
HAL Id: hal-03549548
https://hal.science/hal-03549548

Submitted on 26 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective retrieval and new indexing method for case
based reasoning: Application in chemical process design

Stéphane Negny, Hector Riesco, Jean-Marc Le Lann

To cite this version:
Stéphane Negny, Hector Riesco, Jean-Marc Le Lann. Effective retrieval and new indexing method for
case based reasoning: Application in chemical process design. Engineering Applications of Artificial
Intelligence, 2010, vol. 23 (n° 6), pp. 880-894. �10.1016/j.engappai.2010.03.005�. �hal-03549548�

https://hal.science/hal-03549548
https://hal.archives-ouvertes.fr

 To link to this article: DOI:10.1016/j.engappai.2010.03.005

 http://dx.doi.org/10.1016/j.engappai.2010.03.005

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 5002

To cite this version:

Negny, Stéphane and Riesco, hector and Le Lann, Jean Marc Effective retrieval

and new indexing method for case based reasoning: Application in chemical

process design. (2010) Engineering Applications of Artificial Intelligence, vol.

23 (n° 6). pp. 880-894. ISSN 0952-1976

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

http://dx.doi.org/10.1016/j.engappai.2010.03.005
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Effective retrieval and new indexing method for case based reasoning:
Application in chemical process design

Negny Stéphane n, Riesco Hector, Le Lann Jean Marc

Université de Toulouse, Laboratoire de Génie Chimique (LGC)—CNRS 5503, INPT-ENSIACET, 4 allée Emile Monso, BP 44362, 31432 Toulouse Cedex 04, France

Keywords:

Case based reasoning

Adaptation guided retrieval

Fuzzy sets

Sphere indexing algorithm

Design

In this paper we try to improve the retrieval step for case based reasoning for preliminary design. This

improvement deals with three major parts of our CBR system. First, in the preliminary design step,

some uncertainties like imprecise or unknown values remain in the description of the problem, because

they need a deeper analysis to be withdrawn. To deal with this issue, the faced problem description is

soften with the fuzzy sets theory. Features are described with a central value, a percentage of

imprecision and a relation with respect to the central value. These additional data allow us to build a

domain of possible values for each attributes. With this representation, the calculation of the similarity

function is impacted, thus the characteristic function is used to calculate the local similarity between

two features.

Second, we focus our attention on the main goal of the retrieve step in CBR to find relevant cases for

adaptation. In this second part, we discuss the assumption of similarity to find the more appropriated

case. We put in highlight that in some situations this classical similarity must be improved with further

knowledge to facilitate case adaptation. To avoid failure during the adaptation step, we implement a

method that couples similarity measurement with adaptability one, in order to approximate the cases

utility more accurately. The latter gives deeper information for the reusing of cases.

In a last part, we present a generic indexing technique for the base, and a new algorithm for the

research of relevant cases in the memory. The sphere indexing algorithm is a domain independent

index that has performances equivalent to the decision tree ones. But its main strength is that it puts

the current problem in the center of the research area avoiding boundaries issues. All these points are

discussed and exemplified through the preliminary design of a chemical engineering unit operation.

1. Introduction

The design phase of a product is a crucial phase of its life cycle.

Indeed, it influences the future of the product because many

important decisions taken during this phase can condition its

future costs (involving engineering, production and commercial

aspects), its future developments and its acceptance on a market.

Therefore, the design phase was the subject of many studies

coming from scientific research, industrial and normative do-

mains. All these studies describe the design process around the

following principal stages: requirements expression, preliminary

design and detailed design. The differences between all the

processes, are in the sub-stages encompass in these principal

stages, and in the implementation of them (sequentially or

simultaneously). This article is focused on the preliminary design

stage and more specifically on the embodiment design. For a

product or a process, this sub-stage consists in choosing the

technologies used, the materials, the structural dimensions.

Currently to characterize the design phase, there is a general

acceptance of the classification into three main types: routine,

innovative or creative design. The key distinction between them is

based on the knowledge available to satisfy the desired require-

ments (Chandrasekaran, 1990):

� Routine design: All the variables, their associated ranges, and

the knowledge to find the variables values can be reached from

existing past design (well defined space of potential design).

� Innovative design: In contrast with the aforementioned design,

the ranges of the potential values for variables are enlarged.

Consequently, even if the structure is familiar, the application

is none common: new performances, new functionalities, etc.,

due to new combinations of variables and new values for

them.

� Creative design: Here, new variables are introduced (and

obviously their domains of variation), as a consequence it

extends the solution space of potential design.

ARTICLE IN PRESS

doi:10.1016/j.engappai.2010.03.005

n Corresponding author.

E-mail address: stephane.negny@ensiacet.fr (N. Stéphane).

The major difference between these design types is the level of

abstraction of the knowledge available. In routine design,

problems are well understood with well known decision vari-

ables, decision points, outcomes, constraints. In innovative and

creative design there is an upper level of abstraction on knowl-

edge, resulting in an incomplete knowledge on the components,

constraints, domain of validity for the variables. As a result, the

complexity of the reasoning process increases and requires

iterations in order to incrementally decrease the level of

abstraction to reach a solution. For both innovative and creative

design (Cortes Robles et al., 2009) propose a method to reduce or

to avoid (depending in the problem complexity) the iterative

process.

In routine design, the well defined knowledge offers the

possibility to develop tools to support human designers and to

automate some design tasks. To achieve these goals, we need to

manage the knowledge developed during the embodiment design

sub-stages. Knowledge Management (KM) encompasses a range

of methods and techniques in order to identify, represent,

organize, create, memorise and distribute the necessary knowl-

edge in an organization. The challenge is to develop a computer

aided design tool to support the design process to produce a

better design in a shorter time horizon. The reuse of well known

and optimized past design experiences increases the quality of the

solution, decreases the time of the design phase and improves the

efficiency of the process. There are several approaches that have

been developed to handle knowledge Management during routine

design. Among them, the three major approaches currently used

are: rule based (RB), constraint satisfaction problems (CSP) and

case based reasoning (CBR) (some additional approaches

like; prototype based reasoning, axiomatic design (Suh, 1990),

procedural approach, model based approach are also used).

In RB, the knowledge is represented with rules of the form IF X

THEN Y. Where X is a condition and Y the action (X can be a

composite condition). Furthermore, a rule based system has an

inference engine to determine which rules to fire. The first

drawback is the time consuming aspect of the knowledge

acquisition task. Acquiring domain specific information and

converting it into some rules is a huge work especially with

problems where some shadow areas remain. The second major

drawback concerns the maintenance of the whole knowledge. The

number of rules grows up sharply, besides they also change,

leading to problems of rules management (for example,

sometimes two rules can result into two opposite actions).

In CSP, the knowledge related to a problem is segmented in

elementary pieces, modelised by constraints: logical expressions,

mathematical equalities or inequalities, range of validity. Based

on these pieces, a knowledge model and reasoning are built.

When a new problem is faced, it is submitted to the knowledge

model, then the reasoning is driven through the constraints in

order to reduce the domain of the possible values for the

variables. This approach has two principal strengths; its ability

to reach new solutions and to establish that a problem has no

solution (over constraint problem for example). Here again the

major drawback is the huge work dedicated to the extraction,

interpretation and formulation of the domain knowledge.

The CBR approach, based on the human reasoning, try to

propose a solution to a current problem by establishing some

similarities with problems previously solved (i.e. cases) and

stored in a memory (case base). The main principle of CBR is:

similar problems have similar solutions. Compare to both previous

approaches, it requires significantly less knowledge extraction,

the principal relevant characteristics of the problem and its

associated solution are sufficient. Whereas this approach has a

learning step to extend the number of cases in the memory, it

needs to gather an important number of cases in order to widely

cover the problem and solution spaces and to be effective,

especially during the CBR start up phase. Because of its many

advantages, this approach is retained for this work. Among them,

we can underline: its reduced knowledge acquisition task, its

flexibility in knowledge modelling, its ability to learn, its

possibility for reasoning with incomplete or imprecise data, and

its rapidity to create and to maintain a computer decision support

tool for designers.

Even if it is commonly accepted that CBR came from cognitive

science research on human dynamic memory (Schank, 1982),

foundations of CBR can be searched in different additional

disciplines: knowledge representation, machine learning and

mathematics (Richter and Aamodt, 2006). In CBR, the central

notion is a case which is a contextualised piece of knowledge

representing a previous experience that can be structured in

accordance with the CBR purpose. There have been various

models to represent the CBR method (Hunt, 1995; Allen, 1994;

Kolodner, 1993). Currently, there is a general acceptance of R4

model introduced by Aamodt and Plaza (1994) extended by Finnie

and Sun (2003) with the well known steps: represent, retrieve,

reuse, revise and retain, Fig. 1. This R5 model is more complex and

deeper than this mere presentation because each step involves a

number of more specific sub-processes with their own difficulties

(Pal and Shiu, 2004).

The goal of this paper is to present a CBR system for the

embodiment design dedicated to chemical engineering unit

operations. In this paper, the attention is focused on the two first

steps because they are crucial steps for the success of CBR

systems. During embodiment design, some characteristics of a

system are not clearly defined or not yet fixed; consequently

some uncertainties remain on them. These uncertainties must be

taken into account in the problem description and in the research

of similar past experiences. Here we introduce the fuzzy sets

theory to soften the problem description and to model uncertain-

ties. Moreover to avoid a prohibitive processing time during the

retrieved steps, the case base is often indexed in order to restrain

the similarity calculation to a subset of the most relevant source

cases. In most of the CBR systems, a decision tree index method is

implemented to extract this subset. In this article, we propose a

new generic method for the case base indexation coupled with a

specific research algorithm.

