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While Explainable Artificial Intelligence (XAI) is increasingly expanding more areas of application, little has been applied to make deep Reinforcement Learning (RL) more comprehensible. As RL becomes ubiquitous and used in critical and general public applications, it is essential to develop methods that make it better understood and more interpretable. This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values, a game theory concept used in XAI that successfully explains the rationale behind decisions taken by Machine Learning algorithms. Through testing common assumptions of this technique in two cooperation-centered socially challenging multi-agent environments environments, this article argues that Shapley values are a pertinent way to evaluate the contribution of players in a cooperative multi-agent RL context. To palliate the high overhead of this method, Shapley values are approximated using Monte Carlo sampling. Experimental results on Multiagent Particle and Sequential Social Dilemmas show that Shapley values succeed at estimating the contribution of each agent. These results could have implications that go beyond games in economics, (e.g., for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints). They also expose how Shapley values only give general explanations about a model and cannot explain a single run, episode nor justify precise actions taken by agents. Future work should focus on addressing these critical aspects.

I. INTRODUCTION

Over the last few years, Reinforcement Learning (RL) has been a very active research field. Many RL-related works focused on improving performance and scaling capabilities by introducing new algorithms and optimizers [START_REF] Mnih | Asynchronous Methods for Deep Reinforcement Learning[END_REF], [START_REF] Espeholt | Impala: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures[END_REF] whereas very few tackled the issue of explainability in RL. However, explainability in Machine Learning (ML) and deep learning is increasingly becoming a pressing issue, as it concerns general public trust, and the transparency of algorithms now conditions the deployment of and ML and RL, in industry and daily life. As a consequence, Explainable Artificial Intelligence (XAI) arises as a new field that strives to bring explainability to every ML aspect, from linear classifiers [START_REF] Ribeiro | Why Should I Trust You?' Explaining the Predictions of any Classifier[END_REF] and time series predictors [START_REF] El-Sappagh | A Multilayer Multimodal Detection and Prediction Model based on Explainable Artificial Intelligence for Alzheimer's Disease[END_REF], [START_REF] Schlegel | Towards A Rigorous Evaluation of XAI Methods On Time Series[END_REF] to RL [START_REF] Heuillet | Explainability in Deep Reinforcement Learning[END_REF], [START_REF] Puiutta | Explainable Reinforcement Learning: A Survey[END_REF]. Even though some works provide explanations for specific situations [START_REF] Madumal | Explainable Reinforcement Learning through a Causal Lens[END_REF], [START_REF] Greydanus | Visualizing and Understanding Atari Agents[END_REF], RL models Corresponding author: A. Heuillet. e-mail: alexandre.heuillet@universiteparis-saclay.fr § Equal contribution still lack a general explainability framework similar to SHAP [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF] or LIME [START_REF] Ribeiro | Why Should I Trust You?' Explaining the Predictions of any Classifier[END_REF]. These methods, although designed in XAI towards generic ML predictive models, can bring a broader form of explainability to RL. In this work, inspired by SHAP (SHapley Additive exPlanations) [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF], the possibilities offered by the mathematical framework of Shapley values [START_REF] Shapley | A Value for N-Person Games[END_REF] to explain RL models were explored, with a focus on multi-agent cooperative environments, often called Common Games. As a kind of collaborative RL, the improvement of the learning process when agents interact with each other, usually yields better results than training each agent in isolation [START_REF] Andres | Collaborative exploration and reinforcement learning between heterogeneously skilled agents in environments with sparse rewards[END_REF]. These are challenging scenarios where all participants must cooperate in order to achieve a common goal. In the particular case where agents must gather resources from a common pool without being greedy, Garrett Hardin [START_REF] Hardin | The Tragedy of the Commons[END_REF] defined The Tragedy of the Commons: if an agent uses slightly more resources than it should, this might be inconsequential. However, if every agent starts following this logic then the consequences can become dire, with the common pool being exhausted and no one being able to gather resources anymore. This is why the Common Games are of special interest to study in this context. The objective is finding ways to evaluate and understand how agents cooperate and share resources in multiagent RL, through explainability methods such as SHAP.

As a matter of fact, this work could have implications that go beyond games, since RL-based systems are increasingly used to solve critical problems. In particular, studying social dilemmas and explaining the contribution of each policy [START_REF] Chica | A Collective Risk Dilemma for Tourism Restrictions under the COVID-19 Context[END_REF], agent, or model feature becomes relevant in many societal problems. For instance, it could provide useful insights in economics (of social structures), allocating resources or designing resilience programs (e.g., for climate change, non-discriminatory decision making, ethical and fair policy design, or to achieve the sustainable development goals).

