
HAL Id: hal-03549719
https://hal.science/hal-03549719v1

Submitted on 31 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Polyhedral Model for Arrays and Lists
Paul Iannetta, Laure Gonnord, Lionel Morel

To cite this version:
Paul Iannetta, Laure Gonnord, Lionel Morel. Semantic Polyhedral Model for Arrays and Lists. [Re-
search Report] INRIA. 2018. �hal-03549719�

https://hal.science/hal-03549719v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
91

83
--

FR
+E

N
G

RESEARCH
REPORT
N° 9183
June 2018

Project-Team CASH

Semantic Polyhedral
Model for Arrays and
Lists
Paul IANNETTA, Laure GONNORD, Lionel MOREL

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Semantic Polyhedral Model for Arrays and Lists

Paul IANNETTA*, Laure GONNORD†, Lionel MOREL ‡

Project-Team CASH

Research Report n° 9183 — June 2018 — 28 pages

Abstract: The polyhedral model is a powerful reasonning framework that permits to optimize
intensive computation kernels (piece of mperative code). However in this report we propose
to define a “Semantic Polyhedral Model”, a formalisation of the main concepts on which the
polyhedral model is built, from the notion of operation to data dependencies. This formulation,
which is no longer based on syntactic computations but rather on semantic definitions, enables
us to characterize the domain on which the polyhedral domain optimisations will apply. We also
propose some extensions on programs with lists and memory sharing.

Key-words: dependencies, loops, polyhedral model, semantic, syntactic, trace, happens-before

* ENS de Lyon
† University of Lyon, LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), F-69000 Lyon, France
‡ Univ Grenoble Alpes, CEA, F-38000 Grenoble, France

Le modèle polyédrique sémantique pour les tableaux et les
listes

Résumé : Le modèle polyèdrique est un modèle puissant qui permet d’optimiser des noyaux
de calculs intensifs (des bouts de code impératif). Cependant, dans ce rapport on se propose
de définir un « Modèle Polyèdrique Sémantique » qui se veut une formalisation des concepts
présent dans le modèle original en repartant de la notion d’opération jusqu’au concept de dépen-
dance en données. Cette reformulation qui repose non plus sur des concepts syntaxiques mais
sémantiques permet alors de caractériser le spectre d’application du modèle polyèdrique. Nous
proposons aussi des extensions pour des programmes utilisant des listes et qui font du partage
mémoire.

Mots-clés : dependencies, boucles, modèle polyèdrique, sémantique, syntaxique, trace, happens-
before

Semantic Polyhedral Model 3

1 Introduction

The work presented in this report is the first step of the CODAS ANR project 1, for which
we describe the general context (Section 1.1) and related work in the context of the polyhe-
dral model (Section 1.2). Section 1.3 describes the motivation of this internship and its objec-
tive.

1.1 Context

This section as well as the next one are directly taken from the ANR proposal itself.

The rise of embedded systems and high performance computers generated new problems
in high-level code optimization, especially for loops, both for optimizing embedded applica-
tions and for transforming programs for high-level synthesis (HLS). Moreover, everything in-
volving data storage is of prime importance as it impacts power consumption, performance,
and for hardware, chip area. Thus, there is an increasing need for better scheduling techniques
for all kinds of programs, especially those manipulating a huge amount of data.

So far, the polyhedral model [FL11], a framework introduced in the late eighties, has been
successfully applied to a range of these compilation problems, such as (semi-)automatic par-
allelization and code generation [Fea92a] or optimization of data movement [DI15]. However,
this powerful model hits its limit as soon as we are faced with irregular programs (general
while loops, unpredictable conditions). As a consequence, these powerful techniques have,
for the moment, only seen their use in limited (but still important) niches, because of these
intrinsic restrictions.

The long term objective of the CODAS ANR project is to give a general way to reason
about and manipulate programs with general control flow and complex data structures. The
project proposes to start with the current state of the polyhedral model, and then to enhance
this framework both theoretically and algorithmically in order to be able to deal with more
general programs.

The objective of this internship is to make a first step toward this ambitious objective.

1.2 The polyhedral model framework

The polyhedral model is a collection of techniques developed around a common intermedi-
ate representation of programs: integer polyhedra. Such a representation of programs inherits
nice properties from the underlying mathematical structure. For instance, when loop trans-
formations are represented as affine functions, compositions of transformations are also affine
functions due to closure.

The polyhedral representation was linked to loop programs in an analysis proposed by
Feautrier [Fea91] that provides exact dependency analysis information where statement in-
stances2 (i.e., statements executed at different loop iterations) and array elements are distin-
guished. The exact dependence information obtained through this analysis together with the

1http://codas.ens-lyon.fr/
2later called operations.

RR n° 9183

http://codas.ens-lyon.fr/

4 Iannetta & Gonnord & Morel

use of linear programming techniques to explore the space of legal schedules [Fea92b] is what
constitutes the basis of the polyhedral model for loop transformations.

j

i

f o r (i = 0 ; i < N; i ++)
f o r (j = i ; j < N; j ++)

S : A[j] = f (A[i] , A[j]) ;

Domain(S) = {i, j | 0 ≤ i ≤ j < N}

Read(S 7→ A) = (i, j→ i); (i, j→ j)

Write(S 7→ A) = (i, j→ i)

Dep(S 7→ S) =

(i, j→ i, i) : i < j

(i, j→ i − 1, j) : 0 < i

corner case : · · ·

Figure 1: An example of polyhedral representation. Loop nests that fit the polyhedral model
can be viewed as mathematical (constraint-based) objects, which can also be visualized geomet-
rically.

Figure 1 illustrates the polyhedral representation with an example. The statement S is
executed approximately N2

2
times during the execution of this loop. The triangular region ex-

pressed as a set of constraints, called the domain of S, represents this set of dynamic execution
instances. Accesses to array A from each of these statement instances can be succinctly cap-
tured through affine functions of the loop iterators. The dependencies are also expressed as a
function between two statement instances. 3 The key insight is that although the specific de-
pendencies at a statement instance may differ, they are all captured by a function due to the
regularity in the control flow. The figure illustrates dependencies for two instances, where one
of the dependencies (i, j→ i, i) has different lengths depending on the instance.

The “traditional” use of polyhedral techniques in optimizing compilers focuses on loop
transformations. PLuTo [BHRS08] is a now widely used push-button tool for automatically
parallelizing polyhedral loop nests. PLuTo tries to optimize locality in addition to paralleliza-
tion. There is also significant work in data layout optimization for polyhedral programs where
analyses are performed to minimize the memory requirement [DSV05]. Polyhedral techniques
for loop transformations are now adopted by many production level compilers, such as GCC,
IBM XL, and LLVM.

Recently, polyhedral techniques have been applied to many different areas beside loop

3There are a number of ways to represent dependencies in the polyhedral model. Here, we represent them as a
function from consumer instances to producer instances.

Inria

Semantic Polyhedral Model 5

transformations. One natural application of automatic parallelization techniques is in verifi-
cation of given parallelizations where the tools take parallelized programs as inputs, and use
polyhedral analysis to guarantee the absence of parallel bugs [BYR+11, YFRS13]. Another ap-
plication of scheduling techniques is in the synthesis of ranking functions for proving program
termination [ADFG10].