The rest of the paper is articulated as follows. In the next

section, we present the way to calculate similarity with the fuzzy

sets theory with our case representation. We also motivate the

need to link retrieval and adaptation and we introduce a method

Target problem

Represent
New Case Retrieve

New Case Retrieved
Case

Reuse

Solved Case

Revise

Revised
and tested
Case

Retain

Learned case

Case base

Validated solution

Fig. 1. R5 CBR cycle.

ARTICLE IN PRESS

for adaptation-guided retrieval. Section 3 focuses on the case base

organization. Then the algorithm to retrieve source cases is

described. Before to conclude, in Section 4 the similarity

measurements with the fuzzy sets theory and the new research

algorithm are tested through an example in preliminary design.

2. Relevant cases selection

2.1. Engineering domain of application

Chemical engineering is the part of the engineering which

deals with processes that convert raw materials (more particu-

larly chemical compounds) into more useful or/and valuable

products through several transformations, under economical,

environmental, safety, energy constraints. A chemical process

can be decomposed into individual sub-processes called unit

operations: chemical reactors, separators, mixers, heat exchan-

gers. While the example presented here is dedicated to one unit

operation i.e. distillation (it is extended to absorption in the same

formulation), the method implemented can be easily extended to

the other ones.

Distillation is a technique for the separation of chemical

compounds based on the differences in their volatilities in a

boiling liquid mixture. One of the industrial apparatus for

distillation is columns with packing inside (called packed

columns). Schematically, a packed column is a hollow tube filled

with a packing material. In fact, it is more complex because it has

inlet(s), outlet(s), a heating system, a cooling system, a reflux

system, distribution systems. The packing can be randomly done

with small objects (random packing) or specifically designed;

(structured packing), Fig. 2. The packing has a central role in

industrial distillation, because its purpose is to improve contact

between the gas phase and the liquid phase, and consequently it

affects the purity of the compounds in the outlet streams, the

distillation column design and dimensions. Currently, there are

many types of random and structured packing, for example more

than 30 types of random packing with different shapes. Moreover,

each type of packing is available in numerous sizes and materials.

The CBR system presented here is a design support system for the

choice and the design of packing for separation columns.

Because of its level of generality, the CBR method is used in

various domains and activities. In chemical engineering, few

studies are dealing with preliminary design. This step is often

based on knowledge and past experiences of experts because of

the complexity of the chemical and physical phenomenon that

occur. But this step is crucial for the remainder of the design; it

gives an initial guess for the future solution. In an industrial

context seeking to reduce the time during the whole design

process, an effective tool dedicated to preliminary design will be

helpful, because a good preliminary design allows a saving of time

thereafter. In this context, there is a need for new methods (and a

tools) to capitalize experts knowledge to propose rapidly a high

quality solution. Currently in our domain, the model based

approach is widely used. But recently CBR has found some

applications: (Surma and Braunschweig, 1996) for flowsheets

construction, (Seuranen et al., 2005) for separation process,

(Lopez-Arevalo et al., 2007) for the generation of process

alternatives, (King et al., 1999) for minimizing environmental

impact of separations, (Avramenko et al., 2004) and (Avramenko

and Kraslawski, 2005) for a decision support system for reactive

distillation, (Kraslawski et al., 1995) for the selection of mixing

equipment.

2.2. Cases representation

As mentioned earlier, a case can be described to be a

contextualised piece of knowledge representing a previous

experience. The information encoded about the past experiences,

depends on the domain of application as well as on the goal for

which the cases are used. The main goal of the case representation

is to traduce the knowledge needed in a relevant way: to identify

the main characteristics or ontologies to describe a problem and

its associated solution, and to ensure the retrieval of the most

appropriated case(s) (Bergman et al., 2006). Of course, experts

point of views and experiences are often mandatory to extract and

represent the relevant knowledge. To support the choice of the

representational format, (Pal and Shiu, 2004) give a list of several

factors to consider: the internal structure of cases, the language or

shell chosen, the indexing and search mechanism planned. They

also compare the traditional data modelling approach according

various criteria summarized in Table 1. For our proposal the cases

are structured with attributes values pairs (a comment part is also

added to give deeper feedback information like success or failure,

suggestion of solution implementation), and represented with the

object oriented representation.

With the packing design purpose, the features of the problem

description and its associated solution are summed up in Table 2.

Regardless of what a case represents, we can underline that the

features have to be filled with different data format: textual

(for mixture in the problem description, for materials and type of

packing for the solution) and numeric (for the others). Solutions

are described with the same global structure but some differences

Random Structured

Fig. 2. Examples of column packing.

Table 1

Comparison of traditional case representations (Pal and Shiu, 2004).

Relational approach Object oriented approach Predicate logic approach

Compactness Medium High Low

Application independency Yes No No

Software reusability No Yes No

Case Base scale Large Large Small

Retrieving feature values for computation Easy Easy Difficult

Case organization method Keys Inheritance/reference Data definition

ARTICLE IN PRESS

can be noticed when the target solutions are detailed. For

example geometrical characteristics depend on the type of

packing, therefore when this feature is detailed the

characteristics described and their number are different from

one type of packing to another.

In the problem description, the feature Reflux is particular

because its value is not always available for all the source

problems. As explained before, the case base is available for two

chemical engineering unit operations: distillation and absorption.

But only distillation has a reflux ratio (indeed in absorption there

is no reflux system). Consequently, the value of this attribute can

direct the research of similar source cases towards distillation

cases with values greater than 0 (in fact the value of the Reflux

ratio) or towards absorption cases with a value equal to 0.

However, it is an important operating parameter because it

imposes the flow rate inside the column and consequently the

purity of the outlet streams and the dimensions of the column.

2.3. Similarity measurement

The cases representation and the similarity measurement for

case retrieval are strongly linked. The goal of the similarity

measurement is to establish resembles and more precisely the

degree of similarity between the target problem and source ones.

The target problem (X) is compared with a source problem (Y) in

the case base by the way of the global similarity measurement (1)

SIMðX,YÞ ¼

P

iwisimðxi,yiÞ
P

iwi
ð1Þ

Sometimes, for the problem description some attribute values

are temporarily missing, because we need a time consuming

additional analysis to reach them. This deeper analysis must be

done later in the detailed design, but it is not always mandatory in

the preliminary design. Indeed in this earlier design step, we have

to reduce the number of potential solutions by making the best

choice with imprecise or even missing values. Therefore we add

the option IGNORE, when that option is activated for one feature,

it is not taken into account for the global similarity measurement.

The global similarity criteria allow to rank all the source cases

from the most similar to the less similar. The global similarity

calculation is reached by the weighted (wi) sum of local similarities:

sim(xi,yi). The former are used to express the different importance

between features. The user can assign himself the weight values, or

we can help him by asking him to classify the attributes according to

their order of importance. Attributes with rank 1 are the most

important, and two attributes can have the same rank. For each

attribute, its corresponding weight is calculated by

wi ¼ 1ÿ
rankiÿ1

MaxðrankiÞ
ð2Þ

The local similarities are used to compute similarities between

values of single attributes. They are calculated for each attribute

(i) by comparison of the value of the target problem (xi) with the

corresponding source problem one (yi). However, as problem

features are described by different types of values (nominal or

numeric), the local similarity calculation depends on these types.

For our problem description, the attribute mixture which

describes all the chemical compounds is a nominal attribute

specific to the application domain. Most of the time, for the

features with nominal values, the following local similarity

measurement is used:

simðxi,yiÞ ¼
1 if xi ¼ yi

0 if xiayi

(

ð3Þ

But in the case of chemical compounds, some chemical

ontologies can be used in order to calculate more precisely this

local similarity. In their CBR system, (Lieber and Napoli, 1996)

represent chemical compounds by a frame with two attributes:

atoms and chemical bonds. This representation is very useful for

the purpose of their CBR system, i.e. to build a target molecule

from simple products (the target molecule is given and the whole

synthesis plan is building by the system), but here it would be

inappropriate. Always with the idea to have a deeper similarity

measurement than Eq. (3), another chemical ontology is used

(Avramenko and Kraslawski, 2005). For each case, the feature

‘‘mixture’’ is composed of all the chemical compounds which will

be separated in the distillation column. Obviously, the compounds

are different from one case to another, but unfortunately the

number of compounds encompassed in the mixture is also

variant. The local similarity between two mixtures is calculated

with a two steps method. First, the similarity between two

chemical compounds must be evaluated, based on their chemical

structure. This similarity is called binary local similarity (bsim)

(we used the word ‘‘binary’’ because a mixture composed of two

compounds is called a binary in chemical engineering). The binary

local similarity is calculated for every possible pairs of two

compounds with one compound belonging to the target mixture

and the other one to the source mixture.

To calculate this binary local similarity, all the chemical

compounds are divided into classes, subclasses and a hierarchical

structure tree is built to describe the relations between them,

Fig. 3 sketches this hierarchical structure. The first level nodes in

the tree correspond to a basic group (organic or non-organic

compounds), the daughter nodes correspond to classes and

subclasses like: hydrocarbons, acids. A numerical value is

assigned to each tree nodes, then the binary local similarity

value for two compounds depends on their first common node in

the tree. The deeper the common node is, the higher the binary

local similarity is. For example, for the same compounds the local

similarity is 1, and 0.9 for two different compounds belonging to

the same family like alcohol; for instance ethanol and methanol in

Table 3. For water and ethanol the first common nodes is organic

with bsim¼0.1. The first step of the method ends with the

building of the binary local similarity matrix: all the compounds

of the target problem are located in the rows and in the columns

Table 2

Case representation.