Our main hypothesis is that Shapley values can be a pertinent way to explain the contribution of an agent in multi-agent RL cooperative settings, and that valuable insights, especially for the RL developer audience, can be derived from this analysis. This article features experiments (see Section V) conducted on Multiagent Particle [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF] and Sequential Social Dilemma [START_REF] Leibo | Multi-Agent Reinforcement Learning in Sequential Social Dilemmas[END_REF] environments, and shows that Shapley values can accurately answer the following research questions:

• Can Shapley values be used to determine how much each agent contributes to the global reward? (RQ1). If the answer to RQ1 is yes: • Does the proposed Monte Carlo based algorithm empirically offer a good approximation of Shapley values? (RQ2) • What is the best method to replace an agent missing from the coalition (e.g., a random action, am action chosen randomly from another player or the "no operation" action)? (RQ3) Our experimental setup is brought forward as well in order to show the limitations of the Shapley framework in order to make deep RL more explainable. In fact, this approach cannot explain particular notions of a multi-agent learning model, such as the contribution of a specific episode or a specific action taken by an agent at a given point in time of its training. This is due to the requirements inherent to training multi-agent RL, and the practical design limitations of the Shapley framework, which are brought upfront. In particular, as discussed in Section IV, Shapley values only yield an average metric of each player's contribution to the overall reward and thus, to obtain this average contribution metric, one must compare the cooperation of players during several games (or episodes in RL). However, due to the frequently stochastic nature of (simulation and real RL) environments, the non-deterministic behaviour of different agents or non-identical conditions -non inherent to the agent's policy at consideration-, it makes concrete episodes, or concrete actions within an episode, not comparable.

This article presents the following contributions:

• A study of the mathematical notion of Shapley values and how it is able to provide quantitative explanations about the individual contribution of agents in a cooperative multi-agent RL environment. • The application of an XAI global model-agnostic [START_REF] Arrieta | Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI[END_REF] method to explain multi-agent cooperative RL models using Monte Carlo (MC) approximated Shapley values. • A set of experiments that demonstrates the applicability and usefulness of Shapley values and how they can provide insights that can enable a better comprehension of emergent behaviours [START_REF] Ndousse | Emergent social learning via multi-agent reinforcement learning[END_REF] in cooperative settings. The rest of this article is structured as follows: Section II presents a short survey on cooperative multi-agent RL and explainable RL, Section III presents some preliminaries about RL and Shapley values, Section VI discusses the experimental study setup and the general usage of Shapley values in a multiagent RL setting and, finally, Section VII presents conclusions on our carried out experiments and gives some insights on promising lines of future work.

II. RELATED WORK

Cooperative multi-agent RL has been studied in different settings, e.g., the emergence of different behaviors in the context of the Commons Tragedy game [START_REF] Perolat | A Multi-Agent Reinforcement Learning Model of Common-Pool Resource Appropriation[END_REF]. These studies show, for instance, that certain inequity aversion improves intertemporal social dilemmas [START_REF] Hughes | Inequity Aversion Improves Cooperation in Intertemporal Social Dilemmas[END_REF]. However, these works analyze the game from a theoretical point of view and not from the XAI angle. This article specifically focuses on studying to which degree the most relevant factors (or those contributing the most) in a black-box deep RL model can be explained. Notably, this article focuses on pointing out at particular agents, episodes, agents, actions or policies.

Recent techniques to attain eXplainable Reinforcement Learning (or XRL) [START_REF] Heuillet | Explainability in Deep Reinforcement Learning[END_REF] can be categorized in two main families or categories: transparent methods or post-hoc explainability methods (according to XAI taxonomies in [START_REF] Arrieta | Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI[END_REF]). On the one hand, transparent algorithms include, by definition, every ML model that is understandable by itself, such as a decision-tree. On the other hand, post-hoc explainability includes all methods that craft an explanation of an RL algorithm after its training, such as LIME [START_REF] Ribeiro | Why Should I Trust You?' Explaining the Predictions of any Classifier[END_REF], BreakDown [START_REF] Staniak | Explanations of Model Predictions with live and breakDown Packages[END_REF] or SHAP [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF]. Other studies [START_REF] Giudici | Shapley-Lorenz Decompositions in eXplainable Artificial Intelligence[END_REF]- [START_REF] Sundararajan | The Many Shapley Values for Model Explanation[END_REF] try to transpose Shapley values into XAI but, to the best of our knowledge, none applies SHAP to explain the specific issues of cooperative multi-agent RL. In fact, most XRL methods are based on transparent algorithms [START_REF] Heuillet | Explainability in Deep Reinforcement Learning[END_REF].

Wang et al. [START_REF] Wang | Shapley Q-value: A Local Reward Approach to Solve Global Reward Games[END_REF] developed an approach to solve global reward games in a multi-agent RL context by making use of Shapley values to distribute the global reward more efficiently across all agents.Their focus was not on explainability nor interpretability but performance.

All Shapley-based XAI methods listed above consider model features as participants of a cooperative multiplayer game. In this article, Shapley values are applied to a cooperative multiagent RL context by considering agents as players instead, an approach closer to the original game theory method presented by Lloyd Shapley in 1953 [START_REF] Shapley | A Value for N-Person Games[END_REF].

Exact computation methods for both BreakDown and SHAP exist only for linear regression and tree ensemble models. In more complex models, the dependence of these methods on the number of samples or number of subsets of predictors p to be used makes the approximated vs exact computation of contributions to be different and, potentially, point in opposite directions [START_REF] Staniak | Explanations of Model Predictions with live and breakDown Packages[END_REF]. This indicates that these generic methods are not the universal response to XAI yet. This article, despite some remaining issues against attaining a general XRL framework, shows that in a cooperative multiagent RL setting, Shapley values can be used to accurately estimate the contributions of different agents.

