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Energy conservation in self-phase modulation
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Spectral broadening of ultrashort laser pulses is simultaneously described by either self-phase
modulation (SPM) or four-wave mixing (FWM). The latter implies the instantaneous conservation
of both the photon number and energy, while the former describes a time-dependent frequency
shift, implying a violation of the energy conservation if the number of photons is to be conserved
in each time slice. We resolve this paradox by considering the transient energy storage in the
propagation medium, that can be calculated in the SPM formalism via the dephasing between the
incident pulse and the medium polarization leading to an effective imaginary part in the third-order
susceptibility. In parallel, considering the temporal variation of the incident intensity in FWM
offsets the instantaneous frequency.

PACS numbers: 52.30.Cv,52.35.Py,05.45.-a,52.55.Tn

INTRODUCTION

Non-linear optics has been first investigated in condensed matter. The spectacular phenomenon of supercontinuum
generation was observed as early as 1970 by Alfano and Shapiro [1, 2], who identified four-wave mixing (FWM) [1]
and self-phase modulation (SPM) [2] as the origin of this wide spectral broadening [3–11]. The advent of chirped
pulse amplification [12] in 1985 allowed even more efficient spectral broadening, as well as its observation in gases
including atmospheric pressure air.
FWM describes spectral broadening as the interaction of plane monochromatic waves. Two photons at frequencies

ω1 and ω2 interact through the χ(3) susceptibility to generate two photons at ω3 and ω4. The energy conservation
imposes ω1 + ω2 = ω3 + ω4, so that the spectrum should remain symmetrical after broadening via FWM, and the
number of photons is conserved at any time.
The same spectral broadening is alternatively described by SPM as a deformation of the pulse. After propagating

over a distance z, the carrier wave experiences a time-dependent frequency shift

∆ω(t) = −k0zn2I
′(t)z, (1)

where the prime denotes the temporal derivation, k0 = n0ω/c, n0 and n2 = 3χ(3)/4n0ǫ0c are the linear and non-linear
refractive indices, respectively, ω the angular frequency of the incident pulse, I its intensity, and c the velocity of light.
SPM intrinsically induces an asymmetric time-dependent frequency shift. In most common media like air or glass
n2 > 0, so that the leading edge of the pulse is red-shifted while its trailing edge is blue-shifted. Such time-dependent
frequency shift is incompatible with the simultaneous conservation of the pulse energy and of the number of photons.
In this Letter, we address this paradox. By taking into account the dephasing induced by SPM between the incident

electric field and the polarization of the propagation medium, we show that the latter transiently stores energy, which
restores energy conservation. Furthermore, considering the fast variation of the pulse intensity in the FWM formalism
yields the asymmetric transient frequency shifts that are usually described in the SPM formalism.

DISCUSSION

Energy conservation in SPM.

We consider a pulse described within the slowly-varying envelope approximation (SVEA), so that the electric field
expresses as E(t) = E0(t)(e

−iωt + c.c.). It induces a third-order polarization

P (3)(t) = ǫ0χ
(3)E(t)3 (2)

ǫ0 being the permittivity of vacuum. If we neglect absorption and dispersion, the evolution of this third-order
polarization in a medium with an eigenfrequency ωe can be written in a perturbative approach [13]:
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d2P (3)

dt2
+ ωe

2P (3) = NeQ(3)P (1)3(t) (3)

where P (1) = χ(1)E is the elastic polarizability, χ(1) the first-order susceptibility, E the electric field, N the local
density of electrons, −e their charge, m their mass, and

Q(3) =
N3e4

mǫ30

χ(3)

χ(1)4
(4)

Expanding the first-order polarization P (1)(t) = P
(1)
0 (t)

(

ei(ωt−kz−φ(1)) + c.c.
)

in the right term of Equation (3), we

get

d2P (3)

dt2
+ ωe

2P (3) = NeQ(3)P
(1)
0

3
×
(

e3i(ωt−kz−φ(1)) + 3ei(ωt−kz−φ(1)) + c.c.
)

(5)