Problem features Solution features

Mixture Type of packing

Pressure Material

Temperature Specific area

Inlet flow rate Geometrical characteristics

Reflux

All

Organic

Hydrocarbons

Aldehydes

Ketons

Esters

Acids

Paraffinic

Unsaturated

Ethane

Methane

Propane

0

0.1

0.5

0.8

Fig. 3. Similarity tree for chemical compounds (Avramenko et al., 2004).

for the source ones. On the crossing between a row and a column

there is the value of the binary local similarity between this two

compounds, Table 3. The goal of this matrix is to generate every

possible pairs which will be needed in the second step.

This second step consists in finding and selecting the most similar

pairs of components by maximizing Eq. (4) under the constraint that

if a compound is embedded in a pair it cannot be in another one:

simðxm,ymÞ ¼
1

m

Xnt

i ¼ 1

Xns

j ¼ 1
xijbsimij ð4Þ

With bsimij the value of the binary local similarity between

compounds i and j, and xij a Boolean; xij¼1 if the binary local

similarity between compound i and j is chosen, else xij¼0 (xij is

equivalent to an affectation variable). m¼max(nt, ns), because the

number of compounds in the target mixture (nt) can be different

from the source case one (ns), Table 3. Finally, the local similarity

for the feature mixture is calculated by solving system (5)

Max
xij

1

m

Xnt

i ¼ 1

Xns

j ¼ 1
xijbsimij

� �

ð5Þ

With

8j
Xnt

i ¼ 1
xijr1 and 8i

Xns

jr ¼ 1
xij ¼ 1

For the example in Table 3, sim(xm,ym)¼0.525, and the retained

binary similarities are encircled. In this table, the binary local

similarity between methanol and acetic acid is retained, but it can

be noticed that ethyl acetate could be chosen instead of acetic

acid because both hold the same value (no influence on the local

similarity value).

Concerning the local similarity for numerical features, it is

often calculated with a distance measurement. Most of the time,

this distance is normalized by the domain definition Inti (Inti¼

maximum valueÿminimum value for the ith feature) in order to

avoid a distorted result because of the different amplitudes of

variation between features. For example the pressure can vary

between 0.1 and 70 atm in our system and temperature between

273 and 726 K.

distðxi,yiÞ ¼
9xiÿyi9
Inti

ð6Þ

and

simðxi,yiÞ ¼ 1ÿ
9xiÿyi9
Inti

ð7Þ

The previous formula is very useful when you exactly know

the feature values. But the problem description must be soften to

account for some imperfect and fuzzy knowledges. We gather

these imperfections in the term imprecision. In the earlier design

stage, this imprecision arises from the requirement to model

knowledge with information not precisely known or containing

inaccuracies. Even if they are domain experts, sometimes they do

not have a deep knowledge of the problem faced. They know an

interval of possible values, upper or lower bounds, tolerable

differences between the target problem and the source cases

attribute values to ensure that a case is still relevant for their

purpose. The designer must return such nuances in the problem

description, especially in the preliminary design stage, as Fig. 4

demonstrates (Giachetti et al., 1997). Of course, if in the problem

description the imprecision is modelised by a set of possible

values instead of only one value, the local similarity measurement

is directly impacted. All these requirements are satisfied with the

fuzzy set theory, (Zadeh, 1965). A fuzzy set S in a domain D is

defined by a characteristic function ms, which has values in the

range [0,1]. ms(z) indicates the degree to which z is a possible

value in the subset S.

Without the fuzzy set theory, when he describes its problem,

the designer fills the numerical attributes with one value (the

central value). With the fuzzy set representation, he has to give

additional data to describe the domain of the possible values. For

each numerical feature, three informations are necessary to build

the associated characteristic function:

� A central value (or two for the relation between): ci (or c1 and c2
for between)

� An imprecision: percentage of variation around the central

value: l

� A relationship with respect to the central value: inf, inf-equ,

sup, sup-equ, equal, or between

For the five first relations, a triangular shape is used for the

domain representation and a trapezoidal one for the relation

between, Fig. 5. With these distributions, we can create the

characteristic function shapes for each attribute (msi), Tables 4

and 5. Finally, msi(yi) is the value of the local similarity between

the source and target attributes

simðxi,yiÞ ¼ simðci,yiÞ ¼ msiðyiÞ ð8Þ

With ‘‘l¼0’’ and the relationship ‘‘equal’’, we find the local

similarity calculated with Eq. 7. To have more details on this part,

Negny and Le Lann (2008) present the local similarity measure-

ment with the fuzzy set theory.

However an effective retrieval is to find useful source cases to

propose a solution. In this context, the choice of a retrieved case

only based on similarity measures often reaches its limit. Indeed,

in its current form, the similarity measure is not appropriated to

estimate the relevance of a case for a given initial problem. In

addition to the metric distance, the similarity measure must also

Table 3

Example of local similarity calculation for the feature mixture.

Target Source

Ethanol Water Acetic acid Ethyl acetate

Methanol bsim11¼0.9 0.1
0.1

0.1

Ethanol
1

0.1 0.1 0.1

Water 0.1
1

0.1 0.1

Level of
imprecision or
Fuzziness

Clarification
of Task

Conceptual
Design

Embodiment
Design

Detailed
Design

Design progression

Linguistic Variables

Fuzzy Numbers

Real Numbers

Stochastic uncertainty
(i.e. the production
process variation)

Fig. 4. Design stages versus imprecision and type of variables (Giachetti et al.,

1997).

ARTICLE IN PRESS

evaluate if a case is relevant with respect to adaptation, i.e. if it is

easily adaptable. This view is detailed in the next part.

2.4. Retrieval guided by adaptation

In artificial intelligence, one of the main assumption usually

stated is that similar experiences can guide future reasoning and

problem solving (similarity assumption). The traditional similar-

ity measures are a central and crucial stage in the CBR cycle

because they strongly influence the entire problem solving

process. But the success and efficacy of a CBR depends on the

retrieval of a relevant case to solve the target problem; i.e. a case

that can be easily and successfully reused to propose a suitable

target solution. Consequently, the most similar case is not

necessary the most appropriate for the adaptation purpose.

The adaptation process will be more or less expensive,

depending on quality and utility of the retrieved case. Conse-

quently, any attempt to facilitate adaptation is judicious for CBR

efficacy. We cannot pretend to adapt easily cases if it is not

anticipated in the retrieve step.

To achieve this goal, we are confronted to knowledge

acquisition in order to model the required similarity measures.

The approximation of the utility of a case can be reached by

including new domain knowledge. The mere and most used form

of utility approximation are features weights. But weights

represent a small part of the needed domain knowledge.

To guarantee an efficient retrieval, additional knowledge must

be acquired and formalized. Acquiring and modelling this

similarity measures knowledge is a complex and time consuming

task. Stahl and Gabel (2003) and Stahl (2004) have proposed a

new learning approach which is based on the feedback about

cases actual utility. This approach is composed with two different

learning algorithms for optimizing feature weights in one hand,

and the local similarity measures in the other hand (Stahl and

Gabel, 2006). In another method Smyth and Kean (1998) have

proposed to improve similarity measure by introducing adapt-

ability criteria: research of cases more easily adaptable. Their idea

was that similarity on superficial features needs to be increased

by deeper knowledge about the significance of this features. They

have called their technique ‘‘adaptation guided retrieval’’. The

advantages of this technique are the selection of the most

adaptable case and the link between similarity and adaptation

requirements. Leake et al. (1997) had proposed another approach

to link both of them. For each relevant case, an adaptation cost

was evaluated based on knowledge inside the domain of

application. Mille and Herbaux (2007) and Aarts and Rousu

(1996) have implemented this idea with specific cost functions.

The approach of Lieber (1999) and Lieber et al. (2001) was based

on path similarity. Whatever the approach, CBR systems with a

link between the retrieve and reuse steps give results that reduce

adaptation failure.

Pralus and Geneste (2007) have developed a generic method to

evaluate adaptability of a source case, this method is implemen-

ted in our CBR system. Consequently, the selection of a source

case is based on two criteria: similarity and adaptability.

In the first phase of the method implemented, an adaptation

space is built for the source solution and then the adaptability is

calculated. The easiness of adaptation of a case is directly linked

to the potential of solution values that its adaptation space

contains. The target solution will be researched in its adaptation

space. Like for similarity measurement, the global adaptability of

a source case corresponds to an aggregation of the different local

adaptability of each features (9)

ads ¼
X

n

i ¼ 1

adi=n ðif necessary a weighted sum can be used tooÞ

ð9Þ

To build the adaptation domain for one attribute of the target

solution, the fuzzy sets are also used. When a source case is stored

Triangular representation.

Trapezoidal representation.

c1

1

max(f)min(f)

di ds

µs(z)

dom(f)
c2

c

1

max(f)min(f)

dom(f)
di ds

µs(z)

Fig. 5. a: Triangular representation. b: Trapezoidal representation.

Table 4

Parameter values for the characteristic function in triangular representation.