III. EXPLAINABILITY AND SHAPLEY VALUES TO EXPLAIN MULTI-AGENT RL IN COOPERATIVE SETTINGS A. Explainability in Cooperative RL

With the rapid growth of RL research and industrial applications (deployed, e.g., in autonomous systems [START_REF] Kiran | Deep Reinforcement Learning for Autonomous Driving: A Survey[END_REF], or robotics [START_REF] Nguyen | Review of Deep Reinforcement Learning for Robot Manipulation[END_REF], [START_REF] Lesort | Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges[END_REF]), we have witnessed over the past few years a need for Explainable RL. These needs have rapidly risen, since being able to understand and justify the decisions of such models is legally and morally necessary for their broad diffusion.

The subfield of XRL that focuses on multi-agent cooperative games has recently gained significant attention with emerging concepts such as social learning [START_REF] Lee | Joint attention for multi-agent coordination and social learning[END_REF], [START_REF] Ndousse | Multi-agent social reinforcement learning improves generalization[END_REF] in a RL context. While studying social interactions between entities in cooperative games is originally typical in sociology or economics [START_REF] Duffy | Cooperative Behavior and the Frequency of Social Interaction[END_REF], [START_REF] Colman | Cooperation, Psychological Game Theory, and Limitations of Rationality in Social Interaction[END_REF], some AI researchers realized that they could potentially provide explanations or improve the efficiency of their models this way.

Perolat et al. [START_REF] Perolat | A Multi-Agent Reinforcement Learning Model of Common-Pool Resource Appropriation[END_REF] sought to conduct new behavioral experiments using RL agents in video-game-like cooperative environments instead of human subjects. More accurately, they studied games which put the emphasis on common-pool resources (CPR). They found that agents learn new emergent behaviors and that some strategies can arise when some agents are excluded from the CPR. In addition, they came up with metrics that quantify social outcomes such as sustainability, equality, peace or efficiency for RL models.

Following the same direction, Jaques et al. [START_REF] Jaques | Social Influence as Intrinsic Motivation for multi-agent deep reinforcement learning[END_REF] proposed a framework to achieve better coordination and communication among agents by rewarding agents on the basis of causal influence (i.e., actions leading to big changes in other agents' behavior). Their empirical results show that agents that choose their actions carefully in order to influence others lead to better coordination and thus, better global performance in socially challenging settings where cooperation is paramount.

Exploring this aspect further, Ndousse et al. [START_REF] Ndousse | Learning Social Learning[END_REF] analyzed the behavior of independent RL agents in multi-agent environments and found out that model-free agents do not use social learning. Thus, they introduce a model-based auxiliary loss that allows agents to learn from other well-performing agents to improve themselves. In addition to outperforming the experts, these agents were also able to achieve better zeroshot performance than those which did not rely on social learning when transferred to another task.

However, even if these works managed to extract useful information from studying social interactions between agents, the literature lacks a general framework that could automatically provide explanations about the level of performance of each agent and their added value in the cooperative game, such as SHAP [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF] does for the features of a ML model.

B. Shapley Values and RL in Cooperative Settings

Shapley values originate from game theory. They evaluate importance in terms of contribution of each participant in a cooperative game, in order to help split a shared payout in a fair way [START_REF] Shapley | A Value for N-Person Games[END_REF]. The concept which is key here is to be able to form "coalitions" (or subsets) of players in order to measure the performance of each player in every possible team situation (for instance, "player A", "player A and player B" or "player B and player C").

Formally, a coalitional game C = (N, v) is defined by a set N of players with |N | = n (the number of players) and a function v, that maps a coalition of players S to a real number, corresponding to the total expected sum of payouts the members of S can obtain through cooperation: v : 2 N ⇒ R, where v(∅) = 0 and ∅ is the empty set. Thus, v is denominated the gain function of the considered game.

The idea is to quantify how much players cooperate in a coalition and how much profit they from this cooperation [START_REF] Molnar | Interpretable Machine Learning[END_REF]. According to the Shapley value definition [START_REF] Shapley | A Value for N-Person Games[END_REF], the contribution added by player i in a coalition S in a coalitional game (N, v) is given by Eq. 1:

φi(v) = S⊆N \{i} |S|!(n -|S| -1)! n! (v(S ∪ {i}) -v(S)) (1) 
A more interpretable equivalent formula to express the Shapley value for player i, rewritten with binomial coefficients [START_REF]The Shapley Value: Essays in Honor of Lloyd S. Shapley[END_REF], is:

φi(v) = 1 n S⊆N \{i} n -1 |S| -1 (v(S ∪ {i}) -v(S)) (2) 
In summary, the Shapley value of a feature (or player) is the mean marginal contribution (the term: v(S ∪ {i}) -v(S) in ( 2)) of all possible coalitions, or average change in the prediction that the coalition already in the room receives when the feature value joins them. It satisfies desirable properties [START_REF] Shapley | A Value for N-Person Games[END_REF], [START_REF] Friedman | Three Methods to Share Joint Costs or Surplus[END_REF] lacking in other XAI techniques: Efficiency (the sum of the Shapley values of all players equals the shared payout of the grand coalition), Dummy, or dummy feature [START_REF] Molnar | Interpretable Machine Learning[END_REF], [START_REF] Friedman | Three Methods to Share Joint Costs or Surplus[END_REF] (if a feature does not change the predicted value, -e.g., the RL global reward-regardless of which coalition of feature values it is added to, then its Shapley value is equal to zero), Symmetry (the contributions of two feature values should be the same if they contribute equally to all possible coalitions) and Linearity (the contribution of a coalition of features should be the sum of the individual contributions of the features that compose the coalition).

