hull satisfies the bounded distance property.1.

Proposition 3.12. A metric space (X, d) is coarsely hyperconvex if and only if its injective hull

E(X) satisfies the bounded distance property. Consequently, if (X, d) is a geodesic or discretely

geodesic metric space, then the coarse hyperconvexity of (X, d), the coarse Helly property for

(X, d) and the bounded distance property for E(X) are all equivalent.

Proof. First suppose that (X, d) is coarsely hyperconvex with some constant δ ≥ 0. Let f ∈
E(X). Then f(x) + f(y) ≥ d(x, y) for any x, y. By the coarse hyperconvexity of (X, d) applied

to the radius function f , there exists a point z ∈ X such that d(z, x) ≤ f(x) + δ for any x ∈ X.

We assert that d∞(f, e(z)) ≤ δ. Indeed, d∞(f, e(z)) = supx∈X |f(x)− d(x, z)|. By the choice of

z in Bf(x)+δ(x), d(x, z)− f(x) ≤ δ. It remains to show the other inequality f(x)− d(x, z) ≤ δ.

Assume by contradiction that f(x)−d(x, z) > δ. Let ϵ = 1
2(f(x)−d(x, z)− δ) and observe that

f(x) > d(x, z) + δ + ϵ. By Claim 3.5, there exists y ∈ X such that f(x) + f(y) < d(x, y) + ϵ.

But since z ∈ Bf(y)+δ(y), we have f(y) ≥ d(y, z)− δ, and consequently, we have f(x) + f(y) >

d(x, z) + δ + ϵ+ d(y, z)− δ = d(x, z) + d(y, z) + ϵ ≥ d(x, y) + ϵ (the last inequality follows from

the triangle inequality), a contradiction.

Conversely, suppose that E(X) satisfies the bounded distance property with δ ≥ 0 and we

will show that (X, d) is coarsely hyperconvex. Let B(xi, ri), i ∈ I be a collection of closed balls

of (X, d) such that ri + rj ≥ d(xi, xj) for all i, j ∈ I. Let r ∈ ∆(X) be a metric form on X

extending the radius function ri, i ∈ I (its existence follows from Zorn’s lemma). Let f ∈ E(X)

1Independently, this was also observed by Urs Lang (personal communication).
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such that f(x) ≤ r(x) for any x ∈ X. By the bounded distance property, X contains a point

z such that d∞(f, e(z)) ≤ δ. This implies that |f(x) − e(z)(x)| = |f(x) − d(x, z)| ≤ δ for any

x ∈ X. In particular, this yields d(x, z) ≤ f(x)+ δ ≤ r(x)+ δ, thus z belongs to all closed balls

Br(x)+δ(x), x ∈ X. □

3.4. Geodesic bicombings. One important feature of injective metric spaces is the existence

of a nice (bi)combing. Recall that a geodesic bicombing on a metric space (X, d) is a map

σ : X ×X × [0, 1] → X,(3.1)

such that for every pair (x, y) ∈ X × X the function σxy := σ(x, y, ·) is a constant speed

geodesic from x to y. We call σ convex if the function t 7→ d(σxy(t), σx′y′(t)) is convex for all

x, y, x′, y′ ∈ X. The bicombing σ is consistent if σpq(λ) = σxy((1 − λ)s + λt), for all x, y ∈ X,

0 ≤ s ≤ t ≤ 1, p := σxy(s), q := σxy(t), and λ ∈ [0, 1]. It is called reversible if σxy(t) = σyx(1−t)

for all x, y ∈ X and t ∈ [0, 1].

From the definition of injective hulls and [DL15, Lemma 2.1 and Theorems 1.1&1.2] we have

the following:

Theorem 3.13. A proper injective metric space of finite combinatorial dimension admits a

unique convex, consistent, reversible geodesic bicombing.

4. Helly graphs and complexes

In this section, we recall the basic properties and characterizations of Helly graphs. We also

show that any graph admits a Hellyfication, a discrete counterpart of Isbell’s construction (again

this is well-known).

4.1. Characterizations. Helly graphs are the discrete analogues of hyperconvex spaces:

namely, the requirement that radii of balls are nonnegative reals is modified by replacing the

reals by the integers. In perfect analogy with hyperconvexity, there is a close relationship be-

tween Helly graphs and absolute retracts. A graph is an absolute retract exactly when it is

a retract of any larger graph into which it embeds isometrically. A vertex x of a graph G is

dominated by another vertex y if the unit ball B1(y) includes B1(x). A graph G is dismantlable

if its vertices can be well-ordered ≺ so that, for each v there is a neighbor w of v with w ≺ v

which dominates v in the subgraph of G induced by the vertices u ⪯ v. The following theorem

summarizes some of the characterizations of finite Helly graphs:

Theorem 4.1. For a finite graph G, the following statements are equivalent:

(i) G is a Helly graph;

(ii) [HR87] G is a retract of a direct product of paths;

(iii) [BP91] G is a dismantlable clique-Helly graph;

(iv) [BP89] G is a weakly modular 1–Helly graph.

The following result presents a local-to-global and a topological characterization of all (not

necessarily finite or locally finite) Helly graphs, refining and generalizing Theorem 4.1 (iii),(iv).

Theorem 4.2 ([CCHO20]). For a graph G, the following conditions are equivalent:

(i) G is Helly;

(ii) G is a weakly modular 1–Helly graph;

(iii) G is a dismantlable clique-Helly graph;

(iv) G is clique-Helly with a simply connected clique complex.

Moreover, if the clique complex X(G) of G is finite-dimensional, then the conditions (i)-(iv)

are equivalent to
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(v) G is clique-Helly with a contractible clique complex.

The following result shows the connection between Helly complexes and clique-Helly com-

plexes:

Theorem 4.3 ([CCHO20]). Let G be a (finitely) clique-Helly graph and let G̃ be the 1–skeleton

of the universal cover X̃ := X̃(G) of the clique complex X := X(G) of G. Then G̃ is a (finitely)

Helly graph. In particular, G is a (finitely) Helly graph if and only if G is (finitely) clique-Helly

and its clique complex is simply connected.

As noticed in [CCHO20], Theorem 4.3 and its proof lead to two conclusions. The first one

is: if a simplicial complex X is clique-Helly (for arbitrary families of maximal cliques), then

its universal cover X̃ is Helly (for arbitrary families of balls of its 1-skeleton). The second one

is: if X is finitely clique-Helly, then its universal cover is finitely Helly (this holds even if X

contains infinite cliques). From [CCHO20, Theorem 9.1] it follows that Helly graphs satisfy a

quadratic isoperimetric inequality. It was shown in [Qui85] that any finite Helly graph G has

the stabilized clique property, i.e., there exists a complete subgraph of G invariant under the

action of the automorphism group of G. Other properties of Helly graphs will be presented

below.

4.2. Injective hulls and Hellyfication. We will show that for any graph G there exists a

smallest Helly graph Helly(G) comprising G as an isometric subgraph; we call Helly(G) the

Hellyfication of G (analogously, we will denote by Helly(X(G)) the clique complex of Helly(G)

and refer to it as to the Hellyfication of X(G)).

Let (X, d) be an integer-valued metric space. An integer metric form on X is a function

f : X → Z such that f(v) + f(w) ≥ d(v, w), for all v, w ∈ X. Let ∆0(X) denote the set of all

integer metric forms on X. An integer metric form is extremal if it is minimal pointwise. We

define the metric space E0(X) ⊂ ∆0(X) as the set of all extremal integer metric forms on (X, d)

endowed with the sup-metric d∞. The embedding e : X → E0(X) is defined as v 7→ d(v, ·). The
pair (e, E0(X)) is the discrete injective hull of X. We define a graph structure on E0(X) by

putting an edge between two extremal forms f, g ∈ E0(X) if d∞(f, g) = 1. With some abuse of

notation, we also denote this graph by E0(X). If G = (V,E) is a graph with the path metric d,

we will denote by E0(G) and E(G) the discrete injective hull E0(V (G)) and the injective hull

of the metric space (V (G), d), respectively. Similarly, we write e(G) instead of e(V (G)).

The following result is well known, see [JPM86,Pes87,Pes88], and is the discrete counterpart

of Isbell’s Theorem 3.2.

Theorem 4.4. If (X, d) is an integer-valued metric space, then E0(X) = E(X) ∩ ZX is the

smallest Helly graph into which (X, d) is isometrically embedded. In particular, the discrete

injective hull E0(G) of a graph G is contained as an isometric subgraph in any Helly graph G′

containing G as an isometric subgraph and is the Hellyfication Helly(G) of G.

Proof. First we show that the sets E0(X) and E(X) ∩ ZX coincide. Observe that by the

definitions of E0(X) and E(X) ∩ ZX , we have E(X) ∩ ZX ⊆ E0(X). To show the converse

inclusion, first note that E0(X) satisfies the discrete analog of Claim 3.5: if f ∈ E0(X), then

for any x in X, there exists y in X such that f(x) + f(y) = d(x, y). By way of contradiction,

suppose there exist f ∈ E0(X) and g ∈ E(X) such that g ̸= f and g ≤ f . Then g(x) < f(x)

for some point x of X. By the discrete analog of Claim 3.5, there exists y in X such that

f(x) + f(y) = d(x, y). But since g(x) < f(x) and g(y) ≤ f(y), we obtain g(x) + g(y) < d(x, y),

contrary to the assumption that g ∈ E(X). Therefore, E0(X) ⊆ E(X)∩ZX and thus E0(X) =

E(X) ∩ ZX . Consequently, (E0(X), d∞) is also an integer-valued metric space.
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Next we show that the balls of (E0(X), d∞) satisfy the Helly property. Let fi ∈ E0(X), ri ∈
Z+, i ∈ I such that d∞(fi, fj) ≤ ri+rj . We may suppose that r ∈ ∆0(E0(X)) is an integer metric

form on E0(X) extending the radius function ri (i.e., r(fi) = ri, i ∈ I) and t ∈ E0(E0(X)) =

E(E0(X)) ∩ ZE0(X) is an integer metric form on E0(X) such that t ≤ r. Let t′ ∈ ∆(E(X))

be a metric form on E(X) extending t, i.e., for any f ∈ E0(X), t′(f) = t(f) (its existence

follows by Zorn lemma). Let s ∈ E(E(X)) such that s ≤ t′. By the discrete analog of

Claim 3.5, for any f ∈ E0(X), there exists g ∈ E0(X) such that t(f) + t(g) = d∞(f, g). Since

s(f)+s(g) ≤ t′(f)+t′(g) = t(f)+t(g) = d∞(f, g) ≤ s(f)+s(g), we have that s(f) = t′(f) = t(f)

and s(g) = t′(g) = t(g) since s(h) ≤ t′(h) = t(h) for any h ∈ E0(X). Consequently, s|E0(X) = t.

By Claim 3.7 and the proof of Claim 3.8, se belongs to E(X) and is a common point of all

balls Bri(fi). Since e(x) ∈ E0(X) for any x ∈ X, and since s and t coincide on E0(X), se = te.

Therefore, te belongs to E0(X) and is a common point of all balls Bri(fi). This shows that the

balls of (E0(X), d∞) satisfy the Helly property.

We show by induction on the distance d∞(f, g) that any two vertices f, g ∈ E0(X) are

connected in the graph E0(X) by a path of length d∞(f, g). Indeed, if d∞(f, g) = k, consider

a ball of radius 1 centered at f and a ball of radius k− 1 centered at g. By the Helly property,

there exists h ∈ E0(X) such that d∞(f, h) ≤ 1 and d∞(h, g) ≤ k−1. By the triangle inequality,

these two inequalities are equalities. Thus E0(X) is a Helly graph isometrically embedded in

E(X). The proof that E0(X) does not contain any Helly subgraph containing X and that all

discrete injective hulls are isometric is identical to the proof of Claim 3.9. The proof that E0(X)

is an isometric subgraph of any Helly graph G′ containing G as an isometric subgraph is similar

to the proof of Corollary 3.11. □

Remark 4.5. A direct consequence of the second assertion of Theorem 4.4 is that if G is Helly,

then Helly(G) coincides with G.

Remark 4.6. For an integer-valued metric space (X, d), the injective hull E(E0(X)) of the

discrete injective hull E0(X) of X coincides with the injective hull E(X) of X.

4.3. Hyperbolicity and Helly graphs. In Helly graphs, hyperbolicity can be characterized

by forbidding isometric square-grids.

Proposition 4.7. For a Helly graph G, the following are equivalent:

(1) G has bounded hyperbolicity,

(2) the size of isometric ℓ1–square-grids of G is bounded,

(3) the size of isometric ℓ∞–square-grids of G is bounded.

Proof. Since any Helly graph G is weakly modular, by [CCHO20, Theorem 9.6], G has bounded

hyperbolicity if and only if the metric triangles and the isometric square-grids are of bounded

size. Since Helly graphs are pseudo-modular, all metric triangles of G are of size at most one.

Therefore G has bounded hyperbolicity if and only the size of the isometric ℓ1–square-grids of

G are bounded. We now show that in a Helly graph G, the size of the isometric ℓ1–square-grids

is bounded if and only if the size of the isometric ℓ∞–square-grids is bounded.

Suppose first that G contains an isometric 2k×2k ℓ1–grid H1. Observe that we can represent

H1 as follows: V (H1) =
{
(i, j) ∈ Z2 : |i|+ |j| ≤ 2k and i+ j is even

}
and (i, j)(i′, j′) ∈ E(H1)

if and only if |i− i′| = |j− j′| = 1, i.e., if and only if d∞((i, j), (i′, j′)) = 1. Since G is Helly, the

Hellyfication H ′
1 of H1 is an isometric subgraph of G and H ′

1 can then be described as follows:

V (H ′
1) =

{
(i, j) ∈ Z2 : |i|+ |j| ≤ 2k

}
and (i, j)(i′, j′) ∈ E(H ′

1) if and only if d∞((i, j), (i′, j′)) =

1. But then, observe that the set of vertices {(i, j) ∈ V (H ′
1) : |i| ≤ k and |j| ≤ k} induce a

2k × 2k ℓ∞–grid in H ′
1 and thus in G.

Suppose now that G contains an isometric 2k × 2k ℓ∞–grid H2. We can repre-

sent H2 as follows: V (H2) =
{
(i, j) ∈ Z2 : |i| ≤ k and |j| ≤ k

}
and (i, j)(i′, j′) ∈ E(H ′

1)
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if and only if d∞((i, j), (i′, j′)) = 1. Let H ′
2 be the graph induced by V (H ′

2) ={
(i, j) ∈ Z2 : |i|+ |j| < k and i+ j is even

}
. Observe that H ′

2 is isomorphic to a k × k ℓ1–grid.

Since H ′
2 is an isometric subgraph of H2, G contains an isometric k × k ℓ1–grid. □

Dragan and Guarnera [DG19] characterize precisely the hyperbolicity of a Helly graph by

presenting three families of isometric subgraphs of the ℓ∞–grid that are the only obstructions

to a small hyperbolicity.

5. Helly graphs constructions

In the previous section, with any connected graph G we associated in a canonical way a Helly

graph Helly(G). However, not every group acting geometrically on G acts also geometrically on

Helly(G). In this section, we prove or recall that several standard graph-theoretical operations

preserve Hellyness and that other operations applied to some non-Helly graphs lead to Helly

graphs. As we will show in the next section, those constructions also preserve the geometric

action of the group, allowing to prove that some classes of groups are Helly.

5.1. Direct products and amalgams. We start with the following well-known result:

Proposition 5.1. The classes of Helly and clique-Helly graphs are closed by taking direct prod-

ucts of finitely many factors and retracts.

The first assertion follows from the fact that the balls in a direct product are direct products

of balls in the factors and that the maximal cliques of a direct product are direct products of

maximal cliques. The second assertion follows from the fact that retractions are 1-Lipschitz

maps and therefore preserve the Helly property.

The amalgam of two Helly graphs along a Helly graph is not necessarily Helly: the 3-sun

(which is not Helly) can be obtained as an amalgam over an edge of a triangle and a 3-fan

(which are both Helly); see Figure 1.

Figure 1. The 3-sun can be obtained from the amalgam of a triangle and a

3-fan over an edge.

Now we consider amalgams of direct products of (clique-)Helly graphs and, more generally,

of graphs obtained by amalgamating together a collection of direct products of (clique-)Helly

graphs along common subproducts. We provide sufficient conditions for these amalgams to be

(clique-)Helly.

Given a family H = {Hj}j∈J of locally finite graphs, a finite subproduct of the direct product

⊠H = ⊠j∈JHj is a subgraph G = ⊠j∈JG
j of ⊠H such that Gj = Hj for finitely many indices

and Gj = {vj} where vj ∈ V (Hj) for all other indices. For each vertex v of ⊠H (or any of its

subgraphs), we denote by vj the coordinate of v in Hj .

A locally finite connected graph G is a union of graph products (UGP) over a family H =

{Hj}j∈J of locally finite graphs if there exists a family {Gi}i∈I of distinct finite subproducts

of ⊠H such that G =
⋃

iGi. The graphs Gi are called the pieces of G. Since each Hj ∈ H is

locally finite and each piece of G is a finite subproduct of ⊠H, each piece of G is also locally

finite. Observe that G is a subgraph of ⊠H but not necessarily an induced subgraph. However,

each piece Gi of G is an induced subgraph of ⊠H.
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We say that the pieces of a collection {Gik}k∈K of pieces of an UGP G =
⋃

i∈I Gi ⊆ ⊠H over

H = {Hj}j∈J agree on a factor Hj if there exists vj ∈ V (Hj) such that for each k ∈ K, either

Gj
ik

= Hj or Gj
ik

= {vj}.

Lemma 5.2. Two pieces G1 and G2 of an UGP G ⊆ ⊠H have a non-empty intersection if and

only if G1 and G2 agree on all factors Hj ∈ H.

The set of pieces {Gi}i∈I satisfies the Helly property: any collection {Gik}k∈K of pairwise

intersecting pieces has a non-empty intersection, i.e., there exists a vertex w of G such that for

each k ∈ K and each factor Hj ∈ H, either Gj
ik

= {wj} or Gj
ik

= Hj.

Proof. First note that if G1 and G2 agree on all factors Hj , then for each j there exists w′
j ∈

V (Gj
1) ∩ V (Gj

2). Let w be a vertex of ⊠H such that wj = w′
j for all j. Since for each j,

Gj
1 = {wj} or Gj

1 = Hj , the vertex w belongs to G1. Similarly, w belongs to G2 and thus

G1 and G2 have a non-empty intersection. Conversely, let u ∈ V (G1) ∩ V (G2) and note that

uj ∈ V (Gj
1) for every j. Consequently, either Gj

1 = Hj or G
j
1 = {uj}. Similarly, either Gj

2 = Hj

or Gj
2 = {uj}. In both cases, G1 and G2 agree on Hj .

Let {Gik}k∈K be a collection of pairwise intersecting pieces. By the first statement, any two

pieces of this collection agree on all factors Hj ∈ H. Consequently, for any factor Hj , there

exists w′
j ∈ V (Hj) such that for any k ∈ K, Gj

ik
= {wj} or Gj

ik
= Hj . Consider the vertex w of

⊠H such that wj = w′
j for all j and observe that w belongs to every piece of the collection. □

We say that an UGP satisfies the 3-piece condition if for any three pairwise intersecting

pieces G1, G2, G3, there exists a piece G4 intersecting G1, G2, and G3 such that for every factor

Hj ∈ H, if for two pieces Gi1 , Gi2 among G1, G2, G3 we have Gj
i1
= Gj

i2
= Hj , then Gj

4 = Hj .

Proposition 5.3. If an UGP G over H satisfies the 3-piece condition, then every clique of G

is contained in a piece of G.

Proof. Since G is locally finite, the cliques of G are finite and we can proceed by induction on

the size k of the clique. By definition of G, each edge belongs to a piece of G. Suppose that

the assertion holds for all cliques of size at most k − 1 and consider a clique K of size k. Let

u, v, w be three vertices of K. Since K \ {w} is a clique of size k − 1, there exists a piece G1

containing all vertices of K \ {w}. If w ∈ V (G1), we are done. Assume now that w /∈ V (G1).