1.3 Limits of the polyhedral model, motivations of this internship

Although the polyhedral model provides strong analysis capabilities with many different
applications, its main limitation is its applicability. The program must have regular control
flow, and in addition, it has to be fully affine. Specifically, loop bounds, array accesses, and if
conditions must be affine functions of the surrounding loop iterators and runtime constants. As
an example, FFT (Fast Fourier Transform) has a regular control flow, but cannot be represented
with the polyhedral model because it is not fully affine.

More precisely, we want to propose a formalization of the polyhedral model that does not
rely on the syntax. The approach should be generic enough so that it can be applied to programs
where loops are not explicit and where only the control flow graph is available. This would
typically be used for scheduling programs in the form of LLVM intermediate representations
from which we can hope to retrieve a representation with while loops.

This formalization should provide a generalization of [Fea91]. It should redefine the con-
cept of dependency in a more general setting while preserving as much as possible a compat-
ibility with the work presented in [Fea91]. The formalization should make the definition of
dependencies as natural as possible.

Another goal of this formalization is to make the points that render the polyhedral de-
cidable explicit. By doing so, we could pin-point where room is available for approxima-
tions.

1.4 Overview

The report is organized as follows: in Section 2 we recall the main concepts introduced in
the seminal paper of Paul Feautrier ([Fea91]). Later works in the area are based on this paper,
that is quite self-contained. From this paper, we make the notion of dependency, which is a fun-
damental concept for the rest of our work, explicit. We explain how it is defined and computed.
In Section 3 we introduce the language we want to work on, its syntax and semantics, which is a
non trivial extension of the small-step operational semantics that includes the notion of iteration
vectors to keep track of dates where operations are computed. This allows the formal definition
of dependencies, that is proven to be the same semantic concept as the one effectively computed
by the polyhedral model framework (Section 4). Finally, in Section 5 we informally explain the
next steps toward an effective computation of dependencies of general programs with lists. We
conclude with future work.

RR n° 9183

6 Iannetta & Gonnord & Morel

2 Presentation of [Fea91]: contribution and limits

This section presents the results exposed in [Fea91]. Everything presented here is present
in the original paper. However for the sake of ease, some definitions have been reworded and
explanations added for more intuition.

The results in [Fea91] address the (automatic) parallelization of for loops. Extracting
the full dependency graph between each operation performed by a general program is un-
predictable and the only way to extract the dependencies correctly would be to execute the
program. Hence, [Fea91] focuses on the analysis of programs with static-control and affine
indices where this analysis is decidable.

2.1 Hypotheses and Restrictions

The notion of static control here means that all loops are for loops whose bounds are affine
functions of structure parameters (that is, a set of integer variables that will be set once and
for all by the means of an input statement and computations involving previously computed
structure parameters), numerical constants and in-scope loop counters.

Moreover, the results presented here assume that for loops have a constant step of one,
that there is no aliasing 4 and that the program does not try to access illegal memory cells. That
said, as long as the step of the loop remains a constant known at compile time, the results still
hold.

2.2 Notations

2.2.1 Operations and Statements

Let us first, clarify the distinction that will be made between operation and statement. The
listing in Figure 2 will help illustrate the difference.

1 res := 1 (* s1 *)
2 for i from 1 to n:
3 res := res * i (* s2 *)

Figure 2: The factorial with a for loop.

In this example there are two statements (on lines 1 and 3) but n + 1 operations (line 1
produces one operation whereas line 3 produces n) where n is a structure parameter. In other
words a statement is a syntactic unit, whereas an operation is a temporal unit. When there are
neither loops nor conditional statements operations and statements coincide.

4We will relax this assumption later in this report.

Inria

Semantic Polyhedral Model 7

2.2.2 Tracking operations

To be able to optimize the operations of a given program, the polyhedral model suggests
computing the dependencies between all operations as long as they are within the restrictions
presented in 2.1. Indeed, two operations that do not depend on each other can be parallelized,
or at least, rescheduled in an order different than their lexical order in the original program.
The notion of dependency between operations is thus central for the polyhedral community
and that is why we first focus on its definition and computation.

In order to express dependencies between operations, we need a way to number each op-
eration with a unique identifier – an iteration vector. This iteration vector is a vector whose
coordinates are loop counters. The first coordinate is the counter of the most outer loop and the
last coordinate is the counter of the most inner loop. For example, in the listing of figure 2, on
line 3 the iteration vector is (i) and in figure 3 the iteration vector on line 3 is (i, j) while the
iteration vector on line 5 is (i, j, k).

(* a and b are n-n matrices and c = ab *)
1 for i from 1 to n
2 for j from 1 to n
3 c(i, j) = 0 (* s1 *)
4 for k from 1 to n
5 c(i, j) = c(i, j) + a(i, k)*b(k, j) (* s2 *)

Figure 3: Product of polynomials with a for loop.

Remark (loop counter). With for loops, the concept of iteration variable is crystal clear since
it coincides with loop counters. However, this concept is less clear when dealing with while
loops, which will be addressed later.

From now on, statements will be denoted by si, instantiated iteration vectors by tj (because an
instantiated iteration vector can be seen as a timestamp) and operations by the pair (si, tj). Note
that two operations can have the same iteration vector, typically if they are at the same loop
level. In order to know which is before the other a Boolean Ts1,s2 is set to true if s1 is before
s2 in the text source program. Intuitively, we define Qs1,s2(t) as the set of all the operations
involving s1 that have an influence on the computation of s2 at time t. And we define Ks1,s2(t)
as the last operation having an influence on the computation of s2 at time t.

Remark. The original paper defines Q and K by the way they are computed rather than giving
a high level interpretation definition. The intent behind Q and K is as presented above, their
formal definition will be exposed in the next subsection.

2.3 Computation of dependencies

We are now ready to formally define K and Q and explain how they are computed in the
context of the polyhedral model (and the tool [Fea88]). Let’s assume that we are computing
values for a matrix M, and that we want to compute the operations on which o2 = (s2, t2) (an
operation that needs to read values inM) depends. Let’s assume that o2 needs to readM[g(t2)]
where g is an affine function of the iteration vector t2.

However, before we can compute Qs1,s2(t2) we need to gather candidates for s1. We will
thus take into account all operations whose statement is of the formM[f(t1)] := ...where f is an

RR n° 9183

8 Iannetta & Gonnord & Morel

affine access function of the iteration vector. The operations on which s2 depends will then be
the union of the operations found with s1 as their statement.

In order to explicitly define and compute the Q quantity, [Fea91] imposes the following
conditions:

C1 the cells that s1 and s2 try to access should match: f(t1) = g(t2) ;

C2 (s1, t1) should happen before (s2, t2) (ie. t2 C t1, or t2 = t1 ∧ Ts1,s2 where C is the lexico-
graphic ordering on vectors). This condition is denoted by (s1, t1) ≺ (s2, t2)

C3 t1 must be a valid iteration (denoted as e(t1) ≥ 0, this notation will become clear in the
following example.)

Hence, the following definition of Qs1,s2(t) as:

Qs1,s2(t) = {t ′|f(t ′) = g(t), (s1, t
′) ≺ (s2, t), e(t ′) ≥ 0}

and

Ks1,s2(t2) = max
C
Qs1,s2(t2)

.
Theorem 1 ([Fea91] Dependencies are computable in the polyhedral model). The 3 conditions
above lead to a system of affine constraints that is then computable by a Linear Programming solver
(such as PIP [Fea88]).

