Table of contents

-Synthesis of ligand py2pn and [Cu(py2pn)(ClO4)2].

Table S1. Selected bond lengths (Å) and bond angles (°) for the DFT optimized structures of Cu(II) and Cu(I) species.

Table S2. Initial rates of H_2O_2 disproportionation in DMF for different initial H_2O_2 and complex concentrations.

Table S3. First-order rate constants for [Cu(py₂pn)OOH]⁺ formation at -40°C.

Table S4. Initial rates of *p*-quinonimide formation, at pH 7, for different [complex]₀, at 50 °C and 25 °C.

Figure S1. SOD activity of $[Cu(py_2pn)]^{2+}$ in the riboflavin-methionine-NBT assay.

Figure S2. ESI-MS spectrum of a 10:1 KO₂:[Cu(py₂pn)]²⁺ reaction mixture in DMSO.

Synthesis of N,N'-bis(2-pyridinylmethylen)propane-1,3-diamine (py₂pn). The ligand was prepared as already described.¹ Yield: 94%.¹H NMR (Cl₃CD) δ : 8.65 (dd, 2H, *J* = 4.8, 1.4 Hz); 8.42 (s, 2H), 8.00 (d, 2H, *J* = 7.8 Hz), 7.75 (td, 2H, *J* = 7.8, 1.4 Hz), 7.31 (ddd, 2H, *J* = 7.8, 4.8, 1.2 Hz), 3.81 (td, 4H, *J* = 6.9, 1.2 Hz), 2.17 (q, 2H, *J* = 6.9 Hz). ¹³C NMR (Cl₃CD) δ : 161,23, 154,52, 149,37, 136,50, 124,64, 121,21, 58,94, 31,63. Significant IR bands (KBr) v cm⁻¹: 3059, 3013, 2926, 2855, 1648, 1587, 1567, 1469, 1437.

Synthesis of [Cu(py₂pn)(ClO₄)₂] Py₂pn (200 mg, 0.792 mmol) dissolved in 2 mL of methanol was added to a solution of Cu(OAc)₂·H₂O (158 mg, 0,791 mmol) in methanol (15 mL) and the reaction mixture was stirred overnight at room temperature. Then, addition of NaClO₄·H₂O (222 mg, 1.6 mmol) caused the formation of a blue-green precipitate, which was collected by filtration, washed with methanol, Cl₂CH₂ and hexane, and dried under vacuum. Yield: 246 mg (0.478 mmol), 60%. Anal. calcd. for C₁₅Cl₂CuH₁₆N₄O₈: C 35.00, Cu 12.3, H 3.13 and N 10.88%; Found: C 34.96, Cu 12.0, H 2.75 and N 10.72%. UV-Vis λ_{máx} nm (ε, M⁻¹ cm⁻¹) in DMF: 282 (14840), 626 (102). Significant IR bands (KBr, ν cm⁻¹): 3048, 2929, 1645, 1603, 1566, 1482, 1433, 1091 (ν _{ClO4}.) and 625 (ρ _{ClO4}.). Crystals suitable for X-ray diffraction analysis were obtained by diffusion of ether into a acetonitrile solution of the complex. The stability of the complex was checked by spectrophotometry, in DMF, DMSO and aqueous solutions. In every medium, electronic spectra registered at different times after preparation of solutions showed identical λ_{max} and molar absorption coefficients.

Caution! The perchlorate salts used in this study are potentially explosive and should be handled with care.

Table S1. Selected bond lengths (Å) and bond angles (°) for the DFT optimized structures of Cu(II) and Cu(I) species

Bond length (Å)	Cu(py ₂ pn)(ClO ₄) ₂ crystal ²	[Cu(py₂pn)(ClO₄)₂] Calcd.	[Cu(py₂pn)ClO₄]⁺ Calcd.	[Cu(py₂pn)DMF]²+ Calcd.	[Cu(py₂pn)O₂H]* Calcd.	[Cu(py₂pn)]⁺ Calcd.	[Cu(py₂pn)(O₂H)PhOH]⁺ Calcd.
Cu-N(1)	2.024(4)	2.09	2.10	2.16	2.48	2.08	-
Cu-N(2)	1.995(5)	2.05	2.02	2.02	2.08	2.16	2.16
Cu-N(3)	1.995(5)	2.03	2.03	2.05	2.11	2.10	2.11
Cu-N(4)	2.024(4)	2.09	2.05	2.04	2.09	2.11	2.14
Cu-O(1)	2.475(4)	2.56	2.27	2.13	1.92	-	1.96 (Cu-Ohydroperoxide)
Cu-O(2)	2.475(4)	2.40					1.97 (Cu-O _{phenol})