Similarly, we can assume there exist pieces G2 and G3 such that K ∩ V (G2) = K \ {u} and

K ∩ V (G3) = K \ {v}. Since u ∈ V (G1) ∩ V (G3), the pieces G1 and G3 agree on every factor

Hj ∈ H. Similarly, G1 and G2 as well as G2 and G3 agree on every factor Hj ∈ H. Since

u /∈ V (G2), necessarily there exists a factor Hj2 such that Gj2
2 does not contain uj2 . Thus Gj2

2

consists of a single vertex v2 ̸= uj2 . Since both G1 and G3 agree with G2 on Hj2 and since

they both contain uj2 , necessarily Gj2
1 = Gj2

3 = Hj2 . Similarly, there exist Hj1 , Hj3 ∈ H and

vertices v1 ∈ Hj1 and v3 ∈ Hj3 such that Gj1
1 = {v1}, Gj1

2 = Gj1
3 = Hj1 , G

j3
3 = {v3}, and

Gj3
1 = Gj3

2 = Hj3 .

By the 3-piece condition, there exists G4 intersecting G1, G2, and G3 such that for every

factor Hj ∈ H, if for two pieces Gi1 , Gi2 among G1, G2, G3 we have Gj
i1

= Gj
i2

= Hj , then

Gj
4 = Hj . We assert that K is a clique of G4. Pick any vertex x ∈ K and note that x belongs to

at least two pieces among G1, G2, G3, say to G1 and G2. For each factor Hj ∈ H, if Gj
4 ̸= Hj ,

then since G4 agrees with G1 and G2 and by the definition of G4, either Gj
4 = Gj

1 = {xj} or

Gj
4 = Gj

2 = {xj}. Consequently, x is a vertex of G4 and thus K is a clique of G4. Therefore,

all vertices of K belong to a piece of G and since any piece is an induced subgraph of ⊠H, we

conclude that K is a clique of this piece. □
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Theorem 5.4. If an UGP G over H satisfies the 3-piece condition and every piece of G is

clique-Helly, then G is a clique-Helly graph. Furthermore, if the clique complex X(G) of G is

simply connected, then G is a Helly graph.

Proof. Since G has finite cliques, we can use Proposition 2.23 to establish the clique-Helly

property for G. Pick any triangle T = u1u2u3 of G and let T ∗ be the set of vertices of G

adjacent to at least two vertices of T . For any v ∈ T ∗, by Proposition 5.3, there exists a piece

containing a triangle vuiuj ; let P
∗ be the set of all pieces containing such triangles. Since the

pieces of P ∗ piecewise intersect, by the first assertion of Lemma 5.2, they pairwise agree on

every factor Hj ∈ H. By the second assertion of Lemma 5.2, there exists a vertex w ∈ G such

that either Gj
i = {wj} or Gj

i = Hj for any piece Gi of P
∗. Therefore, w belongs to every piece

of P ∗.

For each factor Hj ∈ H, let Tj = {uj : u ∈ T} and T ∗
j = {vj : v ∈ T ∗

j }. Note that Tj is either

a vertex, an edge, or a triangle in Hj . Moreover, in the first two cases, there exists uj ∈ Tj that

belongs to the 1–ball of every vertex vj ∈ T ∗
j . If Tj is a triangle, then every vertex vj ∈ T ∗

j is in

the 1–ball of at least two vertices of Tj . Since Hj is clique-Helly, in all three cases, there exists

a vertex wj ∈ V (Hj) belonging to the 1–ball of each vertex vj ∈ T ∗
j . Observe that if there exists

a piece Gi of P
∗ such that Gj

i contains only one vertex, then necessarily, Tj is a vertex or an

edge and we can choose wj ∈ V (Hj) such that Gj
i = {wj}.

Let w∗ be the vertex of G such that w∗
j = wj for every factor Hj ∈ H. By our choice of wj ,

for any piece Gi of P ∗ such that Gj
i contains only one vertex, Gj

i = {wj} and for any other

piece Gi of P
∗, wj is a vertex of Gj

i = Hj . Therefore w∗ is a vertex that belongs to all pieces of

P ∗. For any vertex v ∈ T ∗ and any factor Hj ∈ H, vj is in the 1–ball of wj in Hj by our choice

of wj . Since each piece Gi of G is an induced subgraph of ⊠H, w∗ is in the 1–ball in G of all

vertices v of T ∗, establishing that G is clique-Helly.

The second assertion of the theorem follows from Theorem 4.2. □

Given a family H = {Hj}j∈J of locally finite graphs, an abstract graph of subproducts (GSP)

(H,G, ℓ) is given by a connected graph G without infinite clique and a map ℓ : V (G) → 2H

satisfying the following conditions:

(A1) ℓ(v) is a finite subset of H for each v ∈ V (G);
(A2) for each edge uv ∈ E(G), ℓ(u) ̸= ℓ(v).

A realization of an abstract GSP (H,G, ℓ) is a set of mapspv : H \ ℓ(v) →
⋃
j∈J

V (Hj)


v∈V (G)

satisfying the following conditions:

(A3) for each v ∈ V (G), pv(Hj) ∈ V (Hj) for every factor Hj ∈ H \ ℓ(v);
(A4) for any vertices u, v ∈ V (G), there is an edge uv ∈ E(G) if and only if for every factor

Hj ∈ H \ (ℓ(u) ∪ ℓ(v)), pu(Hj) = pv(Hj).

A GSP admitting a realization is called a realizable GSP.

Proposition 5.5. For any realizable GSP (H,G, ℓ) and any of its realizations {pv}v∈V (G), we

can define an UGP G(G) =
⋃

v∈V (G)Gv where there is a piece Gv = ⊠j∈JG
j
v for each v ∈ V (G)

such that Gj
v = Hj if Hj ∈ ℓ(v) and Gj

v = {pv(Hj)} otherwise.

Conversely, any UGP G ⊆ ⊠H is the realization of a realizable GSP over ⊠H.

Proof. First notice that condition (A4) is equivalent to the following condition on the pieces of

G(G):
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(A4’) for any vertices u, v ∈ V (G), there is an edge uv ∈ E(G) if and only if V (Gu)∩V (Gv) ̸= ∅.
In order to show that G(G) is an UGP, we must show that it is locally finite. Consider a vertex

u ∈ G(G) that has an infinite number of neighbors. Since each piece containing u is locally finite,

there are an infinite number of pieces containing u. By Condition (A4’), these pieces form an

infinite clique in G, a contradiction. Moreover, if there exists two vertices u, v ∈ V (G) such that

the pieces Gu and Gv coincide, then ℓ(u) = ℓ(v) and for any Hj ∈ H\{ℓ(u)}, pu(Hj) = pv(Hj).

Consequently, uv ∈ E(G) and ℓ(u) = ℓ(v), contradicting (A2).

Conversely, given an UGP G over H, we construct a realizable GSP as follows. In G, there
is a vertex vi for each piece Gi of G, and we set ℓ(vi) = {Hj ∈ H : Gj

i = Hj}. For each

Hj /∈ ℓ(vi), there exists wj ∈ V (Hj) such that Gj
i = {wj} and we set pvi(Hj) = wj . For

any vertices vi, vi′ ∈ V (G), there is an edge vivi′ ∈ E(G) if and only if for every factor Hj /∈
ℓ(vi) ∪ ℓ(vi′), pvi(Hj) = pvi′ (Hj).

Since each piece Gi is a finite subproduct of ⊠H, ℓ(vi) is finite for each vi ∈ V (G) and thus

(A1) holds. By definition of pvi and of the edges of E(G), (A2) and (A4) also hold. Observe

also that G(G) and G are isomorphic and thus G is the realization of G. It remains to show

that G does not contain infinite cliques. By (A4’), if there exists an infinite clique in G, then
there exists an infinite collection {Gik}k∈K of pairwise intersecting pieces. By Lemma 5.2, this

implies that there exists a vertex w that belongs to every piece Gik . Since all pieces of G are

distinct and since w belongs to an infinite number of pieces, there exists an infinite collection of

factors {Hj′}j′∈J ′ such that for each Hj′ there exists a piece Gik with w ∈ Gik and Gj′

ik
= Hj′ .

Consequently, for each j′ ∈ J ′, one can find a vertex wj′ ∈ ⊠H in G obtained from w by

replacing the coordinate wj′ by one of its neighbors in Hj′ . All the wj′ constructed in this way

are distinct and they are all neighbors of w in G. Consequently, w has infinitely many neighbors

in G and thus G is not locally finite, a contradiction. □

We say that a GSP (H,G, ℓ) satisfies the product-Gilmore condition if for every triangle

T = x1x2x3 of G there exists y ∈ V (G) such that y = xi or y ∼ xi for 1 ≤ i ≤ 3 and

(ℓ(x1) ∩ ℓ(x2)) ∪ (ℓ(x2) ∩ ℓ(x3)) ∪ (ℓ(x1) ∩ ℓ(x3)) ⊆ ℓ(y).

Proposition 5.6. For a realizable GSP (H,G, ℓ) and any of its realizations {pv}v∈V (G), the

UGP G(G) obtained from G and {pv}v∈V (G) satisfies the 3-piece condition if and only if (H,G, ℓ)
satisfies the product-Gilmore condition.

Proof. Assume that (H,G, ℓ) satisfies the product-Gilmore condition. By condition (A4’), two

pieces in the UGP G(G) obtained from a realization of a GSP G intersect if and only if there

is an edge between the corresponding vertices of G. Thus, it is enough to consider three pieces

Gx1 , Gx2 , Gx3 corresponding to three vertices x1, x2, x3 that are pairwise adjacent in G. By our

assumption, there exists a vertex y ∈ V (G) such that y = xi or y ∼ xi for any 1 ≤ i ≤ 3 and

such that (ℓ(x1)∩ℓ(x2))∪(ℓ(x2)∩ℓ(x3))∪(ℓ(x1)∩ℓ(x3)) ⊆ ℓ(y). Consider the piece Gy in G(G).
By condition (A4’), Gy intersect Gx1 , Gx2 , and Gx3 . Moreover, since for any factor Hj ∈ H, if

Gj
x1 = Gj

x2 = Hj , by the definition of G(G), we obtain Hj ∈ ℓ(x1) ∩ ℓ(x2) ⊆ ℓ(y). Similarly, for

any factor Hj ∈ H such that Gj
x2 = Gj

x3 = Hj or Gj
x1 = Gj

x3 = Hj , we have Hj ∈ ℓ(y). This

establishes the 3-piece condition for G(G).
Conversely, suppose that G(G) satisfies the 3-piece condition and consider a triangle x1x2x3 of

G and the three corresponding pieces Gx1 , Gx2 , Gx3 of G(G). By (A4’), V (Gx1), V (Gx2), V (Gx3)

pairwise intersect. By the 3-piece condition, there exists a vertex x4 ∈ V (G) such that V (Gx4)

intersects V (Gx1), V (Gx2), and V (Gx3), i.e., x4 either coincides with or is adjacent to each xi,

1 ≤ i ≤ 3. Moreover, for each Hj ∈ ℓ(x1) ∩ ℓ(x2), G
j
x1 = Gj

x2 = Hj and the definition of Gx4

implies that Gj
x4 = Hj , i.e., Hj ∈ ℓ(x4). Consequently, ℓ(x1) ∩ ℓ(x2) ⊆ ℓ(x4) and similarly,
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(ℓ(x2) ∩ ℓ(x3)) ∪ (ℓ(x1) ∩ ℓ(x3)) ⊆ ℓ(x4). This establishes the product-Gilmore condition for

(H,G, ℓ). □

From Proposition 5.1, Proposition 5.6, and Theorem 5.4 we obtain the following corollary:

Corollary 5.7. Consider a realizable GSP (H,G, ℓ) and any of its realizations {pv}v∈V (G). If

(H,G, ℓ) satisfies the product-Gilmore condition and if each factor H ∈ H is clique-Helly, then

G(G) is a clique-Helly graph. Furthermore, if the clique complex X(G(G)) is simply connected,

then G(G) is a Helly graph.

Thickenings of locally finite median graphs (i.e., of CAT(0) cube complexes) is an instructive

example of clique-Helly graphs that can be obtained via Theorem 5.4 or Corollary 5.7. The

pieces of a median graph G seens as an UGP are the thickenings of the maximal cubes of

G. The fact that it satisfies the product-Gilmore condition follows from the fact that the cell

hypergraph is conformal which follows from the cube condition of the CAT(0) cube complex

Xcube(G), Lemma 2.12 and Proposition 2.10.

5.2. Thickening. The direct product of graphs considered above is the l∞ version of the Carte-

sian product. Thus, when we turn all k–cubes of the Cartesian product of k paths into simplices,

then we have the corresponding direct product of k paths. More generally, a similar operator

transforms median graphs into Helly graphs: let G∆ be the graph having the same vertex set

as G, where two vertices are adjacent if and only if they belong to a common cube of G; G∆ is

called the thickening of G (for l∞-metrization of cube complexes, of median graphs and, more

generally, of median spaces, see [Bow20,vdV98]).

Proposition 5.8 ([BvdV91]). If G is a locally finite median graph, then G∆ is a Helly graph

and each maximal clique of G∆ is a cube of G.

The thickening X∆ of an abstract cell complex X is a graph obtained from X by making

adjacent all pairs of vertices of X belonging to a common cell of X. Equivalently, the thickening

of X is the 2-section [H(X)]2 of the hypergraph H(X). We say that an abstract cell complex

X is simply connected if the clique complex of its thickening X∆ is simply connected.

Proposition 5.8 of Bandelt and van de Vel was extended to the thickenings of the abstract

cell complexes arising from swm-graphs and from hypercellular graphs.

Proposition 5.9 ([CCHO20, CKM20]). The thickening G∆ := X(G)∆ of the abstract cell

complex X(G) associated to any locally finite swm-graph or any hypercellular graph G is a Helly

graph. Each maximal clique of G∆ is a cell of X(G).

The existing proofs of Propositions 5.8 and 5.9 are based on the following global property of

G∆: each ball of G∆ defines a gated subgraph of G thus G∆ is Helly because the gated sets of

G satisfy the finite Helly property. Proposition 2.26 allows us to provide a new proof of Propo-

sitions 5.8 and 5.9. Namely, the results of Section 2.6 establish that CAT(0) cube complexes,

hypercellular complexes, and swm-complexes satisfy the 3-cell and the graded monotonicity

conditions. Since all such complexes are simply connected and their cells are gated, Proposi-

tions 5.8 and 5.9 can be viewed as particular cases of Theorem 4.2 and the following general

result:

Proposition 5.10. If X is an abstract cell complex defined on the vertex-set of a graph G such

that each edge of G is contained in a cell of X and each cell of the cell-hypergraph H(X) is gated

in G and H(X) satisfies the 3-cell and the graded monotonicity conditions, then the thickening

X∆ is a clique-Helly graph and each maximal clique of X∆ is the thickening of a cell of X.

Additionally, if X is simply connected, then X∆ is Helly.
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5.3. Coarse Helly graphs. The coarse Helly property of a graph G is a property that can

be used to show via Hellyfication that a group acting on G geometrically is Helly. In this

subsection, we recall the result of [CE07] that δ-hyperbolic graphs are coarse Helly and we

deduce from a result of [Che98] that several subclasses of weakly modular graphs (in particular,

cube-free median graphs, hereditary modular graphs, and 7-systolic graphs) are coarse Helly.

Proposition 5.11 ([CE07]). If G is a δ-hyperbolic graph, then G is coarse Helly with constant

2δ.

The idea of the proof of Proposition 5.11 comes from the proof of the Helly property for

trees. Let B = {Bri(xi) : i ∈ I} be a finite collection of pairwise intersecting balls of G.

Pick an arbitrary basepoint vertex z of G and suppose that Br1(x1) is a ball of B maximizing

d(z, xi) − ri, i ∈ I (equivalently, Br1(x1) is a ball of B maximizing d(z,Bri(xi)), i ∈ I). If

d(z,Br1(x1)) ≤ 2δ, then z ∈ Bri+2δ(xi), i ∈ I and we are done. Let c be a vertex on a shortest

path between z and x1 at distance r1 from x1. Then using the hyperbolicity of G and the choice

of Br1(x1) it can be shown that d(c, xi) ≤ ri + 2δ.

Proposition 5.12 ([Che98]). If G is a weakly modular graph not containing isometric cycles

of length > 5, houses, or 3-deltoids (see Figure 2), then G is coarse Helly with constant 1. In

particular, cube-free median graphs, hereditary modular graphs, and 7-systolic graphs are coarse

Helly.

Figure 2. A house (left) and a 3-deltoid (right).

In [Che98], the established result was actually stronger: if S is a finite set of vertices of a

graph G as in Proposition 5.12 and d(xi, xj) ≤ ri + rj + 1 for all xi, xj ∈ S, then there exists

a clique of G hitting all balls Bri(xi), xi ∈ S. The idea of the proof is to show that if a clique

C ′ of G hits the balls of a subfamily Bri(xi), xi ∈ S′ and xj ∈ S \ S′, then the clique C ′ can be

transformed into a clique C which hits Brj (xj) and all balls centered at the vertices of S′.

It is known that the systolic (bridged) graphs satisfying the conditions of Proposition 5.12 are

all hyperbolic [CCHO20,CDE+08]. Cube-free median graphs and, more generally, hereditary

modular graphs (which by a result of [Ban88] are exactly the graphs in which all isometric cycles

have length 4) in general are not hyperbolic. On the other hand, general median graphs are not

coarse Helly: already the cubic grid Z3 is not coarse Helly as shown by the following example.

Example 5.13. In Z3, for any integer n, consider 4 balls of radius 2n centered at x1 =

(−2n, 2n,−2n), x2 = (2n, 2n, 2n), x3 = (−2n,−2n, 2n), x4 = (2n,−2n,−2n). Observe first

that for any two such nodes xl, xl′ , d(xl, xl′) = 4n and thus the four balls pairwise inter-

sect. We show that for any node y = (i, j, k) ∈ Z3, max{d(y, xl) : 1 ≤ l ≤ 4} ≥ 6n. As-

sume that y minimizes this maximum. Observe that if y /∈ [−2n, 2n]3, then its gate y′ in

the box [−2n, 2n]3 is strictly closer to each xl, contrary to our choice of y. Consequently,

i, j, k ∈ [−2n, 2n] and d(y, x1) = i + 2n + 2n − j + k + 2n = 6n + i − j + k, d(y, x2) =

6n− i− j − k, d(y, x3) = 6n+ i+ j − k, d(y, x4) = 6n− i+ j + k and thus Σ4
i=1d(xi, y) = 24n.

Therefore max{d(y, xl) : 1 ≤ l ≤ 4} ≥ 6n.
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Analogously, the triangular grid (alias, the systolic plane) is also not coarse Helly:

Example 5.14. T3 is the graph of the tiling of the plane into equilateral triangles with side

1. T3 is a bridged graph. Pick three vertices x1, x2, z = x3 of T3 which define a deltoid

∆(x1, x2, x3) of size 6n, i.e., an equilateral triangle of T3 with side 6n. Consider the three

balls B3n(x1), B3n(x2), B3n(x3). We assert that max{d(y, xi) : 1 ≤ i ≤ 3} ≥ 4n for any vertex

y of V (T3). If y /∈ ∆(x1, x2, x3), then y is in one of the halfplanes defined by the sides of

∆(x1, x2, x3) and not containing ∆(x1, x2, x3), say in the halfspace defined by x1 and x2. But

then d(x3, y) ≥ 6n because x3 has distance ≥ 6n to any vertex of T3 defined by the line between

x1 and x2. Now suppose that y ∈ ∆(x1, x2, x3). It can be shown easily by induction on k

that if ∆(x1, x2, x3) is a deltoid of size k of T3, then d(y, x1) + d(y, x2) + d(y, x3) = 2k for

any y ∈ ∆(x1, x2, x3). This shows that in our case d(y, x1) + d(y, x2) + d(y, x3) ≥ 12n, i.e.,

max{d(y, xi) : 1 ≤ i ≤ 3} ≥ 4n.

5.4. Nerve graphs of clique-hypergraphs. We first show that (clique-)Hellyness is pre-

served by taking the nerve complex N(X (G)) of the clique-hypergraph X (G) of a Helly graph

G. Nerve complexes of clique-hypergraphs are also called clique graphs in the literature, see

e.g. [BP91]. Note that in general, the nerve complex N(X (G)) of the clique-hypergraph of a

graph G is not a flag simplicial complex. However, if G is clique-Helly, then N(X (G)) is a flag

simplicial complex.

Lemma 5.15. For any locally finite graph G, N(X (G)) is a flag simplicial complex if and only

if G is a (finitely) clique-Helly graph.