We decompose the polarization P (3) into its components P SPM and PTH, respectively oscillating at the fundamental
and third harmonic (TH) frequencies ω and 3ω:

P (3)(t) = PTH
0 (t)

(

ei(3(ωt−kz)−φTH) + c.c.
)

+ P SPM
0 (t)

(

ei(ωt−kz−φSPM) + c.c.
)

(6)

Here, φTH and φSPM are the dephasings of the polarization relative to the electric field for each spectral component.
They are chosen such that PTH

0 and P SPM
0 are real. We focus on the terms oscillating at the fundamental frequency

ω, consider the SVEA approximation, identify the real and imaginary parts of P SPM, and calculate φ(1) from the
linear polarization equation (14) [13].
The SVEA implies dφSPM/dt ≪ ω and d2P SPM

0 /dt2 ≪ ω2P SPM
0 (t), so that the terms at frequency ω in Equation

(5) rewrite:

(

ω2
e −

(

ω −
dφSPM

dt

)2
)

P SPM
0 (t) + 2i

(

ω −
dφSPM

dt

)

dP SPM
0

dt
+

d2P SPM
0

dt2
= 3NeQ(3)P

(1)
0

3
(t)
(

ei(φ
SPM

−φ(1)) + c.c.
)

= 3NeQ(3)
(

ǫ0χ
(1)E0

)3 (

ei(φ
SPM

−φ(1)) + c.c.
)

(7)

Identifying the components parallel and orthogonal to P SPM
0 in the complex plane yields

(

ω2
e − ω2

)

P SPM
0 (t) = 6NeQ(3)

(

ǫ0χ
(1)E0

)3

× cos
(

φSPM − φ(1)
)

(8)

2ω
dP SPM

0

dt
= 6NeQ(3)

(

ǫ0χ
(1)E0

)3

× sin
(

φSPM − φ(1)
)

(9)

which combine into

φSPM − φ(1) ≈ tan
(

φSPM − φ(1)
)

(10)

=
2ω

ω2
e − ω2

dP SPM
0

P SPM
0 (t)dt

(11)

=
6ω

ω2
e − ω2

dE0

E0(t)dt
(12)

=
3ω

ω2
e − ω2

dI

I(t)dt
(13)



3

φ(1) can be estimated with a similar derivation starting from the linear propagation equation [13]:

d2P (1)

dt2
+ ω2P (1) =

Ne2

m
E(t) (14)

resulting in

φ(1) =
ω

ω2
e − ω2

dI

I(t)dt
(15)

which finally yields

φSPM = 4φ(1) =
4ω

ω2
e − ω2

dI

I(t)dt
(16)

Far from resonance (ω ≪ ωe), φ
SPM ≈ 4ω/ω2

eT ≪ 1, T being the pulse duration. For example, in air ωe ≈ 80 nm [14]
so that for typical experiments with a 100 fs pulse centered at 800 nm, φSPM ≈ 10−4. Therefore, the supplementary
self-phase modulation induced by this dephasing is fully negligible.
However, the dephasing φSPM between the driving field E and the resulting polarization P SPM implies an energy

transfer between the incident electric field and the propagation medium. The instantaneous power per unit volume
transferred to the propagation medium amounts to

PSPM(t) = E(t)
dP SPM

dt
(17)

where the value of dP SPM
0 /dt is defined in Eq. (9), so that

PSPM(t) = 2E0(t) cos (ωt− kz)

(

−2ωP SPM
0 (t) sin

(

ωt− kz − φSPM
)

+ 2
dP SPM

0

dt
cos
(

ωt− kz − φSPM
)

)

(18)

Averaging over one or a few optical cycles yields

〈PSPM〉(t) = −4ωE0P
SPM
0

ω

2π

∫ 2π
ω

0

cos(ωt) sin
(

ωt− φSPM
)

dt+ 4E0
dP SPM

0

dt

ω

2π

∫ 2π
ω

0

cos(ωt) cos
(

ωt− φSPM
)

dt(19)

= 4ωE0P
SPM
0

sinφSPM

2
+ 4E0

dP SPM
0

dt

cosφSPM

2
(20)

