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a b s t r a c t

Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydro-

gen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximiz-

ing the energy production and minimizing the production costs. The first part of the paper is related to

the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems

arising from cogeneration. After a literature review for identifying the most efficient methods, the MUL-

TIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the

stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in

the case of problems involving only integer variables. Two practical examples are presented in the last

section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of

the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second

example consists in designing the heat exchanger of the generating turbomachine. Three criteria are opti-

mized: the exchange surface, the exergy destruction and the number of exchange modules.

1. Introduction

Real world engineering problems involve different kinds of vari-

ables, from the most common ones as continuous variables (pres-

sure, temperature. . .) to integer type (number of heat exchangers,

. . .) or binary variables (choice between alternatives, existence of

a given unit into a process, . . .), linked by numerous constraints.

Furthermore, several objective functions (cost, efficiency, . . .) have

to be optimized simultaneously.

This work is attached to the Gas Turbine – Modular High tem-

perature Reactor (GT-MHR) project developed by the Commissariat

à l’Energie Atomique – French governmental research agency for

nuclear energy (CEA). The problem under consideration is to study

the possibility of coupling a Helium cooled reactor, described by

Kiryushin et al. [1], with an innovative direct Brayton cycle (see

Fig. 7). This original concept was modified by a new heat source

provided by a Very High Temperature Reactor, generation IV nucle-

ar reactor (VHTR) delivering 950 °C to the generating cycle. This

heat can be used for the cogeneration of electricity/hydrogen by

thermochemical decomposition of water. The cycle sulfur/iodine,

using Helium like primary coolant, is the most advanced at the

CEA; its production and its investment cost have been quantified.

The general objective is to develop a technico-economic optimi-

zation strategy of cogeneration systems of electricity/hydrogen,

with a nuclear reactor of 4th generation. The main goal of the study

is to find an optimal efficiency of the generating cycles and heat

delivery system, maximizing the energy production and minimiz-

ing the production costs, which constitutes a multiobjective prob-

lem. Of course, all the practical optimization problems cannot be

presented in a single paper. That is why this study is restricted

to the development of a multiobjective optimization library, in or-

der to tackle all types of problems arising from cogeneration of

electricity/hydrogen from nuclear technology, and then two practi-

cal problems of the nuclear field are presented and solved. The

MULTIGEN library proposes a simple user interface well suited to

complex constrained multiobjective optimization problems, on Ex-

cel workbooks for compatibility reasons with the simulation tools

developed by the CEA.

After a literature analysis for identifying the most efficient

numerical methods in multiobjective optimization field, the com-

ponents of the MULTIGEN library are presented; the innovative

points are listed in the corresponding section that ends by three

numerical examples. Two examples of multiobjective optimization

related to the general nuclear problem under consideration are
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described in details in the fourth section. The former is devoted to a

bicriteria optimization for a generating cycle based on Gas Turbine

– Modular High temperature Reactor (GT-MHR) concept and cou-

pled with a Very High Temperature Reactor (VHTR). This bicriteria

problem concerns both exergy destruction and total cost of the nu-

clear power plant, involving only continuous variables. The second

example is a design problem of the heat exchanger of the generat-

ing turbomachine coupled with the VHTR. This problem involves

geometric variables under geometrical constraints. In this exam-

ple, three criteria are optimized: the exchange surface (related to

the cost), the exergy destruction (directly related to pressure loss

in the exergy theory) and the number of exchange modules for gi-

ven operating conditions deduced from the technico-economic

study of the first example.

2. Solution strategy

2.1. General formulation of a multiobjective constrained problem

2.1.1. Definition of optimality for multiobjective problems
Like many real world examples, the problem under consider-

ation involves several competing measures of performance, or

objectives [2]. Using the formulation of multiobjective constrained

problems of Fonseca and Fleming [3], a general multiobjective

problem is made up a set of n criteria fk, k = 1, . . . , n to be mini-

mized or maximized. Each fk may be nonlinear, but also discontin-

uous with respect to some components of the general decision

variable x in an m-dimensional universe U.

f ðxÞ ¼ ðf1ðxÞ; . . . ; fnðxÞÞ ð1Þ

This kind of problem has not a unique solution in general, but pre-

sents a set of non-dominated solutions named Pareto-optimal set or

Pareto-optimal front. The Pareto-domination concept lies on two

basic rules: in the universe U a given vector u = (u1, . . . , un) domi-

nates another vector v = (v1, . . . , van), if and only if,

8i 2 f1; . . . ;ng : ui 6 v i ^ 9i 2 f1; . . . ; ng : ui < v i ð2Þ

For a concrete mathematical problem, Eq. (2) gives the following

definition of the Pareto front: for a set of n criteria, a solution f(x),
related to a decision variable vector x = (x1, . . . , xm), dominates an-

other solution f(y), related to y = (y1, . . . , ym) when the following

condition is checked (for a minimization problem),

8i 2 f1; . . . ;ng : fiðxÞ 6 fiðyÞ ^ 9i 2 f1; . . . ;ng : fiðxÞ < fiðyÞ ð3Þ

On a given set of solutions, it is possible to distinguish non-domi-

nated sets. This property implies a possible reduction of an

n-dimension optimization problem, to a one-dimension only,

according to Jensen [4]: several algorithms as for example NSGA II

by Deb et al. [5] use this Pareto based ranking principle. The last

definition concerns the Pareto optimality: a solution xu e U is called

Pareto-optimal if and only if there is no xv e U for which

v = f(xv) = (v1, . . . , vn) dominates u = f(xu) = (u1, . . . , un). These Pare-

to-optimal non-dominated individuals represent the solutions of

the multiobjective problem. In practice, the decision maker has to

select a single solution by searching among the whole Pareto front,

and it may be difficult to pick one ‘‘best” solution out of a large set

of alternatives. Branke et al. [6], and Taboada and Coit [7] suggest

picking the knees in the Pareto front, that is to say, solutions where

a small improvement in one objective function would lead to a large

deterioration in at least one other objective.