Equ sup, sup-equ inf, inf-equ

C¼ v max(f) min(f)

di¼ min(lv; vÿmin(f)) min(max(f)ÿ(vÿlv); max(f)ÿmin(f)) 0

ds¼ min(lv; max(f)ÿv) 0 min((v+lv)-min(f); max(f)ÿmin(f))

Table 5

Parameter values for the characteristic function in trapezoidal representation.

Between

c1¼ v1

c2¼ v2

di¼ min(lv1; vÿ-min(f))

ds¼ min(lv2; max(f)ÿv2)

ARTICLE IN PRESS

in the case base, the domain expert does not characterise a source

solution attribute with one and only one value but with a

distribution of possibility around this value, ssi axis in Fig. 6a.

Moreover, in the reuse step, the domain expert expresses its

opinion on how the values of the source solution features can be

exploited to find a solution. Here again, the fuzzy set theory is

used. Like for each problem feature in similarity measurement, for

each solution feature i the expert specifies a relation and a

percentage of imprecision, i.e. definition of msoli. For one solution

feature i, the relation msoli allows to situate the searched value for

the target solution feature (tsi) with respect to the values of the

corresponding source solution feature (ssi). In Fig. 6a, we

represent the similarity function equal 7l%. This expresses that

for the solution feature i, tsi must be equal to ssi with an

imprecision around 7l%.

The projection on the tsi axis of the intersection between the

similarity function (msoli) and the distribution of possibility for ssi,

gives the distribution of possibility for tsi. The graphical

representations of these intersection and projection are illu-

strated in Fig. 6b.

The form of the shape created after projection determines the

set of possible values for tsi and it traduces the easiness of

adaptation for the selected source case. Indeed, the shape of a

fuzzy set traduces its fuzzy level. The more the form is wide, i.e.

fuzzy or imprecise, the more it contains values and the highest the

local adaptability of this feature is. The specificity of a fuzzy set

(Yager, 1992) allows to measure the degree to which a fuzzy set

contains one and only one element:

SpðFÞ ¼

Z 1

0

1

supFaÿinfFa
da ð10Þ

Sup Fa (resp. Inf Fa) represents the upper (resp. lower) bound of

an a cut on the domain. The specificity value is in the range [0;1],

with Sp¼1 for a set with one and only one possible value. As

assumed before, the less specific a set is, the more adaptable the

attributes is. Therefore, the local adaptability can be calculated

with the following formula:

adi ¼ 1ÿSp Fð Þ ð11Þ

The global adaptability of a source solution is calculated with

all the local ones.

This method uses additional expert knowledge to find

adaptable case. Here domain expert point of view is mandatory

to select the right fuzzy set (msoli). But for none expert, the

problem of finding an adaptable case is shifted to find the right

fuzzy set. More generally, as they need additional knowledge,

most of adaptation guided retrieval techniques need to be

configured with expert experiences. Consequently, they move

the adaptability problem towards a configuration problem which

needs less expert knowledge. Nevertheless, they are useful in

order to anticipate the retrieval by filtering cases with a low

potential of adaptation or worse impossible to adapt.

3. Retrieval in CBR

3.1. Architecture

The case base is the central part of any CBR system (Fig. 1),

since it represents the experiences to be used by the system in

order to solve new problems. Two modules are directly connected

to our case base in order to take advantage of the stored

knowledge. Each module gathers some mechanisms correspond-

ing to the different steps of the CBR, Fig. 7.

The development of a CBR system, even simple, involves a

number of steps such as: modelling a suitable case representation,

defining a similarity measure, implementing a retrieval method

and maintaining the system. Our software is composed with two

different modules one for case base administration and the other

one for case exploitation.

The first module is dedicated to the domain expert in order to

define and configure its system. This task needs to be done by a

collaboration between a knowledge engineer and a domain

expert, because valuable knowledge must be appropriately coded

by a knowledge engineer (who is aware about the technical

aspects of all the CBR steps). This includes:

� The case representation: Currently, the choice is made

between the relational database technique and the object

oriented approach.

� The similarity measurement: Specification of appropriated

way to calculate local similarity for each features with the

possibility to choose between several methods to customize

formula (1), and also to choose the technique to fill the

weights.

� The case indexing method with its specific parameterization

(discretization steps for the query sphere, the decision

sequence and the bounds on the decision variables for the

indexing trees, detailed in the next section). When a new case

base indexation is created, it can be stored in the index base.

� Maintenance: This part displays all the source cases. They can

be modified, expanded or removed, and obviously the expert

can create new ones.

0

0

0

0.2

0.4

0.6

0.8

1

tsi ssi

0
0

0

0.2

0.4

0.6

0.8

1

tsi

ssi

Distribution of

possibility

Relation

Intersection
Projection

Fig. 6. a and b: Graphical representation of the adaptation domain building.

ARTICLE IN PRESS

The user is connected to the second module via a specific

human machine interface. He defines its current target problem,

fills all the features, eventually selects the local similarity formula,

customizes the global similarity, defines the way to calculate

weights, selects the indexing methodsy . After this step, the

retrieval of past experiences is started, and he displays all the

retrieved cases. The latter are sorted with respect to both criteria;

global similarity or adaptability. The last step deals with the

adaptation of the selected source case(s) for proposing a target

solution.

3.2. Case base organization

Thanks to the retain steps of the CBR approach, the case base

grows up quickly, therefore it needs to be structured to improve

the retrieval of relevant cases when queried. When creating a case

base, it is necessary to consider the following aspects (Pal and

Shiu, 2004):

� The structure and representations of cases.

� The memory model retained for organizing the whole case

base.

� The indexation used to identify each case.

Numerous approaches can be applied to index cases for efficient

retrieval. A flat case base is the more simple and common

organization. Here, all the cases are stored at the same

hierarchical level, i.e. the root node, and the query case is

compared with each case in the memory. The k nearest

neighbours algorithm is commonly used in CBR systems to

retrieve relevant cases because of its simplicity and robustness.

During the last years, this algorithm was improved: attribute

values have been weighted, cases themselves have been weighted

(Anand et al., 1998). Despite these improvements, the major

drawback of the flat case base remains an exhaustive search

through the whole memory. Unfortunately, this drawback

increases sharply when both the number of features or the

number of cases in the base becomes important: tremendous

computational effort. Some methods were developed to avoid an

exhaustive search, for instance the use of genetic algorithms.

Another solution for reducing the search processing time is to

index the memory by proposing a case indexation where cases are

gathered into categories to reduce the number of available cases

for similarity measurement. Case indexation refers to portioning

the memory for a faster reliable extraction of relevant subset of

cases. The choice of the case base organization is important to

allow an efficient retrieval. As Pal and Shiu (2004) explained, the

index should be abstract enough to enable retrieval in all

circumstances, but not too abstract because the case may be

retrieved in too many situations and it could lead to an important

computational efforts to match cases. Several researchers have

developed very specific indexing methods for their CBR applica-

tions. Most of these methods are too specific and cannot be

extended to other domains (Deangdej et al., 1996; Fox and Leake,

1995). In the literature there are several other indexing methods

for CBR and large databases like the Bayesian model (Pal and Shiu,

2004), a prototype based neural network (Malek, 1995, 2000),

genetic algorithms (Bueno et al., 2007) and the k-medoid based

algorithm (Barioni et al., 2008). More generic indexing methods

coming from machine learning and data mining communities

have also been successfully applied in CBR systems.

With flat case base, another common memory organization is

hierarchical structures. In CBR, the more famous hierarchical

structures and the more widely applied are the indexation trees

with their various improvements and modifications. Trees result

in recursively portioning a data set into subsets at each nodes. The

nodes at the bottom of the tree are called leafs and these above

are inner nodes. Inner nodes contain values or interval values to

separate cases, and at the leaf nodes we have the information on

the cases locations. Finally, leaves represent the classification and

branches the conjunction that leads to this classification, Fig. 8.

The typical trees used in CBR are B-trees, B+-trees, Bn-trees and

the improved R-trees, R+-trees, Rn-trees which take into account

range and multidimensional searching. The INRECA tree is

probably the most successful decision tree, developed in the

INRECA and INRECA-II projects. Besides, with the development of

database management systems, these hierarchical trees are

continuously ameliorated by different researchers: X-tree by

Berchtold et al. (1996), TV-tree by Lin et al. (1994), M-tree by

Ciaccia et al. (1997), DBM tree by Vieira et al. (2004) and Slim-tree

by Traina et al. (2000). A review on some of these metric trees is

presented in Hjaltason and Samet (2003). For example, in the

Slim-trees, the elements are gathered into disks of fixed size, each

one corresponding to a tree node. Like traditional trees, the

elements are stored in the leaves. But in this method, each node

has one element considered as representative for all elements

stored at that node, and a covering radius, Fig. 8.

The metric trees are built to search elements within large sets

of data. These approaches are not yet implemented in CBR

Case Base

Index Base

Case Base Exploitation

Problem Description

Retrieval and Selection

Adaptation : Target
Solution

User

Case Base Administration

Case Description

Case Base Organization

Case and Case base
Maintenance

Expert

Human-Machine Interface

Fig. 7. Case base architecture.

ARTICLE IN PRESS

systems, but they open possibilities for case representation

(images, video, audio, DNA sequences) and they give very

interesting ways to explore for case base indexation.