Proof. By the definition of N(X (G)), N(X (G)) is a flag simplicial complex if and only if any

finite set of pairwise intersecting cliques K1,K2, . . . ,Kp of G have a non-empty intersection.

This is precisely the definition of a finitely clique-Helly graph. Since G is locally finite, G is

finitely clique-Helly if and only if G is clique-Helly. □

The first assertion of the following result was first proved by Escalante [Esc73] (he also proved

the converse that any clique-Helly graph is the clique graph of some graph).

Proposition 5.16. If G is a locally finite clique-Helly graph, then the nerve graph NG(X (G))

of the clique-hypergraph X (G) is a clique-Helly graph and its flag-completion is a clique-Helly

complex.

If G is a locally finite Helly graph, then NG(X (G)) is a Helly graph and its flag-completion

is a Helly complex.

Proof. Let G be a locally finite clique-Helly graph. Let G′ be the nerve graph of the clique-

hypergraph X (G). Since G is locally finite, G′ is also locally finite. We prove that G′ is

clique-Helly by using the triangle criterion from Proposition 2.23. Let uvw be a triangle in

G′. It corresponds to three pairwise intersecting, and thus intersecting, maximal cliques in G,

denoted by the same symbols u, v, w. Observe that all vertices of (u ∩ v) ∪ (v ∩ w) ∪ (w ∩ u)

are pairwise adjacent in G and thus u ∩ v, v ∩w,w ∩ u are all contained in a common maximal

clique x in G(X). We claim that every vertex y in G′ that is adjacent to u and v in G′ is also

adjacent to x in G′. This is so because in G, the maximal clique y intersects u and v, hence

intersects u ∩ v since G is a clique-Helly graph. Since u ∩ v ⊆ x, y intersects x in G and thus

x ∼ y in G′. Similarly, the vertex x ∈ G′ is a universal vertex for triangles containing v, w and

w, u in G′. Consequently, the nerve graph G′ is clique-Helly.

Suppose now that G is a Helly graph, i.e., by Theorem 4.2 that the clique complex X(G)

is simply connected and that G is a clique-Helly graph. By the first part of the theorem,

the 1–skeleton G′ = G(Y ) of the nerve complex Y of the clique-hypergraph X (G) is clique-

Helly. By Borsuk’s Nerve Theorem [Bor48,Bjö95], X(G) and Y have the same homotopy type.
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Consequently, Y is also simply connected. By Theorem 4.2, this implies that G′ = G(Y ) is

Helly. □

We now show that the clique-Hellyness of the nerve graph of a clique-hypergraph is preserved

by taking covers.

Theorem 5.17. Given two locally finite graphs G,G′ such that the clique complex X(G) is a

cover of the clique complex X(G′), then the nerve graph NG(X (G)) is clique-Helly if and only

if the nerve graph NG(X (G′)) is clique-Helly.

By Theorem 4.2, we immediately get the following corollary since the nerve complex of the

maximal simplices of a simply connected simplicial complex is simply connected by Borsuk’s

Nerve Theorem [Bor48,Bjö95].

Corollary 5.18. For a locally finite graph G, the nerve graph NG(X (G̃)) of the clique-

hypergraph of the 1–skeleton G̃ of the universal cover X̃(G) of X(G) is Helly if and only if

the nerve graph NG(X (G)) of the clique-hypergraph X (G) is clique-Helly.

The proof of Theorem 5.17 follows from the following lemma establishing that a covering

map between the clique complexes of two graphs extends to a covering map between the nerve

complexes of the corresponding clique-hypergraphs.

Lemma 5.19. Given two locally finite simple graphs G,G′, any covering map φ : X(G) →
X(G′) induces a covering map from N(X (G)) to N(X (G′)).

Proof. In the nerve complex N(X (G)), the vertices are the maximal cliques of G and a finite

set σ = {K1, . . . ,Kp} of cliques of G is a simplex of N(X (G)) if
⋂p

i=1Ki ̸= ∅. Since G is locally

finite, each maximal clique K of G is finite. We extend the map φ to all cliques of G: for any

clique K = {u1, . . . , uk} of G, we set φ(K) = {φ(u1), . . . , φ(uk)}. Observe that for any clique

K = {u1, . . . , uk} of G, ui ∼ uj and thus φ(ui) ∼ φ(uj). Since G′ does not contain loops, φ(K)

is a clique of G′ and |φ(K)| = |K|.
Consider two cliques K of G and K ′ of G′ such that K ′ = φ(K). For any u ∈ K, φ induces a

bijection between the cliques containing u and the cliques containing φ(u). Consequently, K is

a maximal clique of G if and only if K ′ is a maximal clique of G′. Therefore, φ induces a map

from V (N(X (G))) to V (N(X (G′))).

We now prove a useful claim.

Claim 5.20. For any maximal cliques K1,K2 of G such that K1 ∩K2 ̸= ∅, we have φ(K1) ∩
φ(K2) = φ(K1 ∩K2).

Proof. The inclusion φ(K1 ∩ K2) ⊆ φ(K1) ∩ φ(K2) is trivial. Suppose now that the reverse

inclusion does not hold, i.e., that there exist u1 ∈ K1 \ K2 and u2 ∈ K2 \ K1 such that

φ(u1) = φ(u2). Pick u ∈ K1∩K2 and observe that u ∼ u1 since K1 is a clique and u ∼ u2 since

K2 is a clique. Consequently, the map φ is not locally injective at u, a contradiction. □

Note that if σ = {K1, . . . ,Kp} is a simplex of N(X (G)), then there exists u ∈
⋂p

i=1Ki.

Consequently, φ(u) ∈
⋂p

i=1 φ(Ki) and thus the image of a simplex of N(X (G)) is a simplex

of N(X (G′)). Thus φ is a simplicial map from N(X (G)) to N(X (G′)). Moreover, for any

1 ≤ i < j ≤ p, u ∈ Ki ∩ Kj and consequently, by Claim 5.20, φ(Ki) ∩ φ(Kj) = φ(Ki ∩ Kj).

Since |φ(Ki)| = |Ki| and |φ(Kj)| = |Kj |, this implies that if Ki ̸= Kj , then φ(Ki) ̸= φ(Kj).

Consequently, we have |φ(σ)| = |σ|.
We now show that φ is locally surjective. Let K0 ∈ V (N(X (G))) and K ′

0 = φ(K) ∈
V (N(X (G′))) and consider a simplex σ′ = {K ′

0,K
′
1, . . . ,K

′
p} in N(X (G′). By definition of

N(X (G′), there exists u′ ∈
⋂p

i=1K
′
i. SinceK

′
0 = φ(K0), there exists u ∈ K0 such that u′ = φ(u).
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Since φ is a covering map from G to G′, for each 1 ≤ i ≤ p, there exists Ki ∈ V (N(X (G)))

such that u ∈ Ki and K ′
i = φ(Ki). Since u ∈

⋂p
i=1Ki, σ = {K0,K1, . . . ,Kp} is a simplex of

N(X (G′) that is mapped to σ′ by φ.

We now show that φ is locally injective. Consider K0 ∈ V (N(X (G))) and assume that there

exist two distinct simplices σ1, σ2 in N(X (G)) such that K0 ∈ σ1∩σ2 and φ(σ1) = φ(σ2). Since

|φ(σ1)| = |σ1| and |φ(σ2)| = |σ2|, it implies that there exist K1 ∈ σ1 \ σ2 and K2 ∈ σ2 \ σ1 such

that φ(K1) = φ(K2). If K1 ∩K2 ̸= ∅, since |φ(K1)| = |K1| and |φ(K2)| = |K2|, by Claim 5.20,

we have K1 = K2, a contradiction. Consequently, K1 ∩K2 = ∅. Consider two distinct vertices

u1 ∈ K0 ∩ K1 and u2 ∈ K0 ∩ K2. Since |φ(K0)| = |K0|, we have φ(u1) ̸= φ(u2). Since

φ(K2) = φ(K1), there exists v1 ∈ K2 such that φ(v1) = φ(u1). But u2 ∼ u1 since u1, u2 ∈ K0

and u2 ∼ v1 since u2, v1 ∈ K2. This contradicts the local injectivity of φ at u2.

Consequently, φ defines a simplicial map from N(X (G)) to N(X (G′)) that induces a bijection

between the simplices containing a vertex of N(X (G)) and the simplices containing its image,

i.e., φ defines a covering map from N(X (G)) to N(X (G′)). □

Since a covering map is locally bijective, from Lemma 5.19 and Proposition 2.23 we conclude

that the nerve graph NG(X (G)) is clique-Helly if and only if the nerve graph NG(X (G′)) is

clique-Helly. This concludes the proof of Theorem 5.17.

Recall that a graph G is locally 7-systolic if the neighborhoods of vertices do not induce 4-,

5-, and 6-cycles. If additionally, the clique complex X(G) of G is simply connected, then the

graph G is 7-systolic. A 7-systolic graph does not contain induced 4-, 5-, and 6-cycles [Che00,

JŚ06]. It was shown in [JŚ06] that 7-systolic graphs are hyperbolic, and in fact, they are 1-

hyperbolic [CDE+08]. Thus they are coarse Helly by Proposition 5.11 or Proposition 5.12. We

now show that the nerve complex of the clique-hypergraph of a 7-systolic graph is Helly.

Theorem 5.21. If G is a locally 7-systolic graph that is locally finite, then the nerve graph

NG(X (G)) of its clique-hypergraph X (G) is clique-Helly. In particular, if G is a locally finite

7-systolic graph, then the nerve graph NG(X (G)) is Helly.

This is a generalization of a result by Larrión, Neumann-Lara, and Pizaña [LNLP02]. For-

mulated in different terms, the result of [LNLP02] can be rephrased as follows: the nerve graphs

of the clique-hypergraphs of 2-dimensional (i.e., K4-free) locally 7-systolic complexes are clique-

Helly.

Contrary to the usual approach to other local-to-global proofs (such as Theorem 4.2), we

first prove the second assertion of Theorem 5.21 and then the first assertion follows from Corol-

lary 5.18.

In the proof, we need the following technical lemma. This is a particular case of the result

of [Che98], providing a characterization of graphs admitting r-dominating cliques. We present

here a much simpler proof of this particular case.

Lemma 5.22. Given a locally finite 7–systolic graph G, for any finite set S ⊆ V (G) of diameter

3 in G, there exists a clique K dominating S (i.e., d(u,K) ≤ 1 for any u ∈ S).

Proof. Consider a maximal clique K of G that maximizes the size of NS [K] = {u ∈ S |
d(u,K) ≤ 1} and assume that there exists v ∈ S such that d(v,K) > 1. Among all such cliques

and vertices, consider a clique K and a vertex v that minimizes d(v,K).

Claim 5.23. For any clique K and any vertex v such that d(v, u) = d(v,K) = k for any u ∈ K,

there exists v′ ∈ B(v, k − 1) such that v′ ∼ K.

Proof. Consider v′ ∈ B(v, k−1) that maximizes |N(v′)∩K| and assume that there exists u′′ ∈ K

such that v′ ≁ u′′. Consider u′ ∈ K ∩N(v′). By (TC), there exists v′′ ∈ B(v, k − 1) such that
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v′′ ∼ u′, u′′. Since v′, v′′ ∈ B(v, k − 1) ∩N(u′) and d(v, u′) = k, we have v′ ∼ v′′ (otherwise, by

(QC), there exists an induced square in G). For any u ∈ N(v′)∩K, the 4-cycle v′uu′′v′′ cannot

be induced and thus u ∼ v′′. Therefore, N(v′) ∩ K ⊊ N(v′′) ∩ K, contradicting the choice of

v′. □

We also recall the following well-known property of systolic graphs [SC83].

Claim 5.24. In a systolic graph G, for any u, v, w, z such that u ∼ v, w and d(u, z) = d(v, z)+

1 = d(w, z) + 1, we have v ∼ w.

Proof. By (QC), there exists x ∼ v, w such that d(u, x) = d(u, v) − 1. Since G is systolic, the

4-cycle xvzw cannot be induced and thus v ∼ w. □

By Claim 5.23 and our choice of K and v, there exists u ∈ K such that d(v, u) = d(v,K)+1.

We distinguish several cases depending on the value of d(v,K). Since the diameter of S is 3

and since K is adjacent to at least one vertex of S, necessarily d(v,K) ≤ 4. If d(v,K) = 4,

let K4 = K ∩ B(v, 4). Note that for any u ∈ NS [K], since d(v, u) ≤ 3, we have d(u,K4) ≤ 1

and thus NS(K) = NS(K4). By Claim 5.23, there exists a clique K ′ containing K4 such that

NS [K] = NS [K4] ⊆ NS [K
′] and d(v,K ′) = 3, contradicting our choice of K and v.

If d(v,K) = 3, let K3 = {u ∈ K : d(v, u) = 3} and K4 = {u ∈ K : d(v, u) = 4}. Pick any

u ∈ NS(K) and consider a neighbor u′ of u in K. We assert that u ∈ NS(K3). If u′ ∈ K3, we

are trivially done. Otherwise, pick any t ∈ K3 and observe that by Claim 5.24, we have t ∼ u.

Therefore NS [K] = NS [K3] and by Claim 5.23, there exists a clique K ′ containing K3 such that

NS [K] = NS [K3] ⊆ NS [K
′] and d(v,K ′) = 2, contradicting our choice of K and v.

Finally, assume that d(v,K) = 2 and let K2 = {u ∈ K : d(v, u) = 2} and K3 = {u ∈ K :

d(v, u) = 3}. Let S3 = NS [K3] \ NS [K2]. For any u ∈ S3, there exists u′ ∈ K3 ∩ N(u). If

d(u, v) = 2, then for any u′′ ∈ K2, by Claim 5.24, u ∼ u′′. Consequently, u ∼ K2 and thus

u /∈ S3, a contradiction. Consequently, d(u, v) = 3, and by (TC), there exists u′′ ∈ B(v, 2)

such that u′′ ∼ u, u′. Since K2 ∪ {u′′} ⊆ N(u′) ∩ I(u′, v), we conclude that u′′ is adjacent to all

vertices of K2 by Claim 5.24.

Claim 5.25. For any u,w ∈ S3, either u′′ = w′′ or u′′ ∼ w′′.

Proof. Suppose that u′′ ̸= w′′ and u′′ ≁ w′′. If w′′ ∼ u′, we get a contradiction by Claim 5.24.

Similarly, we can assume that u′′ ≁ w′. Let v′′ ∈ K2 and note that v′′ ∼ u′, w′ and v′′ ≁ u,w

since u,w /∈ NS [K2]. By Claim 5.24, we have u′′ ∼ v′′ and similarly v′′ ∼ w′′. By (TC), there

exists w∗ ∼ v, v′′, w′′ and u∗ ∼ v, v′′, u′′. If u∗ ∼ w′′ (in particular if u∗ = w∗), the vertices

v′′, u∗, u′′, u′, w′, w′′ induce a W5. We can thus assume that u∗ ≁ w′′ and similarly that w∗ ≁ u′′.

By Claim 5.24, we have u∗ ∼ w∗ and thus the vertices v′′, u∗, u′′, u′, w′, w′′, w∗ induce a W6. □

Consider the clique K ′ = K2 ∪ {u′′ : u ∈ S3} and note that NS [K] ⊆ NS [K
′]. Since all

vertices of K ′ are at distance 2 from v, by Claim 5.23, there exists a clique K ′′ containing K ′

such that d(v,K ′′) = 1. Thus NS [K] ⊊ NS [K
′′], contradicting our choice of K and v. □

We are ready to complete the proof of the second part of Theorem 5.21.

Lemma 5.26. Let G be a locally finite 7–systolic graph. Then the nerve graph NG(X (G)) of

its clique-hypergraph X (G) is a Helly graph.

Proof. Since G is locally finite, NG(X (G)) is also locally finite. Since X(G) is simply con-

nected, by Borsuk’s Nerve Theorem [Bor48, Bjö95], N(X (G)) is simply connected and so is

its flag-completion X(NG(X (G))). Thus, by Theorem 4.2, it suffices to show that the nerve

graph NG(X (G)) is finitely clique-Helly. Consider a finite family F = {C1, . . . , Cn} of pairwise
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intersecting maximum cliques in NG(X (G)). Each Ci corresponds to a family {Ki
1, . . . ,K

i
ni
}

of pairwise intersecting cliques in G.

Let Vi =
⋃ni

j=1 V (Ki
j) for every 1 ≤ i ≤ n and let VF =

⋃n
i=1 Vi. First note that diam(VF ) ≤ 3.

Indeed, for any u ∈ Ki
j and u′ ∈ Ki′

j′ , there exists a clique K ∈ Ci ∩ Ci′ and two vertices

ui ∈ K ∩Ki
j and ui′ ∈ K ∩Ki′

j′ . Therefore, by Lemma 5.22 there exists a maximal clique K of

G such that d(v,K) ≤ 1 for all v ∈ VF .

Claim 5.27. K ∩Ki
j ̸= ∅ for all i, j.

Proof. Suppose that there exists i, j such that K ∩Ki
j = ∅ and pick a vertex v ∈ K maximizing

|N(v) ∩ Ki
j |. If v ∼ Ki

j , then Ki
j is not a maximal clique of G, a contradiction. Thus, there

exists u′ ∈ Ki
j such that v ≁ u′. Since d(u′,K) = 1, there exists v′ ∈ K such that v′ ∼ u′.

For any u ∈ N(v) ∩ Ki
j , the cycle uvv′u′ cannot be induced and thus u ∼ v′. Therefore

N(v) ∩Ki
j ⊊ N(v′) ∩Ki

j , contradicting our choice of v. □

Since K intersects all Ki
j , by maximality of Ci in NG(X (G)), we have K ∈ Ci for all i.

Consequently, NG(X (G)) is finitely clique-Helly and thus Helly. □

5.5. Rips complexes and nerve complexes of δ-ball-hypergraphs. The Rips complex

(also called the Vietoris-Rips complex ) Rδ(M) of a metric space (M,d) and positive real δ is

an abstract simplicial complex that has a simplex for every finite set of points of M that has

diameter at most δ. If (M,d) is a connected unweighted graph G, then for any positive real δ,

Rδ(G) and R⌊δ⌋(G) coincide. In this case, we can thus assume that δ is a positive integer, and

then the Rips complex Rδ(G) is just the δth power Gδ of G. Notice that for any δ ∈ N, the
nerve complex N(Bδ(G)) of the δ-ball-hypergraph Bδ(G) is isomorphic to the the Rips complex

R2δ(G).

Lemma 5.28. Rips complexes Rδ(G) of a Helly graph G are Helly.

Proof. As noted above, we can assume that δ is an integer and thus the Rips complex Rδ(G)

coincides with the δth power Gδ of G. Observe that for any vertex v and any radius r,

Br(v,G
δ) = Brδ(v,G). Thus the result follows since the family of balls of G satisfies the

Helly property. □

5.6. Face complexes. The face complex F (X) of a locally finite abstract simplicial complex

X is the simplicial complex whose vertex set V (F (X)) is the set of non-empty simplices of X

and where {F1, F2, . . . , Fk} is a simplex of F (X) if
⋃k

i=1 Fi is contained in a common simplex

F of X. If X is the clique complex of a graph G, then the vertices of F (X) are the cliques of

G and two cliques K1,K2 of G are adjacent in the 1–skeleton of F (X) if K1 ∪K2 is a clique.

Given a maximal simplex σ = {F1, F2, . . . , Fk} of F (X),
⋃k

i=1 Fi is contained in a common

simplex F of X. By maximality of σ, F = ∪σ =
⋃k

i=1 Fi and F is a maximal simplex of X.

Moreover, F ∈ σ and consequently, since σ is maximal, σ = P(F ) \ {∅} where P(F ) is the

set of all subsets of F . Conversely, for any maximal simplex F of X, by definition of F (X),

σ = P(F )\{∅} is a simplex of F (X). Since F is a maximal simplex of X, σ must be a maximal

simplex of F (X). As a result, we obtain the following Lemma:

Lemma 5.29. For any simplicial complex X, the map σ 7→ ∪σ defines a bijection from the

set of maximal simplices of F (X) to the set of maximal simplices of X, with inverse given by

F 7→ P(F ) \ {∅}.

If we start with the clique complex of a graph, then its face complex is also the clique complex

of a graph.
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Lemma 5.30. For any clique complex X, its face complex F (X) is also a clique complex.