Proof. The proof can be found in the paper. All three conditions above lead to a finite set of
affine constraints. The lexicographic maximum of such a set can be computed by solving a
Linear Programming instance.

Example (Computations of dependencies for the matrix product, shown in Fig. 3). This program
is made of two statements: s1 on line 3 and s2 on line 5, that both write values for the array c. In order
to compute the dependencies we need to compute Qs1,s1 , Qs1,s2 and Qs2,s2 . The respective Ks will be
computed by taking the lexicographic maximum on the Qs.

Let’s start by computing Qs1,s1 . We can see that s1 does not need to read any variable. Hence:

Qs1,s1 = ∅

Now, let us compute Qs1,s2 . Let (i1, j1) be the iteration vector of statement s1 and (i2, j2, k2)
the iteration vector of statement s2. We can then express C1, C2 and C3 as affine conditions. C1 is
(i1, j1) = (i2, j2). C2 is (i1, 1) < (i2, j2). And C3 is 1 ≤ i, j ≤ n. This leads to:

Q(s1, s2)((i2, j2, k2)) = {(i1, j1) | i1 < i2 ∧ j1 < j2}

Lastly, let us compute Qs2,s2 . Let (i2, j2, k2) and (i ′2, j
′
2, k
′
2) the iteration vectors of statement s2

at two distinct instants. We can then express C1, C2 and C3 as affine conditions. C1 is (i2, j2, k2) =
(i ′2, j

′
2, k
′
2). C2 is (i2, j2, k2) < (i ′2, j

′
2, k
′
2). And C3 is 1 ≤ i2, j2, k2 ≤ n. This leads to:

Q(s2, s2)((i
′
2, j

′
2, k

′
2)) = {(i2, j2, k2) | i2 < i

′
2 ∧ j2 < j

′
2 ∧ k2 < k

′
2}

Inria

Semantic Polyhedral Model 9

2.4 Toward a more semantic polyhedral model

The polyhedral model suffers from two main drawbacks that we want to address in this
work:

• Firstly, its syntactic restrictions limit its usage in practice: developers usually want pow-
erful languages and analyses and complain if the compiler rejects their program while
parsing. Moreover, the polyhedral tools should work on abstract syntax trees where these
restrictions are easily checkable, which limits in practice the development of polyhedral
tools inside production compilers like gcc or LLVM because the AST is not always available
when performing optimizations. 5

• Secondly, it is limited to static (with constant or parametric size) arrays without any alias-
ing. In some cases, the developer might have used pointer arithmetic, or lists or trees,
whose behavior is “covertly regular” but the polyhedral model doesn’t apply at all.

Our work aims at formalizing an extension of the polyhedral model to more general pro-
grams than the ones historically addressed. This report proposes an original semantic definition
of dependencies on general flowchart programs with arrays (and simple lists). We show that
this definition:

• Has the same expressivity than the polyhedral model when a “syntactic polyhedral pro-
gram” has been modified by a preprocessing phase like in production compilers where
for loops (ie. static loops with an explicit loop iteration variable) have been replaced by
while loops and where conditional statements are allowed.

• Also captures list dependencies, even in the case of aliasing.

To achieve our objective, we propose the following agenda:

• First, define a proper language expressive enough to express all the features of an imper-
ative languages with arrays and lists. It should be able to express general computations,
general array accesses, non static loops and finally some kind of aliasing on lists ;

• On this language, propose an operational semantics and the counterparts of all the key
concepts of the polyhedral model ;

• Show that all these concepts are equivalent on the sub-case addressed by the polyhedral
model ;

• Propose extensions handling more general loops and lists.

3 General imperative programs with iteration vectors

In order to properly define all the polyhedral model concepts in a semantic fashion, we first
need to define a proper language and its semantics. The language we define is representative
of general flowcharts programs without pointers, but with arrays and lists.

5Actually, there exists polyhedral frameworks such that Graphite https://gcc.gnu.org/wiki/Graphite or
Polly https://polly.llvm.org/ that try to recover high level information from low-level intermediate representa-
tions, however they did not formalize their applicability in a semantic fashion.

RR n° 9183

https://gcc.gnu.org/wiki/Graphite
https://polly.llvm.org/

10 Iannetta & Gonnord & Morel

3.1 A mini language

We have to be able to deal with the fact that programs can process whatever type of data
as well as using arrays and lists. However, we want to keep apart integer variables because we
need them as iteration variables.

Hence, the language formalized in this paper is a pointer-less imperative language with
native support for while loops, if statements as well as arrays and lists. This language is not
designed to do any actual computations (since the only value it can work on is ♣) however it is
designed to provide a precise definition of dependencies between operations.

In the grammar depicted in Figure 4, capital letters (X, Y, Z) are used as placeholders for
variable names. n represents an element of N and term in lowercase represent an instance of
the rule which shares the same first letter: i.e a· is an instance of Aexp, l· is an instance of Lexp,
etc.

〈Aexp〉 ::= n | intvar(X) | a0 〈Aop〉 a1

〈Aop〉 ::= ‘+’ | ‘*’ | ‘-’ | ‘/’

〈Bexp〉 ::= ‘true’ | ‘false’ | !(b0)
| b0 〈Bop〉 b1 | a0 ‘<’ a1 | l0 ‘<>’ ‘nil’

〈Bop〉 ::= ‘or’ | ‘and’ | ‘=’

〈Lexp〉 ::= ‘nil’ | list(X)

〈Vexp〉 ::= var(X) | var(X, a0)

〈Cexp〉 ::= ‘skip’ | c0 ‘;’ c1
| ‘if’ b0 ‘then’ c0 ‘else’ c1 ‘fi’
| ‘while’ b0 ‘do’ c0 ‘done’
| v0 := g0
| intvar(X) := a0
| ‘cons’ ‘(’g0 ‘,’ list(X1) ‘)’
| ‘nxt’ ‘(’ list(X1) ‘)’ | list(X0) := list(X1)
| listval(X) := g0

〈Gexp〉 ::= ♣ | l0 | a0 | v0 | listval(l0) | g0 ? g1

Figure 4: Our Mini-Language: syntax

The language itself is really permissive and can be used to write programs that are syntacti-
cally more general that those addressed by the polyhedral model. Semantically, as this language
can express arbitrary behavior of more than two numerical variables, it is Turing complete. The
language has not been restricted because we want to keep the capability to analyze all programs
even though we will not be able to say something significant about some programs.

3.1.1 Informal semantics

Type annotations such as intvar, var and list are here to guarantee that the program is
sufficiently correct to be handled by the grammar. var is a special case of array, namely array
with only one cell.

Inria

Semantic Polyhedral Model 11

Those annotations have the following role:

• intvar(Var) guarantees that Var is an integer and that we can perform standard (Pres-
burger) arithmetic on it. Only integer variables will matter when we will compute depen-
dencies. We assume that all required annotations will be present in the program, i.e after
a typing phase even if they do not syntactically appear in the original program.

• var(Var), var(Var, i) : var(Var) is a shortcut for var(Var, 0). var(Var, i)
refers to the i-th cell of the array Var. The annotation var guarantees that Var is either an
array or a scalar variable (ie. an array of size 1). This annotation is not appended during
the annotation phase and it should be provided in the source program.