Shapley values must be interpreted as follows: it is the average contribution of a feature to the prediction in different coalitions. Note that it is not the difference in prediction when a feature would be removed from the model [START_REF] Molnar | Interpretable Machine Learning[END_REF]. As shown in Eq. 1, for |N | = n players, the exact computation of Shapley values for a specific participant requires computing the average of 2 n-1 possible coalitions, which is computationally expensive, especially when considering all players. Therefore, this would mean computing n(2 n-1 ) coalitions in total to obtain values for all players. While this value can be reduced to 2 n coalitions (for all players, if the algorithm is optimized to avoid computing the same coalition multiple times), the cost remains exponential with respect to the number of players. In fact, the number of agents in RL environments can vary greatly from a few [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF], [START_REF] Leibo | Multi-Agent Reinforcement Learning in Sequential Social Dilemmas[END_REF] to hundreds [START_REF] Chu | Large-Scale Multi-Agent Reinforcement Learning using Image-Based State Representation[END_REF] where exact Shapley values are prohibitively expensive to compute. Furthermore, estimating Shapley values in a stochastic RL environment requires sampling multiple episodes in order to estimate all marginal contributions, which further worsens the computational cost.

In terms of computational efficiency, assuming that simulating a game is done in constant time O(1), finding the exact solution to this problem becomes difficult, as the number of coalitions exponentially increases as more features are added. Despite Shapley value computation being an NP-hard problem [START_REF] Faigle | The Shapley Value for Cooperative Games under Precedence Constraints[END_REF], Shapley distributes the feature attribution fairly, i.e., allowing contrastive explanations. For instance, it permits the comparison of a prediction to another feature subset prediction, or a single data point.

In spite of the broad applicability of Shapley values, they have some theoretical limitations. In particular, Shapley values are only a way to obtain an average metric of each player's contribution to the overall reward (i.e., payout). In order to obtain this average metric one must compare the cooperation of players during several games (or episodes in RL). As a consequence, it obviously cannot explain the contribution of a concrete single episode to the learning process nor explain one specific action taken by a player.

IV. MONTE CARLO APPROXIMATION OF SHAPLEY VALUES

Since the complexity of computing Shapley values grows exponentially with respect to the number of players (as discussed in Section III-B), in order to keep the computation time manageable, contributions can be computed for only a subset of all possible coalitions. The Shapley value φ i (v) can be approximated by Monte Carlo sampling in order to apply it to any type of classification or regression model f [START_REF] Štrumbelj | Explaining Prediction Models and Individual Predictions with Feature Contributions[END_REF] as follows:

φi( f ) = 1 M M m=1 ( f (x m +i ) -f (x m -i )) ≈ φi( f ) (3) 
where f (x m +i ) is the model prediction (or gain function in game theory) for input x with a random number of feature values replaced by feature values from a random data point, except for the respective value of feature i, and M is the number of marginal contributions to estimate in order to compute the Shapley value for one feature. The value x m -i is almost identical to the last one, but the value x m i is also taken from this randomly sampled data point.

In this work, our contribution consists of adapting Eq. 3 to the multi-agent RL setting, by replacing input features with agent actions. While in Eq. 3, f is the function approximated by a classification or regression model [START_REF] Štrumbelj | Explaining Prediction Models and Individual Predictions with Feature Contributions[END_REF], f is instead considered to represent the global reward obtained by agents from a random subset (or coalition) of all agents on a sample episode. This leads to the following reformulation of Shapley value:

φi RL (r) = 1 M M m=1 (r m +i -r m -i ) ≈ φi(r) (4) 
where r m +i corresponds to the global reward obtained by simulating one sample episode with a random subset of players where player i is present, and r m -i is the global reward obtained by simulating one episode with the same subset than in r m +i , except that the current player i has been removed from the subset.

Three approaches to exclude players from a coalition (i.e., let the absent player take "substitute" actions) are explored: a. Replace: A missing agent's actions are replaced by those of a randomly chosen player among the trained agents which are present in the coalition (and ideally with the same role as the missing one). This is the direct translation from the standard application of Shapley values in ML [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF] (against the traditional use in game theory where it is often possible to completely remove a player) since they replace missing feature values by ones randomly selected among present (non-zero) features. b. Random: Letting the absent player act by taking random actions. c. NoOp: Replacing the actions of the missing agent by "noop" (no operation), i.e., letting the agent do nothing, and not move. The estimation of the Shapley value is repeated for each player. Thus, the algorithm must roll out 2M times per player (2M n roll outs in total, where n is the total number of players in the game). At the end of the process, one Shapley value per agent policy is obtained, indicating each player's average contribution to the grand coalition global reward (i.e., the reward collectively obtained by all agents working simultaneously) on the sampled episodes (as in Monte Carlo method, Algorithm 1). Hence the complexity of this method only depends on M (O(M )) as illustrated in Table II. The Shapley value estimation [START_REF] Štrumbelj | Explaining Prediction Models and Individual Predictions with Feature Contributions[END_REF] in Eq. 3 allows the model to conclude, for instance, "On average, the contribution of Player 1 to the team has an impact of +0.6 on the global reward". This allows us to quantify and rank how relevant each player is in terms of cooperation and contribution to the overall common goal. Algorithm for m ← 1 to M do 5:

coal i ← sample coalition(agents[i]) 6: coal no i ← remove f rom list(coal i, agents[i]) 7: r +i ← rollout(coal i) 8: r -i ← rollout(coal i) 9:
add to list(marginal contributions, (r +i -r -i )) 10:

end for 11:

shapley value i ← mean(marginal contributions) 12:

add to list(shapley values, shapley value i) 13: end for 14: return shapley values

In Section II and with the Shapley value estimation in Eq. 3, different approaches to apply Shapley values as an XAI method were presented. While it is possible to use the notion of contribution on classification or regression model predictions, it is also possible to use it on an RL reward r as a final payout that needs to be explained. The analogy could also be easy to understand if we were to use a value function-as in [START_REF] Wang | Shapley Q-value: A Local Reward Approach to Solve Global Reward Games[END_REF]-instead of roll outs, to evaluate each player's contribution. However, with this generic approach of using reward as a payout, it becomes intuitive: the more a player (i.e., feature in XAI) is important, the more its presence will lead to a higher reward on average. This contribution ranking scheme-computed by making coalitions of agents to estimate marginal contributions on the mean final reward-can be used to rank agents in order of average importance in the team, as explained above. This is the approach presented in this article.

V. EXPERIMENTAL STUDY

A. Context and Hypotheses

A straightforward application of Shapley values to endow an AI model with a notion of explainability consists of considering the features of a model as participants of a cooperative game, and the final prediction as the shared payout [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF], [START_REF] Tallón-Ballesteros | Explainable AI: Using Shapley Value to Explain Complex Anomaly Detection ML-Based Systems[END_REF]. Computing the Shapley value of each feature provides us with its weight in the final decision.

In this setup, our aim is to explain a deep multi-agent RL model using Shapley values to determine the contribution of each agent to the group's global reward. The participants of the cooperative game will be agents, and the shared payout the global reward obtained by the agents at the end of an episode. By using the sampling described in Section IV to estimate the Shapley value for each agent, it can be expected that each agent would obtain a Shapley value proportional to its contribution to the collaborative task. It would then be possible to answer the research questions defined in Section I (RQ1, RQ2, RQ3).

Experiments were conducted § using two multi-agent RL environments and three different RL algorithms:

• Multiagent Particle (Predator Prey scenario) [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF]: A light environment with continuous observations and a discrete action space. Predator-Prey scenario was evaluated with three predators and a single prey. In this scenario, the prey is faster and aims to avoid being caught by predators.

The prey is positively rewarded when escaping predators, and negatively rewarded when caught, and vice versa for predators. Both types of agents are rewarded negatively when trying to overpass the screen boundaries or hitting an obstacle. As it was done by the authors of Multiagent Particle [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF], the prey was trained using the DDPG [START_REF] Lillicrap | Continuous Control with Deep Reinforcement Learning[END_REF] algorithm § whereas predators were trained using MADDPG [15] § . For this scenario, 5 different models with the same hyperparameters were trained in order to obtain meaningful values despite the stochastic nature of MADDPG, as suggested in [START_REF] Henderson | Deep Reinforcement Learning that Matters[END_REF] and detailed in the Appendix. • Sequential Social Dilemmas (Harvest scenario) [START_REF] Leibo | Multi-Agent Reinforcement Learning in Sequential Social Dilemmas[END_REF]:

Another light environment with continuous observations and discrete actions that proposes scenarios emphasizing social interactions and cooperation between agents. In the Harvest scenario, agents must cooperate to harvest the maximum number of apples, while being careful to not "kill" apple trees by collecting all apples they contain, as this would prevent this tree from spawning apples further. As it was done by the authors of Sequential Social Dilemmas open source implementation of the environment [START_REF] Vinitsky | An Open Source Implementation of Sequential Social Dilemma Games[END_REF], all agents were trained using the Asynchronous Advantage Actor-Critic (A3C) [1] § algorithm. The best reported hyperparameters and training protocol showcased in [START_REF] Jaques | Social Influence as Intrinsic Motivation for multi-agent deep reinforcement learning[END_REF], [START_REF] Vinitsky | An Open Source Implementation of Sequential Social Dilemma Games[END_REF] were used. Two experiments were conducted on the Predators-Prey scenario: 1) Using default settings provided by the authors of the environment [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF] (to verify RQ1, RQ2 and RQ3), and 2) with different speeds for each predator (to further confirm RQ1 and RQ2). Speeds used on each experiment are presented in Table I. For Harvest, three experiments were also conducted: first, the Shapley values of a simple model trained with 6 agents using the default settings suggested by [START_REF] Jaques | Social Influence as Intrinsic Motivation for multi-agent deep reinforcement learning[END_REF], [START_REF] Vinitsky | An Open Source Implementation of Sequential Social Dilemma Games[END_REF] were computed to further investigate RQ1 and, especially, determine the minimal number of agents required for this task. Then, § The repository linking to our experiments can be found here: https://github. com/Fabien-Couthouis/XAI-in-RL § DDPG implementation from repository https://github.com/openai/maddpg/ § MADDPG implementation: https://github.com/openai/maddpg/ § A3C implementation: https://github.com/ray-project/ray/tree/master/rllib Shapley values were recomputed using the same model but modified according to information extracted from the Shapley analysis obtained during the first experiment, in order to confirm the validity of such information. In addition, social outcome metrics from [START_REF] Perolat | A Multi-Agent Reinforcement Learning Model of Common-Pool Resource Appropriation[END_REF] are reported to have a more fine-grained view of the payout notion (instead of merely a global reward).