2.1.2. Constraint handling
Constrained multiobjective optimization is the most common

kind of problem in engineering applications. In general, three kinds

of constraints are considered: simple inequality (6), strict inequal-

ity (<), and equality:

gðxÞ 6 c1

rðxÞ < c2

hðxÞ ¼ c3

9

>=

>;

()

constr1ðxÞ ¼ c1ÿ gðxÞP 0

constr2ðxÞ ¼ c2ÿ rðxÞ > 0

constr3ðxÞ ¼ c3ÿ hðxÞ ¼ 0

8

><

>:

ð4Þ

where (g, r, h) are real-valued functions of a decision variable

x = (x1, . . . , xm) on an m-dimension decisional search space U, and
(c1, c2, c3) are constant values. In the more general case, these con-

straints are written as vectors of the type:

Nomenclature

ÂM unitary angle demarcating a single module (radian)
ATC actualized total cost (€)
(CiTOT)t initial investment engaged at year t
(CMaint)t maintenance cost at year t
(COp)t operational cost at year t
E exergy flow (J/kg) e = h ÿ T 0 � s
ExLoss exergy loss (kW)
Gene Crossover gene crossover operator
GT-MHR Gas Turbine – Modular High temperature Reactor
H enthalpy (J/kg)
HT total heat exchanger high (m)
hM heat exchanger high (m)
LM heat exchanger length (m)
LMax
M maximum length for recuperator modules (m)
lD He distribution zone (m)
lM heat exchanger width (m)
MI Mixed Integer problem
MIB Mixed Integer-Binary problem
mHe helium mass flow rate (kg/s)
NChannels number of main channels in a module
NFin Channels number of fin channels in main channels in a module
NModules number of modules of recuperator
NModule/Ring number of modules per ring
N_Variables number of variables

NSGA Non-Sorted Genetic Algorithm
NRings ring number of recuperator
PCS Power Conversion System
P(Crossover) crossover probability
Q heat power (W)
R space of real numbers
RandNumber random number value
Rec Reynolds number in cold side
Reh Reynolds number in hot side
S entropy (J/kg/K)
SBX Simulated Binary Crossover
STotal total heat exchange surface (m2)
T temperature (K)
TLife time-life (year)
T0 atmospheric temperature (K)
UG global conductance (W/m2/°C)
VHTR Very High Temperature Nuclear Reactor
We electrical power (W)
Wmeca mechanical power (W)
DPc pressure loss in cold side (bar)
DPh pressure loss in hot side (bar)
ØPCS diameter of the PCS vessel (m)
ØTM maximum diameter of the turbo-machine (m)
s interest rate (%)



constr1
!

ðxÞ ¼ ððc1ÿ gðxÞÞ1; . . . ; ðc1ÿ gðxÞÞn1Þ

¼ ðconstr1ðxÞ1; . . . ; constr1ðxÞn1ÞP 0

constr2
!

ðxÞ ¼ ððc2ÿ rðxÞÞ1; . . . ; ðc2ÿ rðxÞÞn2Þ

¼ ðconstr2ðxÞ1; . . . ; constr2ðxÞn2Þ > 0

constr3
!

ðxÞ ¼ ðÿjc3ÿ hðxÞj1; . . . ;ÿjc3ÿ hðxÞjn3Þ

¼ ðconstr3ðxÞ1; . . . ; constr3ðxÞn3Þ ¼ 0

ð5Þ

where n1, n2, and n3 are respectively, the number or inequality,

strict inequality and equality constraints. This formulation implies

that each constri value will be negative if and only if this constraint

is violated. The conversion of Eq. (4), that is a classical representa-

tion of constraints set, to Eq. (5) representation constitutes the first

step of a unified formulation of constrained-optimization problems.

In practice, due to round-off error on real numbers, the equality

constraint constr3 was modified as follows:

constr3
!

ðxÞ0 ¼ ðÿjc3ÿ hðxÞj1 þ e1; . . . ;ÿjc3ÿ hðxÞjn3 þ en3Þ

¼ constr3
!

ðxÞ þ e

!

e

!
¼ ðe1; . . . ; en3Þ; 8i 2 f1; . . . ;n3g; ei 2 R

ð6Þ

e

!
is called a ‘‘precision vector” of the equality vector, and takes low

values (less than 10ÿ6 for example). This approximation is not nec-

essary when equality constraint involves only integer or binary

variables.

From Eqs. (5) and (6), the constraint satisfaction implies the

maximization of violated constraints in vectors constr1, constr2,
and constr3. According to Fonseca and Fleming [3], the satisfac-

tion of a number of violated inequality constraints is, from Eq.

(5), a multiobjective maximization problem. From a theoretical

point of view, a constrained multiobjective optimization problem

can be formulated as a two-step optimization problem. The first

step implies the comparison of constraint satisfaction degrees be-

tween two solutions, using the Pareto’s domination definition of

Eq. (3), but a more simple solution consists in comparing the

sum of values of violated constraints only, as in NSGA II algorithm

of Deb et al. [5], which implies there are no priority rules be-

tween constraints. This step is performed first, before the second

one, which concerns the comparison of the objective function

vectors.

2.2. Evolutionary optimization

An evolutionary procedure is a heuristic method for solving a

large class of combinatorial problems by combining user-given

black-box procedures whose derivatives are not available, with

heuristics in the hope of obtaining a good solution for the problem.

Some heuristics maintain at any instant a single current state, and

replace that state by a new one (state transition or move). Heuris-

tics often work on pool of states containing several candidate

states. The new states (evolution) are generated by combination

or crossover of two or more states of the pool. Since 1975, many

evolutionary procedures appear. For example, one can cite genetic

algorithms [8], simulated annealing [9], artificial immune systems

[10], ant colonies [11], particle swarms [12], differential evolution

[13], tabu search [14], constraint propagation [15], artificial bee

colonies [16], artificial neural networks [17], and Monte Carlo

based-method [18].