Nevertheless, from a CBR point of view they have the same

major drawback as the traditional B-tree, R-tree and their further

evolutions. They are also based on an exact matching or well-

defined boundary. As a consequence, the cases are within one and

only one range; overlapping is not allowed. Let present a mere

example: assume that the target case has an index value near a

boundary, i.e. p¼14 in Fig. 9. Although if there is a record with an

index just next to it: p¼15 in Fig. 9, it will not be retrieved if it is

in another range than the target one. In Fig. 9, with a target

problem with p¼14, the search is focused in the range 1rpo15,

therefore cases with p¼15 will not be considered during retrieval.

In some metric trees, the overlapping is possible but it is due to a

very large database, there are many suggestions to reduce it

because the degree of overlap directly affects the performances of

algorithms during retrieval.

Galushka and Patterson (2006) and Patterson et al. (2002a,

2002b) have developed another generic index called discretized

highest similarity D-HS with its various versions. The main goal of

this generic approach is to create an efficient and domain

independent indexing structure available for a wide range of

CBR systems. All dimensions for mapping case attributes are split

into intervals. For nominal features, the number of intervals

equals the number of discrete values, for numerical ones, this

number is predefined for the D-HSM version of the algorithm. The

indexing process consists in locating cases into the subspace

delimited by each of their attributes values. During the retrieval

stage, the process identifies the corresponding subspace of the

query case, and extracts all the cases included in this subspace.

An example of the indexing method is illustrated on Fig. 10 for a

mere graphical representation in only two dimensions; x and y

represent two numerical features. Both attributes are discretized

into 4 intervals, respectively, labelled C1
x , C2

x , C3
x , C4

x for x and C1
y, C2

y,

C1
C2

C3

C4

C6
C5

C7

C8

C10
C9

C11

 C12

C13

C14

C1 C2 C4

C1 C3 C2 C6 C4 C5

C1 C10 C14 C3 C9 C2 C12 C13 C6 C11 C4 C8 C5 C7

Fig. 8. Slim tree representation.

15 ≤ p

1≤ p < 15

p < 1 atm

15 ≤ p

1≤ p < 15

Root node

Distillation

Absorption

Reflux > 0

Reflux = 0

Case 12 Case 135 …

Case 25Case 1 Case 174 …

Case 33Case 15 Case 202 …

Case 54Case 3 Case 72
…

Case 28Case 6 Case 45
…

Case 17Case 9 Case 62
…p : pressure

p < 1 atm Case 2

Fig. 9. Example of a decision tree index.

x

y

C4

Cq: target center

C2

C1

C3

QC C5

C7

C6

C1

x
 C2

x
C3

x
C4

x

C1

y

C2
y

y
C3

C4
y

Fig. 10. D-HS in two dimensions.

ARTICLE IN PRESS

C3
y, C4

y for y. Let us assume that thanks to its attribute values,

respectively, on x and y, the query case QC (i.e. target problem),

falls in the interval with index 2 for x and 3 for y. The crossing

between C2
x and C3

y isolates the subspace with the square bottom,

and the final retrieval set of cases FC¼{C5, C6, C7}. The similarity

measurement is achieved only for the cases encompassed in FC in

order to rank them.

This indexing method is very efficient especially in large case

base. It needs low knowledge engineering overheads and it is easy

of maintenance. However it presents two major weaknesses. First,

with the discretization process, it is impossible to predict in

advance the local density of cases isolated in the final subset FC. In

the worst case, it can gather no case or in the opposite a huge

number of cases, which would affect the efficiency of the D-HSM

algorithm. This problem was solved with the D-HSE version that

uses entropy to find optimal discretizations. The second incon-

venient, persistent in the new version, appears when QC is near a

boundary. In practice, all the cases included in the subspaces

surrounding the query case are not taken into account but

unfortunately they could be relevant. This is especially true when

QC is near a corner or a boundary, the neighbouring cases outside

the subspace are not considered, cases C1, C2, C3 and C4 in Fig. 10.

In the next section we address this boundary case issue with our

algorithm.

3.3. Query sphere algorithm

In this part we propose another generic algorithm to search

relevant cases in a descritized case base avoiding the boundary

case issue. The neighbourhood query problem consists in finding

the relevant cases within a given distance from a given center

location QC, i.e. target problem. For that purpose we adapt the

spherical indexing method presented by Brodu (in press) for

creating an efficient domain independent indexing method.

Let us define an area around the target case which gathers a

number of nearby cases. These cases are considered closest,

according to the similarity measure, because they are stored in

the vicinity of the query case (QC). We can suppose that similar

cases are stored in the same subspace of the case base. Let B

represent the entire case base, and SCj a source case j represented

by a vector of attributes; SCi
j is the feature i of the source case j

(with j¼1 to Nc and i¼1 to Na).

Besides, let us assume that all the case attributes are numeric,

we discuss the problem of nominal ones at the end of this part.

For a QC, retrieving the final subset (FS) of relevant cases is

equivalent to find the cases in an area near the location of QC. For

each dimension i, we can define a width di to delimit an interval of

acceptable values around the attribute value I of the target

problem QCi: [QCiÿdi; QCi+di]. Only the cases with SCiA[QCiÿdi;

QCi+di] are considered. The intersection of all these intervals

along each dimension determines the relevant area close to QC,

then FS can be defined

FS¼ fSCj=8i¼ 1. . .Na SCi
j
A ½QCiÿdi; QCiþdi�g ð12Þ

The strength of this technique is that QC is in the center of the

search area. Unfortunately, a computational costly exhaustive

search has to be carried out in order to define which SCj belongs to

the relevant area. To make the retrieval process more efficient,

avoiding the exhaustive search, a grid structure as in Galushka

and Patterson (2006) is proposed. For each attribute, the range of

the possible values is divided by a predefined number of sub-

intervals. This leads to the discretization of B along all its

dimensions. Like in the D-HS method, the indexing process

consists in locating each SCj in its corresponding cell. Each SCj is

located by its coordinates in the case base grid SCi
j. Thus each SCj

is affected to one and only one cell. With this spacial discretiza-

tion all cells that are beyond a search distance (ds) are

automatically and quickly eliminated therefore all the cases

within these cells are also eliminated without calculating their

distance to QC. Only cells with a distance below ds are considered.

These cells delimit a hypercube around QC (a cube in 3

dimensions).

With this algorithm the boundary problem is avoided because

QC is located on the center of the research area. But the number of

cells to consider increases, resulting in a decrease of the retrieval

process efficiency. To address this problem, instead of considering

the hypercube around the center cell (CC, cell containing QC), we

use an hypersphere (a sphere in 3 dimensions). Indeed, the

volume of the hypersphere is sharply lower than its bounding

hypercube. The number of cells strictly included inside or crossed

by a hypervolume is directly correlated to the volume, thus the

hypersphere contains less cells than the hypercube. In 3

dimensions, if ds is the search distance (i.e. radius for the sphere

and half the length for the cube), the volume ratio between the

sphere and the cube is Vs/Vc¼p/6¼52%, so the sphere fills about

52% of the cube. This ratio represents the percentage of common

cells between the sphere and the cube. More precisely, it is the

lower limit reached only when the discretization lengths for B

tend to zero. For higher dimensions this ratio decreases: 31% for 4

dimensions, and around 8% for 6 dimensions. The idea of the

query sphere indexing is to consider the hypersphere instead

the hypercube for the research which decreases drastically the

number of cells to explore by eliminating cells inside the

hypercube that do not intersect the hypersphere. The computa-

tional cost to set up the spherical indexing is lower than the cost

of considering all the cells inside the hypercube. But the goal of

the first step of the query sphere algorithm is to extract the

common cells between both hypervolumes.

Whatever a source case j in B, djt ¼ :SCjÿQC: defines its true

distance from QC. The final purpose of the query sphere algorithm

is to find and to extract the subset of cases satisfying

djtrds ð13Þ

In a first phase, the reasoning is driven on cells and not on

cases. To consider a cell or not, the distance between the center

cell and the other cells in the base is evaluated, its corresponds to

the minimum distance dc between two cases inside both of them.

For one arbitrary reference cell, this minimum squared distance

can be pre-computed (only once and before to start the retrieval

step) and stored in a table, Fig. 11a represents this pattern for 2

dimensions problem. Once the QC defined, the CC is identified,

then the previous pattern is centred on CC. Then for a given search

distance ds, ds
2 is flanked by two successive integers: nrds

2
on+1.

Therefore only the cells with a label number smaller or equal to ds
2

are kept. For example, for ds
2¼4.1 all the cells with a label number

greater than 4 are automatically excluded. In Fig. 11b, the

0 00

0 0 0

0 0 0

4 91

1 4 9

1 4 9

4 19

9 4 1

9 4 1

4 44

1 1 1

9 9 9

8 135

2 5 10

10 13 18

8 513

10 5 2

18 13 10

4 44

9 9 9

1 1

8 135

10 13 18

2 5 10

8 513

18 13 10

10 5 2 1

QC
0 00

0 0 0

0 0 0

4 91

1 4 9

1 4 9

4 19

9 4 1

9 4 1

4 44

1 1 1

9 9 9

8 135

2 5 10

10 13 18

8 513

10 5 2

18 13 10

4 44

9 9 9

1 1

8 135

10 13 18

2 5 10

8 513

18 13 10

10 5 2 1

Fig. 11. Minimum squared distance between cells dc
2
.

ARTICLE IN PRESS

retained cells are those inside the bold perimeter. In the algorithm

we also take into account the particular case when for a given CC

and radius ds the pattern can map cells outside the memory. In

this particular situation, only cells inside the memory are

considered thanks to a binary linear index. In this first step we

generate the first version of the subset of retained cells

(Cellsubset1).