The following metrics were implemented:

• Efficiency (Eq. 5): Measures the total sum of all rewards obtained by all agents. • Equality (Eq. 6): Measures the statistical dispersion intended to represent inequality (Gini coefficient [START_REF] Gini | Variabilità e Mutabilità[END_REF]). • Sustainability (Eq. 7): Defined as the average time t s ∈ t at which rewards are collected. Considering N independent agents, let {r i t |t = 1, ..., T } be the sequence of rewards obtained by the i-th agent over an episode of duration T timesteps. Its return is given by R i = T t=1 r i t . Thus, the equations describing the social metrics are as follows:

Efficiency U = E[ N i=1 R i T ] (5 
)

Equality E = 1 - N i=1 N j=1 |R i -R j | 2N N i=1 R i (6) Sustainability S = E[ 1 N N i=1 t i ],
where

t i = E[t|r i t > 0] (7) 
Finally, additional experiments were executed on different Harvest checkpoints to explore how agents cooperate. Each experiment will be detailed in the subsections below. 

B. Experiment 1: Agents with Identical Settings in Multiagent Particle

1) Environment Settings: The goal of this experiment is to answer RQ1 and RQ2 (Section I), i.e., whether the Shapley values of predator agents correlate with the number of times they catch the prey, and whether these are a close approximation to the exact Shapley values.

First, when training a model of three predators using default settings on the Predator-Prey scenario, one could think that each predator should provide a similar contribution, as predators do not have significant differences on their speed, action space or training method. However, in contrast to this assumption, statistics in Figure 1 show that the performance of each predator agent (i.e., the number of times each predator catches the prey) varies significantly: Predator 3 has a larger contribution than Predator 1, which has a higher contribution than Predator 0. In fact, the trained MADDPG model developed a strategy on which Predator 3 and Predator 2 perform better than Predator 0 at catching the prey. This can be explained by the fact that MADDPG provides the same reward to all agents, instead of only rewarding the highest-contributing agent. This can bias the training, as explained in [START_REF] Wang | Shapley Q-value: A Local Reward Approach to Solve Global Reward Games[END_REF]. On the contrary, rewarding only the agent who contributed the most does not highlight or recognize team strategies where the contribution of every agent was critical to the shared payout.

Figure 1: Predator-Prey environment: Agents are endowed with the same speed. Left plot shows predator agents mean performance comparison out of 10,000 sample episodes over 5 different models (run 2,000 sample episodes each) while right plot presents the Monte Carlo estimation of Shapley values obtained for each predator agent (M=1,000; "random" player exclusion method; mean over 5 models).

2) Shapley Values Analysis: Figure 2 shows Shapley values computed for each agent on each of the five models, over 1,000 sample episodes per model. This can be observed in a more convenient way in Figure 1, which shows Shapley values computed for each agent on a single model. As hypothesized, the decreasing order of agents' Shapley values is the following: Predator 2, Predator 1 and Predator 0. Thus, this first experiment supports RQ1, since Shapley values are able to correctly map contributions to agents usefulness in a cooperative multi-agent setting.

3) Comparison of Approximated Shapley Values with the Exact Shapley Values: In this subsection, the Monte Carlo approximation of Shapley values is compared with the exact computation of Shapley values to verify RQ2. For that, Eq. 2 is used to compute Shapley values: marginal contributions are estimated as the mean global reward obtained by the coalition of players over a high number of episodes-1,000 episodes in this experiment-using the player exclusion mechanisms in Section IV. Indeed, a large number of samples is needed for each coalition due to the stochastic nature of the environment, which leads to high variance in results. As depicted in Fig. 2, Shapley values estimated by Monte Carlo sampling are very close to the real Shapley values. The difference of only 5% on average for all agents and models therefore supports RQ2. In addition, MC approach is simpler to implement and with a complexity that does not grow exponentially with the number of agents in the RL environment. 