All these algorithms can be adapted to the multiobjective case,

and as it can be observed in the list of references proposed by Coel-

lo Coello [19]. Since 1990, the number of published papers per year

is very important (more than 3700). Starting from a quasi null va-

lue in 1990, this number continuously increases, reaching 100 in

1995, 200 in 2000, 400 in 2005 and 500 the last year. How can find

one’s way again in this jungle of papers? The analysis of the list

shows that genetic algorithms are cited in almost 40% of cases,

and far behind them they are simulated annealing and particle

swarms, followed by tabu search and differential evolution algo-

rithms, then come the ant colonies and artificial neural networks,

followed by constraint propagation methods, honeybee colonies,

artificial immune systems and Monte-Carlo procedures. The two

most popular methods in the chemical engineering field are Multi-

Objective Genetic Algorithm (MOGA, see [20]), and MultiObjective

Simulated Annealing (MOSA, see [21–23]). None of these two

methods is perfect and selecting one depends on the requirements

of the particular design situation considered. From the literature

survey [24,6,25,26] it appears that MOGA is generally preferred

to MOSA.

3. General description of the genetic algorithm library

MULTIGEN

3.1. Components of MULTIGEN

Faced to the diversity of mathematical problems, it is recog-

nized that there is no a unique and general algorithm able to

solve all the problems perfectly. Actually, method efficiency for

a particular example is hardly predictable, and the only certainty

we have is expressed by the No Free Lunch theory [27]: there is no

method that outdoes all the other ones for any considered prob-

lem. This feature generates a common lack of explanation con-

cerning the use of a method for the solution of a particular

example, and usually, no relevant justification for its choice is gi-

ven a priori.

A possible solution is to develop several algorithms, distin-

guishing them by their structure and by their type of variables

(continuous, integer, binary) and collect them into a database:

MULTIGEN lies on this principle, and currently, six different algo-

rithms are available (Table 1). The aim was to treat multiobjective

constrained-optimization problems involving mixed variables

(bolean, integer, real) and some of these problems can be structural

optimization ones. This library must be compatible with the tools

developed by the CEA (COPERNIC, CYCLOP, SEMER, see Haubensack

et al. [28]) which are written in VBA; so an Excel interface was cre-

ated. Different types of variable coding (real, bolean, integer) are

provided. Constraints as well as Pareto domination principles must

be handled by the algorithms. In that way, procedures based on

independent objectives to carry out the selection (like VEGA, Schaf-

fer [29]) are not adapted to the considered problems. Procedures

based of the niche notion (NPGA – Horn et al. [30], MOGA – Fons-

eca and Fleming [31]) cannot guarantee a correct convergence of

the Pareto front, due to the low diversity of generated populations.

On the contrary, methods like SPEA [32] and NSGA II [5] favor not

dominated isolated individuals. In SPEA, the probability of selec-

tion is a function of the individual isolation, which is quite difficult

to implement. In NSGA, individuals from the most crowded zones

are eliminated according to a crowding sorting. Taking into ac-

count all the previous items, NSGA II was chosen as a basis of

development of the MULTIGEN library, summarized in the follow-

ing Table.

3.1.1. Non-Sorted Genetic Algorithm II (NSGA II)
The first algorithm coded in the MULTIGEN database is NSGA II

by Deb et al. [5]. This elitist algorithm is based on a ranking proce-

dure, where the rank of each solution is defined as the rank of the

Pareto front to which it belongs. The diversity of non-dominated

solutions is guaranteed by using a crowding distance measure-

ment, which is an estimation of the size of the largest cuboïd

enclosing a given solution without including any other. This



crowding sorting avoids the use of the sharing parameter used in

the previous version of the NSGA algorithm.

3.1.2. Non-Sorted Genetic Algorithm II (NSGAII): SBX crossover
modified version

NSGA II SBX-modified algorithm uses a different SBX cross-

over operator than the one of the first NSGA II version of Deb

and Agrawal [33]. This new operator differs from the classical

one by the crossover probability allocation for each gene. The

‘‘SBX Modified Crossover” has a global probability of crossover

per gene higher than the NSGA II version. Consequently, the

SBX modified version carries out a more efficient gene mixing

(see Gomez [34]).

3.1.3. NSGAIIb: new genetic operators for clone creation limiting
NSGA IIb implements the same algorithm than NSGA II, with

corrections on crossover operator to avoid the creation of clones

inherent of SBX original version. When the generated random

number used to perform the crossover is greater than a given

crossover probability, the crossover may produce two children

identical to the parents: SBX crossover coded in NSGA IIb includes

a forced mutation of children when this event occurs. The objective

is to avoid unnecessary calculations for clones of existing solu-

tions: all solutions generated by the reproduction procedure are

statistically different.

3.1.4. NSGA II Mixed Integer (MI)
NSGA II MI, is identical to NSGA II, with the same crossover and

mutation operators for continuous and integer variables. The

crossover and mutation operation use the Simulated Binary Cross-

over and the parametric mutation described by Deb and Agrawal

[33], considering each integer variable as a continuous value. Using

the space change method proposed by Shopova and Bancheva [35]

after the mutation and crossover in the continuous space, the con-

tinuous variable uik
�
related to integer variable ui of the decision

variable u = (u1, . . . , un) is reduced to �u�
i in the continuous range

[0, 1] by using Eq. (7). The decision variable uik
�
recovers an integer

value with Eq. (8).