Until now, only the cells containing CC was considered. But as

Fig. 11b illustrates, some additional cells can be eliminated from

this first subset. Always with ds
2¼4.1, the cells with the bold label

number 4, outside the grey circle must be rejected. Indeed, while

they are not ds away from CC they are ds away from QC. To

overcome this issue, the location of QC inside the center cell must

be handled. Consequently another test dealing with QC location in

its cell and the minimum distance between QC and the other cells

is implemented. In its cell, QC is located by its distances xk to each

boundary of the cell, Fig. 12 for 2 dimensions. The mathematical

assumptions and demonstration about this test are detailed in

Brodu (in press) and in Appendix A. The final conclusion is that in

each direction k (each dimension has two directions) there is the

possibility that

fdsgoxk or not ð14Þ

With {ds}: fractional part of the distance.

To be general this test must take into account all the possible

position of QC inside its cell, this gives 22Na combinations (26¼64

combinations in Na¼3 dimensions) leading to cells to reject. As

the test (14) is based on a Boolean value in each direction, these

different 22Na combinations corresponding to each possible QC

position within its cell, can be pre-computed resulting in as many

tables containing the cells to retain.

Unfortunately, Eq. (14) is only tested in run time because we

need the QC location. In fact, once QC location known, xk is

calculated in each direction and a Boolean vector with the results of

test (14) in each direction is generated. Then the right table

corresponding to the current Boolean vector is selected. Never-

theless, this additional test does not concern all the cells in

Cellsubset1, but the table should be used only for dcZbdsc

(bdsc¼floor(ds) is the largest integer below or equal to ds). Indeed,

the other cells satisfy obligatorily this second test. In the algorithm,

the pattern is used from the center cell to the others by increasing

the distance. When the distance bdsc is reached, the selection of the

correct table is activated. This leads to the shorter Cellsubset2.

In one hand, cells excluded by this second test are really to

reject. On the other hand, this second test does not strictly meet

its target. Indeed, because of an assumption during the mathe-

matical demonstration, some cells satisfying this test are in reality

ds away from QC (Appendix A). Unfortunately, at this step of the

algorithm, these cells escape from rejection for example the

encircled 2 in Fig. 11b is still in Cellsubset2. This cell could be

rejected at a cost of an additional check, i.e. third test.

The real distance dt is used for this test: cells with dt
2
4ds

2 are

rejected. Here again, not all the cells of Cellsubset2 are tested but

only some of them present so far; cells above dsÿ1, heuristic

proposed by Brodu (in press).

After the whole rejection algorithm, the Cellsubset3 of the cells

to consider for similarity and adaptability measurements is

established. But generally, case base has attributes values

unevenly distributed, therefore some cells could contain no case.

In our approach the empty cells are labelled and then auto-

matically removed from Cellsubset3. Finally, the global similarity

and adaptability are calculated for all the cases included in cells

belonging to the final subset (FinalCellsubset). Fig. 13 summarizes

the query sphere algorithm, but in reality step 1 and step 2 are

coupled because test (14) is activated during the creation of

Cellsubset1.

The whole rejection algorithm is very attractive because the

processing overhead is reduced. Indeed, the processing time cost

to reject cells is lower than measuring similarity and adaptability

for all the cases encompassed in the hypercube, because some

parts are pre-computed. Moreover, with this process we reach all

the cases stored in the neighbourhood of QC, the boundary case

problem is removed.

The moment to calculate the adaptability criteria can be done

with two different strategies. First, the similarity and adaptability

are calculated for all the cases in the base (flat case base). But

when the case base contains numerous cases the processing time

to estimate both criteria would become prohibitive. In a second

strategy, some cases are extracted from the memory based on the

similarity measure, then the adaptability criteria is evaluated in

this subset of extracted cases. Here our strategy is a trade off

between both of them. With our algorithm both criteria are

calculated for all the cases in the final subset of cases. As we

search cases in the neighbourhood of QC, and as we suppose that

similar case are stored in this neighbourhood, our algorithm is

QC

ds

dt

dc

ξξy

ξx

Fig. 12. QC location in its cell (in 2 dimensions). Fig. 13. Query sphere algorithm for selecting relevant cases.

ARTICLE IN PRESS

equivalent to extract a subset of most similar cases and then to

calculate adaptability.

Now we discuss the following assumption: all the attributes are

numeric. Indeed, the algorithm needs a discretization along each

attribute which is difficult for nominal value. At first sight, the

number of intervals could be equal to the number of discrete

attributes values. This method is implemented and gives good

results when the number of discrete values is very small (less

than 5) or when we can order them. As in the query sphere

algorithm we need to define a search radius in each dimension,

the order of the discrete values in the definition domain is crucial

for retrieval. For example let us assume that we have a nominal

attribute with a fixed discrete value and a search radius equal to

one, only the discrete values situated before and after the current

one are considered during retrieval. This leads to a very

problematic situation when the domain of discrete value is wide

because it is often difficult even impossible to rank them in a

relevant way. On the other hand, taking into account all the

discrete values are not a realistic solution because it leads to

consider a significant number of cells, and therefore of cases,

reducing the algorithm efficiency. This way to proceed is not

restrictive enough. Besides, this issue is increased when the target

problem is described with several nominal attributes. Conse-

quently, the issue of nominal attributes is still one possible way of

improvement of our algorithm.

4. Case study

4.1. Example

In this section, various options of our CBR system are tested

through the distillation of a three components mixture; metha-

nol/ethanol/water. Mori et al. (2006) have experimentally studied

this distillation for different operating conditions: pressure, flow

rates. These operating conditions define our target problem. The

goal of this example is to compare the solution proposed by the

CBR system with respect to the type of the column packing used

by Mori et al. (2006).

In the target problem description, the option IGNORE is

activated for the feature temperature. Indeed, the authors do

not specify the temperature range of their experimental studies,

consequently it is assumed unknown. Obviously for chemical

engineering expert, this temperature range can be easily calcu-

lated by an additional thermodynamic analysis. But to exemplify

how a partial problem description is treated, this thermodynamic

analysis is not driven. After the target problem description, i.e. the

filling of the problem attribute with the fuzzy sets, all the msi

functions for the similarity measurement are automatically built

in the CBR system.

The subset of the most relevant cases is extracted with both

the decision tree index and the query sphere algorithm. These two

algorithms are compared in the next part. The first retrieval is

driven with the query sphere algorithm. Let us pay attention to

the feature pressure, in order to put in highlight some weaknesses

of the decision tree. Here, for our target problem the pressure is

equal to 1 atm. The query sphere algorithm extracts and proposes

a subset of the 20 most similar cases with pressure values both

below and above 1 atm. More precisely, the majority of source

problems have a pressure value below 1 atm, including the five

most similar ones.

The decision tree restricts the case base with the following

succession of feature evaluation: reflux at the root node, then

pressure and finally on the inlet flow rate. In the decision

sequence, the temperature is ignored because the option IGNORE

is activated. Indeed, for a partial description of the target problem,

the feature ignored cannot be used to discriminate the relevant

cases. But in the decision tree drawn in Fig. 9, for the feature

pressure, the upper and lower bounds values for the cases

discrimination are not appropriated. Remembering that for our

target problem Pressure¼1 atm, thus all the source cases with a

value around 1 are relevant for this feature. But with the bounds

values in Fig. 9, only source cases with PressureZ1 would be

considered in the retrieval step. Unfortunately, for the target

problem faced, the most relevant source cases have pressure

below 1 atm, as found with the query sphere algorithm. In fact in

distillation, and more generally in chemical engineering, the

atmospheric pressure is a hinge value because under this one or

for very high pressures we often need specific technological

apparatus. Consequently this hinge value must be inside a range

of values but not at a bound. Here we put in highlight one of the

drawback of the decision tree indexation: it is mandatory to have

expert knowledge to build a reliable and robust decision tree with

an efficient decision sequence. Unlike the decision tree, the query

sphere algorithm does not need additional knowledge for

indexing the case base. Thanks to its higher level of abstraction

and its domain independency, this indexing approach can be

easily used by any type of users even none expert people.

Once the correct decision tree index established (in fact the

decision tree in Fig. 9 is just used as an example to bring out the

previous drawback, but it was not really constructed in our

system), the two algorithms give the same list and ranking of the

most relevant source cases. On the similarity criteria alone, our

system ranks first a source case with a random packing (case 1) as

solution (SIMcase1¼0.83), followed by two solutions with the

same structured packing; cases 2 and 3 (respectively with

SIMcase2¼0.81, SIMcase3¼0.79). It is important to notice that

there is a huge technological gap between the two kinds of

packing; random or structured ones (shown in Fig. 2). This

important technological difference imposes that when the

retrieved case gives one kind of packing, the adapted solution is

necessarily in the same category of packing. For example, after

adaptation it is impossible to propose a structured packing from a

retrieved random one. Even with the introduction of additional

adaptation knowledge, often needed in the adaptation phase, we

cannot reach a kind of packing with a source solution offering the

other one. Thus, if the selection is made only on the similarity

criteria, the source solution 1 is retained (third column of Table 6).

Unfortunately, this source solution is very difficult to adapt and

gives a very remote solution from the real one, second column of

Table 6. Indeed, the proposed target solution is a random packing

in plastic. In some other examples, relying only on similarity, we

extract source cases impossible to adapt, it depends on the

operating conditions. Therefore, to avoid these adaptation

difficulties, we have to anticipate them through the adaptability

criteria.