Dihedral angle (º)	Cu(py₂pn)(ClO₄)₂ crystal	[Cu(py₂pn)(ClO₄)₂] Calcd.	[Cu(py₂pn)ClO₄]⁺ Calcd.	[Cu(py₂pn)DMF]²⁺ Calcd.	[Cu(py₂pn)O₂H]⁺ Calcd.	[Cu(py₂pn)]⁺ Calcd.	[Cu(py₂pn)(O₂ł Calcd	H)PhOH]⁺
N(1)-Cu-N(2)	82.6(2)	80.4	81.00	80.15	73.91	80.20	N(2)-Cu-N(3)	85.35
N(1)-Cu-N(3)	171.7(2)	172.94	150.55	136.19	124.47	146.23	N(2)-Cu-N(4)	137.21
N(1)-Cu-N(4)	105.5(2)	106.21	105.44	103.76	99.76	121.42	N(2)-Cu-O ₂ H	97.20
N(2)-Cu-N(3)	90.8(3)	92.54	92.1	89.90	89.3	90.13	N(2)-Cu-O(Ph)	112.94
N(2)-Cu-N(4)	171.7(2)	167.31	172.95	169.42	160.48	152.61	N(3)-Cu-N(4)	78.20
N(3)-Cu-N(4)	82.6(2)	80.65	80.88	80.48	79.04	79.87	N(3)-Cu-O ₂ H	175.25
O(1)-Cu-O(2)	168.2(3)	163.27	-	-	-	-	N(3)-Cu-OPh	97.16
N(1)-Cu-O(1)	88.0(2)	80.37	88.11	100.47	82.49		N(4)-Cu-O ₂ H	173.25
N(2)-Cu-O(1)	91.2(2)	85.87	92.91	99.43	100.99		N(4)-Cu-OPh	97.16
N(3)-Cu-O(1)	97.1(2)	98.91	120.97	123.29	153.01		HO ₂ -Cu-OPh	87.63
N(4)-Cu-O(1)	84.8(3)	84.64	90.21	89.60	96.34			

[H ₂ O ₂] (mM)	r₁ (mM/min)ª	[Complex] (mM)	r₁ (mM/min) ^ь
67	0.36 ± 0.04	0.25	0.12 ± 0.01
100	0.53 ± 0.05	0.75	0.35 ± 0.04
133	0.66 ± 0.07	1.00	0.53 ± 0.05
167	0.84 ± 0.08	1.50	1.1 ± 0.1
200	1.05 ± 0.09	1.75	1.6 ± 0.2
300	1.5 ± 0.1	2.00	1.9 ± 0.3
		3.00	4.4 ± 0.6

Table S2. Initial rates of H_2O_2 disproportionation in DMF for different initial H_2O_2 and complex concentrations

^a [complex] = 1 mM; ^b [H₂O₂] = 100 mM. [Et₃N] = 100 mM; T = 25 °C.

Table S3.	First-order rate	constants fo	r [Cu(py ₂	pn)OOH] ⁺	⁺ formation a	at -40°C
				- / -		

[H ₂ O ₂] (M)	k _{exp} (min ⁻¹)
0.010	$1.2 \pm 0.1 \times 10^{-1}$
0.020	$1.7 \pm 0.2 \times 10^{-1}$
0.025	$1.9 \pm 0.2 \text{ x} 10^{-1}$
0.040	2.2 ± 0.3 x10 ⁻¹

[complex] = 0.95 mM

[complex] (μM)	mplex] (μM) r _i (μM/min)		r _i (μM/min)
	50 °C		25 °C
0.10	0.24 ± 0.02	1.13	0.13 ± 0.02
0.18	0.33 ± 0.02	2.66	0.18 ± 0.03
0.23	0.42 ± 0.04	6.64	0.21 ± 0.03
0.30	0.55 ± 0.04	13.3	0.23 ± 0.04
0.36	0.68 ± 0.05	26.6	0.23 ± 0.04
0.53	1.05 ± 0.07	53.1	0.23 ± 0.04
0.67	1.20 ± 0.09		
0.81	1.24 ± 0.09		
1.10	1.30 ± 0.08		
3.46	1.47 ± 0.09		
6.92	1.49 ± 0.09		
13.6	1.56 ± 0.08		
27.3	1.65 ± 0.09		

Table S4. Initial rates of *p*-quinonimide formation, at pH 7, for different [complex]₀, at 50 °C and 25 °C

 $[phenol] = [H_2O_2] = 0.27 \text{ mM}, [4-APP] = 0.68 \text{ mM}.$

Figure S2. ESI-MS spectrum of a 10:1 KO₂:[Cu(py₂pn)]²⁺ reaction mixture in DMSO

- I. I. Ebralidze, G. Leitus, L.J.W. Shimon, Y. Wang, S. Shaik, R. Neumann, Inorg. Chim. Acta 362, 2009, 4713–4720.
- 2- M. S. Ray, R. Bhattacharya, S. Chaudhuri, L. Righi, G. Bocelli, G. Mukhopadhyay,A. Ghosh, polyhedron 22, 2003, 617-624.