�u�
i ¼

ui ÿ uMin
i

uMax
i ÿ uMin

i

ð7Þ

ui ¼
if 0 6 �u�

i < 1; uMin
i þ �u�

i � uMax
i ÿ uMin

i þ 1
� �

if �u�
i ¼ 1; uMax

i

(

ð8Þ

3.1.5. NSGA II MIB
NSGA II MIB implements another version of NSGA II MI algo-

rithm for problems involving also binary variables, by adding bin-

ary crossover and mutation rules to the existing MI operators, as

represented respectively on Figs. 1 and 2. If a random number, gen-

erated in the range [0, 1] for performing the crossover, is greater

than a given probability, the crossover consists of a simple permu-

tation of binary values, and the mutation by a classic change from 0

to 1 or from 1 to 0.

3.1.6. MIB MOGA structural (MMS)
The MMS algorithm, developed for further design of complex

plants, uses the MIB operators with a particular rule taking into ac-

count structural links between binary and continuous or integer

variables. The problem arises when coding a process structure,

for example the existence or not of a component in a flowsheet

with a binary value and a continuous variable (operating condition

of the component), or an integer one (number of process stages in

the component). For the sake of illustration, when designing a clas-

sical chemical process, an alternative between a plug-flow reactor

and a series of three continuous stirred tank reactors may exist

(see Fig. 3). The choice is performed according to the binary vari-

ables y1 and y2 where:

y1þ y2 ¼ 1 ð9Þ

The links between the binary variables and the continuous ones

representing the volumes are:

If y1 ¼ 0 then Vprf ¼ 0

If y2 ¼ 0 then Vr1 ¼ Vr2 ¼ Vr3 ¼ 0

An example of this particular crossover operator is presented on

Fig. 4, where there is one link between binary and continuous vari-

ables. The crossover operation includes two steps: first, crossing

Table 1

Algorithms in the MULTIGEN database.

Algorithm Continuous

variable

Integer

variable

Binary

variable

Continuous

problem

MI

problem

MIB

problem

MIB structural

problem

NSGA II X X

NSGA II SBX modified X X

NSGA IIb X X

NSGA II MI X X X

NSGA II MIB X X X X

MIB MOGA Structural (MMS) X X X X

2.1 0 1 0.5 0 4.3 1.7 0 12.1 0 1 0.5 0 4.3 1.7 0 1

1.4 1 1 6.1 3 2 4.4 1 01.4 1 1 6.1 3 2 4.4 1 0

2.1 1 1 0.5 0 4.3 1.7 1 02.1 1 1 0.5 0 4.3 1.7 1 0

1.4 0 1 6.1 3 2 4.4 0 11.4 0 1 6.1 3 2 4.4 0 1

tluserrevossorCselbairavyraniB

Fig. 1. MIB crossover rule for binary variables.

2.3 0 1 0.2 8 2.9 5.1 1 12.3 0 1 0.2 8 2.9 5.1 1 1 2.3 0 1 0.2 8 2.9 5.1 0 12.3 0 1 0.2 8 2.9 5.1 0 1

tluser noitatuMselbairavyraniB

Mutation locus Mutation locus

Fig. 2. MIB mutation rule for binary variables.

y1

y2

Vpfr

Vr1 Vr2 Vr3

Fig. 3. Choice between two solutions.



binary variables of parents a and b with an automatic modification

of related continuous or integer variables of children a0 and b0 (if a

binary variable is null, the linked variables (integer or continuous)

with it, are also zero). Then the crossing of a0 and a0 is performed

on integer and continuous variables taking into account the existing

links, for producing the final children a00 and b00. The mutation is car-

ried out according to the same strategy.

As in the NSGA II of Deb et al. [5], the crossover operator gener-

ates a population of size 2N. The survival selection in order to re-

duce the population size to N individuals is new (see Gomez

[34]). The procedure lies on unfeasibility of configurations with re-

gard to the constraints and on the stagnation of a configuration (a

configuration stagnates when its first Pareto front, i.e. first non-

dominated solutions, does not change during a given number of

generations, 50 for example). In a first phase, configurations are

cancelled according unfeasibility and stagnation criteria, and in a

second phase, if necessary, the population size is reduced to N indi-

viduals by comparing the Pareto front domination ranks.

3.2. Main differences with NSGA II [5]

Compared with the classical NSGA II algorithm, this library in-

volves the innovative following points:

� In NSGA II SBX, a new SBX crossover operator carries out a more

efficient gene mixing.

� The SBX crossover coded in NSGA IIb includes a forced mutation

of children when they are identical to the parents (clone limiting

strategy).

� In NSGA II MI, the same crossover and mutation operators for

continuous and integer variables are used. For integer variables,

the strategy proposed by Shopova and Bancheva [35] is

implemented.

� NSGA II MIB implements another version of NSGA II MI algo-

rithm for problems involving also binary variables, by adding

binary crossover and mutation rules to the existing MI

operators.

� The MMS algorithm, developed for further design of complex

plants, uses the MIB operators with a particular rule taking into

account structural links between binary and continuous or inte-

ger variables. The problem arises when coding a process struc-

ture, where some continuous or integer variables can exist

only if a binary variable is not zero. Furthermore, the crossover

operator generates a population of size 2N, and the survival

selection in order to reduce the population size to N individuals

is new [34]. The procedure lies on unfeasibility of configurations

with respect to the constraints and on the stagnation of

configurations.

� The initial population may be generated according to a meshing

strategy of the variable definition domains. Two options are pro-

vided in the MULTIGEN library for computing the initial popula-

tion. The classical random generation of the initial population,

may provide over-crowded or under-crowded zones. Another

solution consists in meshing the definition domain of variables

and randomly generating the same number of points into each

cuboïd of the mesh, in order to ensure a uniform overlapping

of the entire domain.

3.3. Stopping criterion

The implementation of an efficient stopping criterion is a basic

point for any iterative method. Classically genetic algorithms stop

when a given maximum number of generations is reached. By

observing the evolution of solutions, it can be noted that the num-

ber of generations necessary to reach the optimum is generally

much letter than this maximum number. Therefore, a more effi-

cient stopping criterion may lead to big savings in computational

times. However, despite the real impact of stopping criteria, no

reliable bibliographical study is available, particularly in multiob-

jective optimization.