• list(Var), nil, listval(Var) : listval is an annotation used to express that we
are dealing with the head of list Var. nil being the empty list, listvar(nil) is unde-
fined. This type annotation is not appended during the annotation phase and it should be
provided by the source program.

• cons, nxt : nxt(nil) is undefined, nxt(list) discards the head of list. list becomes
its head. In cons(a, list(b)), a is consed to list(b) and the reference list(b) is
updated to the address of the cell containing a. That means that after cons(a, list(b)),
list(b) is the list that starts with a followed by list(b) as it was before the cons op-
eration. Those operators provide the standard operations on lists (however, those opera-
tions are done in-place).

General expressions (Gexp) are here to allow the source program to make computations on
all types without restrictions.

In the code listings that will appear in this report, we will most often not write var(Var)
and var(Var), idx, but simply Var and Var(idx).

The formal semantics is presented in the next section. We first introduce the notion of iter-
ation vectors that will enable us to compute operation dates inside a rather classical operational
semantics. Then we define an execution model (in particular the representation of states and the
annotation programs before their execution) and then we define our semantics. Finally some
classical definitions of the polyhedral model framework are rephrased on the traces induced by
the operational semantics.

3.1.2 Semantic extension: iteration variables and iteration vectors for our language

for loops naturally introduce counter variables. These are very convenient to number
the operations and allow to label them when investigating the dependencies between them.
Unfortunately, if and while do not introduce such variables.

Hence, we have to artificially introduce variables that will serve this purpose. This is a clas-
sical activity in static analysis, for instance, this is widely used as a preliminary step to invariant
generation in order to compute the worst-case execution time of a program [HAMM14].

Iteration variables are created so that operations are numbered hierarchically, the first level
counts the number of operations at level zero, the second level those at level one, and so on. The
iteration vector is the concatenation of these variables. The leftmost coordinate is the outermost
iteration variable and the rightmost coordinate is the innermost iteration variable. This allows
sorting of operations by their iteration vector, with respect to the lexicographic order.

RR n° 9183

12 Iannetta & Gonnord & Morel

However, since if statements have two branches we have to do some extra work in order
to make them compatible with the lexicographic order. This is done by numbering the operation
in the then branch by the opposite of the number of statements of that branch. As can be seen
in the listing in Figure 5 the then branch of the if starts at −1 because this branch contains one
statement. This works only because, unlike while, if are only executed once.

1 i := 5;
2 while i <> 1
do
3 if i mod 2
== 0
4 i := i / 2
5 else
6 i := 3*i +
1

a) Before annotation

01 k0 := 0;
02 i := 5;
03 k0 := intvar(k0)+1;
04 k1 := 0;
05 while (var(i) <> 1)
06 if (intvar(i) mod 2
== 0)
07 k2 := -1;
08 i := var(i)/2;
09 k2 := var(k2)+1
10 else:
11 k2 := 0
12 i := 3*var(i)+1
13 k2 := intvar(k2)+1
14 k1 := intvar(k1)+1
15 k0 := intvar(k0)+1

b) After annotation

Figure 5: The Syracuse algorithm

For example, the statement on line 8 in the Figure 5b has (k0 k1 k2) as iteration vector and
when the program is run the iteration vector is instantiated with the current values of k0, k1
and k2.

Here again, we delegate the creation of the iteration variables to a preprocessing phase, as we
explain in the next section.

3.1.3 Annotation of a general program

As can be seen in the listing in Figure 5, once annotated the program is much less readable.
Hence, the annotation is done by performed by the algorithm in Figure 5b. The annotation
phase inserts the iteration variables and append the type annotation ‘itervar’ to all variables
with an occurrence in if and while conditions.

From now on, we will only work on programs that are not annotated.

3.2 Execution Environment, final semantics of our mini-language

This section presents the language in more depth; in particular, the grammar and semantic
will be fully defined. Since we need to store information during the execution in order to have
a clear definition of dependencies (since everything here is defined dynamically there is no re-
striction on the class of dependencies we are able to define), a memory model has to be designed
and integrated into the intermediate representation of the program we want to analyze.

Inria

Semantic Polyhedral Model 13

annot :: [Cmd] -> [Cmd]
annot prog = fst (annot_ 1 [0] (intvar('k0') := 0 : prog))

annot_ :: Integer -> [Integer] -> [Cmd] -> ([Cmd], Integer)
annot_ nxt vec (If cond pos neg : tl) =

(If cond' pos' neg' : incr : tl', nxt')
where

cond' = annot_cond cond
len = length(pos)
nxt0 = nxt + 1
pos'', nxt1 = annot_ nxt0 vec pos
neg'', nxt2 = annot_ nxt1 vec neg
pos' = intvar('k' ++ nxt') := -len : pos''
neg' = intvar('k' ++ nxt') := 0 : neg''
incr = intvar('k' ++ nxt) := intvar('k' ++ nxt) + 1
tl', nxt' = annot_ nxt2 vec tl

annot_ nxt vec (While cond cs : tl) =
(While cond' cs' : incr : tl', nxt')
where
cond' = annot_cond cond
nxt0 = nxt + 1
cs'', nxt1 = annot_ nxt0 vec cs
cs' = intvar('k' ++ nxt') := 0 : cs''
incr = intvar('k' ++ nxt) := intvar('k' ++ nxt) + 1
tl', nxt' = annot_ nxt1 vec tl

annot_ nxt vec (cmd : tl) = (cmd : incr : tl', nxt)
where

incr = intvar('k' ++ nxt) := intvar('k' ++ nxt) + 1

annot_cond (cond1 and cond2) = (annot_cond cond1) and (annot_cond cond2)
annot_cond (cond1 or cond2) = (annot_cond cond1) or (annot_cond cond2)
annot_cond (not cond) = not (annot_cond cond)
annot_cond var(X) = intvar(X)
annot_cond cond = cond

Figure 6: Annotation Algorithm

3.2.1 Memory Model

The main hypothesis is that arrays as well as every thing contained in a list cell are con-
tiguous. The details concerning memory management are not important as long as we can get
the addresses of each object. A valid memory model is presented in the appendix A which
describes the implementation of an interpreter for our mini-language in PROLOG.

In order to guarantee those hypotheses, ie. we need to know the size of all the variables
appearing in the program, we need to declare those variables as well as their size beforehand.
However, in this paper, we assume the declaration has been done somewhere, and thus it is not
included in our code examples (nevertheless, that is explicitly done in the PROLOG code.

3.2.2 States

A state should represent the name of the variables currently allocated as well as the state
of the memory and the timestamp of the current operation. It is defined as a triple (Mem, Loc,
Vec). More precisely, the types of Loc, Mem and Vec are as follows.

• Loc : Vars 7→ N

• Mem : N 7→ {♣}× (StringN × NN)

• Vec : StringN × NN

RR n° 9183

14 Iannetta & Gonnord & Morel

1 c(0) := 0;
2 i := 1;
3 while i <= n do
4 c(i) = c(i-1) +
1;
5 i := i + 1
6 done

a) Before annotation

k0 := 0;
1 c(0) := 0;
k0 := k0 + 1;

2 i := 1;
k0 := k0 + 1;
k1 := 0;

3 while i <= n do
4 c(i) = c(i-1) +
1;

k1 := k1 + 1;
5 i := i + 1;

k1 := k1 + 1
6 done;
k0 := k0 + 1

b) After annotation

Figure 7: Array filling with increasing values

1 i := 0;
2 list(vals) := nil;
3 while i <= n do
4 cons(i, list(vals));
5 i := i + 1
6 done;
7 save(list(vals'), list(vals'));
8 while list(vals) <> nil do
9 res := listval(vals);
10 nxt(list(vals))
11 done

Figure 8: Creation and Reduction of a list

Loc is a map from the set of variables to the set of memory addresses; Mem is a map from
the set of memory addresses to pairs made up of the value stored at this address as well as the
instantiated iteration vector of the operation that wrote this cell; Vec is the instantiated iteration
vector of the current operation.