C. Experiment 2: Introducing Variations in Agents Speeds in Multiagent Particle

1) Environment Settings: This experiment introduces variations in the agent settings with the objective of disturbing the actual distribution of contributions between agents obtained in Experiment 1 and see if, as claimed in RQ1, this change will be reflected in the computed Shapley Values (i.e., the aim is to ensure that Shapley values correlate with the observed contributions). Thus, the speed of each predator will differ from the default one and so, it can be expected that the faster agent will catch the prey more often and contribute the most to the global reward. In this manner, our goal is to obtain a clear hierarchy between agents that correlates with Shapley Values so they reflect the agents' observed behavior coherently. The following speeds are arbitrarily set for each agent: Predator 0 (slow): 0.2, Predator 1 (medium): 0.8, Predator 2 (fast): 2.0. Statistics in Figure 3 show the performance of each predator agent in terms of the number of times each predator catches the prey. As expected, the faster agent (Predator 3) presents a higher contribution than Predator 1, which exhibits a higher contribution than Predator 0 (the slowest). More precisely, the ranking in speed is reflected in the ranking of contributions , which is the ideal setting to test if the assumption in RQ1 is valid. In addition, the real Shapley values for these settings were also computed in order to further verify RQ2. 2) Shapley Values Analysis: Figure 5 shows the Shapley values computed for each agent on each of the five models, over 1,000 sample episodes per model. This can be observed in a more convenient way in Figure 3, which shows the Shapley values computed for each agent on a single model. Following RQ1, the order of agents' Shapley values is the following: Predator 2, Predator 1, and finally Predator 0. These Shapley values accurately correlate with the number of times each of the agents caught the prey (see Figure 3). In addition, as noticeable in Fig. 4, when making a single agent's speed vary, its Shapley value grows proportionally: the faster the agent is, the higher its Shapley value is. As expected, it makes sense, since it can more easily catch the prey, hence contributing more to the overall payout. Thus, this experiment further supports RQ1, since Shapley values accurately correlate to the exact (observed) distribution of contributions.

3) Comparison of Approximated Shapley Values with Exact Shapley Values: In this section, the same experiment as described in Subsection V-B3 was conducted to further verify RQ2. The Monte Carlo approximation of Shapley values was compared with the exact or complete computation of Shapley values. Here again, Fig. 5 showcases that Shapley values estimated by Monte Carlo sampling (with M = 1, 000) are very close to the real ones with an average difference of 8% between the approximated values and the real ones for Predator 1 and Predator 2, when computed with the same replacement method. However, this percentage reaches 53% when considering only Predator 0, because its Shapley values are very close to 0 with a small standard deviation. Therefore, a small difference in value leads to a large difference in percentage. Therefore, approximated Shapley values are close to the real ones while being simpler to implement and with a complexity that does not grow with the number of agents in the RL environment, supporting RQ2 again. 

D. Experiment 3: Explaining Agent Contribution in the Harvest Environment

1) Environment Settings: In this experiment, the Monte Carlo Shapley Value computation method is applied to another multi-agent environment (i.e., Harvest). The goal here is to test this method in a more complex use case where it could prove useful to explain and extract insightful information from a trained model in which all agents share the same settings. This data is leveraged in order to attempt to further verify RQ1 (presented in Section I).

Default settings of Harvest were used: 6 agents trying to collect apples on a pre-configured map. At first glance, this seems quite a large number of agents for a map this small (39*15, with 159 apples initially). Thus, one can hypothesize that some agents are superfluous, not contributing much to the global reward, and may even prevent other agents from elaborating effective strategies together, obstructing them in their movements.

2) Shapley Values Analysis: First, Figure 6 clearly highlights the fact that Agent 5 does not seem to bring much added value to the team (i.e., its Shapley value is close to 0) while all other agents seem to contribute a near equal amount to the global reward. In fact, while watching the agents play, it appears that Agent 5 is left unaccounted for, wandering on the map, not harvesting any apple and sometimes randomly hitting the map border, which grants it a negative reward. This may indicate that the default setting with 6 agents is unnecessary or unproductive: training only 5 agents could be enough to provide the same level of performance, will require less hardware and be less time consuming. Moreover, the fact that the first five agents contribute equally may prove that the A3C [1] model found a satisfying solution to distribute tasks among agents, with the exception of Agent 5 who is left unaccounted for, maybe, and reasonably, because none of its actions could help increase the global reward. In conclusion,this synergy between agents, observed both in the obtained global reward and the nearly equal partition of Shapley values among agents, shows that agents are actually cooperating with each other. 3) Following The Insight Given by Shapley Values: In Subsection V-D2, the Shapley values analysis indicated that Agent 5 does not contribute at all to solve the Harvest environment. Thus, it was decided to re-run the Shapley value computation on the same model; this time with Agent 5 removed (i.e., completely deactivated and not appearing in the environment map) to check, whether, as suspected, the global reward and agents' contribution remained the same. Figure 6 shows that Shapley values distribution when Agent 5 is deactivated stays nearly identical to the previous setting where Agent 5 is included in the game. Some very minor variation in Shapley values can be attributed to stochasticity, since each estimation of Shapley values does not yield the exact same results every time. In addition, the global reward also remains stable at around 450 reward units. This means that removing Agent 5 did not have any negative effect on the game and corroborates our hypothesis that its participation was not productive. In conclusion, a valuable insight was successfully derived from the analysis of Shapley values, strengthening the validity of the hypothesis in RQ1.

4) Social Outcome Metrics: Analysis of the Social Behavior Between Agents: This section presents an analysis of how each social outcome metric (introduced in [19] § (whose definitions are given in Subsection V-A) can be explained with our approach. The goal here is to further explore RQ1 and see whether agents leverage social learning and cooperate with each other in practice. Note that the social and sustainability metrics (as originally defined in [START_REF] Perolat | A Multi-Agent Reinforcement Learning Model of Common-Pool Resource Appropriation[END_REF]) require credit assignment to be computed in a per-agent basis, while this is not the case for Shapley values, which only needs to be given a global reward.