In mono-objective optimization, a convergence threshold based

of the stagnation of some statistical items (mean value, standard

deviation) computed from the objective function values on the cur-

rent population, can be used. Such a threshold of convergence can-

not be defined in the frame of multiobjective optimization. The

stopping criterion implemented in MULTIGEN (in addition to the

maximum number of generations) consists in comparing the Pare-

to fronts associated with not dominated solutions for populations n
and n + p, where the period p e [10, 20, 30, 40, 50] for example. If

the union of the two fronts provides a single not dominated front,

the procedure stops; else the iterations continue.

2.1 0 1 0 0 4.3 0 0.2 1.1

1.4 1 1 6.1 3 2 4.4 1.4 0.7

2.1 1 1 0 0 4.3 0 0.2 1.1

1.4 0 1 0 3 2 0 1.4 0.7

Binary variables Binary Crossover result

a

b

a’

b’

2.1 1 1 0 0 4.3 0 0.2 1.1

1.4 0 1 0 3 2 0 1.4 0.7

Real variables

a’

b’

2.1 1 1 0 0 4.3 0 0.2 0.9
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Real Crossover result

a’’

b’’

StepI

StepII

Crossover Link Binary-Continous variable

Automatic

Modification

Crossover

Without Rules

Fig. 4. MMS rule for crossover (binary-continuous link).



However, this stopping condition is theoretically not valid be-

cause the populations can stagnate during several generations, if

no new individual gives an improvement, and then evolve again.

Nevertheless, numerical experiments show that this stopping cri-

terion leads in the great majority of cases, to the same solution

as the one obtained after the maximum number of generations.

The implementation of this stopping criterion must be carried

out considering the following points:

� The probability of stopping decreases when the size of the pop-

ulation, the number of variables and the number of objectives

increases: each one of these parameters has a direct impact on

the diversity of populations. For a great diversity, convergence

is slow because the number of explored solutions is important,

implying an increase of the number of generations necessary

to reach an acceptable Pareto front.

� In the period p of control is too small, the probability of stop-

ping may decrease because the populations can stagnate on

few generations, before evolving again; so a too weak frequency

can lead to a premature convergence.

� This stopping criterion is more suitable for problems involving

only integer or binary variables, because the probability of

founding again the same Pareto front is much higher than the

one associated with continuous variables, where an infinite

space of potential solutions is explored. Numerical practice

shows that this stopping criterion is inefficient for problems

involving continuous variables in a great number of cases. So

it will not be implemented for this type of problem.

3.4. Numerical examples

For each numerical example, the computations were made on a

Pentium Core 2 Duo 1.86 GHz PC, with 2 GB RAM. Insofar as all

these test problem

3.4.1. Continuous problem TNK
This bicriteria problem (two continuous variables and two

inequality constraints) was first proposed par Tanaka [36], and in-

volves two discontinuities in the Pareto front. The same Pareto

front as Deb et al. [5] and Chafekar et al. [37] was obtained after

about the 50th generation by NSGA II, NSGA II SBX modified and

NSGA IIb. The computation time is in the order of magnitude of

15 s for one run.

3.4.2. Mixed continuous-Integer problem
This other bicriteria problem, involving three continuous, three

integer variables and nine inequality constraints, was presented

and solved by a parametric MINLP [38]. It is solved here by NSGA

II MI and NSGA II MIB in order to show that specific genetic oper-

ators developed for handling binary variables (in NSGA II MIB), give

better results than genetic operators implemented for integer ones

(NSGA II MI). NSGA II MI provides only one Pareto front for

(y1, y2, y3) = (0, 0, 0), while NSGA II MIB leads to two Pareto fronts

for (y1, y2, y3) = (0, 0, 0) and (y1, y2, y3) = (0, 0, 1); so a greater diver-

sity for integer solutions is obtained.

3.4.3. Structural optimization
This last numerical example concerns the structural optimiza-

tion of the process shown in Fig. 5. This problem, defined by the

system (10), consisting in simultaneously minimizing the pro-

duction cost of product C and the demand D, was solved by Ko-

cis and Grossmann [39] and Acevedo and Pistikopoulos [40].

Each integer variable yi is related to the existence of process Pi
in the solution.

Min Cost ¼ 250Aþ 300Bf þ ð5A1 þ 15A2 þ 5A3 þ 15BÞ

ÿ 550C þ 80y1 þ 130y2 þ 150y3 þ 100

Min D

h1 ¼ C ÿ 0;9B

g1 ¼ 18 lnð1þ A1=20Þ ÿ B1 P 0

g2 ¼ 20 lnð1þ A2=21Þ ÿ B2 P 0

g3 ¼ 15 lnð1þ A3=26Þ ÿ B3 P 0

h2 ¼ A1 þ A2 þ A3 ÿ A

h3 ¼ B1 þ B2 þ B3 þ Bf ÿ B

g4 ¼ 15ÿ Bf P 0

g5 ¼ Dÿ C P 0

g6 ¼ 25y1 ÿ A1 P 0

g7 ¼ 20y2 ÿ A2 P 0

g8 ¼ 20y3 ÿ A3 P 0

17 < D < 25

ð10Þ

MMS retrieves the two solutions previously given by Papalexandri

and Dimkou [38]: (y1, y2, y3) = (1, 0, 1) for D e [17, 17.54] and

(y1, y2, y3) = (1, 1, 0) for D e [17.55, 25]. The corresponding Pareto

front is shown in Fig. 6. When the values of binary variables are

fixed, the problem is reduced to a continuous one, and can be

solved by using for example NSGA IIb for avoiding the creation

of clones. The two Pareto fronts obtained by NSGA IIb for

(y1, y2, y3) = (1, 0, 1) and (y1, y2, y3) = (1, 1, 0) are also reported in

Fig. 6, where it can be noted that the Pareto front provided by

MMS dominates the Pareto front obtained from NSGA IIb for

(y1, y2, y3) = (1, 0, 1), and is slightly dominated by the front given

by NSGA IIb for (y1, y2, y3) = (1, 1, 0). However, this last front does

not cover all the range [17,25] for the demand D (it ends when D
is about 22).