As an illustration, Figure 9 gives the shape of the end state of the annotated program in
Figure 7b.

And the end iteration vector is {(k0), (3)}. Because, as we will see later, k2 has been dropped
at the end of the while.

In order to easily refer to coordinates of a state we define the following functions.

• Loc : state 7→ (Vars 7→ N)

• Mem : state 7→ N 7→ {♣}× (StringN × NN)

• Vec : state 7→ (StringN × NN)

The parameter of type state will most often be written in subscript (eg. Locσ is function
of type (Vars 7→ N)).

Inria

Semantic Polyhedral Model 15

Loc
Variable names Addresses
intvar(k0) 0
var(c, 0) 1
var(c, 1) 2
var(c, 2) 3
intvar(i) 4
intvar(k1) 5

Mem
Addresses Values

0 3
1 1
2 2
3 3
4 2
5 4

Figure 9: End state of the annotated program of fig. 7b.

3.2.3 Semantic

We will now expose the (big-step) semantic rules of that mini-language. Those rules will
define the execution relation → (this is a transition relation over (state×Cexp)×state).

Second, let’s explain what means:

• σ[Var(X, a0) := g0] ;

• σ[cons(g0,list(X1))] ;

• σ[nxt(list(X1))] ;

• σ[list(X0) := list(X1)].

- σ ′ = σ[Var(X, a0) := g0] is identical to σ except that Memσ ′(Locσ ′(Var(X, a0))) = (g0,Vecσ).

σ ′ = σ[cons(g0,list(X1))] is identical to σ except that Locσ ′(list(X1)) = new_addr. Where
new_addr is an address that has never been used up to this point and Memσ ′(new_addr) =
(g0,Vecσ).

σ ′ = σ[nxt(list(X1))] is identical to σ save for, assuming that Memσ(Locσ(list(X1)) =
(g0,nxt_val)), then Locσ ′(list(X1)) = nxt_val.

σ[list(X0) := list(X1)] is identical to σ save for, assuming that Locσ(list(X1)) = addr,
then Locσ ′(list(X1)) = addr.

SKIP
〈σ, skip〉 → σ ′

COMPOSE
〈σ, c0〉 → σ1 〈σ1, c1〉 → σ ′

〈σ, c0; c1〉 → σ ′

The two rules above do not need much explanation but are those which allow considering
programs as lists of statements.

ASSIGN TAB
〈σ,Var(X, a0) := g0〉 → σ[Var(X, a0) := g0]1

CONS
〈σ, cons(g0,list(X1))〉 → σ[cons(g0,list(X1))]1

RR n° 9183

16 Iannetta & Gonnord & Morel

Those two rules are the most important ones since they create dependencies between op-
erations. What is important to notice is that the assignment operator, in some way, overloaded.
Indeed, it does not only store the value of g0 but it stores at the same time the value of the
iteration vector.

NXT
〈σ,nxt(list(X0))〉 → σ[nxt(list(X1))]

The rule ‘Nxt’ works in place. The head of the list list(X0) is discarded (it still continues
to live in memory) and the reference list(X0) is updated and is now referring to the tail of
list(X0). That will justify the rule ‘Save’.

SAVE
〈σ,list(X0) := list(X1)〉 → σ[list(X0) := list(X1)]

This rule ‘Save’ creates a new reference called list(X0) to the head of the list list(X1).
The purpose of the ‘Save’ instruction is mainly to be able to rewind to the start of a list after
traversing it. This is, for example, done in the example in Figure 8. Note that it can be used for
other purposes which are not obvious or desirable. For example, let us assume that we have a
list l and that we save it to list l ′, let us now assume that we cons a value to l and another value
to l ′, we now have two lists l and l ′ whose heads are different but who share exactly (ie. the
same memory cells) the same tail.

WHF
〈σ, b0〉 → false

〈σ,while b0 do c done〉 → drop(σ)

WHT

〈σ, b0〉 → true
〈σ, c0〉 → σ1 〈σ1,while b0 do c done〉 → σ ′

〈σ,while b0 do c done〉 → drop(σ ′)

IT
〈σ, b0〉 → true 〈σ, c1〉 → σ ′

〈σ, if b0 then c1 else c2 fi〉 → drop(σ ′)

IF
〈σ, b0〉 → false 〈σ, c2〉 → σ ′

〈σ, if b0 then c1 else c2 fi〉 → drop(σ ′)

In addition to the while and if classic rules we need to add specials rules to handle the
management of the iteration vector. The ‘push’ function add its parameter as a coordinate of
the iteration vector while the ‘drop’ function discard the last added coordinate of the iteration
vector.

1Also stores the iteration vector with the value

Inria

Semantic Polyhedral Model 17

WH’

〈σ, b0〉 → true
〈push(X, σ[intvar(X) := 0]), c〉 → σ1

〈σ1,while b0 do c done〉 → σ ′

〈σ, intvar(X) := 0;while b0 do c done〉 → drop(σ ′)

IT’

〈σ, b0〉 → true
〈push(X, σ[intvar(X) := 0]), c1〉 → σ ′

〈σ, if b0 then intvar(X) := a0; c1 else c2 fi〉 → drop(σ ′)

IF’

〈σ, b0〉 → false
〈push(X, σ[intvar(X) := 0]), c2〉 → σ ′

〈σ, if b0 then c1 else intvar(X) := 0; c2 fi〉 → drop(σ ′)

Those three rules are applied as soon as a while or if is detected after special variables
added by the annotation phase. This way they bypass the normal rules ‘IF’ and ‘WH’ and add
a coordinate to our iteration vector. And once the rule is done, then the iteration vector is put
back to its previous state.

For example at line 3 in the Figure 7b the variable monitored by the iteration vector is (k0),
at line 4 the variables monitored are (k0, k1). It should be noted that the internal representation
handled by ‘push’ and ‘drop’ uses a FIFO, therefore, the operation that happens on the iteration
vector when entering the while is that k1 is pushed on top of k0 and once the while is done
k1 is discarded and k0 becomes again the head of the FIFO.

3.3 Traces

For ease of presentation, the relation → introduced in Section 3.2.3 is big-step, however
when defining traces we will use the small-step counter part of → that we will also note →.
Definition 3.1 (trace on states). A trace on states Σ is a sequence of pairs of the form (state,
command) (σ0, c0) → (σ1, c1) → . . . , and an initial trace is a trace which starts from the empty
state.

In the polyhedral model, the computations that are actually performed are not of prime im-
portance. This is why we decided to consider that all those computations happen on a singleton
set {♣}. Moreover, all the memory accesses are completely deterministic, hence there exists one
unique initial trace. This leads to the following remark.

Remark. There is a one-to-one mapping between iteration vectors and states.