When we add the adaptability criteria to the selection, the

ranking of these previous source cases is different. The values

of the adaptability criteria, respectively, are: ADcase1¼0.75,

ADcase2¼0.87 and ADcase3¼0.83. With this additional information,

the user wonders which case to select. But the adaptability

measure clearly directs the choice towards cases 2 and 3, which

propose a structured packing. Here we can notice that adapt-

ability criteria are essential for the choice of a relevant case.

Moreover, the user point of view is mandatory to deal with the

two criteria for the selection.

When we consider both criteria, cases 2 and 3 are retained for

the CBR next phase; adaptation. The two source solutions are

composed of the same type of structured packing but they have

different geometrical characteristics, specific areas and material.

For this example we use the adaptation method presented by

Avramenko et al. (2004). Finally, the proposed target solution is

ARTICLE IN PRESS

the Montz Pak B1 300 (first column in Table 6). This target

solution is to compare with the real one. For this example, the CBR

system gives a good preliminary solution for the resolution of the

faced problem but some discrepancies still remain. The feature

material is different. It is to notice that for the two selected source

solutions, the material is also different; stainless steel and carbon

steel, respectively, for case 2 and 3. The choice is directed towards

stainless steel because the mixture of case 2 is most similar than

the mixture of case 3 (under the same operating conditions

magnitude). Here we stated the assumption that: the most similar

the mixtures, the most reduced the risk of material degradation.

This way to adapt is just a first approximation, obviously it needs

to be improved because it is based on a specific rule to the domain

studied which is not suitable. But as we explain in the

introduction knowledge management with the rules based

approach generates some difficulties. The future implementation

of a more generic adaptation method is discussed in the

conclusion.

4.2. Comparison of the two algorithms

Twenty-five examples were treated in the experiments in

order to compare the query sphere indexing method with the

decision tree one. In the comparison, the number of features

included in the decision sequence is equal to the number of

discretised features for the query sphere. Therefore, we are

interested in assessing the general performance of both index

methods over the 25 target problems. We assess the average

performance along two criteria; by comparing the list of the

relevant cases and by assessing their individual processing time to

generate the list.

In all the experiments, the list and the rank of the most

relevant source cases for these two methods are compared. This

first comparison is made after similarity and adaptability

calculation in order to have the rank of each relevant case. For

78% of the attempts, the list is exactly the same, i.e. same cases

extracted and same rankings. Obviously, for one case the

similarity and adaptability criteria have the same values with

both methods because the measures depend only on the cases

retrieved and not on the method to retrieve them. For the

remaining 22%, the list is slightly different, but the majority of the

discrepancies are for cases at the end of the list, relevant cases but

the less similar and/or adaptable. Moreover for the remaining

22%, the different cases are those which have some features

values near bounds of decision variables in the sequence. If

bounds are changed we can suppose that we would find the same

list with the two algorithms.

Concerning the processing time, the decision tree method

outperforms the query sphere one for 60% of the attempts. It is

important to underline that this results concerns only research

time. The query sphere algorithm has better performances on this

criteria when the research radius is small, or when there is a lot of

source cases in the vicinity of the query center. In the latter case,

the query sphere algorithm stops rapidly because it has found its

k nearest-neighbours without the need to explore all the cells in

the hypersphere. However, the difference on the two algorithms is

slight on this criteria; the ratio between the processing times of

both of them is 78%.

Besides, thanks to the retain steps the case base becomes

wider and consequently the decision tree and the indexing must

be updated in order to decrease the number of cases in the

isolated subsets. With the query sphere algorithm, this issue is

avoided because the case base is only re-indexed when the

number of cases in the cells becomes too important. Therefore,

the discretization needs to be refined, but it does not need to be

re-indexed as frequently as in the decision tree.

5. Conclusion

In this work, we propose some ways to improve the retrieve

step in case based reasoning. For the choice of the most

appropriated and relevant source case(s), the traditional similar-

ity measure is coupled with an additional deeper knowledge:

adaptability. The fuzzy set theory is used to calculate this

adaptability criteria. This second decision support criteria allows

to anticipate the next step of the CBR cycle, adaptation. As it is

shown in the example based on this criteria the expert can

improve his decision and he avoids some future difficulties or

failures in the reusing of the source solutions. Finally, the CBR

system efficiency is improved.

In a second part, a new index method is presented in order to

facilitate the retrieval of relevant cases. This new index method is

based on the query sphere algorithm. The major strength of this

algorithm is that it is generic, domain independent and it does not

need some expert knowledge to have a reliable and efficient

indexation of the case base. In terms of performance it is very

close to the decision tree index. However, the growing of the case

base has slight effects on this method. On the other side, with the

increasing number of cases this method becomes more attractive

with respect to the decision tree, because with the latter the case

Table 6

Packing solutions for the example.

Proposed solution (Mori et al., 2006) Solution Most similar case C1

Type of packing Structured Packing Montz pak B1 300 Structured Packing Montz pak B1 250 Random Packing Exlon Ring

Material Stainless steel Metal (not specified) Plastic

Specific area (m2/m3) 350 247 220

Geometrical characteristics Geometrical characteristics

Angle 451 451 Length (m): 0.05

Element height (m) 0.201 0.197 Free space: 90%

Corrugation height(m) 0.008 0.012 Bulk density (kg/m3): 240

Corrugation base (m) 0.0167 0.0219 Number of pieces/m3: 1250

Corrugation side length (m) 0.0116 0.016

Packing illustration

base must be often re-indexed. As any method the query sphere

algorithm has also some weaknesses:

� the discretization of the case base is only made on numerical

features, because for nominal values it is more difficult.

� it demonstrates some difficulties in the situation whenever

case attribute values were unevenly distributed.

These two points give the ways for future work to improve the

algorithm. For the latter, an entropy based discretization

approach can be used for each numerical attributes. This approach

identifies good split points. Galushka and Patterson (2006) notice

its effectiveness in their algorithm. The former is discussed at the

end of part 3.3.

Another future development of this CBR system will concern

the adaptation step. Currently, a mere and not very efficient

method is implemented. This method gives good results only

when the retrieve source cases are very close to the target

problem. For this CBR step, there is three traditional categories:

-

1-

Reinstantiation: The solution of the case retrieved is directly

used without modification. This strategy is used when the

similarity between both cases reaches a very high threshold.

-

2-

Substitution: Some values of the retrieved solution attributes

are replaced because they are not valid: in conflict or in

contradiction with the new problem requirements.

-

3-

Transformation: The whole or a part of the retrieved solution

must be changed by taking into account some constraints

and/or characteristics of the required solution.

The latter two categories need some additional and predefined

expert knowledge or heuristics. In the example presented in part

4, the feature material was adapted with a specific rule on the

domain. This is one way to proceed, because there are different

methods available to capture expert knowledge; rules based

methods, constraints satisfaction problem method. The former

has problems for maintaining rules (due to this issue, this method

is currently less implemented), unlike the latter which opens new

possibilities for case adaptation.

Indeed, some additional constraints could be added to improve

the quality and accuracy of the proposed solution: user point of

view, economical, technical and environmental constraints.

Consequently, constraint satisfaction problem methods outper-

form the performances of the classical and traditional adaptation

methods, and it could be an interesting method to implement.

Appendix A

In this appendix we give the demonstration for the test

presented in Eq. (14).

Fig. 12 shows the situation in two dimensions. Cells are

rejected if:

dt4ds ðA1Þ

3d2t 4d2s ðsince both of them are positiveÞ ðA2Þ

But

d2t ¼
X

k ¼ x,y
ðxkþdkÞ

2 ðA3Þ

ds ¼ ds
� �

þfdsg ðA4Þ

With bdsc¼floor(ds) and {ds}¼fractional part of ds
Thus: (A2)

3

X

k ¼ x,y
ðxkþdkÞ

2
4 ds

� �

þfdsg
ÿ �2

ðA5Þ

3d2c þx2þ2�
X

k ¼ x,y
xkdk4 ds

� �2
þ2� ds

� �

fdsgþfdsg
2

ðA6Þ

Cells that satisfy (A6) have to be excluded, it is the true

condition.

Now, starting with dt
2 and more precisely with

d2t ¼ d2c þx2þ2�
P

k ¼ x,yxkdk, let us assume that: ds
� 	

oxk what-

ever k and that

dc4 ds
� �

Assumptions ðA7Þ

Thus:

d2t ¼ d2c þx2þ2�
X

k ¼ x,y
xkdk4 ds

� �2
þx2þ2�

X

k ¼ x,y
xkdk ðA8Þ

3d2c þx2þ2�
X

k ¼ x,y
xkdk4 ds

� �2
þ2�fdsg

2
þ2�fdsg

X

k ¼ x,y
dk

ðA9Þ

Because of the triangular relation
P

k ¼ x,ydkZdc , and with the

previous assumption dc4bdsc therefore
P

k ¼ x,ydkZ ds
� �

Consequently:

d2c þx
2
þ2�

X

k ¼ x,y
xkdk4 ds

� �2
þ2�fdsg

2
þ2�fdsg ds

� �

ðA10Þ

Finally, Eq. (A10) demonstrates that the set of chosen

assumptions (A7) satisfies the true condition (A6), and cells that

satisfy these assumptions can be rejected.