Plugging the values of P SPM
0 and

dPSPM
0

dt from Equations (8) and (9), we obtain

〈PSPM〉(t) ≈ 6ǫ0E
4
0

[

ωχ(3)
cw sinφSPM + χ(3)

cw

ω2
e − ω2

2ω
sin
(

φSPM − φ(1)
)

]

(21)

≈ 6ǫ0E
4
0χ

(3)
cwφ

(1)

(

4ω + 3
ω2
e − ω2

2ω

)

(22)

= 3ǫ0χ
(3)
cwE

4
0φ

(1)

(

3ω2
e + 5ω2

ω

)

(23)

Introducing the relations I = 2ǫ0cn0E
2
0 and χ

(3)
cw = 4n0ǫ0cn2/3, this equation revrites:

〈PSPM〉(t) =
n2I

n0c

3ω2
e + 5ω2

ω2
e − ω2

dI

dt
(24)

In typical conditions (e.g., at a wavelength of 800 nm), ωe ≫ ω, resulting in

〈PSPM〉(t) ≈
3n2I

n0c

dI

dt
, (25)
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On the leading edge of the pulse, dI/dt > 0 so that 〈PSPM〉 > 0: The field transfers energy to the medium
and initiates the dipole oscillation, while on the trailing edge the dipoles return to rest and release their energy into
the electromagnetic field. The net energy loss by the pulse is

∫

∞

−∞
〈PSPM〉dt = 0 since I = 0 at both t = ±∞.

The energy storage in the propagation medium is therefore transient and results in a net energy transfer from the
red-shifted leading edge of the pulse towards its blue-shifted trail. It therefore reconciles red- and blue-shifts with the
simultaneous conservation of energy and of the photon number: A temporal slice of the pulse cannot be considered as
an isolated system. Rather, the completion of the system requires either to consider the propagation medium together
with the pulse. For typical ultrashort laser filaments in air [15–19] the relative energy transfer can reach 1%/cm,
enabling the strong reshaping occurring during their propagation.
An alternative way to understand the transient energy storage in the medium consists in grouping the dephasing

φSPM with the third-order susceptibility χ(3) and the associated non-linear refractive index n2, resulting in the effective
values

χ
(SPM)
eff = χ(3)eiφ

SPM

(26)

nSPM
2,eff = n2e

iφSPM

(27)

Their imaginary components χ(3) sinφSPM ≈ χ(3)φSPM and n2 sinφ
SPM ≈ n2φ

SPM are intrinsically associated with
gain or loss.

Link with self-steepening.

The above-derived transient energy storage has to translate into a depletion of the pulse intensity in the front, and
a growth in its trail. Indeed, let us consider the self-steepening term affecting the envelope [16]:

dE

dz
=

−n2

n0c

d

dt

(

|E|2E
)

(28)

where |E|2 = I. The relative variation of E is therefore:

dE

Edz
=

−n2|E|
2

n0c

(

d|E|2

|E|2dt
+

dE

Edt

)

(29)

which can convert into the relative variation of the intensity:

dI

2Idz
=

−n2I

n0c

(

dI

Idt
+

dI

2Idt

)

(30)

The local intensity variations due to self-steepening therefore amount to

dI

dz
=

−3n2I

n0c

dI

dt
(31)

which identifies with the instantaneous power gained from the medium, −〈PSPM〉 (Eq. (25)), providing an interpreta-
tion of the self-steepening in terms of the deformation of the envelope due to the conservation of the photon number
density in spite of their energy drift due to the SPM-induced frequency change. This interpretation is fully compatible
with the usual one in terms of the stretching of the temporal pulse slices due to gradients in the group velocity. The
latter focuses on the point of view of the wave deformation, while the former translates this deformation and the
associated frequency shifts into photon energy and considers its implications for the simultaneous conservation of
energy and the photon number.

Time-dependent frequency shift in FWM.