Therefore, we will from now on work directly on operations rather than states. Indeed,
since an operation o is the pair (s, t) we can retrieve the corresponding state from t if necessary
according to the previous remark.

Definition 3.2 (trace on operations). A trace on operations O is a sequence of operations o1 →
o2 → . . . ; an initial trace is a trace that with the trivial iteration vector (the iteration vector filled
with zeroes).

RR n° 9183

18 Iannetta & Gonnord & Morel

Remark. From now on, trace will always refer to trace on operations unless stated otherwise.
Moreover, we will only worked on traced were commands about annotations have all been
trimmed. For example we do not work on the trace (s1, t1) → (k0 := k0 + 1, t

′) → (s2, t2) but
on the trace where there is no more references to command about annotations, hence, we would
work with (s1, t1) → (s2, t2).

Definition 3.3 (reachability/validity). An operation (s1, t) is valid if and only if there exists an
initial trace O = {oi}i∈N such that there exists oi0 such that oi0 = (s1, t).

Definition 3.4 (happens-before: <). There is a natural order < on operations: happens-before.
(s1, t1) < (s2, t2) iff forall traces Σ there exists i and i ′ such that σi1 →+ σi2 and t1 = Vec(σi1)
and t2 = Vec(σi2).

4 Dependencies for general programs

This section starts by defining dependencies in the setting permitted by our mini-language.
Those definitions are very general and do not suffer from restriction due to staticness. The
second subsection shows how to convert this dynamic definition to something statically com-
putable when we are dealing with regular (polyhedral) programs.

4.1 Different types of dependencies

Definition 4.1 (rvars). Let o = (s, t) be an operation, the set of variables that s needs to read at
time t is called rvars(o).

Definition 4.2 (wvars). Let o = (s, t) be an operation, the set of variables that s will write at
time t is called wvars(o). wvars(o) is either a singleton or the empty set.

Example. Let us consider the operation defined by o = (var(a, i) := var(a, i− 1) + var(a, i) + 1, t).
Let us assume that at time t the variable i is equal to 1 (This information is accessible since for t we can
recover the whole state corresponding to t and therefore access the access the content of the memory at
this state).

In that case, rvars(o) = {var(a, 0), var(a, 1)} and wvars(o) = {var(a, 1)}.

Definition 4.3 (Last write). Given an initial traceO and an operation o2 which belongs toO, the
function last returns the operation oi1 (which belongs toO) that last wrote the cell containing
the variable v before o2 reads it.

The function last satisfies the following formula:

∃i1, oi1 = lastO,o2
(wvars(v)) ∈ O

∧ ∀i, i1 < i < i2,wvars(oi1) 6= {v}

Example. In Figure 7, and the sequential initial trace, the statement s4 is the statement on line 4, the
operation (s4, ({k0, k1}, {(3, 0)})) writes in cell c(1) and needs to read c(0) which was last wrote by
(s1, ({k0}, {0})).

Definition 4.4 (Direct Data Dependencies). Let o2 = (s2, t2) be an operation, o2 directly de-
pends on operation o1 = (s1, t1) if there exists v ∈ rvars(o2) ∪ wvars(o2) such that o1 ∈
lasto(v). It is denoted by o1 ; o2.

Inria

Semantic Polyhedral Model 19

Definition 4.5 (Most Recent Direct Data Dependencies). Let o2 = (s2, t2) be an operation, and
D the set of operations on which o2 directly depends. The most recent operation on which o2
depends is o1 = max<D. It is denoted by o1 � o2.

Example (An operation with two direct dependencies). In the following case, the direct dependen-
cies of oi4 are oi1 and oi2 . And the most recent dependency is oi2 .

oi0 oi1 oi2 oi3 oi4

Definition 4.6 (Data Dependencies). Operation o2 depends on operation o1 iff o1 ;+ o2 where
;+ is the transitive closure of ;.

Example (An operation with three dependencies). In the following case, the direct dependencies of
oi4 are oi1 and oi2 . And o1 is an indirect dependency.

oi0 oi1 oi2 oi3 oi4

4.2 Equivalence with [Fea91]

In this subsection we will prove that, when considering regular programs with respect
to the polyhedral model, our approach is strictly equivalent to the one presented in [Fea91].
Let P be a regular program and P ′ the same program rewritten with while loops in the most
straightforward fashion. That is,

for i from start to finish
(* ... *)

done

is rewritten to the following “pseudo polyhedral” program:

i := start;
while i <= finish

(* ... *)
i = i + 1

done

Prop 1. Let o1 = (s1, t1) and o2 = (s2, t2) be two operations in an initial trace O then, o1 � o2 ⇔
Ks1,s2(convert(t2)) = convert(t1) where convert is the function that converts our iteration
vector into the iteration vector introduced in [Fea91].

Proof. The existence of the convert function will be assured by the proposition 3. In this proof,
we will show that if o1 ; o2 then the conditions C1, C2 and C3 are satisfied.

C1 : From the construction of �, we have the guarantee that o1 produces a value for o2 or
wrote the same cell as o2. Hence, the cells that are accessed match ;

RR n° 9183

20 Iannetta & Gonnord & Morel

C2 : The definition of the function last guarantees that o1 happens before o1 ;

C3 : o1 belongs to the initial trace, therefore, the statement s1 happens during a valid iteration.

Moreover, the definition of last guarantees that o1 is the last operation before o2 that
produces a value for o2 or writes the same cell as o2. Therefore, o1 is the last operation on
which o2 depends. Hence, o1 � o2 ⇔ Ks1,s2(convert(t2)) = convert(t1)

Prop 2. Let o1 = (s1, t1) and o2 = (s2, t2) be two operations then, o1 �+ o2 ⇔ convert(t1) ∈
Qs1,s2(convert(t2)) where convert is the function that converts our iteration vector into the itera-
tion vector introduced in [Fea91].

Proof. The same proof as for proposition 1 holds. The only difference is that since we take all
direct dependences and the transitive closure we indeed get all the dependencies.

This equivalence proves that our formalization includes the polyhedral model and in this
case (for loops rewritten as while loops) our system can harness the classical polyhedral com-
putations. We thus reached our first goal, which is to be able to semantically capture the key
notion of dependency and being able to compute it.
Example. Let’s compute the function convert on the “Array filling example” of Figure 7, which we
recall here:

k0 := 0;
1 c(0) := 0;

k0 := k0 + 1;
2 i := 1;

k0 := k0 + 1;
k1 := 0;

3 while i <= n do
4 c(i) = c(i-1) + 1;

k1 := k1 + 1;
5 i := i + 1;

k1 := k1 + 1
6 done;

k0 := k0 + 1

Once in the while on line 3 , the value of k0 is fixed forever at 2. Indeed, the last time where k0 is
increased has no effect whatsoever since it is the last operation of the program. Then, we have to compute
the relation between i and k1. i starts at 1 whereas k1 starts at 0. At s1, k0 is first, 0, then 2, then 4
and so on. The gap between two values is 2: that is the number of statements (without taking account of
statements added by the annotation phase) in the loop. Thus, k1 = 1+ 2 ∗ (i− 1). Hence,

convert(k0, k1) := 1+ 2 ∗ (i− 1)) = (i)

The decision process of finding the set of dependencies of a given program thus relies to
the ability of effectively computing this convert function. We are thus searching for a relation
between the variables of the program which implies a one-to-one relation between the iteration
vector and the indices of array accesses.