References

Aamodt, A., Plaza, E., 1994. Case-based reasoning: foundation issues, methodolo-
gical variations and system approaches. Artif. Intell. Commun. 7, 39–59.

Aarts, R., Rousu, J., 1996. Adaptation cost as a criterion for solution evaluation, Smith
and Falting Eds., Advanced in Case Based Reasoning, Third European Workshop.
EWCBR-96, Lausanne Suisse, vol 1168. Springer-Verlag, Berlin 354-361.

Allen, B.P., 1994. Case-based reasoning: business applications. Communications of
the ACM 37 (3), 40–42.

Anand, S., Patterson, D., Hughes, J., 1998. Knowledge intensive exception spaces.
In: Proceedings of the 14th Conference on Artificial Intelligence, pp. 574–579.

Avramenko, Y., Kraslawski, A., 2005. Decision supporting system for pre-selection
of column internals in reactive distillation. Chem. Eng. Proc. 44, 609–616.

Avramenko, Y., Nystrom, L., Kraslawski, A., 2004. Selection of internals for reactive
distillation column-case based reasoning approach. Comp. Chem. Eng. 28, 37–44.

Barioni, M.C.N., Razente, H.L., Traina, A.J.T., Traina Jr, C., 2008. Accelerating k-
medoid based algorithms through metric access methods. J. Syst. Software 82,
343–355.

Berchtold, S., Keim, D., Kriegel, H.P., 1996. The X-tree: an index structure for high
dimensional data. In: Proceedings of the 22th International Conference on
Very Large Data Bases, San Francisco, pp. 28–39.

Bergmann, R., Kolodner, J., Plaza, E., 2006. Representation in case-based reasoning.
Knowl. Eng. Rev. 20 (3), 209–213.

Brodu, N., in press. Query sphere indexing for neighborhood requests. J. Graphics
Tools.

Bueno, R., Traina, A.J.M., Traina Jr, C., 2007. Genetic algorithms for appromitate
similarity queries. Data Knowl. Eng. 62 (3), 459–482.

Chandrasekaran, B., 1990. Design problem solving: a task analysis. Artif. Intell.
Mag. 11 (4), 59–71.

Ciaccia, P., Patella, M., Zezula, P., 1997. M-tree: an efficient access method for
similarity search in metric spaces. In: International Conference on Very Large
Data Bases, Athens, pp. 426–435.

Cortes Robles, G., Negny, S., Le Lann, J.M., 2009. Case based reasoning and TRIZ: a
coupling for innovative conception in chemical engineering. Chem. Eng.
Process. 48 (1), 239–249.

Deangdej, J., Lukose, D., Tsui, E., Beinat, P., Prophet, L., 1996. Dynamically creating
indices for two million cases: a real world problem, Smith and Falting (Eds.),
Advanced in Case Based Reasoning, Third European Workshop, EWCBR-96,
Lausanne Suisse, Springer-Verlag, Berlin, vol 1168, pp. 105–119.

Finnie, G., Sun, Z., 2003. R5 model for case-based reasoning. Know. Based Syst. 16,
59–65.

Fox, S., Leake, D., 1995. Using introspective reasoning to refine indexing. In:
Proceedings of the 14th Joint Conference on Artificial Intelligence, Montreal,
Canada, pp. 391–397.

Galushka, M., Patterson, D., 2006. Intelligent index selection for case based
reasoning. Knowl. Based Syst. 19, 625–638.

Giachetti, R.E., Young, R.E., Roggatz, A., Eversheim, W., Perrone, G., 1997. A
methodology for the reduction of imprecision in the engineering process, 100,
pp. 277–292.

Hjaltason, G.R., Samet, H., 2003. Index driven similarity search in metric spaces.
ACM Trans. Database Syst. 28 (4), 517–580.

Hunt, J., 1995. Evolutionary case based design. In: Waston, I.D. (Ed.), Progress in
Case-based Reasoning, LNAI 1020. Springer, Berlin, pp. 17–31.

ARTICLE IN PRESS

King, J.M.P., Banares Alcantara, R., Manan, Z.A., 1999. Minimising environmental
impact using CBR: an azeotropic distillation case study. Environ. Model.
Software 14, 359–366.

Kolodner, J., 1993. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc..
Kraslawski, A., Koiranen, T., Nyström, L., 1995. Case-based reasoning system for

mixing equipment selection. Comp. Chem. Eng. 19S (S1), S821–S826.
Leake, D.B., Kinley, A., Wilson, D., 1997. Case Based Assessment: estimating

adaptability from experience, Fourteenth National Conference on Artificial
Intelligence. AAAI press, Menlo Park, CA 674-679.

Lieber, J., 1999. Reformulations and adaptation decomposition. In: Proceedings of
the International Conference on Case based reasoning, ICCBR’99, LSA,
University of Kaiserslautern, Munich, Germany.

Lieber, J., Bey, P., Boisson, F., Bresson, B., Falzon, P., Lesur, A. Napoli, A., Rios, M.,
Sauvagnac, C., 2001. Acquisition et modélisation de connaissances d’adapta-
tion, une étude pour le traitement du cancer du sein, Journée Ingénierie des
connaissances, IC’2001, Presses Universitaires de Grenoble, Grenoble France,
pp. 409–426.

Lieber, J., Napoli, A., 1996. Using classification in case based planning. In:
Washlster (Ed.), 12th European Conference on Artificial Intelligence. Wiley
and Sons, New York, pp. 132–136.

Lin, K., Jagadish, H., Faloutsos, C., 1994. The TV-tree: an index structure for high
dimensional data. VLDB J. 3 (4), 517–542.

Lopez-Arevalo, I., Banares-Alcantara, R., Aldea, A., Rodriguez-Martinez, A., Jimenez,
L., 2007. Generation of process alternatives using abstract models and case
based reasoning. Comp. Chem. Eng. 31, 902–918.

Malek, M., 1995. A connectionist indexing approach for CBR systems, ICCBR-95,
Portugal, pp. 520–527.

Malek, M., 2000. Hybrid approaches for integrating neural networks and case
based reasoning: from loosely coupled to tightly coupled models. Soft Comput.
Case Based Reasoning, 73–94.

Mille, A., Herbeaux, O., 2007. Accelere: syst�eme d’aide �a la conception de
caoutchouc cellulaire exploitant la remémoration d’expérience, Raisonnement
�a partir de cas 1, Informatique et Syst�emes d’Information. Hermes, Lavoisier,
Paris, pp 33-63.

Mori, H., Ibuki, R., Taguchi, K., Futuma, K., Olujic, Z., 2006. Three-component
distillation using structured packing: performance evaluation and model
validation. Chem. Eng. Sci. 61 (6), 1760–1766.

Negny, S., Le Lann, J.M., 2008. Case-based reasoning for chemical engineering
design. Chem. Eng. Res. Design 86, 648–658.

Pal, S.K., Shiu, S.C.K., 2004. Foundations of Soft Case-Based Reasoning. Wiley
Interscience, New Jersey.

Patterson, D., Rooney, N., Galushka, M., 2002a. Efficient similarity determination
and case construction techniques for case-based reasoning. In: Proceedings of
the Fourth European Conference on CBR, pp. 292–305.

Patterson, D., Rooney, N., Galushka, M., 2002b. Towards dynamic maintenance
of retrieval knowledge in CBR, Fifteenth International FLAIRS Conference. AAAI
Press.

Pralus, M., Geneste, L., 2007. Recherche et adaptation d’expériences structures,
imprécises et incomplétes: application en configuration experte, Raisonne-
ment �a partir de cas 1, Informatique et Syst�emes d’Information, Hermes,
Lavoisier, Paris, pp. 65–93.

Richter, M.M., Aamodt, A., 2006. Case-based reasoning foundations. Knowl. Eng.
Rev. 20 (3), 203–207.

Schank, R., 1982. Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press.

Seuranen, T., Hurme, M., Pajula, E., 2005. Synthesis of separation processes by
case-based reasoning. Comp. Chem. Eng. 29, 1473–1482.

Smyth, B., Kean, M.T., 1998. Adaptation-guided retrieval: questioning the
similarity assumption in reasoning. Artif. Intell. 102 (2), 249–293.

Stahl, A., 2004. Learning of knowledge intensive similarity measures in case based
reasoning, dissertation.de, 986.

Stahl, A., Gabel T., 2003. Using evolution programs to learn local similarity
measures. In: Proceedings of the Fifth International Conference on CBR
(ICCBR), pp. 537–551.

Stahl, A., Gabel, T., 2006. Optimizing similarity assessment in case based reasoning.
Am. Assoc. Artif. Intell., 1667–1670.

Suh, N.P., 1990. The Principles of Design. Oxford University Press.
Surma, J., Braunschweig, B., 1996. Case-base retrieval in process engineering:

supporting design by reusing flowsheets. Eng. Appl. Artif. Intell. 9 (4), 385–391.
Traina Jr., C., Traina, A.J.M., Faloutos, C., Seeger, B., 2000. Fast indexing and

visualization of metric datasets using Slim-trees. Lect. Note Comput. Sci. 1777,
51–65.

Vieira, M.R., Traina, C., Chino, F.J.T., Traina, A.J.M., 2004. DBM-tree: a dynamic
metric access method sensitive to local density data. Brazilian Symp.
Databases, 163–177.

Yager, R.R., 1992. On the specificity of a possibility distribution. Fuzzy Sets Syst. 50,
279–292.

Zadeh, L.A., 1965. Fuzzy sets. Inf. Control 8, 338–353.