Proof. Let G = G(X) be the 1–skeleton of X and let G′ = G(F (X)) be the 1–skeleton of F (X).

For any edge F1F2 in G′, F1, F2, and F1 ∪ F2 are cliques of G. Consequently, for any clique

σ = {F1, F2, . . . , Fk} in G(F (X)), F1 ∪ F2 ∪ . . . ∪ Fk is a clique of G. Since X is the clique

complex of G, F1 ∪ F2 ∪ . . . ∪ Fk is a clique of X and thus σ is a simplex of F (X). □

Proposition 5.31. The face complex F (X) of a locally finite clique-Helly (respectively, Helly)

complex X is a locally finite clique-Helly (respectively, Helly) complex.

Proof. By Lemma 5.30, F (X) is a clique complex. Let G = G(X) be the 1–skeleton of X and

G′ = G(F (X)) be the 1–skeleton of F (X). Since G is locally finite, G′ is also locally finite and

thus F (X) is a locally finite simplicial complex.

Consider the bijection σ 7→ ∪σ between the maximal cliques of F (X) and the maximal cliques

of X defined in Lemma 5.29. Observe that if (σi)i∈I is a family of maximal cliques of F (X),

then
⋂

i∈I σi ̸= ∅ if and only if
⋂

i∈I(∪σi) ̸= ∅. Consequently, since X is clique-Helly, F (X) is

also clique-Helly.

Suppose now thatX is simply connected. Since the nerve complexes of the clique hypergraphs

of X and F (X) are isomorphic thanks to the bijection σ 7→ ∪σ, X and F (X) are homotopy

equivalent by Borsuk’s Nerve Theorem [Bor48,Bjö95]. Consequently, F (X) is simply connected

and thus by Theorem 4.2, F (X) is a Helly complex when X is a Helly complex. □

6. Helly groups

As we already defined above, a group is Helly if it acts geometrically on a Helly graph

(necessarily, locally finite). The main goal of this section is to provide examples of Helly groups.

More precisely, in this section we prove Theorems 1.1, 1.2, 1.3, and 1.4 from the Introduction,

some of their consequences, and related results.

6.1. Proving Hellyness of a group. To prove that a group Γ (geometrically) acting on a cell

complex X (or on its 1-skeleton G(X)) is Helly, we will derive from X a Helly complex X∗ and

prove that Γ acts geometrically on X∗. The natural (and most canonical) way would be to take

as X∗ the Hellyfication Helly(X) of X. By Theorem 4.4, Helly(X) is well-defined and Helly for

all complexes X. The group Γ acts on Helly(X), but the group action is not always geometrical.

However, using the results from Sections 4.2 and 5.3, and a result of Lang [Lan13], we will prove

that hyperbolic groups acts geometrically on the Hellyfication of their Cayley graphs that are

hyperbolic and thus hyperbolic groups are Helly.

In several other cases, there are more direct ways to derive X∗. In case of CAT(0) cubical

groups, based on Proposition 5.8 and the bijection between median graphs and 1-skeletons of

CAT(0) cube complexes [Che00,Rol98], it follows that thickenings along cubes of locally finite

CAT(0) cube complexes are Helly, thus CAT(0) cubical groups are Helly. By Proposition 5.9,

the thickenings of locally finite hypercellular complexes and of locally finite swm-complexes are

Helly. Consequently, groups acting geometrically on hypercellular graphs or swm-graphs are

Helly. We use the same technique by thickening (along cells) to show that classical C(4)−T(4)

small-cancelation and graphical C(4)−T(4) small-cancelation groups are Helly. In all these

cases, the maximal cliques of the thickenings correspond to cells of the original complex. This

allows us to establish that the group Γ acts geometrically on the thickening. Proposition 5.10

may be useful to establish similar results for groups acting geometrically on other abstract cell

complexes. Another method is to prove the Hellyness of the nerve complex (the clique complex

of the intersection graph of maximal cliques of X) N(X) on which Γ acts geometrically. In this

way, we establish that 7-systolic groups are Helly (this also follows from the fact that 7-systolic

groups are hyperbolic).
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By considering face complexes, we show that Helly groups are stable by free products with

amalgamation over finite subgroups and by quotients by finite normal subgroups. Using the

theory of quasi-median groups of [Gen17], we provide criteria allowing to construct Helly groups

from groups acting on quasi-median graphs. This allows us to show that Helly groups are stable

by taking graph products of groups, □-products, ⋊-powers, and ⋊⋉-products. We also show that

the fundamental groups of right-angled graphs of Helly groups are Helly.

6.2. CAT(0) cubical, hypercellular, and swm-groups via thickening. A group Γ is called

cubical if Γ acts geometrically on a median graph G (or on the CAT(0) cube complex of G).

A group Γ is called an swm-group if it acts geometrically on an swm-graph G (or on the

orthoscheme complex of G). A group Γ is called hypercellular if it acts geometrically on a

hypercellular graph G (or on the geometric realization of G).

Any group Γ acting geometrically on a median graph, swm-graph, or hypercellular graph G

also acts geometrically on its thickening G∆. From Propositions 5.8 and 5.9 we obtain:

Proposition 6.1. Cubical groups, swm-groups, and hypercellular groups are Helly.

More generally, any group acting geometrically on a simply connected abstract cell complex

X defined on a graph G satisfying the conditions of Proposition 5.10 is Helly.

In [CCHO20], with every building ∆ of type Cn we associated an swm-graph H(∆) in such

a way that any (proper or geometric) type-preserving group action on ∆ induces a (proper or

geometric) action on H(∆).

Corollary 6.2. Uniform type-preserving lattices in isometry groups of buildings of type Cn are

Helly.

6.3. Hyperbolic and quadric groups via Hellyfication. If a group Γ acts geometrically

on a graph G, it also acts on its Hellyfication Helly(G) = E0(G) and on its injective hull E(G).

However in general, this action is no longer geometric. This is because the injective hull E(G)

is not necessarily proper and because the points of E(G) may be arbitrarily far from e(G). This

does not happen if G is a Helly graph:

Theorem 6.3. Let G be a locally finite Helly graph.

(1) The injective hull E(G) of G is proper and has the structure of a locally finite polyhedral

complex with only finitely many isometry types of n-cells, isometric to injective polytopes

in ℓn∞, for every n ≥ 1. Moreover, dH(E(G), e(G)) ≤ 1. Furthermore, if G has uniformly

bounded degrees, then E(G) has finite combinatorial dimension.

(2) A group acting cocompactly, properly or geometrically on G acts, respectively, cocompactly,

properly or geometrically on its injective hull E(G).

For β ≥ 1, the graph G has β-stable intervals [Lan13] if for every triplet of vertices w, v, v′

with v ∼ v′, we have dH(I(w, v), I(w, v′)) ≤ β, where dH denotes the Hausdorff distance. The

proof of the first assertion of Theorem 6.3(1) is based on the following theorem of Lang [Lan13]:

Theorem 6.4 ([Lan13, Theorem 1.1]). Let G be a locally finite graph with β-stable intervals.

Then the injective hull of G is proper (that is, bounded closed subsets are compact) and has the

structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells,

isometric to injective polytopes in ℓn∞, for every n ≥ 1.

Next we show that weakly modular graphs (and thus Helly graphs) have β-stable intervals.

Lemma 6.5. Every weakly modular graph has 1-stable intervals.
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Proof. We need to show that for every triplet of vertices w, v, v′ with d(v, v′) ≤ 1, and every

vertex u ∈ I(w, v) there exists a vertex u′ ∈ I(w, v′) with d(u, u′) ≤ 1. If v = v′, we are done

by taking u′ = u. Suppose now that v ∼ v′. We proceed by induction on k = d(w, v)+ d(w, v′).

For k = 0 the statement is obvious. Assume now that the statement holds for any j < k and

that d(w, v) + d(w, v′) = k. If d(w, v′) = d(w, v) + 1, then I(w, v) ⊆ I(w, v′) and the statement

obviously holds. If d(w, v) = d(w, v′) then, by the triangle condition (TC) (see Subsection 2.1)

there exists a vertex v∗ ∼ v, v′ such that v∗ ∈ I(w, v) ∩ I(w, v′). Since d(w, v) + d(w, v∗) =

d(w, v) + d(w, v′) − 1 = k − 1, by the induction hypothesis, for any u ∈ I(w, v), there exists

u′ ∈ I(w, v∗) ⊆ I(w, v′) such that d(u, u′) ≤ 1. Suppose now that d(w, v′) = d(w, v) − 1, i.e.,

v′ ∈ I(w, v). For any u ∈ I(w, v), let u∗ ∈ N(v) ∩ I(u, v). By the quadrangle condition, there

exists v∗ such that v∗ ∼ v′, u∗ and v∗ ∈ I(w, v′) ∩ I(w, u∗). Since d(w, u∗) + d(w, v∗) = k − 2

and since u ∈ I(w, u∗), by the induction hypothesis, there exists u′ such that d(u, u′) ≤ 1 and

u′ ∈ I(w, v∗) ⊆ I(w, v′). □

To establish the second assertion of Theorem 6.3(1), we use Lang’s results relating the com-

binatorial dimension with the notion of cones. In a graph G, the cone [Lan13] determined by

the directed pair (x, v) of vertices of G is the set C(x, v) = {y ∈ V (G) : v ∈ I(x, y)}. Given

a vertex v ∈ V (G), we denote by C(v) the set of all cones C(x, v) for x ∈ V (G). For a ball B

of G, we denote by C(B) the set of all pointed cones (v, C(x, v)) with v ∈ B and x ∈ V (G).

By [Lan13, Lemma 5.8], the size of C(B) is finite and bounded by a function of the size of B.

Proposition 6.6 ([Lan13, Proposition 5.12]). Let G be a locally finite graph with β-stable

intervals. Given a vertex z ∈ V (G) and α > 0, let B be the ball B2αβ(z). Then for every

f ∈ E′(G) such that f(z) ≤ α, we have rk(A(f)) ≤ 1
2 |C(B)|.

Proof of Theorem 6.3(1). Properness and the structure of a locally finite polyhedral complex

follow from Theorem 6.4 and Lemma 6.5.

We now show that dH(E(G), e(G)) ≤ 1. Pick any f ∈ E(G) and consider f ′ ∈ ∆0(G) defined

by setting f ′(x) = ⌈f(x)⌉ for any x ∈ V (G). Let f ′′ ∈ E0(G) such that f ′′ ≤ f ′ and notice that

for any x ∈ V (G), we have f ′′(x) ≤ f ′(x) < f(x) + 1. On the other hand, for any x ∈ V (G),

by Claim 3.5, for any ϵ > 0, there exists y ∈ V (G) such that f(x) + f(y) < d(x, y) + ϵ ≤
f ′′(x) + f ′′(y) + ϵ ≤ f ′′(x) + f(y) + 1+ ϵ. Consequently, f(x) < f ′′(x) + 1+ ϵ for any ϵ > 0 and

thus, f(x) ≤ f ′′(x) + 1. Since G is a Helly graph, by Theorem 4.4, E0(G) and G coincide and

thus, there exists a vertex z ∈ V (G) such that f ′′ = dz, establishing that d∞(f, dz) ≤ 1.

Now, additionally suppose that G has uniformly bounded degrees. To show that E(G) is

finite dimensional, pick any f ∈ E′(G) and consider the vertex z ∈ V (G) such that f(z) =

d∞(f, dz) ≤ 1. By Lemma 6.5, G has 1-stable intervals, and by Proposition 6.6 applied with

α = β = 1, we have that rk(A(f)) ≤ 1
2 |C(B2(z))|. Since G has bounded degrees, the size of

the balls of radius 2 in G is also bounded and by [Lan13, Lemma 5.8], the size of |C(B2(z))| is
uniformly bounded by some constant K. Consequently, by Proposition 6.6 all cells of E′(X)

are of dimension at most 1
2K. By [Lan13, Theorem 4.5], E′(G) = E(G). This prove that E(G)

has finite combinatorial dimension. □

Theorem 6.3(2) is an immediate corollary of Theorem 6.3(1) and of the next proposition.

Proposition 6.7. Let G be a locally finite graph such that the injective hull E(G) is proper and

satisfies the bounded distance property and let Γ be a group acting on G.

(1) if Γ acts cocompactly on G, then Γ acts cocompactly on E(G) and E0(G);

(2) if Γ acts properly on G, then Γ acts properly on E(G) and E0(G);

(3) if Γ acts geometrically on G, then Γ acts geometrically on E(G) and E0(G) and thus Γ

is a Helly group.
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Proof. Consider the Helly graph E0(G). Since the set E0(G) is an integer-valued subspace of

E(G) and E(G) is proper, the balls of E0(G) are compact. Therefore, the graph E0(G) is a

proper metric space and thus is locally finite. In particular, all compact sets of E0(G) are finite.

Since E(G) satisfies the bounded distance property, there exists δ such that for each f ∈ E(G),

we have d∞(f, e(G)) ≤ δ.

We first assume that Γ acts cocompactly on G and we show that Γ acts cocompactly on

E0(G) and E(G). The proof is the same in both cases; we provide it for E0(G). Since Γ acts

cocompactly on G, there exists v ∈ V (G) and r ∈ N such that V (G) =
⋃

g∈Γ V (Br(gv,G)).

Let R = r + δ and consider
⋃

g∈Γ V (BR(ge(v), E
0(G))). For any f ∈ E0(G), there exists

v′ ∈ V (G) such that d∞(f, e(v′)) ≤ δ. Since there exists g ∈ Γ such that dG(v
′, gv) ≤ r,

d∞(f, ge(v)) = d∞(f, e(gv)) ≤ d∞(f, e(v′)) + d∞(e(v′), e(gv)) ≤ δ + dG(v
′, gv) ≤ δ + r. This

shows that E0(G) =
⋃

g∈Γ V (BR(ge(v), E
0(G))) and thus Γ acts cocompactly on E0(G).

We now assume that Γ acts properly on G and we show that Γ acts properly on E0(G)

and E(G). Consider a compact set K in E0(G) or E(G) and let K ′ = {v ∈ V (G) : ∃f ∈
K, d∞(f, e(v)) ≤ δ}. Since K ′ is a bounded subset of V (G), K ′ is finite and thus e(K ′) is also

finite. Pick any g ∈ Γ such that ḡK ∩K ̸= ∅ (where ḡ is the inverse of g in Γ) and some f ∈ K

such that ḡf ∈ K. Let v ∈ K ′ such that d∞(f, e(v)) ≤ δ. Since Γ acts on E0(G) and E(G),

d∞(ḡf, ḡe(v)) = d∞(f, e(v)) ≤ δ. Since ḡe(v) = e(ḡv), ḡv ∈ K ′ and thus v ∈ K ′ ∩ gK ′. This

shows that {g ∈ Γ : ḡK ∩K ̸= ∅} ⊆ {g ∈ Γ : gK ′ ∩K ′ ̸= ∅}. Since Γ acts properly on G, the

second set is finite and thus Γ acts properly on E0(G) and E(G).

Finally, if Γ acts properly and cocompactly on E0(G), since E0(G) is a Helly graph, Γ is a

Helly group. □

If we consider a group Γ acting on a coarse Helly graph G, then Γ is a Helly group provided

that G has β-stable intervals:

Proposition 6.8. A group acting geometrically on a coarse Helly graph with β-stable intervals

is Helly.

This result is a particular case of Proposition 3.12, Theorem 6.4, and Proposition 6.7.

From Propositions 5.11 and 6.8, we also get the following corollary.

Corollary 6.9. Hyperbolic groups are Helly.

Proof. By Proposition 5.11, any δ-hyperbolic graph G is coarse Helly with constant 2δ. More-

over, if G has δ-thin geodesic triangles, then one can easily check that G has (δ + 1)-stable

intervals. The result then follows from Proposition 6.8. □

A group Γ is quadric if it acts geometrically on a quadric complex [Hod20b]. Quadric com-

plexes are cell complexes that have hereditary modular graphs as 1-skeletons.

Corollary 6.10. Quadric groups are Helly.

Proof. Since hereditary modular graphs are weakly modular, they have 1-stable intervals by

Lemma 6.5 and they are coarse Helly by Proposition 5.12. □

By [Hod20b, Theorem B], any group admitting a finite C(4)−T(4) presentation acts geomet-

rically on a quadric complex, leading thus to the following corollary:

Corollary 6.11. Any group admitting a finite C(4)−T(4) presentation is Helly.

6.4. 7-Systolic groups via nerve graphs of clique-hypergraphs. A group Γ is called

systolic (respectively, 7-systolic) if Γ acts geometrically on a systolic (respectively, 7-systolic)
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graph (or complex). Since 7-systolic groups are hyperbolic [JŚ06], they are Helly by Corol-

lary 6.9. Since 7-systolic graphs are coarse Helly, by Proposition 6.8, each 7-systolic group acts

geometrically on the Hellyfication Helly(G) of a 7-systolic graph G.

Any group Γ acting geometrically on a graph G also acts geometrically on the nerve graph

NG(X (G)) of its clique-hypergraph X (G). Since the nerve graph NG(X (G)) of the clique-

hypergraph X (G) of a 7-systolic graph is Helly by Theorem 5.21, a group Γ geometrically

acting on a 7-systolic graph G act also geometrically on the Helly graph NG(X (G)) and is thus

Helly.

Proposition 6.12. If a group Γ acts geometrically on a 7-systolic graph G, then Γ acts geo-

metrically on the Helly graphs Helly(G) and NG(X (G)), i.e., 7-systolic groups are Helly.

6.5. C(4)−T(4) graphical small cancellation groups via thickening. The main goal of

this subsection is to prove that finitely presented graphical C(4)−T(4) small cancellation groups

are Helly. Our exposition follows closely [OP18, Section 6], where graphical C(6) groups were

studied. We begin with general notions concerning complexes, then graphical C(4)−T(4) com-

plexes, and proving the Helly property for a class of graphical C(4)−T(4) complexes. From this

we conclude the Hellyness of the corresponding groups.

In this subsection, unless otherwise stated, all complexes are 2–dimensional CW–complexes

with combinatorial attaching maps (that is, restriction to an open cell is a homeomorphism

onto an open cell) being immersions – see [OP18, Section 6] for details. A polygon is a 2–disk

with the cell structure that consists of n vertices, n edges, and a single 2–cell. For any 2–cell

C of a 2–complex X there exists a map R → X, where R is a polygon and the attaching map

for C factors as S1 → ∂R → X. In the remainder of this section by a cell we will mean a map

R → X where R is a polygon. An open cell is the image in X of the single 2–cell of R. A

path in X is a combinatorial map P → X where P is either a subdivision of the interval or a

single vertex. In the latter case we call P → X a trivial path. The interior of the path is the

path minus its endpoints. Given paths P1 → X and P2 → X such that the terminal point of

P1 is equal to the initial point of P2, their concatenation is an obvious path P1P2 → X whose

domain is the union of P1 and P2 along these points. A cycle is a map C → X, where C is

a subdivision of the circle S1. The cycle C → X is non-trivial if it does not factor through a

map to a tree. A path or cycle is simple if it is injective on vertices. Notice that a simple cycle

(of length at least 3) is non-trivial. The length of a path P or a cycle C denoted by |P | or |C|
respectively is the number of 1–cells in the domain. A subpath Q → X of a path P → X (or a

cycle) is a path that factors as Q → P → X such that Q → P is an injective map. Notice that

the length of a subpath does not exceed the length of the path.

A disk diagram is a contractible finite 2–complexD with a specified embedding into the plane.

We call D nonsingular if it is homeomorphic to the 2–disc, otherwise D is called singular. The

area of D is the number of 2–cells. The boundary cycle ∂D is the attaching map of the 2–cell

that contains the point {∞}, when we regard S2 = R2 ∪ {∞}. A boundary path is any path

P → D that factors as P → ∂D → D. An interior path is a path such that none of its vertices,

except for possibly endpoints, lie on the boundary of D. If X is a 2–complex, then a disk

diagram in X is a map D → X.

A piece in a disk diagram D is a path P → D for which there exist two different lifts to

2–cells of D, i.e., there are 2–cells Ri → D and Rj → D such that P → D factors both as

P → Ri → D and P → Rj → D, but there does not exist an isomorphism Rj → Ri making the

following diagram commutative:

Rj D

RiP

.............................................................................. ............

.................................
.....
.......
.....

............
............
............
............
............
............
.............
............

.............................................................................. ............