There is a plethoric literature on invariant generation for general imperative programs (a
survey can be found in [GS14]) and the computation of transitive closures of numerical rela-
tions.

In the general case, the transitive closure of an affine relation is not computable, however,
there exists sub-classes that are known to be exactly computable. The paper [VCB11] propose

Inria

Semantic Polyhedral Model 21

an algorithm that compute over-approximations of transitive closures of quasi-affine relations (a
more general family of relations that encompass affine relations). Moreover, it also returns a
Boolean value that says that this transitive closure is exact.

Prop 3. If the relation is a translation, its transitive closure is computable.

Proof. For instance, [VCB11].

Thus, as long as we are dealing with regular polyhedral programs our model is decidable
because our notions as well as those in [Fea91] coincide.
Remark. Proposition 1, 2 and 3 give us a decision procedure to test dependency between two
given operations for our model. However, in the case where convert is invertible we not only
have a decision procedure but the full symbolic graph of dependencies. Since, in our setting of
this section, convert is a translation it is invertible, the symbolic graph of dependencies can
also be expressed, computed and stored when we analyse a pseudo polyhedral program with
while loops.

5 Extensions

From this section onward, we present the directions that we are currently investigating.
Therefore, the tone will be more informal than the previous sections.

5.1 “Covertly regular” loops with scalar and arrays

In the previous section, we addressed the case of polyhedral loops that have been straight-
forwardly transformed into while loops. In practice, state-of-the-art production compilers like
gcc or LLVM can perform a lot of structural transformations on a given program while parsing
and optimizing. Even in the case of initial syntactic polyhedral loops, a polyhedral-based de-
pendency analyses may struggle to find whether or not to apply, and may miss optimisation
opportunities.

However, the CFG that is obtained is equivalent to the initial one, which means that an
invariant generator like ISL [VCB11] should be able to compute a relation that contains exact
ranges of the iteration vectors. Conditions C1, C2 and C3 are thus replaced by the same condi-
tions where the validity of a given operation is replaced by is “reachability” condition (invariant
at this point). The result in this case should thus be a set of constraints that correspond to the
exact set of dependencies of the program.

5.2 General (affine or non affine) loops

General loops are loops for which the transition relation is not a simple translation, but
a general (affine or non affine) relation between the program variables. For this more general
case, the transitive closure of the loop is generally not computable.

In that particular case, a loop invariant generator will give us an overapproximation of the
behavior of the scalar variables of the program (in a shape we have to define, we most probably
will compute a polyhedron). We thus will have to take into account this approximation and

RR n° 9183

22 Iannetta & Gonnord & Morel

define the notion of false dependencies. This is not a very hard issue, but it will have an impact on
future formalization of the polyhedral model framework, since it as an impact on code genera-
tion. For instance, a given computation should not wait forever a data it doesn’t really depend
on.

5.3 Lists

This section will present how it is possible to extend the polyhedral model to a new, dy-
namic, data structure: lists.

By definition, lists, unlike arrays, are dynamic data structures. Hence, in addition to losing
iteration variables when dealing with while loops, we lose the straightforward canonical repre-
sentations of memory cells. Indeed, an array has a fixed size and all its cells are contiguous in
memory which is not the case with lists.

As a first step, we will address a special case of list, those where it is only possible to insert
an element at the beginning. Such lists present the same behavioral properties as dynamic arrays
such as C++’s vectors. It is important to note that dynamic arrays are already out of the scope
of the polyhedral model since their size is not fixed.

Up until now we have been dealing with arrays. Hence it may seem strange that instead
of addressing the case of dynamic arrays which is an extension of standard arrays, we have
decided to address the case of lists with insertion at the beginning. The reason is two-fold.
First their behavior with respect to insertion (from the user’s viewpoint) is the same as dynamic
arrays, the only difference are that the new cell is appended at the beginning of the list rather
than at the end of the dynamic array and that there is no built-in index on list cells. Second,
when we will want to add insertion in the middle as an operation, lists will outperform dynamic
arrays. Indeed, in order to add a value in the middle of a dynamic array there is a need to shift
values, whereas adding a value in the middle to a list does not have this trade-off.

5.4 On giving numbers to list cells

Unlike arrays which have a built-in index, list cells does not have that feature and the only
way to talk about a list cell is to know its address in memory. However, this is not very prac-
tical to talk about dependencies in a setting where memory addresses should not be exposed.
Therefore we introduce a way to index list cells.

A good numbering on list cells should assign each cell a number that should never change.
In order to do that, the cell number id is given by its distance to the nil list. The listing in
Figure 10 creates the lists as depicted in Figure 11.

1 a = nil;
2 cons("", list(a));
3 cons("", list(a));
4 list(b) = list(a);
5 nxt(list(b));
6 cons("", list(b));

Figure 10: Two lists with a shared tail

Inria

Semantic Polyhedral Model 23

a:

b:

2

2

1 nil

Figure 11: Two lists with a shared tail labeled with their cell number

Figure 11 does not only illustrate the numbering of cells but also the fact that we have to
deal with aliasing.

5.5 On dealing with aliasing

Dealing with aliasing is mandatory to be able to analyze ans optimize lists properly. In-
deed, even for something as simple as traversing a list twice we have to be able to save the head
of the list because it is not possible to rewind a linked list. This is left for future work.

6 Conclusion

One of our prime goal was to formalize the polyhedral model so as to be able to use it with-
out its intrinsic limitations due to the fact that it relies entirely on syntax. We addressed those
limitations by identifying the hypotheses within the polyhedral framework when computing
dependencies as described in [Fea91]. The hypothesis made by [Fea91] have been all taken into
account when designing our mini-language, however we have relaxed some hypotheses like
those concerning for loops and we have made room for extension because we keep optimiza-
tions on lists in sight.

This semantics of the mini-language is defined above an execution environment which
makes explicit the implicit hypotheses that were assummed in the original paper. The semantics
allows to define a notion of trace that is the central for all our definitions and for making the
link between the framework presented in [Fea91] and ours.

We will now focus on handling correctly programs with general polyhederal loops and
lists.

RR n° 9183

24 Iannetta & Gonnord & Morel

A An implementation in Prolog

This appendix exposes an implementation in PROLOG of the mini-language. This tool is
used in order extract the relations of dependency between operations on programs which ter-
minate 6. In the case of the polyhedral model only iteration variables matter, and we can safely
forget about what the program actually computes. Therefore, a tool that would analyse de-
pendencies only need to keep track of which operations wrote which memory cell. However,
since we would like to be able to handle access of the form a[b[i]] := ... in the future
we still keep a very loose approximation of the values computed by the actual program, this
approximation could be made more precise if needed in the future.

A.1 Details About the Memory Model

Since we want to store the values of the computation, we need to make sure that the mem-
ory model guarantees that there is no risk whatsoever that to variables overlap in memory.
Hence, we require that every object is defined beforehand with its name and size.

All variables are global, each variable is alive and accessible as soon as it has been defined.
All variables are released at the end of the program, however it is possible to undeclare a name
to reuse it later. In order to keep the memory model as straightforward as possible memory is
never freed, that means that even if a variable is undeclared the memory used for it will not be
freed. This allows ignoring problems arising as soon as the memory is fragmented.