4. Examples of design problems in the nuclear field

4.1. Continuous problem: technico-economic optimization of the
generating cycle coupled with VHTR Generation IV nuclear reactor

The GT-MHR (Gas Turbine – Modular High temperature Reac-

tor) project studies the possibility of coupling a Helium cooled

reactor, described by Kiryushin et al. [1], with an output tempera-

ture level at about 850 °C, with an innovating generating Brayton

cycle (Fig. 7) with a heat recovery, two compressors (Low and High

Pressure) and coolers. This section presents a new technico-eco-

nomic optimization case based on VHTR heat source, delivering

950 °C to the generating cycle. Two criteria are considered: an

energetic one, based on the exergy theory, and a second one re-

lated to the total cost of power plant during its lifetime.

P1

P2

P3

P4

A3

A2

A1

A

B3

B2

B1

Bf

B C

Fig. 5. Process superstructure.



4.1.1. Problem variables
The mechanical and isentropic efficiencies were fixed for the

turbines and compressors, as well as the efficiency and pressure

losses for the exchangers, except for the heat recuperator. From

the analysis of degrees of freedom, the following optimization vari-

ables were selected: the turbine pressure ratio, the low pressure

compressor ratio, and the regenerative heat exchanger efficiency.

4.1.2. Energetic objective function: exergy loss minimization
The theory of exergy, first sensed by Carnot, and concretely de-

scribed by Gouy [41], represents the workable part of energy. Par-

ticularly Borel [42] and Bejan [43] admit the Eq. (11) formulation,

as an exergy balance for conversion systems.
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According to Gouy [41], the difference between the maximum en-

ergy that can be used (term ‘‘c”), and the energy produced (terms

‘‘a” and ‘‘b”) has to be minimized. The atmosphere is the energy po-

tential reference. The term ‘‘e” represents the sum of component’s

internal irreversibility production and ‘‘d” is the heat released by

cooling systems to the atmosphere. Consequently, the maximiza-

tion of the ‘‘a + b” quantity is equivalent to minimize the ‘‘d + e”
term representing the ‘‘exergetic losses” or the ‘‘lost available

work”. Concretely, the final expression (Eq. (12)) of the exergetic

loss, to be minimized is:
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X
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4.1.3. Economic objective function: Lifetime cost minimization
The second objective consists of the lifetime cost of the system,

represented by Eq. (13).

TC ¼
X
TLife

t¼1

ðCiTOTÞt þ ðCOpÞt þ ðCMaintÞt
� �

� ½1þ s�ÿt� 	
ð13Þ

Three terms constitute this function: investment concerning all

components, internal pipes and external systems, as cooling water

installation, and operational and maintenance costs related to com-

ponents as a percentage of the investment. These costs models are

not reported here for confidentiality reasons.

4.1.4. Results
For solving this problem, theCEA tools COPERNIC (equipmentde-

sign), CYCLOP (Braytoncycle calculation) andSEMER (cost computa-

tions) (see Haubensack et al. [28]) were used within MULTIGEN via

the Excel interface, as shown in Fig. 8. For limiting the number of

clones, NSGA IIb was implemented. The average computation time

is about 5 h (witch represents 35 s per generation) for populations
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of 1000 individuals during 500 generations. Note that the greatest

part of the computational time is due to the CEAmodules. The cross-

over probability is 90% and the mutation probability is 50%.

For confidentiality reasons, on the Pareto fronts, anyone actual

value of cost is reported. The Pareto fronts are plotted in Figs. 9

and 10 with a relative scale from 0 to 100. The electricity cost pro-

duction curve (Fig. 10) shows a clear discontinuity at 166 MW of

exergy loss. This rupture represents in fact a structure variation

on the gas turbomachine (Fig. 7): for exergy losses greater

than166 MW, the gas turbine involves one sequence of cooler –

compressor, but for lower losses, it is necessary to add another

cooler-compressor sequence in order to increase the efficiency.

At 166 MW, the curve indicates an abrupt increase of electricity

production cost, due to the cooler-compressor sequence adding,

but the new configuration generated gives finally, about 123 MW

of exergy losses. This best solution is reached for a turbine pressure

ratio of 3.49, low pressure compression ratio of 1.89 and recuper-

ator efficiency at 95%.

This optimal design point gives the operating conditions for

each components of the turbomachine, in particular for the heat

recuperator: these conditions are given in Table 2, and used for

the following geometrical design problem presented in the next

section.

4.2. Integer problem: design of the heat recuperator exchanger

4.2.1. Mathematical formulation
The previous technico-economic study gives optimal opera-

tional conditions for the Power Conversion System (PCS) recupera-

tor (Table 2). The recuperator is made up of a plate fin with offset

strips technology (Fig. 11), for obtaining a large surface area/vol-

ume ratio, and a substantial heat transfer value under laminar con-

ditions. This technology is particularly required for gas/gas heat

exchange, as in the PCS module. The characteristics of channels

are reported in Table 3.

The PCS recuperator is a multi-modular heat exchanger and

each module uses plate fin offset strips technology. Modules are lo-

cated into two different annular compartments with the same vol-

ume and height (Appendix, Fig. 15). Each module consists of a

MULTIGEN Optimizer 
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Fig. 8. Solution strategy.
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Table 2

Operating conditions for the recuperator heat exchanger.

Operating condition Inlet value Outlet value

Temperature (°C) – hot side 498.3 151.2

Temperature (°C) – cold side 132.5 480.0

Exchanger efficiency (%) 95

Pressure (bar) – hot side 19.7 ?

Pressure (bar) – cold side 71.4 ?