......................................
.....
.......
.....
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Let φ : G → Θ be an immersion of graphs, assume that Θ is connected and that G does not

have vertices of degree 0 or 1. For convenience we will write G as the union of its connected

componentsG =
⊔

i∈I Gi, and refer to the connected graphsGi as relators. A thickened graphical

complex X is a 2–complex with 1–skeleton Θ and a 2–cell attached along every immersed cycle

in G, i.e., if a cycle C → G is immersed, then in X there is a 2–cell attached along the

composition C → G → Θ. A (nonthickened) graphical complex X∗ is a 2–complex obtained by

gluing a simplicial cone C(Gi) along each Gi → Θ:

X∗ = Θ ∪φ

⊔
i∈I

C(Gi).

For any Gi → X we have a thick cell Th(Gi) → X, where Th(Gi) is formed by gluing 2–cells

along all immersed cycles in Gi. In X∗ a cone-cell is the corresponding map C(Gi) → X. Note

that the two complexes X and X∗ have the same fundamental groups. To be consistent with

the approach in [OP18] in the following material we work usually with the thickened complex

X, however the results could be formulated also for X∗.

Let X be a thickened graphical complex. A piece in X is a path P → X for which there exist

two different lifts to G, i.e., there are two relators Gi and Gj such that the path P → X factors

as P → Gi → X and P → Gj → X, but there does not exist an isomorphism Th(Gj) → Th(Gi)

such that the following diagram commutes:

Th(Gj) X

Th(Gi)P

............................................................................................................ ............

..............................................................................
.....
.......
................

...........
...........
...........
...........
...........
...........
...........
...........
.....................
............

............................................................................................................. ............

..............................................................................
.....
.......
.....

A disk diagram D → X is reduced if for every piece P → D the composition P → D → X is a

piece in X.

Lemma 6.13 (Lyndon-van Kampen Lemma). Let X be a thickened graphical complex and let

C → X be a closed homotopically trivial path. Then

(1) there exists a disk diagram D → X such that the path C factors as C → ∂D → X, and

C → ∂D is an isomorphism,

(2) if a diagram D → X is not reduced, then there exists a diagram D1 → X with smaller

area and the same boundary cycle in the sense that there is a commutative diagram:

X

∂D∂D1
..............................................................................
.....
.......
.....

..................................................................................................................................... ............
∼=

.............................................................................................................................................................. ........
....

(3) any minimal area diagram D → X such that C factors as C
∼=−→ ∂D → X is reduced.

Definition 6.14. We say that a thickened graphical complex X satisfies:

• the C(4) condition if no immersed cycle C → X that factors as C → Gi → X is the

concatenation of less than 4 pieces;

• the T(4) condition if there does not exist a reduced nonsingular disk diagram D → X

with D containing an internal 0-cell v, of valence 3, that is, contained in exactly 3

corners of 2–cells.

If X satisfies both conditions we call it a C(4)−T(4) thickened graphical complex. The corre-

sponding complex X∗ is called then a C(4)−T(4) graphical complex.
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If D is a disk diagram we define small cancellation conditions in a very similar way, except

that a piece is understood as a piece in a disk diagram.

Proposition 6.15. If X is a C(4)−T(4) thickened graphical complex and D → X is a reduced

disk diagram, then D is a C(4)−T(4) diagram.

Proof. The assertion follows immediately from the definitions of a reduced map and a piece. □

The following lemma is a graphical C(4)−T(4) analogue of [OP18, Theorem 6.10] (the graphi-

cal C(6) case) and [Hod20b, Propositions 3.4, 3.5, 3.7 and Corollary 3.6] (the classical C(4)−T(4)

case).

Lemma 6.16. Let X be a simply connected C(4)−T(4) thickened graphical complex. Then the

following hold:

(1) For every relator Gi, the map Gi → X is an embedding.

(2) The intersection of (the images of) any two relators is either empty or it is a finite tree.

(3) If three relators pairwise intersect then they triply intersect and the intersection is a finite

tree.

Proof. The proofs of all the items (1), (2), (3) follow the same lines: we assume the statement

does not hold and we show that this leads to a forbidden reduced disk diagram, hence reaching

a contradiction.

(1) Suppose there is a relator G1 that does not embed. Let v, v′ be two vertices of G1 mapped

to a common vertex v11 in X, and let γ be a geodesic path in G1 between v and v′. The path γ is

mapped to a loop γ1 in X. By simple connectedness and by Lemma 6.13 there exists a reduced

disk diagram D for γ1, see Figure 3 left. We may assume that we choose a counterexample so

that the area (the number of 2-cells) of D is minimal among all counterexamples.

D

F1

D D
F1

F1F2 F2

F3

v12v12

v23
v31

v21v11

γ1

γ1
γ1

α1

α1

α1
γ2

γ2α2 α2

γ3

α3

Figure 3. The proof of Lemma 6.16. From left to right: (1), (2), (3).

Now, consider a larger disk diagram D∪F1 where F1 is a cell whose boundary is the concate-

nation γ1α1 which is mapped to a loop in G1, and the only common point of γ1 and α1 is v11,

see Figure 3 left. The existence of such cell F1 follows from our assumptions on no degree-one

vertices in relators. The diagram D ∪ F1 cannot be reduced, since otherwise it would be a

C(4)−T(4) diagram by Proposition 6.15, and this would contradict e.g. [Hod20b, Proposition

3.4]. Hence, by the definition of a reduced diagram, there is a piece P in D ∪ F1 that does not

lift to a piece in X. Since D is reduced, it follows that the piece P has to lie on γ1. Since P

does not lift to a piece in X, P is a part the boundary of a cell F ′ such that its other boundary

part Q maps to G1 as well, see Figure 4. Thus replacing the subpath P of γ1 by Q and, if

necessary, reducing the resulting loop to get an immersed one we get a new counterexample

with a diagram D′, such that D = D′ ∪ F ′, of smaller area — contradiction proving (1).

(2) First we prove that the intersection of two relators is connected. We proceed analogously

to the proof of (1). Suppose not, and let G1, G2 intersect in a non-connected subgraph leading
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F1

D′

v11

γ1

α1

F ′
P

Q

Figure 4. The proof of Lemma 6.16(1).

to a reduced disk diagram as in Figure 3 in the middle, with the boundary of Fi mapping to Gi.

Again, we assume that D has the minimal area among counterexamples and we consider the

extended disk diagramD∪F1∪F2. By [Hod20b, Proposition 3.5] the new diagram is not reduced

and hence, as in the proof of (1) we get to a contradiction by finding a new counterexample

with a smaller area diagram. This proves the connectedness of the intersection of two relators.

The fact that such intersections does not contain cycles follows immediately from the C(4)

condition.

(3) By (1) and (2) it is enough to show that the triple intersection is non-empty. Here we

proceed analogously to (1) and (2). The corresponding diagrams are depicted in Figure 3 on

the right, and the fact that the extended diagram D ∪ F1 ∪ F2 ∪ F3 is not reduced follows from

[Hod20b, Proposition 3.7]. □

Lemma 6.17. Let G1, G2, G3 be three pairwise intersecting relators in a simply connected

C(4)−T(4) thickened graphical complex X. Then the intersection Gi ∩ Gj of any two relators

is contained in the third one.

Proof. Suppose not. Let vi be a vertex in Gj ∩ Gk not in Gi, for {i, j, k} = {1, 2, 3}. By

Lemma 6.16 there exists a vertex v ∈ G1 ∩G2 ∩G3 and immersed paths γi ⊆ Gj ∩Gk from v

to vi, for all {i, j, k} = {1, 2, 3}. By our assumption on no degree-one vertices, we may find a

reduced disk diagram consisting of cells Fi mapped to Gi, for i = 1, 2, 3, as in Figure 5. This

contradicts the T (4) condition. □

v

v1

v2

v3

γ1

γ2

γ3

F3

F2

F1

Figure 5. The proof of Lemma 6.17.

Lemma 6.18. Let X be a simply connected C(4)−T(4) thickened graphical complex and consider

a collection {Gi → X}i∈I of relators. If for every i, j ∈ I the intersection Gi ∩Gj is non-empty

then the intersection
⋂

i∈I Gi is a non-empty tree.

Proof. The lemma follows directly from Lemmas 6.17 and 6.16(3). □
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In view of Lemmas 6.17 and 6.16, for a simply connected C(4)−T(4) graphical complex X∗

we may define a flag simplicial complex X∆, called its thickening as follows: vertices of X∆

are the vertices of X∗, and two vertices are connected by an edge iff they are contained in a

common cone-cell. (Observe that the thickening of a graphical complex is not the corresponding

thickened graphical complex.)

Theorem 6.19. Let X∗ be a simply connected C(4)−T(4) graphical complex. Then the 1-

skeleton of the thickening X∆ of X∗ is Helly. Consequently, a group acting geometrically on

X∗ is Helly.

Proof. Since cone-cells are contractible and, by Lemma 6.18 all their intersections are con-

tractible or empty, by Borsuk’s Nerve Theorem [Bor48,Bjö95], the thickening X∆ is homotopi-

cally equivalent to X∗. By Lemmas 6.17 and 6.16, the hypergraph defined by the thickening

is triangle-free and hence, by Proposition 2.25 the 1-skeleton of X∆ is clique-Helly. The theo-

rem follows by applying the local-to-global characterization of Helly graphs from [CCHO20] –

Theorem 4.2. □

Examples of groups as in Theorem 6.19 are given by the following construction. A graphical

presentation P = ⟨S | φ⟩ is a graph G =
⊔

i∈I Gi, and an immersion φ : G → RS , where every

Gi is finite and connected, and RS is a rose, i.e., a wedge of circles with edges (cycles) labelled

by a set S. Alternatively, the map φ : G → RS , called a labelling, may be thought of as an

assignment: to every edge of G we assign a direction (orientation) and an element of S.

A graphical presentation P defines a group Γ = Γ(P) = π1(RS)/ ⟨⟨φ∗(π1(Gi))i∈I⟩⟩. In other

words Γ is the quotient of the free group F (S) by the normal closure of the group generated

by all words (over S ∪ S−1) read along cycles in G (where an oriented edge labelled by s ∈ S is

identified with the edge of the opposite orientation and the label s−1). Observe that removing

vertices of degree one from G does not change the group hence we may assume that there are

no such vertices in G. A piece is a path P labelled by S such that there exist two immersions

p1 : P → G and p2 : P → G, and there is no automorphism Φ: G → G such that p1 = Φ ◦ p2.
Consider the following graphical complex: X∗ = RS ∪φ

⊔
i∈I C(Gi). The fundamental group

of X∗ is isomorphic to Γ. In the universal cover X̃∗ of X∗ there might be multiple copies of

cones C(Gi) whose attaching maps differ by lifts of Aut(Gi). After identifying all such copies,

we obtain the complex X̃+. The group Γ acts geometrically, but not necessarily freely on X̃+.

We call the presentation P a C(4)−T(4) graphical small cancellation presentation when the

complex X∗ is a C(4)−T(4) graphical complex. The presentation P is finite, and the group Γ is

finitely presented if the graph G is finite and the set S (of generators) is finite. As an immediate

consequence of Theorem 6.19 we obtain the following.

Corollary 6.20. Finitely presented graphical C(4)−T(4) small cancellation groups are Helly.

6.6. Free products with amalgamation over finite subgroups. Let H be a graph with

vertex set {wj}j∈J . For a collection {Hj}j∈J of graphs indexed by vertices of H, we consider

the collection FH := {F (Hj)}j∈J , of their face complexes. For every edge e = {uj , uj′} in H we

pick vertices we
j ∈ F (Hj) and we

j′ ∈ F (Hj′). The amalgam of FH over H, denoted H(FH) is a

graph defined as follows. Vertices of H(FH) are equivalence classes of the equivalence relation

on
⋃

j∈J V (F (Hj)) induced by the relation we
j ∼ we

j′ , for all edges e of H. Edges of H(FH)

are induced by edges in the disjoint union
⊔

j∈J F (Hj). The part of Theorem 1.3(1) concerning

free products with amalgamations over finite subgroups follows from the following result. The

case of HNN-extensions follows analogously.

Theorem 6.21. For i = 1, 2, let Γi act geometrically on a Helly graph Gi, and let Γ′
i < Γi be

a finite subgroup, such that Γ′
1 and Γ′

2 are isomorphic. Then the free product Γ1 ∗Γ′
1
∼=Γ′

2
Γ2 of
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Γ1 and Γ2 with amalgamation over Γ′
1
∼= Γ′

2 acts geometrically on an amalgam H(FH) of FH
over H, where H is a tree, elements of H are copies of G1, G2, and such that H(FH) is Helly.

Proof. Let H be the Bass-Serre tree for Γ1 ∗Γ′
1
∼=Γ′

2
Γ2. For a vertex wj of H corresponding to Γi

we defineHj to be a copy of Gi. For an edge e inH we define we
j to be a vertex fixed inHj by the

corresponding conjugate of Γ′
1
∼= Γ′

2 (such vertex exists by Theorem 7.1 and Proposition 5.31).

An equivariant choice of vertices we
j leads to an amalgam H(FH) acted geometrically upon

Γ1 ∗Γ′
1
∼=Γ′

2
Γ2. The graph H(FH) is Helly since it can be obtained by consecutive gluings of

two Helly graphs along a common vertex – such gluing obviously results in a Helly graph (for

a more general gluing procedure, see [Mie15]). □

6.7. Quotients by finite normal subgroups. Let Γ act (by automorphisms) on a complex

X. Then Γ acts on F (X) and we define the fixed point complex F (X)Γ in the face complex, as

the subcomplex spanned by all vertices of F (X) fixed by Γ (that correspond to the cliques of

X stabilized by Γ). Theorem 1.3(5) follows from the following.

Theorem 6.22. Let Γ be a group acting by automorphisms on a clique-Helly graph G. Let

N ◁ Γ be a finite normal subgroup. Then Γ/N acts by automorphisms on the clique-Helly

complex F (X(G))N . If G is Helly then F (X(G))N is Helly as well. If the Γ action on G is

proper, or cocompact then the induced action of Γ/N on F (X(G))N is, respectively, proper, or

cocompact.

Proof. The Γ-action on G induces the Γ-action on F (X(G)), and consequently the Γ/N -action

on F (X(G))N . It is clear that the latter is proper or cocompact if the initial action is so. By

Lemma 7.7 and Corollary 7.8 the complex F (X(G))N is (clique-)Helly if G is so. □

6.8. Actions with Helly stabilizers. Our goal now is to apply the general theory developed

in [Gen17] in order to show that the family of Helly groups is stable under several group-

theoretic operations. The main theorem in this direction is Theorem 6.25 below, which shows

that, if a group acts on a quasi-median graph in a specific way and if clique-stabilizers are Helly,

then the group must be Helly as well. We emphasize that, contrary to the rest of the article,

our quasi-median graphs may not be locally finite; in particular, their cliques will be typically

infinite. We begin by giving general definitions and properties related to quasi-median graphs.

6.8.1. Preliminaries on quasi-median graphs. Recall that a graph is quasi-median if it is weakly

modular and does not contain K−
4 and K3,2 as induced subgraphs. Several subgraphs are of

interest in the study of quasi-median graphs:

• Contrary to the rest of the paper, in this subsection, by a clique, we mean a maximal

complete subgraph.

• A prism is an induced subgraph which decomposes as a Cartesian product of cliques.

The maximal number of factors of a prism in a quasi-median graph is referred to as its

cubical dimension (which may be infinite). (Observe that, by maximality of our cliques,

a single vertex defines a prism of zero cubical dimension if and only if it is isolated.)

• A hyperplane is an equivalence class of edges with respect to the transitive closure of

the relation which identifies two edges whenever they belong to a common triangle or

they are opposite sides of a square (i.e., a four-cycle). Two cliques are parallel if they

belong to the same hyperplane. Two hyperplanes are transverse if their union contains

two adjacent edges of some square.

• According to [Gen17, Proposition 2.15], a hyperplane separates a quasi-median graph,

i.e., the graph obtained by removing the interiors of the edges of a hyperplane contains

at least two connected components. Such a component is a sector delimited by the

hyperplane.
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According to [BMW94] and [Gen17, Lemmas 2.16 and 2.80], cliques and prisms are gated

subgraphs. For convenience, in the sequel, we will refer to the map sending a vertex to its gate

in a given gated subgraph as the projection onto this subgraph.

6.8.2. Systems of metrics. Given a quasi-median graph G, a system of metrics is the data of a

metric δC on each clique C of G. Such a system is coherent if for any two parallel cliques C

and C ′ one has

δC(x, y) = δC′(tC→C′(x), tC→C′(y)) for every vertices x, y ∈ C,

where tC→C′ denotes the projection of C onto C ′. As shown in [Gen17, Section 3.2], it is

possible to extend a coherent system of metrics to a global metric on G. Several constructions

are possible, we focus on the one which will be relevant for our study of Helly groups. A chain

R between two vertices x, y ∈ V (G) is a sequence of vertices (x1 = x, x2, . . . , xn−1, xn = y)

such that, for every 1 ≤ i ≤ n − 1, the vertices xi and xi+1 belong to a common prism, say

Pi. The length of R is ℓ(R) =
n−1∑
i=1

δPi(xi, xi+1) where δPi denotes the ℓ∞-metric associated to

the local metrics defined on the cliques of Pi. Then the global metric extending our system of

metrics is

δ∞ : (x, y) 7→ min{ℓ(R) : R is a chain between x and y}.
Along this section, all our local metrics will be graph-metrics. It is worth noticing that, in this

case, δ∞ turns out to be a graph-metric as well. Consequently, (G, δ∞) will be considered as a

graph. More precisely, this graph has V (G) as its vertex-set and its edges link two vertices if

they are at δ∞-distance one. Notice that, if P = C1 × · · · ×Cn is a prism of G, then the graph

(P, δ∞) is isometric to the direct product (C1, δC1)⊠ · · ·⊠ (Cn, δCn).

The main result of this section is that extending a system of Helly graph-metrics produces a

global metric which is again Helly. More precisely:

Proposition 6.23. Let G be a quasi-median graph of finite cubical dimension endowed with a

coherent system of graph metrics {δC : C clique of G}. Suppose that (C, δC) is a locally finite

Helly graph for every clique C of G and that each vertex belongs to only finitely many cliques.

Then (G, δ∞) is a Helly graph.

We begin by proving the following preliminary lemma:

Lemma 6.24. Let G be a quasi-median graph endowed with a coherent system of graph metrics

{δC : C clique of G}. Suppose that the clique complex of (C, δC) is simply connected for every

clique C of G. Then the clique complex of (G, δ∞) is simply connected as well.

Proof. Let γ be a cycle in the one-skeleton of (G, δ∞). We want to prove by induction over

the number of hyperplanes of G crossed by γ that γ is null-homotopic in the clique complex of

(G, δ∞). Of course, if γ does not cross any hyperplane, then it has to be reduced to a single

vertex and there is nothing to prove. So from now on we assume that γ crosses at least one

hyperplane.

Let Y ⊆ V (G) denote the gated hull of the vertex-set of γ. Notice that the subgraph of

(G, δ∞) spanned by the vertices of Y coincides with (Y, δ∞). According to [Gen17, Proposition

2.68], the hyperplanes of Y are exactly the hyperplanes of G crossed by γ. If the hyperplanes

of Y are pairwise transverse, then it follows from [Gen17, Lemma 2.74] that Y is a single

prism. Consequently, (Y, δ∞) is the direct product of graphs whose clique complexes are simply

connected, so that γ must be null-homotopic in the clique complex of (G, δ∞). From now on,

assume that Y contains at least two hyperplanes, say J and H, which are not transverse.

Let S denote the sector delimited by H which contains J . Decompose γ as a concatenation

of subpaths α1β1 · · ·αnβnαn+1 such that α1, . . . , αn+1 are included in S and β1, . . . , βn intersect
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S only at their endpoints. For every 1 ≤ i ≤ n, fix a path σi ⊂ (Y, δ∞) between the endpoints

of βi which does not cross J (such a path exists as a consequence of [Gen17, Proposition 3.16]).

Notice that βiσ
−1
i is a cycle which does not cross H, so by our induction assumptions we

know that βi and σi are homotopic (in the clique complex). Therefore, γ is homotopic (in the

clique complex) to the cycle α1σ1 · · ·αnσnαn+1 which does not cross H. We conclude that γ is

null-homotopic (in the clique complex) by our induction assumptions. □

Proof of Proposition 6.23. Fix a set C of representatives of cliques modulo parallelism. For

every C ∈ C, let πC : G → C denote the projection onto C. We claim that

π :

{
(G, δ∞) → ⊠

C∈C
(C, δC)

x 7→ (πC(x))

is an injective graph morphism.