A.2 Practical Implementation in Prolog

The implementation is divided into several files each implementing a logical phase of the
analysis: state.pl, annotation.pl, eval.pl, exec.pl, dot.pl and utils.pl.

state.pl A state is the conjunction of 4 components:

• Reg: The address of the next unused memory block. Since memory is never freed, this
integer can only increase.

• Vec: The current value of the iteration vector.

• Loc: A map from variable names to address. That means that variables are in fact refer-
ences.

• Mem: A map from the memory address space to the values held in memory. Alongside
values is stored the value of the iteration vector which wrote the current value held in the
memory cell.

The other definitions in this file are all about how commands affect state. The predicates
defined by itself are already sufficient to write programs but since the state is still exposed to
the user and there are no annotations at this stage hence the iteration vector is not available.

The annotation part does exactly what the Section 3.1.3 explains but it also performs the
declaration/undeclaration of iteration variables when needed.

6and was also used to debug and validate our semantics.

Inria

Semantic Polyhedral Model 25

The evaluation externalises the computations happening in the program in an external file
for convenience because it is used both by the dot phase and the regular execution phase.

The regular execution phase is in the eval.pl file and implements the mini-language
completely. If a program terminates, then the last state is returned.

On the other hand, the dot.pl file needs to be able to construct the dependency diagram
hence it has to store all the operations in order to reconstruct the diagram.

A.3 Dependencies in the Finite Case

When the program terminates it is possible to use the interface exposed by the dot module,
to obtain the list of operations happening in the programs as well as extracting the dependency
graph such as the following one. The snake like dependencies represents loop counters and as
expected they always depend on the last time they were assigned. The full dependency graph
is available in pdf format as an appendix.

RR n° 9183

26 Iannetta & Gonnord & Morel

Figure 12: A part of the dependency graph of program performing a 4x4 matrices multiplication

References

[ADFG10] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-
dimensional rankings, program termination, and complexity bounds of flowchart
programs. In Proceedings of the 17th International Conference on Static Analysis, SAS

Inria

Semantic Polyhedral Model 27

’10, pages 117–133, 2010.

[BHRS08] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and Ponnuswamy
Sadayappan. A practical automatic polyhedral parallelizer and locality optimizer.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’08, pages 101–113, 2008.

[BYR+11] Vamshi Basupalli, Tomofumi Yuki, Sanjay Rajopadhye, Antoine Morvan, Steven
Derrien, Patrice Quinton, and Dave Wonnacott. ompVerify: Polyhedral analysis
for the OpenMP programmer. In Proceedings of the 7th International Workshop on
OpenMP, IWOMP ’11, pages 37–53, June 2011.

[DI15] Alain Darte and Alexandre Isoard. Exact and approximated data-reuse optimiza-
tions for tiling with parametric sizes. In Proceedings of the 24th International Confer-
ence on Compiler Construction, CC ’15, pages 151–170, April 2015.

[DSV05] Alain Darte, Robert Schreiber, and Gilles Villard. Lattice-based memory allocation.
IEEE Transactions on Computers, 54(10):1242–1257, 2005.

[Fea88] Paul Feautrier. Parametric integer programming. RAIRO Recherche Operationnelle,
22, 09 1988.

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar references. International Jour-
nal of Parallel Programming, 20(1):23–53, 1991.

[Fea92a] Paul Feautrier. Some efficient solutions to the affine scheduling problem, I, one-
dimensional time. International Journal of Parallel Programming, 21(5):313–348, Oc-
tober 1992.

[Fea92b] Paul Feautrier. Some efficient solutions to the affine scheduling problem, II, multi-
dimensional time. International Journal of Parallel Programming, 21(6):389–420, De-
cember 1992.

[FL11] Paul Feautrier and Christian Lengauer. The polyhedron model. In David Padua,
editor, Encyclopedia of Parallel Programming. Springer, 2011.

[GS14] Laure Gonnord and Peter Schrammel. Abstract Acceleration in Linear Relation
Analysis. Science of Computer Programming, 93, part B(125 - 153):125 – 153, 2014.
Author version : http://hal.inria.fr/hal-00787212/en.

[HAMM14] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maiza. How to com-
pute worst-case execution time by optimization modulo theory and a clever encod-
ing of program semantics. In Youtao Zhang and Prasad Kulkarni, editors, LCTES,
pages 43–52. ACM, 2014.

[VCB11] Sven Verdoolaege, Albert Cohen, and Anna Beletska. Transitive Closures of Affine
Integer Tuple Relations and their Overapproximations. In Eran Yahav, editor, SAS
2011 - The 18th International Static Analysis Symposium, volume 6887 of LNCS, pages
216–232, Venice, Italy, September 2011. Springer.

[YFRS13] Tomofumi Yuki, Paul Feautrier, Sanjay Rajopadhye, and Vijay Saraswat. Array
dataflow analysis for polyhedral X10 programs. In Proceedings of the 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’13,
pages 23–34, February 2013.

RR n° 9183

28 Iannetta & Gonnord & Morel

Contents

1 Introduction 3
1.1 Context . 3
1.2 The polyhedral model framework . 3
1.3 Limits of the polyhedral model, motivations of this internship 5
1.4 Overview . 5

2 Presentation of [Fea91]: contribution and limits 6
2.1 Hypotheses and Restrictions . 6
2.2 Notations . 6

2.2.1 Operations and Statements . 6
2.2.2 Tracking operations . 7

2.3 Computation of dependencies . 7
2.4 Toward a more semantic polyhedral model . 9

3 General imperative programs with iteration vectors 9
3.1 A mini language . 10

3.1.1 Informal semantics . 10
3.1.2 Semantic extension: iteration variables and iteration vectors for our lan-

guage . 11
3.1.3 Annotation of a general program . 12

3.2 Execution Environment, final semantics of our mini-language 12
3.2.1 Memory Model . 13
3.2.2 States . 13
3.2.3 Semantic . 15

3.3 Traces . 17

4 Dependencies for general programs 18
4.1 Different types of dependencies . 18
4.2 Equivalence with [Fea91] . 19

5 Extensions 21
5.1 “Covertly regular” loops with scalar and arrays 21
5.2 General (affine or non affine) loops . 21
5.3 Lists . 22
5.4 On giving numbers to list cells . 22
5.5 On dealing with aliasing . 23

6 Conclusion 23

A An implementation in Prolog 24
A.1 Details About the Memory Model . 24
A.2 Practical Implementation in Prolog . 24
A.3 Dependencies in the Finite Case . 25

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Context
	The polyhedral model framework
	Limits of the polyhedral model, motivations of this internship
	Overview

	Presentation of ada: contribution and limits
	Hypotheses and Restrictions
	Notations
	Operations and Statements
	Tracking operations

	Computation of dependencies
	Toward a more semantic polyhedral model

	General imperative programs with iteration vectors
	A mini language
	Informal semantics
	Semantic extension: iteration variables and iteration vectors for our language
	Annotation of a general program

	Execution Environment, final semantics of our mini-language
	Memory Model
	States
	Semantic

	Traces

	Dependencies for general programs
	Different types of dependencies
	Equivalence with ada

	Extensions
	``Covertly regular'' loops with scalar and arrays
	General (affine or non affine) loops
	Lists
	On giving numbers to list cells
	On dealing with aliasing

	Conclusion
	An implementation in Prolog
	Details About the Memory Model
	Practical Implementation in Prolog
	Dependencies in the Finite Case