He flow (kg/s) 244.8

Heat Power (MW) 441
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stack of channels located between two plates (Fig. 11) with several

arrangements possibilities. Therefore, the variables for PCS recu-

perator problem are listed below:

� The number of modules (NModule).

� The number of channels (NChannel).

� The number of fin channels (NFin Channels).

Three objective functions to be minimized can be selected for

this design problem:

� Heat exchange area: this objective is linked to the cost of the

regenerator.

� Exergy loss: for given operating conditions (Table 2), optimiza-

tion acts on pressure loss limitation, and finally on entropy gen-

eration minimization.

� The module number: flow distribution pipes, proportional to the

module number induce a higher complexity, maintenance cost

and pressure losses.

According to the exergy theory, an exergy loss minimization for

the recuperation (term ‘‘e” of Eq. (11)) induces a parallel increase of
electric production. Design procedures were carried out by means

of COPERNIC sheets [28]. Finally, the optimization problem is ex-

pressed as:

Fig. 11. Geometrical description of a typical offset strip fin core.

Table 3

Characteristics of fin channels.

Geometry Value (m)

Fin length (l) 3.175 � 10ÿ3

Tall (h) 2.0 � 10ÿ3

Transverse spacing pitch (s) 1.24 � 10ÿ3

Fin Thickness (t) 2.0 � 10ÿ4

Plate thickness (w) 8.0 � 10ÿ4

Fig. 12. Pareto optimal representation of objectives.



Min ExLoss ¼ MinmHe � sCOut ÿ sCIn
ÿ �

þ sHOut ÿ sHIn
ÿ �� �

� T0 ð14Þ

Min STotal ð15Þ

Min NModules ð16Þ

s:t: DPC 6 0:4 bar ð17Þ

DPH 6 0:4 bar ð18Þ

ReC 6 2300 ð19Þ

ReH 6 2300 ð20Þ

LM 6 1:05 m ð21Þ

lM 6 0:6 m ð22Þ

hM 6 0:6 m ð23Þ

HT 6 4:5 m ð24Þ

NRings

2
ÿ Int

NRings

2

� �

¼ 0 ð25Þ

NModules

NRings
ÿ Int

NModules

NRings

� �

¼ 0 ð26Þ

NModules ÿ NModules=Ring � NRings ¼ 0 ð27Þ

In the original concept of the GT-MHR, the pressure losses for cold

and hot streams could not exceed 0.4 bar (Eqs. (17) and (18)) and

the Reynolds number must be under 2300 (Eqs. (19) and (20)), to

remain into the laminar flow domain. The plate fin with offset strips

technology is taken into account, by means of Eqs. (22) and (23),

limiting to 0.6 m large and high values for each module. The last

three equality constraints indicate that the number of rings will

be an even number (Eq. (25)), the number of module per ring will

be a constant (Eq. (26)), and, Eq. (27) permits to check that the de-

fined modular arrangement presented in the Appendix (Eqs. (A.1)–

(A.4)) gives the correct module number value.

4.2.2. Results
This combinatorial problem is first solved with a population of

1000 individuals during 1000 generations using NSGA II MI. As in

the previous case, the crossover probability is 90% and the muta-

tion probability is 50%. The average computation time, is about

6 h 33 min. As in the previous example, it can be observed that

the greatest part of the computational effort is due to the CEAmod-

ule COPERNIC.

The optimization gives the feasibility domain for this geometri-

cal problem. In Fig. 12 (on the right upper side), a correlation be-

tween the heat exchanger surface and the total exergy losses of

the recuperator, can be observed. Exergy losses increase when

the heat exchange surface decreases. From Table 4, it can be noted

that five possible configurations for the number of module rings

are obtained: an even number varying between 6 and 14. For each

configuration, Table 4 gives the variation domain for exergy losses,

the number of modules and the heat exchange surface, and the

geometric range. The arrows indicate the evolution of the corre-

sponding term. Whatever the number of rings, the decrease of

exergy losses implies an increase of module number and exchange

surface, as a consequence. Exergy losses are due to the reduction of

pressure discharge at both sides of the heat exchanger, caused by a

reduction of the module length. An arrow oriented from the bad

values of exergy losses to the best represents this evolution in Ta-

ble 4.

Table 5 gives two extreme solutions. The worst solution is rep-

resented by the higher value for exergy losses (10,676 kW), with

the higher pressure discharge (0.36 bar for the hot side) and a min-

imal exchange surface (12,082 m2). The low exergy loss solution

(8498 kW) presents a decrease of 75% for the pressure discharge

(0.09 bar) for the hot side and 78% for cold side of the module.

The exchange surface increases at about 27% with 15,345 m2 for

the best exergy solution. In Fig. 13, where the modules dimensions

are represented (hM, lM and LM), five different sets of solutions, cor-

responding to the five possible numbers of rings described in Table

Table 4

Operational design values for the recuperator.

Characteristics 6 Rings 8 Rings 10 rings 12 rings 14 rings

Exergy loss (kW) 10,676? 9053 10,675? 8498 10,139? 8498 9305? 8523 8853? 8504

Modules 23? 37 23? 37 23? 35 23? 29 23? 25

Surface (m2) 12,082? 13,903 12,083? 15 345 12,506? 15,345 13,480? 15,253 14,317? 15,325

hM (m) 0.414–0.599 0.314–0.560 0.28–0.448 0.28–0.37 0.280–0.319

Channels 74–107 56–100 50–80 50–66 50–57

lM (m) 0.372–0.598 0.372–0.598 0.386–0.598 0.463–0.598 0.534–0.599

Transverse spacing 300–483 300–483 311–483 373–483 431–483

LM (m) 0.986? 0.800 0.987? 0.690 0.936? 0.690 0.838? 0.696 0.763? 0.691

UG (W/m2/K) 1975? 1717 1976? 1556 1909? 1556 1771? 1565 1667? 1558

DPh (bar) 0.355? 0.161 0.355? 0.095 0.293? 0.095 0.192? 0.097 0.137? 0.095

DPc (bar) 0.094? 0.043 0.094? 0.025 0.077? 0.025 0.051? 0.026 0.036? 0.025

Table 5

Extreme optimal solutions for the recuperator design.