Let x, y ∈ (G, δ∞) be two adjacent vertices, i.e., two vertices of G satisfying δ∞(x, y) = 1. So

there exists a prism P of G, thought of as a product of cliques C1 × · · · × Cn, which contains

x, y and such that the projections of x, y onto each Ci are identical or δCi-adjacent. For every

1 ≤ i ≤ n, let C ′
i ∈ C denote the representative of Ci. Because our system of metrics is coherent,

we also know that the projections of x, y onto each C ′
i are identical or δC′

i
-adjacent. Therefore,

π(x) and π(y) are adjacent in the subgraph ⊠
1≤i≤n

(C ′
i, δC′

i
) of ⊠

C∈C
(C, δC). Thus, we have proved

that π is a graph morphism.

Now, let x, y ∈ (G, δ∞) be two distinct vertices. As a consequence of [Gen17, Proposition

2.30], there exists a hyperplane separating x and y. Therefore, if C ∈ C denotes the represen-

tative clique dual to this hyperplane, then πC(x) ̸= πC(y). Hence π(x) ̸= π(y), proving that π

is indeed injective.

Notice that the image of a prism of G under π is a finite subproduct of ⊠
C∈C

(C, δC). Moreover,

because every vertex of G belongs to only finitely many cliques and because each (C, δC) is

locally finite, we know that (G, δ∞) must be locally finite. As a consequence, (G, δ∞) is an

UGP over {(C, δC), C ∈ C}. Now, we claim that our UGP satisfies the 3-piece condition. So

let P1, P2, P3 be three pairwise intersecting prisms in G. Because prisms are gated, they satisfy

the Helly property, so there exists a vertex x ∈ P1 ∩ P2 ∩ P3. Let J denote the set of all the

hyperplanes that have a clique in at least two prisms among P1, P2, P3. Observe that any two

distinct hyperplanes J1, J2 ∈ J are transverse (i.e., there exists a prism containing cliques from

both J1 and J2). For every J ∈ J , fix a clique CJ ⊂ P1 ∪ P2 ∪ P3 in J that contains x. And

let P denote the gated hull of the union of all the CJ , J ∈ J . Because the hyperplanes in J
are pairwise transverse, we deduce from [Gen17, Proposition 2.68 and Lemma 2.74] that P is

a prism. Now, our goal is to show that P is the piece of G we are looking for. So let C ∈ C
be such that at least two prisms among P1, P2, P3 have projection C on the C-coordinate. It

follows from [Gen17, Lemma 2.20] that the hyperplane J containing C intersects at least two

prisms among P1, P2, P3, hence J ∈ J . By construction, P contains a clique in J , hence a clique

parallel to C. In other words, C is also the projection of P on the C-coordinate, as desired.

Thus, we have verified that the 3-piece condition holds. We conclude that (G, δ∞) is a Helly

graph by combining Theorem 5.4 with Lemma 6.24. □

6.8.3. Constructing Helly groups. We are now ready to construct new Helly groups from old

ones. Recall from [Gen17] that the action of group Γ on a quasi-median graph G is topical-

transitive if it satisfies the two following conditions:

(1) for every hyperplane J , every clique C ⊂ J and every g ∈ stab(J), there exists h ∈ stab(C)

such that g and h induce the same permutation on the set of sectors delimited by J ;

(2) for every clique C of G,
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• either C is finite and stab(C) = fix(C);

• or stab(C)↷ C is free and transitive on the vertices.

Then the statement we are interested in is:

Theorem 6.25. Let Γ be a group acting topically-transitively on a quasi-median graph G.

Suppose that:

• every vertex of G belongs to finitely many cliques;

• every vertex-stabilizer is finite;

• the cubical dimension of G is finite;

• G contains finitely many Γ-orbits of cliques;

• for every maximal prism P = C1 × · · · × Cn, stab(P ) = stab(C1)× · · · × stab(Cn).

If clique-stabilizers are Helly, then so is Γ.

Before turning to the proof of Theorem 6.25, we need the following easy observation (which

can be proved by following the lines of [Gen17, Lemma 4.34]):

Lemma 6.26. For every Helly group Γ, there exist a Helly graph G and a vertex x0 ∈ G such

that Γ acts geometrically on G and stab(x0) is trivial. □

Proof of Theorem 6.25. First of all, observe that G contains only finitely many Γ-orbits of

prisms. Indeed, let C be a finite collection of representatives of cliques modulo the action of Γ.

For every C ∈ C, fix a vertex xC ∈ C. Let P denote the set of all the prisms in G that contain

a xC for some C ∈ C. Because each vertex belongs to only finitely many cliques by assumption,

we know that P is a finite collection. Now, if P is an arbitrary prism in G, there must exist

g ∈ Γ and C ∈ C such that gP contains C, and a fortiori xC , hence gP ∈ P. This proves our

observation. By combining Lemma 6.26 with [Gen17, Proposition 7.8], we know that there exists

a new quasi-median graph Y endowed with a coherent system of metrics {δC : C clique of Y }
such that Γ acts geometrically on (Y, δ∞) and such that (C, δC) is a Helly graph for every clique

C of Y . Because (Y, δ∞) defines a Helly graph according to Proposition 6.23, we conclude that

Γ is a Helly group. □

We now record several applications of Theorem 6.25.

6.8.4. Graph products of groups. Given a simplicial graph G and a collection of groups G =

{Γu : u ∈ V (G)} indexed by the vertices of G (called vertex-groups), the graph product GG is

the quotient (
∗

u∈V (G)
Γu

)
/⟨⟨[g, h] = 1, g ∈ Γu, h ∈ Γv if (u, v) ∈ E(G)⟩⟩.

For instance, if G has no edge, then GG is the free product of G; and if G is a complete graph,

then GG is the direct sum of G. One often says that graph products interpolate between free

products and direct sums.

By combining Theorem 6.25 with [Gen17, Proposition 8.14], one obtains:

Theorem 6.27. Let G be a finite simplicial graph and G a collection of groups indexed by V (G).

If the vertex-groups are Helly, then so is the graph product GG.

6.8.5. Diagram products of groups. Let P = ⟨Σ : R⟩ be a semigroup presentation. We assume

that, if u = v is a relation which belongs to R, then v = u does not belong to R; in particular,

R does not contain relations of the form u = u. The Squier complex S(P) is the square-complex

• whose vertices are the positive words w ∈ Σ+;

• whose edges (a, u = v, b) link aub and avb where (u = v) ∈ R;
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• and whose squares (a, u = v, b, p = q, c) are delimited by the edges (a, u = v, bpc),

(a, u = v, bqc), (aub, p = q, c), (avb, p = q, c).

The connected component of S(P) containing a given word w ∈ Σ+ is denoted by S(P, w).

Given a collection of groups G = {Γs, s ∈ Σ} labelled by the alphabet Σ, the diagram product

D(P,G, w) is isomorphic to the fundamental group of the following 2-complex of groups:

• the underlying 2-complex is the 2-skeleton of the Squier complex S(P, w);

• to any vertex u = s1 · · · sr ∈ Σ+ is associated the group Γu = Γs1 × · · · × Γsr ;

• to any edge e = (a, u → v, b) is associated the group Γe = Γa × Γb;

• to any square is associated the trivial group;

• for every edge e = (a, u → v, b), the monomorphisms Γe → Γaub and Γe → Γavb are the

canonical maps Γa × Γb → Γa × Γu × Γb and Γa × Γb → Γa × Γv × Γb.

We refer to [GS99] and [Gen17, Section 10] for more information about diagram products of

groups. By combining Theorem 6.25 with [Gen17, Proposition 10.33 and Lemma 10.34], one

obtains:

Theorem 6.28. Let P = ⟨Σ : R⟩ be a finite semigroup presentation, G a collection of groups

indexed by the alphabet Σ and w ∈ Σ+ a baseword. If {u ∈ Σ+ : u = w mod P} is finite and if

the groups of G are all Helly, then the diagram product D(P,G, w) is a Helly group.

Explicit examples of diagram products can be found in [Gen17, Section 10.7]. For instance,

the □-product of two groups Γ1 and Γ2, defined by the relative presentation

Γ1□Γ2 = ⟨Γ1,Γ2, t : [g, h] = [g, tht−1] = 1, g ∈ Γ1, h ∈ Γ2⟩.

is a diagram product [Gen17, Example 10.65]. As it satisfies the assumptions of Theorem 6.28,

it follows that:

Corollary 6.29. If Γ1 and Γ2 are two Helly groups, then so is Γ1□Γ2.

6.8.6. Right-angled graphs of groups. Roughly speaking, right-angled graphs of groups are fun-

damental groups of graphs of groups obtained by gluing graph products together along “simple”

subgroups. We refer to [Ser03] for more information about graphs of groups.

Definition 6.30. Let G,H be two simplicial graphs and G,H two families of groups respectively

indexed by V (G), V (H). A morphism Φ : GG → HH is a graphical embedding if there exists

an embedding f : G → H and isomorphisms φv : Γv → Γf(v), v ∈ V (G), such that f(G) is an

induced subgraph of H and Φ(g) = φv(g) for every v ∈ V (G) and g ∈ Γv.

Definition 6.31. A right-angled graph of groups is a graph of groups such that each (vertex- and

edge-)group has a fixed decomposition as a graph product and such that each monomorphism

of an edge-group into a vertex-group is a graphical embedding (with respect to the structures

of graph products we fixed).

In the following, a factor will refer to a vertex-group of one of these graph products. Let

G be a right-angled graph of groups. Notice that, if e is an oriented edge from a vertex x to

another y, then the two embeddings of Γe in Γx and Γy given by G provide an isomorphism φe

from a subgroup of Γx to a subgroup of Γy. Moreover, if Γ ⊂ Γx is a factor, then φe(Γ) := {g ∈
Γy | ∃h ∈ Γ, φe(h) = g} is either empty or a factor of Γy. Set

Φ(Γ) = {φek ◦ · · · ◦ φe1 : e1, . . . , ek oriented cycle at x, φek ◦ · · · ◦ φe1(Γ) = Γ},

thought of as a subgroup of the automorphism group Aut(Γ).

By combining Theorem 6.25 with [Gen17, Proposition 11.26 and Lemma 11.27], one obtains:
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Theorem 6.32. Let G be a right-angled graph of groups such that Φ(Γ) = {Id} for every factor

Γ. Suppose that the underlying abstract graph and the simplicial graphs defining the graph

products are all finite. If the factors are Helly, then so is the fundamental group of G.

Explicit examples of fundamental groups of right-angled graphs of groups can be found in

[Gen17, Section 11.4]. For instance, the ⋊-power of a group Γ [Gen17, Example 11.38], defined

by the relative presentation

Γ⋊ = ⟨Γ, t : [g, tgt−1] = 1, g ∈ Γ⟩,

is the fundamental group of a right-angled graph of groups satisfying the assumptions of The-

orem 6.32, hence:

Corollary 6.33. If Γ is a Helly group, then so is Γ⋊.

Also, the ⋊⋉-product of two groups Γ1 and Γ2 [Gen17, Example 11.39], defined by the relative

presentation

Γ1 ⋊⋉ Γ2 = ⟨Γ1,Γ2, t : [g, h] = [g, tht−1] = [h, tht−1] = 1, g ∈ Γ1, h ∈ Γ2⟩,

is the fundamental group of a right-angled graph of groups satisfying the assumptions of The-

orem 6.32, hence:

Corollary 6.34. If Γ1 and Γ2 are Helly groups, then so is Γ1 ⋊⋉ Γ2.

7. Properties of Helly groups

The main goal of this section is proving Theorem 1.5(2)-(4)(6)-(9) from the Introduction.

(Theorem 1.5(1) is proved in the subsequent Section 8 and Theorem 1.5(5) follows from Theo-

rems 3.13 and 6.3). On the way we show also some immediate consequences of the main results

and prove related facts concerning groups acting on Helly graphs.

7.1. Fixed points for finite group actions. In this subsection we prove Theorem 1.5(2),

stating that every Helly group has only finitely many conjugacy classes of finite subgroups. It

is an immediate consequence of the following result interesting on it own.

Theorem 7.1 (Fixed Point Theorem). Let Γ be a group acting by automorphisms on a Helly

graph G without infinite cliques. If Γ has bounded orbits, then there exists a clique of G stabilized

by Γ. In particular, there is a fixed vertex of the induced action of Γ on the face complex F (G).

Proof. Pick a vertex v of G and consider its Γ-orbit Γv. Let N be the diameter of Γv. The

intersection B :=
⋂

g∈ΓBN (gv) of N -balls centered at vertices of the orbit Γv is a non-empty

bounded Γ-invariant Helly graph. Since G does not contain infinite simplices, by [Pol93, Theo-

rem A], the graph B contains a clique stabilized by Γ. □

Proof of Theorem 1.5(2). This follows immediately from the Fixed Point Theorem 7.1, as e.g.

in the case of CAT(0) groups in [BH99, Proposition I.8.5]. □

Remark 7.2. Theorem 1.5(2) can be also deduced from [Dre89] or [Lan13, Proposition 1.2]

combined with our Theorem 6.3.

7.2. Flats vs hyperbolicity. Proof of Theorem 1.5(3). Suppose that Γ is hyperbolic. Then

G is hyperbolic and, clearly, does not contain an isometric ℓ∞–square-grid. For the converse,

recall that if Γ is not hyperbolic then G contains isometric finite ℓ∞–square-grids of arbitrary

size, by Proposition 4.7. Since Γ acts geometrically on G (and, in particular, G is locally

finite), by a diagonal argument it follows that G contains an isometric infinite ℓ∞–grid (see e.g.

[BH99, Lemma II.9.34 and Theorem II.9.33]). □
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7.3. Contractibility and Hellyness of the fixed point set. The aim of this section is to

prove that for a group acting on a Helly complex, its fixed point set is contractible. This leads

to a proof of Theorem 1.5(4) showing that the Helly complex is a model for the classifying space

for proper actions. Furthermore, we show that the fixed point subcomplex of the face complex

(of the Helly complex on which the group acts) is Helly.

Lemma 7.3. Let Γ < Aut(X) be a group of automorphisms of a locally finite Helly complex

X. The fixed point set X ′Γ of the barycentric subdivision X ′ of X is contractible.

Proof. Let σ be a simplex of X stabilized by Γ. For every N > 0, the intersection BN :=⋂
v∈σ(0) BN (v) of N -balls centered at vertices of σ is Helly, hence dismantlable. It is also Γ-

invariant, by construction. The fixed point set B′Γ
N in the barycentric subdivision B′

N of BN is

contractible by [BM12, Theorem 6.5] or [HOP14, Theorem 1.2]. Since the sets BN exhaust X it

follows that the fixed point set X ′Γ in the barycentric subdivision X ′ of X is contractible. □

Theorem 1.5(4) is a part of the following corollary of Theorem 7.1 and Lemma 7.3.

Corollary 7.4. Let Γ be a group acting properly on a locally finite Helly graph G. Then, the

Helly complex X(G) is a model for the classifying space EΓ for proper actions of Γ. If the

action is cocompact then the model is finite dimensional and cocompact.

In view of Theorem 6.3 and [Lan13, Theorem 1.4] there exists also another model for EΓ,

defined as follows.

Theorem 7.5. Let Γ be a group acting properly on a locally finite Helly graph G. The injective

hull E(G) of G is a model for the classifying space EΓ for proper actions of Γ. If the action is

cocompact then the model is finite dimensional and cocompact.

Remark 7.6. Observe that X(G) can be non-homeomorphic to E(G). For example, if G is an

(n + 1)-clique then obviously the clique complex X(G) is an n-simplex, whereas the injective

hull E(G) is a cone over n+ 1 points, that is, a tree.

Recall that the fixed point complex F (X)Γ in the face complex is the subcomplex spanned

by all vertices of F (X) fixed by Γ. We now prove that F (X)Γ is Helly.

Lemma 7.7 (Clique-Helly fixed point set). Let Γ < Aut(X) be a group of automorphisms of a

locally finite clique-Helly complex X. Then the fixed point complex F (X)Γ is clique-Helly.

Proof. Let uvw be a triangle in F (X)Γ. By the clique-Helly property for F (X) (Propostion 5.31)

there is a vertex z ∈ F (X) adjacent to all vertices of F (X) spanning triangles with an edge

of uvw (Proposition 2.23). Since uvw belongs to F (X)Γ, all vertices in the orbit Γz have the

same property as z, i.e., they are adjacent to all vertices of F (X) spanning triangles with an

edge of uvw. Consequently, they span a simplex of F (X). Let σ be the union of the simplices

of X corresponding to the vertices of Γz in F (X). By Lemma 5.29, σ is a simplex of X.

Let y be the vertex of F (X) corresponding to σ. Notice that y belongs to F (X)Γ. We now

prove that y satisfies the assumption of Proposition 2.23. Pick a vertex x of F (X)Γ spanning a

triangle with an edge of uvw, say with uv. By the definition of z, x is adjacent to z and to any

z′ ∈ Γz. Consequently, for any z′ ∈ Γz, x and z′ correspond to two subsimplices τx and τz′ of

a common simplex of X. Therefore, all vertices of τx are adjacent to all vertices of τz′ . Since

σ =
⋃

z′∈Γz τz′ , τx and σ are also subsimplices of a common simplex of X. This implies that x

and y are adjacent in F (X). □

Corollary 7.8 (Helly fixed point set). Let Γ < Aut(X) be a group of automorphisms of a

locally finite Helly complex X. Then the fixed point complex F (X)Γ is Helly.
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Proof. Since every edge in F (X)Γ is homotopic to a path in X ′Γ, we have that every cycle in

F (X)Γ is homotopic to a cycle in X ′Γ, and hence F (X)Γ is simply connected by Lemma 7.3.

Hence by Lemma 7.7 and Theorem 4.2, F (X)Γ is Helly. □

7.4. EZ-boundaries. For a group Γ acting geometrically on X, by an EZ-structure for Γ we

mean a pair (X, ∂X), where X = X ∪∂X is a compactification of X being an Euclidean retract

with the following additional properties. The EZ-boundary ∂X is a Z-set in X such that, for

every compact K ⊂ X the sequence (gK)g∈Γ is a null sequence, and the action Γ↷ X extends

to an action Γ↷ X by homeomorphisms. This notion was first introduced by Bestvina [Bes96]

(without the requirement of extending Γ ↷ X to Γ ↷ X), then by Farrell-Lafont [FL05] (for

free actions), and finally in [OP09] (in the form above). Homological invariants of the boundary

are related to homological invariants of the group, and the existence of an EZ-structure has

some important consequences (e.g. it implies the Novikov conjecture in the torsion-free case).

Conjecturally, all groups with finite classifying spaces admit EZ-structures, but such objects

were constructed only for limited classes of groups – notably for hyperbolic groups and for

CAT(0) groups. Theorem 1.5(6) is a consequence of the following.

Theorem 7.9. Let Γ act geometrically on a Helly graph G. Then there exists an EZ-boundary

∂G such that (X(G) ∪ ∂G, ∂G) and (E(G) ∪ ∂G, ∂G) are EZ-structures for Γ.

Proof. It is shown in [DL15] that for a complete metric space E(G) with a convex and consistent

bicombing there exists ∂G (space of equivalence classes of combing rays) such that (E(G) ∪
∂G, ∂G) is a so-called Z-structure. The proof is easily adapted to show that it is an EZ-

structure (see e.g. [OP09] where a much weaker version of a ‘coarse bicombing’ is used to define

an EZ-structure). It follows that (X(G) ∪ ∂G, ∂G) is an EZ-structure as well. □

7.5. Farrell-Jones conjecture. For a discrete group Γ the Farrell-Jones Conjecture asserts

that the K-theoretic (resp. L-theoretic) assembly map

HΓ
n (EVCY(Γ);KR) → Kn(RΓ)

(resp. HΓ
n (EVCY(Γ);L

⟨−∞⟩
R ) → L⟨−∞⟩

n (RΓ))

is an isomorphism. Here, R is an associative ring with a unit, RΓ is the group ring, and Kn(RΓ)

are the algebraic K–groups of RΓ. By EVCY(Γ) we denote the classifying space for the family

of virtually cyclic subgroups of Γ, and KR is the spectrum given by algebraic K–theory with

coefficients from R (resp. we have the L-theoretic analogues) (see e.g. [BL12,KR17] for more

details). We say that Γ satisfies the Farrell-Jones conjecture with finite wreath products if for

any finite group F the wreath product Γ ≀ F satisfies the Farrell-Jones conjecture.