We shall now highlight how the FWM formalism accounts for a time-dependent frequency shift in spite of the
energy conservation. We define the instantaneous spectrum at time t0 as the Fourier transform of the pulse convolved
by a temporal gate centered at t0 and of width τ such that 1/ω ≪ τ ≪ T , where T is the pulse duration. To
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allow analytical derivations, we will consider a Gaussian gate in the following. However, other gate shapes may be
considered without loss of generality.
Four-wave mixing is typically described by assuming an instantaneous response function of the third-order non-

linear susceptibility (Equation (2)) and focusing on the nonlinear polarization component in EE∗E, oscillating at
ω:

P SPM(t) = 4ǫ20cn0n2E0(t)
3
(

e−iωt + c.c.
)

(32)

Under the paraxial approximation, this non-linear polarization contributes to the field evolution:

2ik0
dE(t)

dz

∣

∣

∣

∣

NL,ω

= −
ω2

ǫ0c2
P SPM(t) (33)

k0 being the wavevector in vacuum. After plugging (32) into (33), the field evolves as

dE(t)

dz
= iCNLE(t)3, (34)

where CNL = 2k0ǫ0cn0n2. In order to evaluate the frequency shift of the instantaneous spectrum after a short
propagation distance dz, we develop the electrical field at the first order in dz as

E(t, dz) = E(t, 0) + iCNLE(t, 0)3dz +O(dz). (35)

Now let us locally Fourier-transform Eq. (35) in the vicinity of t0 after Taylor-expanding the slowly-varying field
envelope as E0(t) ≈ E0(t0) + (t − t0)E

′

0(t0). Introducing ∆ω = ω̄ − ω, and neglecting the influence of dephasing on
the field amplitude, we get the intensity spectrum at first order in dz

I(ω̄ ∝
∣

∣

∣
Ê(ω̄), t0, dz)

∣

∣

∣

2

≈ e−
τ
2

2 ∆ω2

τ2E2
0 (t0)×

(

1

2
− 3CNLE0(t0)E

′

0(t0)∆ωdz

)

, (36)

where all terms involving E′

0
2
have been discarded based on the SVEA approximation. Deriving with respect to ∆ω

and Taylor-expanding again at order 1 in the vicinity of ω yields the spectral peak of the spectrum at time t0:

∆ω∗(t0) = −6CNLE0E
′

0dz (37)

= −k0n2I
′

0(t0)dz (38)

where we have introduced the intensity I0 = 2n0ǫ0cE
2
0 . Similarly, the mean frequency is, at first order in dz:

〈ω〉(t0) ≡

∫

ω|Ê|2dω
∫

|Ê|2dω
= ω −

24CNLE
3
0 (t0)E

′

0(t0)dz

4E2
0(t0) + E′

0
2τ2

(39)

≈ ω − 6CNLE0E
′

0dz (40)

= ω − k0n2I
′(t0)dz (41)

where E′

0
2
τ2 ≪ E2

0 due to the SVEA. Therefore, both the peak (Eq. (38)) and mean (Eq. (41)) transient frequency
offset calculated with the FWM formalism are equal to those predicted by SPM (Eq. (1)), provided the temporal
intensity variation of the incident pulse is taken into account. Note that the frequency offset does not depend on the
width τ of the gate, which confirms that it is only a computation intermediate.

CONCLUSION

As a conclusion, we reconciled the time-dependent frequency shift described by self-phase modulation, with the
energy and photon number conservations implied by the four-wave mixing formalism. An energy transfer occurs from
the red-shifted leading edge of the pulse to the blue-shifted trailing edge, mediated by a transient energy storage in
the propagation medium. The latter can be evidenced by considering the dephasing between the driving pulse and
the medium polarization, induced by the Kerr effect. This energy transfer is also the origin of self-steepening, which
translates as a depletion (resp. replenishment) of the pulse envelope on its front (resp. trailing edge). Furthermore,
considering the time-dependent intensity in the FWM formalism reproduces this frequency shift, i.e., this transient
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energy storage in the medium. Our results straightforwardly generalize to non-degenerate FWM and XPM, although
the calculation is slightly more tedious. We also note that we did not consider group velocity dispersion (GVD).
Taking it into account would affect FWM via the phase matching conditions, and equivalently SPM via the envelope
deformation, without impact on our argument.
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