Exergy Loss (kW) 10,676 8498

Modules 198 192

Surface (m2) 12,082 15,345

Rings 6 8

hM (m) 0.41 0.56

Canals 74 100

lM (m) 0.37 0.59

Transverse spacing 300 483

LM (m) 0.99 0.69

UG (W/m2/K) 1975 1556

DPh (bar) 0.36 0.09

DPc (bar) 0.09 0.02

Fig. 13. Variation domain of module dimensions.



4, can be observed. The decrease of all the dimensions of modules

can be noted when exergy efficiency increases.

Finally, this study provides without any assumption on config-

urations, an efficient design procedure. The results constitute a pa-

nel of choices for engineers, covering cost (e.g. surface) and

energetic efficiency (exergy loss = pressure losses limitation) with

a real possibility to select an efficient compromise solution.

4.2.3. Use of the stopping criterion
As indicated above, the computational time for this example is

quite high (6 h 33 min). The problem involving only integer vari-

ables, the stopping procedure described in Section 3.3 is now

used. To promote the convergence of the Pareto fronts, the popu-

lation size has to be reduced. However, this reduction may lead to

a poor scanning of the variable definition domains. The previous

optimization problem uses a population of 1000 individuals; a de-

crease of the population size to 333 individuals would increase

the probability of convergence with regard to the Pareto fronts.

To explore the ‘‘same” domain as in the case of 1000 individuals

per population, three optimizations with 333 individuals are car-

ried out instead of an optimization with 1000 individuals per

population. The convergence testing period is fixed at 50 genera-

tions. The optimization results are reported in Table 6.

The cumulated computational times of cases 2–4 is reduced by

a factor 4.3 compared with the first case (stopping at 1000 gener-

ations). The different Pareto fronts obtained from each experience

have to be compared; Fig. 14 shows that they are perfectly super-

posed. This result demonstrates that all optimizations converge to

the same Pareto front.

5. Conclusions

In the actual energetic and environmental context, nuclear

technology appears to be an efficient solution for the cogeneration

of electricity/hydrogen. So the CEA has devoted an important re-

search effort to these systems, based on the one hand on the VHTR

(generation IV of nuclear reactors), and on the other hand of the cy-

cle sulfur/iodine for thermochemical decomposition of water. The

prospective present study is carried out in the frame of collabora-

tion between the CEA (Cadarache, France) and the LGC (Toulouse,

France), and aims at proposing technico-economic optimization

approaches, for identifying the most promising strategies. The

main goal is maximizing the energy production while minimizing

the production costs, which obviously constitutes a multiobjective

optimization problem, having several possible formulations

according to the considered objectives.

Table 6

Comparison of stopping procedures. (1) Maximum number of generations. (2–4)

Stopping criterion of Section 3.3.

Case Population

size

Maximum number

of generation

Stop at

generation

number

Computation

time (s)

1 1000 1000 1000 23,623

2 333 1000 400 1960

3 333 1000 250 1880

4 333 1000 150 1704

Fig. 14. Pareto fronts for experiences 1–4.
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� The MULTIGEN library described in this paper, consists of sev-

eral multiobjective genetic algorithms. After an intensive study

of the literature on multiobjective optimization, the procedure

NSGA II [5] was chosen for the basis of the MULTIGEN imple-

mentation. Compared to the initial algorithm, several innovative

points related to genetic operators, variable coding, clone limit-

ing strategy, initial population generation, are implemented. A

new stopping criterion based on the repetition of Pareto fronts

on a given number of generations, particularly suitable for prob-

lems involving only binary or integer variables, is presented. The

various algorithms of the MULTIGEN library were validated on

several numerical examples [34], and three of them are reported

in this paper.

� Concerning applications in the nuclear field, two engineering

examples of MULTIGEN use are reported. The first one involves

only continuous variables for the bicriteria optimization (cost

of produced electricity, exergy losses) of the VHTR generating

cycle. The minimum cost of electricity production gives the

operating conditions for a key component of the system: the

heat recuperator, whose design is studied in the second exam-

ple. This new problem involves only integer variables and the

purpose was to define the compromise solutions between

exchange surface, related to cost, and pressure losses, which

have a significant impact on the generating cycle efficiency.

From the set of solutions, two different designs can be proposed:

a low exchange surface with important pressure losses, and the

opposite solution. The new stopping criterion efficiency is

shown on this problem, where the computational time is

divided by a factor 4.3 compared with the classical stopping pro-

cedure based on a maximum number of generations.

These two optimization cases represent the two main stages in

design strategy: process and operating conditions definition, and

followed by the design of system components.
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Appendix A. Multi-modular geometric representation for the

recuperator technology

The PCS recuperator is composed of NModules modules, arranged

as shown in Fig. 15. COPERNIC design sheet only gives the dimen-

sions of the module, but not the distribution in the annular space,

between the turbo-machine zone and the PCS vessel. Each module

occupies an angle ÂM, calculated by the following expression, tak-

ing into account the turbomachine maximum diameter, the flow

distribution devoted space and the wide value of modules:

ÂM ¼ 2� arctan
lm=2

£TM=2þ lD

� �

ðA:1Þ

The number of modules per ring (NModules/Ring) is given by:

NModule=Ring ¼ Int
2p

ÂM

� �

ðA:2Þ

Finally, the number of rings (NRings) and the total high of the recu-

perator (HTotal) are calculated by the two formulas:

NNappes ¼ Int
NModules

NModules=Ring

� �

ðA:3Þ

HTotal ¼ NNappes � hM ðA:4Þ

This equation set permits to code the modular disposition repre-

sented in Fig. 11.
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