Proof of Theorem 1.5(7). Kasprowski-Rüping [KR17] showed that the Farrell-Jones conjecture

with finite wreath products holds for groups acting geometrically on spaces with convex geodesic

bicombing. Hence our result follows from Theorem 6.3 and Theorem 3.13. □

7.6. Coarse Baum-Connes conjecture. For a metric space X the coarse assembly map is

a homomorphism from the coarse K-homology of X to the K-theory of the Roe-algebra of X.

The space X satisfies the coarse Baum-Connes conjecture if the coarse assembly map is an

isomorphism. A finitely generated group Γ satisfies the coarse Baum-Connes conjecture if the

conjecture holds for Γ seen as a metric space with a word metric given by a finite generating

set. Equivalently, the conjecture holds for Γ if a metric space (equivalently: every metric space)

acted geometrically upon by Γ satisfies the conjecture.

Proof of Theorem 1.5(8). Fukaya-Oguni [FO20] introduced the notion of geodesic coarsely convex

space, and proved that the coarse Baum-Connes conjecture holds for such spaces. A geodesic
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coarsely convex space is a metric space with a coarse version of a bicombing satisfying some

coarse convexity condition. In particular, metric spaces with a convex bicombing – hence all

proper injective metric spaces (Theorem 3.13) – are geodesic coarsely convex spaces. Therefore,

our result follows from Theorem 6.3. □

7.7. Asymptotic cones. In this section, we are interested in asymptotic cones of Helly groups.

More precisely, we prove Theorem 1.5(9). Before turning to the proof, let us begin with a few

definitions.

An ultrafilter ω over a set S is a collection of subsets of S satisfying the following conditions:

• ∅ /∈ ω and S ∈ ω;

• for every A,B ∈ ω, A ∩B ∈ ω;

• for every A ⊂ S, either A ∈ ω or Ac ∈ ω.

Basically, an ultrafilter may be thought of as a labelling of the subsets of S as “small” (if they

do not belong to ω) or “big” (if they belong to ω). More formally, notice that the map
P(S) → {0, 1}

A 7→
{

0 if A /∈ ω

1 if A ∈ ω

defines a finitely additive measure on S.

The easiest example of an ultrafilter is the following. Fixing some s ∈ S, set ω = {A ⊂ S : s ∈
A}. Such an ultrafilter is called principal. The existence of non-principal ultrafilters is assured

by Zorn’s lemma; see [KL95, Section 3.1] for a brief explanation.

Now, fix a metric space (X, d), a non-principal ultrafilter ω over N, a scaling sequence ϵ = (ϵn)

satisfying ϵn → 0, and a sequence of basepoints o = (on) ∈ XN. A sequence (rn) ∈ RN is

ω-bounded if there exists some M ≥ 0 such that {n ∈ N : |rn| ≤ M} ∈ ω (i.e., if |rn| ≤ M for

“ω-almost all n”). Set

B(X, ϵ, o) = {(xn) ∈ XN : (ϵn · d(xn, on)) is ω-bounded}.

We may define a pseudo-distance on B(X, ϵ, o) as follows. First, we say that a sequence (rn) ∈
RN ω-converges to a real r ∈ R if, for every ϵ > 0, {n ∈ N : |rn − r| ≤ ϵ} ∈ ω. If so, we write

r = lim
ω

rn. It is worth noticing that an ω-bounded sequence of RN always ω-converges; see

[KL95, Section 3.1] for more details. Then, our pseudo-distance is{
B(X, ϵ, o)2 → [0,+∞)

(x, y) 7→ lim
ω

ϵn · d(xn, yn)

Notice that the previous ω-limit always exists since the sequence under consideration is ω-

bounded.

Definition 7.10. The asymptotic cone Coneω(X, ϵ, o) of X is the metric space obtained by

quotienting B(X, ϵ, o) by the relation: (xn) ∼ (yn) if d ((xn), (yn)) = 0.

The picture to keep in mind is that (X, ϵn ·d) is a sequence of spaces we get from X by “zooming

out”, and the asymptotic cone is the “limit” of this sequence. Roughly speaking, the asymptotic

cones of a metric space are asymptotic pictures of the space. For instance, any asymptotic cone

of Z2, thought of as the infinite grid in the plane, is isometric to R2 endowed with the ℓ1-metric;

and the asymptotic cones of a simplicial tree (and more generally of any Gromov-hyperbolic

space) are real trees.
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Because quasi-isometric metric spaces have bi-Lipschitz-homeomorphic asymptotic cones [KL95,

Proposition 3.12], one can define asymptotic cones of finitely generated groups up to bi-Lipschitz

homeomorphism by looking at word metrics associated to finite generating sets.

We are now ready to turn to Theorem 1.5(9), which will be a consequence of the following

statement:

Proposition 7.11. Let (X, d) be a finite dimensional proper injective metric space. Then its

asymptotic cones are contractible.

Proof. Let σ : X×X× [0, 1] denote the combing provided by Theorem 3.13. Fix a non-principal

ultrafilter ω, a sequence of basepoints o = (on) and a sequence of scalings ϵ = (ϵn). For every

point x = (xn) ∈ Coneω(X, o, ϵ) and every t ∈ [0, 1], let ρ(t, x) denote (σ(on, xn, t)). Notice

that, because σ is geodesic, ρ(t, x) defines a point of Coneω(X, o, ϵ). Also, because σ is convex,

the map

ρ :

{
[0, 1]× Coneω(X, o, ϵ) → Coneω(X, o, ϵ)

(t, x) 7→ ρ(t, x)

is continuous. In other words, ρ defines a retraction of Coneω(X, o, ϵ) to the point o. □

Proof of Theorem 1.5(9). Let Γ be a group acting geometrically on a Helly graph G. As a

consequence of Theorem 6.3, Γ acts geometrically on the injective hull E(G) of G, which is a

finite dimensional proper injective metric space. As every asymptotic cone of Γ must be bi-

Lipschitz homeomorphic to an asymptotic cone of E(G), the desired conclusion follows from

Proposition 7.11. □

8. Biautomaticity of Helly groups

Biautomaticity is a strong property implying numerous algorithmic and geometric features

of a group [ECH+92,BH99]. Sometimes the fact that a group acting on a space is biautomatic

may be established from the geometric and combinatorial properties of the space. For example,

one of the important and nice results about CAT(0) cube complexes is a theorem by Niblo and

Reeves [NR98] stating that the groups acting geometrically on such complexes are biautomatic.

Januszkiewicz and Świa̧tkowski [JŚ06] established a similar result for groups acting on systolic

complexes. It is also well-known that hyperbolic groups are biautomatic [ECH+92]. Świa̧tkowski

[Świ06] presented a general framework of locally recognized path systems in a graph G under

which proving biautomaticity of a group acting geometrically on G is reduced to proving local

recognizability and the 2–sided fellow traveler property for some paths.

In this section we use a different meaning of the term ‘bicombing’. Here the bicombing is

a combinatorial object that should not be confused with the (continuous) geodesic bicombing

from Subsection 3.4.

8.1. Main results. In this section, similarly to the results of [NR98] for CAT(0) cube com-

plexes, of [JŚ06] for systolic complexes, and of [CCHO20] for swm-graphs, we define the concept

of normal clique-path and prove the existence and uniqueness of normal clique-paths in all Helly

graphs G. These clique-paths can be viewed as usual paths in the 1–skeleton of the face complex

F (X(G)) of X(G) and also give rise to paths in the 1–skeleton β(G) of the first barycentric

subdivision of X(G). From their definition, it follows that the sets of normal clique-paths are

locally recognized sensu [Świ06]. Moreover, we prove that they satisfy the 2–sided fellow trav-

eler property. As a consequence, we conclude that groups acting geometrically on Helly graphs

are biautomatic.
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Theorem 8.1. The set of normal clique-paths between all vertices of a Helly graph G defines

a regular geodesic bicombing in β(G). Consequently, a group acting geometrically on a Helly

graph is biautomatic.

Remark 8.2. A natural generalization of this theorem would be to prove that injective groups

(i.e., groups acting geometrically on injective metric spaces) are biautomatic. Recently, Hugues

and Valiunas [HV23, Corollary D] proved this is not the case: they constructed an injective

group that is not biautomatic and thus not Helly.

8.2. Bicombings and biautomaticity. We continue by recalling the definitions of (geodesic)

bicombing and biautomatic group [ECH+92, BH99]. Let G = (V,E) be a graph and suppose

that Γ is a group acting geometrically by automorphisms on G. These assumptions imply that

the graph G is locally finite and that the degrees of the vertices of G are uniformly bounded.

Denote by P(G) the set of all paths of G. A path system P [Świ06] is any subset of P(G). The

action of Γ on G induces the action of Γ on the set P(G) of all paths of G. A path system

P ⊆ P(G) is called Γ–invariant if g · γ ∈ P, for all g ∈ Γ and γ ∈ P.

Let [0, n]∗ denote the set of integer points from the segment [0, n]. Given a path γ of length

n = |γ| in G, we can parametrize it and denote it by γ : [0, n]∗ → V (G). It will be convenient

to extend γ over [0,∞] by setting γ(i) = γ(n) for any i > n. A path system P of a graph G is

said to satisfy the 2-sided fellow traveler property if there are constants C > 0 and D ≥ 0 such

that for any two paths γ1, γ2 ∈ P, the following inequality holds for all natural i:

dG(γ1(i), γ2(i)) ≤ C ·max{dG(γ1(0), γ2(0)), dG(γ1(∞), γ2(∞))}+D.

A path system P is complete if any two vertices are endpoints of some path in P. A bicombing

of a graph G is a complete path system P satisfying the 2–sided fellow traveler property. If all

paths in the bicombing P are shortest paths of G, then P is called a geodesic bicombing.

We recall here quickly the definition of a biautomatic structure for a group. Details can be

found in [ECH+92, BH99, Świ06]. Let Γ be a group generated by a finite set S. A language

over S is some set of words in S ∪ S−1 (in the free monoid (S ∪ S−1)∗). A language over S

defines a Γ–invariant path system in the Cayley graph Cay(Γ, S). A language is regular if it

is accepted by some finite state automaton. A biautomatic structure is a pair (S,L), where S

is as above, L is a regular language over S, and the associated path system in Cay(Γ, S) is a

bicombing. A group is biautomatic if it admits a biautomatic structure. In what follows we

use specific conditions implying biautomaticity for groups acting geometrically on graphs. The

method, relying on the notion of locally recognized path system, was developed by Świa̧tkowski

[JŚ06].

Let G be a graph and let Γ be a group acting geometrically on G. Two paths γ1 and γ2 of

G are Γ-congruent if there is g ∈ Γ such that g · γ1 = γ2. Denote by Sk the set of Γ-congruence

classes of paths of length k of G. Since Γ acts geometrically on G, the sets Sk are finite for any

natural k. For any path γ of G, denote by [γ] its Γ-congruence class.

For a subset R ⊂ Sk, let PR be the path system in G consisting of all paths γ satisfying the

following two conditions:

(1) if |γ| ≥ k, then [η] ∈ R for any subpath η of length k of γ;

(2) if |γ| < k, then γ is a prefix of some path η such that [η] ∈ R.

A path system P in G is k–locally recognized if for some R ⊂ Sk, we have P = PR, and P is

locally recognized if it is k–locally recognized for some k. The following result of Świa̧tkowski

[Świ06] provide sufficient conditions for biautomaticity in terms of local recognition and bicomb-

ing.
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Theorem 8.3. [Świ06, Corollary 7.2] Let Γ be group acting geometrically on a graph G and let

P be a path system in G satisfying the following conditions:

(1) P is locally recognized;

(2) there exists v0 ∈ V (G) such that any two vertices from the orbit Γ · v0 are connected by

a path from P;

(3) P satisfies the 2–sided fellow traveler property.

Then Γ is biautomatic.

8.3. Normal clique-paths in Helly-graphs. For a set S of vertices of a graph G = (V,E)

and an integer k ≥ 0, let B∗
k(S) :=

⋂
s∈S Bk(s). In particular, if S is a clique, then B∗

1(S) is the

union of S and the set of vertices adjacent to all vertices in S. Notice also that if S ⊆ S′, then

B∗
k(S) ⊇ B∗

k(S
′). For two cliques τ and σ of G, let d̄(τ, σ) := max{d(t, s) : t ∈ τ, s ∈ σ}. We

recall also the notation d(τ, σ) = min{d(t, s) : t ∈ τ, s ∈ σ} for the standard distance between τ

and σ. We say that two cliques σ, τ of a graph G are at uniform-distance k (notation σ ▷◁k τ) if

d(s, t) = k for any s ∈ σ and any t ∈ τ . Equivalently, σ ▷◁k τ if and only if d̄(τ, σ) = d(τ, σ) = k.

Given two cliques σ, τ of G with d̄(τ, σ) = k ≥ 2, let R̂τ (σ) := B∗
k(τ) ∩ B∗

1(σ) and let

fτ (σ) := B∗
k−1(τ)∩B∗

1(R̂τ (σ)). The following observations can be helpful for the understanding

of these notions:

• R̂τ (σ) is the union of the maximal cliques of B∗
k(τ) that contain σ.

• B∗
1(R̂τ (σ)) is the intersection of the maximal cliques of B∗

k(τ) that contain σ.

• fτ (σ) is the intersection of B∗
k−1(τ) and the maximal cliques of B∗

k(τ) that contain σ.

Since G is a Helly graph, the set fτ (σ) is non-empty and we call it the imprint of σ with

respect to τ . Note that since σ is a clique, we have σ ⊆ R̂τ (σ) and thus we also have fτ (σ) ⊆
R̂τ (σ). Note also that each vertex in fτ (σ) is adjacent to all other vertices in R̂τ (σ), whence

R̂τ (σ) ⊆ B∗
1(fτ (σ)) and fτ (σ) is a clique.

Lemma 8.4. For any two cliques σ, τ of a Helly graph G such that d̄(τ, σ) = k ≥ 2, the imprint

fτ (σ) is a non-empty clique such that d̄(τ, fτ (σ)) = k−1 = d̄(τ, s′) for any s′ ∈ fτ (σ). Moreover,

if σ ▷◁k τ , then fτ (σ) ▷◁k−1 τ .

Proof. Note that by definition, fτ (σ) ⊆ B∗
k−1(τ). Note also that for any r, r′ ∈ R̂τ (σ), σ ⊆

B1(r)∩B1(r
′). Moreover, for any r ∈ R̂τ (σ) and any t ∈ τ , d(r, t) ≤ k and thus Bk−1(t)∩B1(r) ̸=

∅. Note also that since τ is a clique and k ≥ 2, τ ⊆ B∗
k−1(τ). Consequently, since G is a Helly

graph, fτ (σ) ̸= ∅. Since fτ (σ) ∪ σ ⊆ R̂τ (σ) and each vertex of fτ (σ) is adjacent to all other

vertices of R̂τ (σ), necessarily fτ (σ) ∪ σ is a clique. Therefore, for any t ∈ τ , s ∈ σ such that

d(t, s) = d̄(τ, σ) = k, and any s′ ∈ fτ (σ), we have d(s′, t) ≥ d(s, t) − d(s, s′) = k − 1. Since

s′ ∈ fτ (σ) ⊆ B∗
k−1(τ), we have d(s′, t) = k − 1. Thus, d̄(τ, fτ (σ)) = k − 1 and fσ(τ) ▷◁k−1 τ

when σ ▷◁k τ . □

Lemma 8.5. Consider three cliques σ, σ′, τ of a Helly graph G such that d̄(τ, σ) = d̄(τ, σ′) =

k ≥ 2. If σ′ ⊆ σ, then R̂τ (σ) ⊆ R̂τ (σ
′) and fτ (σ

′) ⊆ fτ (σ). In particular, if σ ▷◁k τ , then for

every s ∈ σ, we have fτ (s) ⊆ fτ (σ).

Proof. Recall that R̂τ (σ) := B∗
k(τ) ∩ B∗

1(σ) and R̂τ (σ
′) := B∗

k(τ) ∩ B∗
1(σ

′). Since σ′ ⊆ σ, we

have B∗
1(σ) ⊆ B∗

1(σ
′) and thus R̂τ (σ) ⊆ R̂τ (σ

′). Consequently, B∗
1(R̂τ (σ

′)) ⊆ B∗
1(R̂τ (σ)) and

thus fτ (σ
′) = B∗

k−1(τ) ∩B∗
1(R̂τ (σ

′)) ⊆ B∗
k−1(τ) ∩B∗

1(R̂τ (σ)) = fτ (σ). □

A sequence of cliques (σ0, σ1, . . . , σk) of a Helly graph G is called a normal clique-path if the

following local conditions hold:

(1) for any 0 ≤ i ≤ k − 1, σi and σi+1 are disjoint and σi ∪ σi+1 is a clique of G,
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(2) for any 1 ≤ i ≤ k − 1, σi−1 and σi+1 are at uniform-distance 2,

(3) for any 1 ≤ i ≤ k − 1, σi = fσi−1(σi+1).

Notice that if k ≥ 2, then condition (1) follows from conditions (2) and (3).

Theorem 8.6 (Normal clique-paths). For any pair τ, σ of cliques of a Helly graph G such that

σ ▷◁k τ , there exists a unique normal clique-path γτσ = (τ = σ0, σ1, σ2, . . . , σk = σ), whose

cliques are given by

(8.1) σi = fτ (σi+1) for each i = k − 1, . . . , 2, 1,

and any sequence of vertices P = (s0, s1, . . . , sk) with si ∈ σi for 0 ≤ i ≤ k is a shortest

path from s0 to sk. In particular, any two vertices p, q of G are connected by a unique normal

clique-path γpq.

Proof. We first prove that γτσ is a normal clique-path. The proof is based on the following

result.

Lemma 8.7. Let σ, σ′, σ′′, and τ be four cliques of a Helly graph G such that σ ▷◁k τ with

k ≥ 3, σ′ ⊆ fτ (σ), and σ′′ ⊆ fτ (σ
′). Then fτ (σ) = fσ′′(σ).

Proof. Note that our conditions and Lemma 8.4 imply that σ′ ▷◁k−1 τ , σ
′′ ▷◁k−2 τ , and σ ▷◁2 σ

′′.

We first show that R̂σ′′(σ) = R̂τ (σ). Recall that R̂τ (σ) = B∗
k(τ) ∩ B∗

1(σ) and R̂σ′′(σ) =

B∗
2(σ

′′) ∩ B∗
1(σ). Since τ ▷◁k−2 σ′′, we have B∗

2(σ
′′) ⊆ B∗

k(τ). Consequently, R̂σ′′(σ) ⊆ R̂τ (σ).

Conversely, by the definition of σ′′, we have σ′ ⊆ B∗
1(σ

′′). Indeed, since σ′′ ⊆ fτ (σ
′), we

have B∗
1(σ

′′) ⊇ B∗
1(fτ (σ

′)) ⊇ R̂τ (σ
′) ⊇ σ′. Since σ′ ⊆ fτ (σ), we have R̂τ (σ) ⊆ B∗

1(fτ (σ)) ⊆
B∗

1(σ
′) ⊆ B∗

2(σ
′′) where the last containment follows from σ′′ ⊆ fτ (σ

′). Consequently, R̂τ (σ) =

B∗
k(τ) ∩B∗

1(σ) ⊆ B∗
2(σ

′′) ∩B∗
1(σ) = R̂σ′′(σ), and thus R̂σ′′(σ) = R̂τ (σ).

Set R̂ := R̂σ′′(σ) = R̂τ (σ). Set also ϱ′ := fσ′′(σ) and ν ′ := fτ (σ). Recall that ν ′ =

fτ (σ) = B∗
k−1(τ) ∩ B∗

1(R̂) and ϱ′ = fσ′′(σ) = B∗
1(σ

′′) ∩ B∗
1(R̂). Since τ ▷◁k−2 σ′′, we have

B∗
1(σ

′′) ⊆ B∗
k−1(τ) and thus ϱ′ ⊆ ν ′. Conversely, since ν ′ ⊆ R̂τ (ν

′) = B∗
1(ν

′) ∩ Bk−1(τ) ⊆
B∗

1(σ
′) ∩ Bk−1(τ) = R̂τ (σ

′), we have ν ′ ⊆ B∗
1(σ

′′) by definition of σ′′. Consequently, ν ′ ⊆
B∗

1(σ
′′) ∩B∗

1(R̂) = ϱ′. Therefore ν ′ = ϱ′ and the lemma holds. □

To prove that γτσ is a normal clique-path we proceed by induction on k. If k ≤ 2, there is

nothing to prove. Assume now that k ≥ 3. Since τ ▷◁k σk, σk−1 = fτ (σk), and σk−2 = fτ (σk−1),

we have that τ ▷◁k−1 σk−1, τ ▷◁k−2 σk−2, and σk−2 ▷◁2 σk. By the induction hypothesis,

(σ0 = τ, σ1, σ2, . . . , σk−1) is a normal clique-path. Applying Lemma 8.7 with σ = σk, σ
′ = σk−1

and σ′′ = σk−2, we have that σk−1 = fσk−2
(σk) and thus γτσ is a normal clique-path as well.

We now prove that an arbitrary normal clique-path γ′τσ = (τ = ϱ0, ϱ1, ϱ2, . . . , ϱl = σ) coin-

cides with γτσ. In fact, we prove this result under a weaker assumption than σ ▷◁k τ .

Proposition 8.8. Let σ, τ be two cliques of a Helly graph G and let k be an integer such that

for every s ∈ σ, d̄(s, τ) = k. Then any normal clique-path γ′τσ = (τ = ϱ0, ϱ1, ϱ2, . . . , ϱl = σ)

coincides with γτσ = (τ = σ0, σ1, σ2, . . . , σk = σ), whose cliques are given by (8.1).

Proof. The proof of the proposition is based on the following result.

Lemma 8.9. Let ϱ, ϱ′, ϱ′′, and τ be four cliques of a Helly graph G such that d̄(τ, ϱ) = 1 +

d̄(τ, ϱ′) =: k ≥ 3, d̄(ϱ, ϱ′′) ≥ 2, ϱ′ = fϱ′′(ϱ) and ϱ′′ ⊆ fτ (ϱ
′). Then ϱ′ = fτ (ϱ).

Proof. Let σ′ = fτ (ϱ) and note that our conditions and Lemma 8.4 imply that d̄(τ, σ′) =

1 + d̄(τ, ϱ′′) = k − 1 and that d̄(ϱ, ϱ′′) = 2.

We first show that R̂ϱ′′(ϱ) = R̂τ (ϱ). Recall that R̂τ (ϱ) = B∗
k(τ)∩B∗

1(ϱ) and R̂ϱ′′(ϱ) = B∗
2(ϱ

′′)∩
B∗

1(ϱ). Since d̄(τ, ϱ
′′) = k−2, necessarily B∗

2(ϱ
′′) ⊆ B∗

k(τ), and consequently, R̂ϱ′′(ϱ) ⊆ R̂τ (ϱ). In
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particular, note that ϱ′ ⊆ R̂ϱ′′(ϱ) ⊆ R̂τ (ϱ). Consequently, σ
′ ⊆ B∗

1(R̂τ (ϱ)) ⊆ B∗
1(ϱ

′). Since σ′ ⊆
B∗

k−1(τ), we have σ′ ⊆ B∗
k−1(τ) ∩ B∗

1(ϱ
′) = R̂τ (ϱ

′). Therefore, by the definition of ϱ′′ ⊆ fτ (ϱ
′),

we have σ′ ⊆ B∗
1(ϱ

′′). Consequently, B∗
1(σ

′) ⊆ B∗
2(ϱ

′′) and thus R̂τ (ϱ) ⊆ B∗
1(σ

′) ⊆ B∗
2(ϱ

′′).

Therefore R̂τ (ϱ) ⊆ B∗
2(ϱ

′′) ∩B∗
1(ϱ) = R̂ϱ′′(ϱ) and thus R̂τ (ϱ) = R̂ϱ′′(ϱ).

Let R̂ = R̂τ (ϱ) = R̂ϱ′′(ϱ) and recall that ϱ′ = fϱ′′(ϱ) = B∗
1(ϱ

′′)∩B∗
1(R̂) and that σ′ = fτ (ϱ) =

B∗
k−1(τ) ∩ B∗

1(R̂). Since σ′ ⊆ B∗
1(ϱ

′′), necessarily σ′ ⊆ ϱ′. Conversely, since d̄(τ, ϱ′′) = k − 2,

necessarily B∗
1(ϱ

′′) ⊆ B∗
k−1(τ), and consequently, ϱ′ ⊆ σ′. Therefore ϱ′ = σ′ and the lemma

holds. □

We prove the proposition by induction on the length l of the normal clique-path γ′τσ. If l ≤ 2,

there is nothing to prove. Assume now that l ≥ 3 and let k = d̄(τ, σ).

Suppose first that d̄(τ, ϱl−1) = k − 1. Since ϱl−1 ∪ σ is a clique and since d̄(s, τ) = k for

every s ∈ σ, necessarily d̄(p′, τ) = k − 1 for every p′ ∈ ϱl−1. By the induction hypothesis, the

clique-path γ′τϱl−1
= (τ = ϱ0, ϱ1, ϱ2, . . . , ϱl−1) coincides with γτϱl−1

. Consequently, l = k and

ϱl−2 = fτ (ϱl−1). Applying Lemma 8.9 with ϱ = σ, ϱ′ = ϱl−1 and ϱ′′ = ϱl−2, we have that

fτ (σ) = fϱl−2
(σ) = ϱl−1. Hence, γ

′
τσ and γτσ coincide.

Suppose now that d̄(τ, ϱl−1) ≥ k. Note that in this case, necessarily l ≥ k+1 and so d̄(ϱl, τ) =

k ≤ l − 1. Consider the minimal index i for which there exists p ∈ ϱi such that d̄(p, τ) ≤ i− 1.

Note that i ≥ 2 since otherwise τ = ϱ0 = {p} and ϱ0 ∩ ϱ1 ̸= ∅, contradicting the fact that γ′τσ is

a normal clique-path. Note also that since γ′τσ is a normal clique-path, we have ϱ0 ▷◁2 ϱ2 and

thus i ≥ 3. By the induction hypothesis, γ′τϱi−1
= (τ = ϱ0, ϱ1, ϱ2, . . . , ϱi−1) and γτϱi−1 coincide.

In particular, this implies that ϱi−2 = fτ (ϱi−1). Note that p ∈ B∗
i−1(τ) by our choice of p and

that p ∈ B∗
1(ϱi−1) since ϱi−1 = fϱi−2(ϱi). Consequently, p ∈ R̂τ (ϱi−1) ⊆ B∗

1(ϱi−2). But then ϱi
and ϱi−2 are not at uniform-distance 2, contradicting the fact that γ′τσ is a normal clique-path.

This finishes the proof of Proposition 8.8. □

To conclude the proof of Theorem 8.6, consider any sequence P = (s0, s1, . . . , sk) such that

si ∈ σi for 0 ≤ i ≤ k. Note that P is a path since σi ∪ σi+1 is a clique for every 0 ≤ i ≤ k − 1,

and that it is a shortest path since d(s0, sk) = d̄(σ0, σk) = k. □

8.4. Normal paths in Helly-graphs. In this subsection, we define the notion of a normal path

between any two vertices t and s of a Helly graph. Analogously to normal clique-paths, normal

paths can be characterized in a local-to-global way, and therefore they are locally recognized.

Any two vertices t, s of G can be connected by at least one normal path, and all normal (t, s)-

paths are hosted by the normal clique-path γts.

A path (t = s0, s1, . . . , sk = s) between two vertices t and s of a Helly graph G is called a

normal path if the following local conditions hold:

(1) for any 1 ≤ i ≤ k − 1, d(si−1, si+1) = 2,

(2) for any 1 ≤ i ≤ k − 1, si ∈ fsi−1(si+1).

Proposition 8.10 (Normal paths). A path Pts = (t = s0, s1, . . . , sk = s) between two vertices

t and s of a Helly graph G is a normal path if and only si ∈ ft(si+1) for any 1 ≤ i ≤ k − 1.

In particular, this implies that Pts is a shortest path of G. If γts = ({t} = σ0, σ1, . . . , σk =

{s}) is the unique normal clique-path between t and s, then for any normal path P ′
ts = (t =

s0, s1, . . . , sk = s), we have si ∈ σi for 0 ≤ i ≤ k.

Proof. The proof of the first statement of the proposition is similar to the proof of Theorem 8.6.

We first prove that Pts is a normal path. Observe that Lemma 8.4, Pts is a shortest path of

G. To do so, we proceed by induction on the distance k = d(t, s). If k ≤ 2, there is nothing to

prove. Assume now that k ≥ 3. Since d(t, sk) = k, sk−1 ∈ ft(sk), and sk−2 ∈ ft(sk−1), we have

d(t, sk−1) = k − 1 and d(t, sk−2) = k − 2. By the induction hypothesis, (s0 = t, s1, s2, . . . , sk−1)
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is a normal path. Applying Lemma 8.7 with σ = {sk}, σ′ = {sk−1}, σ′′ = {sk−2}, and τ = {t},
we conclude that sk−1 ∈ ft(sk) = fsk−2

(sk) and thus Pts is a normal path as well.

We now prove that any normal path P ′
ts = (t = p0, p1, . . . , pl = s) is a shortest path of G and

that pi ∈ ft(pi+1) for every 1 ≤ i ≤ l. To do so, we proceed by induction on the length l of P ′
ts.

If l ≤ 2, there is nothing to prove. Assume now that l ≥ 3 and let k = d(t, pl). By the induction

hypothesis applied to the normal path P ′
tpl−1

= (t = p0, p1, . . . , pl−1), P
′
tpl−1

is a shortest path

of G and we have pi ∈ ft(pi+1) for every 1 ≤ i ≤ l − 2. In particular, d(t, pl−1) = l − 1.

Suppose first that d(t, pl−1) = k − 1. Then l = k, therefore P ′
ts is a shortest path. Since

pl−2 ∈ fτ (pl−1), applying Lemma 8.9 with ϱ = {s}, ϱ′ = fpl−2
(s), and ϱ′′ = {pl−2}, we have

that ft(s) = fpl−2
(s), and thus pl−1 ∈ fpl−2

(s) = ft(s). Consequently, we have pi ∈ ft(pi+1) for

every 1 ≤ i ≤ l and the proposition holds in this case. Suppose now that l− 1 = d(t, pl−1) ≥ k,

i.e., l ≥ k + 1. By the induction hypothesis applied to the path P ′
tpl−1

, we have pl−2 ∈ ft(pl−1).

Note that pl ∈ Bl−1(t) because d(t, pl) = k ≤ l − 1 and that pl ∈ B1(pl−1). Consequently,

pl ∈ R̂t(pl−1) ⊆ B1(pl−2). But then d(pl, pl−2) ≤ 1, contradicting the fact that P ′
ts is a normal

path. This ends the proof of the first statement of the proposition.

Consider now the normal clique-path γts = ({t} = σ0, σ1, . . . , σk = {s}) between two vertices

t and s and any normal path Pts = (t = s0, s1, . . . , sk = s). We show by reverse induction on

i that si ∈ σi for 0 ≤ i ≤ k. For i = k, there is nothing to prove. Suppose now that i < k

and that si+1 ∈ σi+1. Since si ∈ ft(si+1) by the first assertion of the proposition and since

ft(si+1) ⊆ ft(σi+1) = σi by Lemma 8.5, we have si ∈ σi. □

Remark 8.11. The example of Figure 6 is a Helly graph and contains two vertices s, t such that

the cliques of the normal clique-path γts contain a vertex not included in any normal (t, s)-path.

t

s

v v′

yx

w

u u′

Figure 6. In this graph, y appears in a clique of the normal clique-path γts =

(t, {x, y}, {u, u′, w}, s). However, for any normal path (t = s0, s1, s2, s3 = s),

R̂t(s2) contains either v or v′ and thus y /∈ ft(s2).

8.5. Normal (clique-)paths are fellow travelers.

Proposition 8.12. Let G be a Helly graph. Consider two cliques σ, τ , two vertices p, q of G,

and two integers k′ ≥ k such that p ▷◁k′ σ, q ▷◁k τ , d(σ, τ) ≤ 1, and d(p, q) ≤ 1. For the

normal clique-paths γpσ = (p = σ0, σ1, . . . , σk′ = σ) and γqτ = (q = τ0, τ1, . . . , τk = τ), we have

d(σi, τi) ≤ 1 for every 0 ≤ i ≤ k and d(σi, τk) ≤ 1 for every k ≤ i ≤ k′.

Proof. We prove the result by induction on k′. If k′ ≤ 1, there is nothing to prove. Assume now

that k′ ≥ 2 and that the lemma holds for any cliques σ, τ , any vertices p, q, and any integers

l ≤ l′ ≤ k′ − 1 such that p ▷◁l′ σ, q ▷◁l τ , d(σ, τ) ≤ 1, and d(p, q) ≤ 1.

Suppose first that k < k′. Note that k + 1 ≤ k′ ≤ k + 2 since d(p, q) ≤ 1 and d(σ, τ) ≤ 1.

Let s ∈ σ and t ∈ τ such that d(s, t) = d(σ, τ) ≤ 1. Note that d(p, t) ≤ d(q, t) + 1 = k + 1 ≤ k′.
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Consequently, t ∈ R̂p(s) and thus fp(s) ⊆ B1(t). Consequently, since fp(s) ⊆ fp(σ) = σk′−1

by Lemma 8.5, we have d(σk′−1, τk) ≤ 1. By Lemma 8.4, we have p ▷◁k′−1 σk′−1 and thus we

can apply the induction hypothesis to σk′−1, τ, p, and q. Therefore, we have d(σi, τi) ≤ 1 for

every 0 ≤ i ≤ k and d(σi, τk) ≤ 1 for every k ≤ i ≤ k′ − 1. Since by our assumptions, we have

d(σk′ , τk) ≤ 1, we are done.

Suppose now that k = k′. By the induction hypothesis, it is enough to show that

d(fp(σ), fq(τ)) ≤ 1. Consider any two vertices s ∈ σ and t ∈ τ such that d(s, t) = d(σ, τ).

By Lemma 8.5, it is enough to show that d(fp(s), fq(t)) ≤ 1.

Assume first that d(p, t) ≤ k (note that we are in this case when s = t or p = q). Note that

t ∈ Bk(p) ∩ B1(s) = R̂p(s) and consequently, fp(s) ⊆ B1(t). Since fp(s) ⊆ Bk−1(p) ⊆ Bk(q),

we have fp(s) ⊆ Bk(q) ∩ B1(t) = R̂q(t). Therefore, fq(t) ⊆ B∗
1(fp(s)) and d(fp(s), fq(t)) ≤ 1.

Using symmetric arguments, we have d(fp(s), fq(t)) ≤ 1 when d(q, s) ≤ k.

Assume now that d(q, s) = d(p, t) = k+1. Note that this implies that p ̸= q, s ̸= t, p ▷◁k fq(t)

and q ▷◁k fp(s). Since d(p, s) = k and p ▷◁k fq(t), we have {s, t} ∪ fq(t) ⊆ R̂p(t). Consider

a vertex u ∈ fp(t). By definition of u, we have d(p, u) = k and {s, t} ∪ fq(t) ⊆ B1(u). Note

also that d(q, u) = k since d(q, s) = k + 1 and since d̄(q, fq(t)) = k − 1. Therefore, by the

previous case replacing t by u, we have d(fp(s), fq(u)) ≤ 1. Note that R̂q(t) = B1(t) ∩Bk(q) ⊆
B1(t) ∩ Bk+1(p) = R̂p(t). Since u ∈ fp(t), we obtain R̂q(t) ⊆ R̂p(t) ⊆ B∗

1(fp(t)) ⊆ B1(u).

Consequently, R̂q(t) ⊆ B1(u) ∩ Bk(q) = R̂q(u) and fq(u) ⊆ fq(t). Therefore d(fp(s), fq(t)) ≤
d(fp(s), fq(u)) ≤ 1, concluding the proof. □

From Propositions 8.10 and 8.12, we immediately get the following result.

Corollary 8.13. In a Helly graph G, the set of normal paths satisfies the 2-sided fellow traveler

property. More precisely, for any four vertices s, t, p, q and two integers k′ ≥ k such that d(p, s) =

k′, d(q, t) = k, d(s, t) ≤ 1 and d(p, q) ≤ 1 and for any normal paths P = (p = s0, s1, . . . , sk′ = s)

and Q = (q = t0, t1, . . . , tk = t), we have d(si, ti) ≤ 3 for every 0 ≤ i ≤ k and d(si, tk) ≤ 3 for

every k ≤ i ≤ k′.

Now, we are ready to conclude the proof of biautomaticity from Theorem 8.1.

Proposition 8.14. Let a group Γ act geometrically on a Helly graph G. Then Γ is biautomatic.

Proof. Let P denote the set of all normal paths of G. We will prove now that the path system

P satisfies the conditions (1)-(3) of Theorem 8.3. Condition (2) is satisfied because any two

vertices of G are connected by a path of P. That P satisfies the 2–sided fellow traveler property

follows from Corollary 8.13. Finally, condition (1) that the set P can be 2–locally recognized

follows from the definition of normal paths and the fact that conditions (1) and (2) of this

definition can be tested within balls of G of radius 2. Since Γ acts geometrically on G, there

exists only a constant number of types of such balls. □

Remark 8.15. Proposition 8.14 can be also proved by viewing the set P∗ of normal clique-

paths of a Helly graph G as paths of the face complex F (X(G)) of the clique complex of G and

establishing that P∗ satisfies conditions (1)-(3) of Theorem 8.3.

The set P∗ in F (X(G)) gives rise to a set P ′ of paths of the first barycentric subdivision

β(G) of the clique complex X(G) of G. Combinatorially, β(G) can be defined in the following

way: the cliques of G are the vertices of β(G) and two different cliques σ and σ′ are adjacent

in β(G) if and only if σ ⊂ σ′ or σ′ ⊂ σ. For each path P in P∗, each edge σσ′ of P is replaced

by the 2-path (σ, σ ∪ σ′, σ′) in the path P ′ of P ′ corresponding to P . Again, one can establish

that P∗ satisfies conditions (1)-(3) of Theorem 8.3.
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9. Final remarks and questions

We strongly believe that the theory of Helly graphs, injective metric spaces and groups acting

on them deserves intensive studies on its own. In this article we focused mostly on geometric

actions of groups on Helly graphs but, similarly to other nonpositive curvature settings, just

proper or cocompact actions should be studied as well.

Below we pose a few arbitrary problems following the overall scheme of our main results: the

first two concern examples of Helly groups, the last one is about their properties.

Problem 9.1. (When) Are the following groups (virtually) Helly: mapping class groups, cubical

small cancellation groups, Artin groups, Coxeter groups?

Note that confirming a conjecture stated by the authors of the current article, Nima Hoda

[Hod20a] proved recently that the Coxeter group acting on the Euclidean plane and generated

by three reflections in the sides of the equilateral Euclidean triangle is not Helly. This group is

CAT(0) and systolic (hence also biautomatic).

Problem 9.2. Combination theorems for group actions with Helly stabilisers. Is a free product

of two Helly groups with amalgamation over an infinite cyclic subgroup Helly? Are groups

hyperbolic relative to Helly subgroups Helly? (When) Are small cancellation quotients of Helly

groups Helly?

As for general properties of Helly groups it is natural to ask which of the properties of CAT(0)

groups are true in the Helly setting. For a choice of such properties a standard reference is the

book [BH99].

Problem 9.3. Are abelian subgroups of Helly groups finitely generated? Is there a Solvable

Subgroup Theorem for Helly groups? Describe centralizers of infinite order elements in Helly

groups. Construct low-dimensional models for classifying spaces for families of subgroups (e.g.

for virtually cyclic subgroups) of Helly groups. Describe quasi-flats in Helly groups.
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[JŚ06] Tadeusz Januszkiewicz and Jacek Świa̧tkowski, Simplicial nonpositive curvature, Publ. Math. Inst.

Hautes Études Sci. 104 (2006), 1–85. MR2264834

[KL95] Michael Kapovich and Bernhard Leeb, On asymptotic cones and quasi-isometry classes of fundamental

groups of 3-manifolds, Geom. Funct. Anal. 5 (1995), no. 3, 582–603. MR1339818
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