For these experiments, over 100 training episodes were run, the three social outcome metrics presented above were computed, as well as the Shapley values (using Monte Carlo approximation and M=500), at different steps of the training (i.e., every 1,000 episodes), in order to analyze the evolution of those values during training. Results are presented in Figure 8. As the Efficiency metric is nothing else than the mean of the Shapley values (in expectation), it can be observed with no surprise that the mean of the Shapley values of all agents has the same evolution than the efficiency, and directly correlates with it. The slight differences, such as the peak at episode 4,000, are due to the stochastic nature of the environment, the choice of M in Monte Carlo approximation and number of episodes used to compute the metrics.

From previous experiment it can be concluded that the mean of Shapley values of all agents is a metric that explains the agent's afficiency and does not assume any credit assignment among agents. As stated in Equation 4, a shared global reward is enough. Equality evolves in the same manner (with a peak at episode 4,000 and a drop at episode 5,000). This metric decreases a bit at episode 2,000: this fall is not captured by the efficiency nor the mean of Shapley Values. However, while looking at the Shapley values of each agent in Figure 8, it is clear that agent 3 obtains a lower reward than other agents. Using the Shapley values of all agents, an explanation can thus be that the decrease in equality at episode 2,000 is caused by agent 3, which contributes little to the global reward (in comparison with other agents). It could not have been possible to explain this behavior using the equality metric in a shared global reward context and herein the value of applying Shapley analysis in this context. As Shapley values are computed using the global reward of the total team of agents, no link can be established between the sustainability metric and Shapley values. Especially because sustainability is defined as the average time (time-step in our use cases) at which rewards are collected, and this is independent from the value of these rewards. This experiment showed that Shapley values can effectively capture both metrics; especially 1) if agents get high rewards (Efficiency) and 2) if rewards are shared equally among all agents (Equality). However, Shapley values cannot tell if agents are obtaining their reward continuously (i.e., displaying a sustainable behaviour). Contrarily to the social outcome metrics, Shapley values can be computed even though the reward is globally shared among agents. This is a huge advantage when the environment does not allow precise credit assignment.

E. Choosing a Player Exclusion Method

In this subsection, results gathered using the different player exclusion options (defined in Section IV) during the three experiments above are analyzed in order to answer RQ3.

When looking at Figures 2, 5 and 7, it becomes clear that the three player exclusion mechanisms lead to Shapley values that, when considered individually, are coherent for the excluded agent with respect to the others. However, in the referential of a single agent, the standard deviation between their respective values is important. In particular, there is a significant gap between noop and the other two methods. Figure 7 shows there is an average gap of 73.1 reward units between noop and random player action, while there is only an average gap of 20.5 reward units between random and random player action). This can be explained by the fact that randomly moving agents disturb the game significantly more than immobilized ones, as they can get negative rewards by hitting the map borders in Multiagent Particle or killing trees in Harvest (i.e., harvesting all apples that are contiguous). Thus, when using random or replace strategy, a majority of coalitions are "parasited" by these negative rewards that contribute towards lowering the global reward and lead to an overall lower Shapley value than the noop method (as observed in Figures 2, 5 and7). Therefore, in that context, noop action selection seems to be the most faithful method to get Shapley values assessing the agents' true contributions closely, and free from random and unwanted negative rewards.

VI. DISCUSSION

This article demonstrated the usefulness of Shapley values and their Monte Carlo approximation for explaining RL models in cooperative settings. These values provide a form of explanation, i.e., continuous values that are understandable by researchers and developers, since they represent a portion of the reward value of the agents team, partitioned according to each agent's contribution. They could also provide explanations for the general public that may perceive them as an intrinsic "value" of each agent, making them accountable for the effectiveness of the system. Moreover, Shapley values could be a good way to detect biases in the training of an RL model, since they require analyzing the individual behavior of each agent and this could highlight disparities between their different strategies and abilities.

Concerning the player exclusion method to replace missing agents from a coalition, noop (no-operation) action seems to be the most neutral, and interaction-free method when the environment offers this possibility, since methods using a substitution mechanism mandated by random-selection of actions are prone to get high negative rewards and interfere in the game. Social interaction between agents was also explored and this investigation showed that Shapley values are able to effectively capture both efficiency and equality metrics, while they are still able to be computed even though the reward is globally shared between agents. This is a huge advantage when the environment does not enable fair individual-level credit assignment. In consequence, it can be asserted that Shapley Values are an effective way to explain the contributions of RL agents, and, to some extent, the relationships between them.

However, our approach is limited to multi-agent cooperative RL and, in its current form, cannot be applied to competitive and single-agent models. In addition, it cannot be used to explain an agent's actions, their sustainability in time, nor explain a specific episode of interest, as it only provides an average metric for the contribution of each agent in a cooperative game, with the total of Shapley values corresponding to the mean global reward of the grand coalition (i.e., the one containing all agents). Thus, it must be considered as a way to get a first ranking of contributions of agents in a model. Finally, while the Monte Carlo method to estimate Shapley values (see Section IV) is more efficient than computing the exact Shapley values, it still remains time consuming. Future work should seek to keep accurate value estimation of SHAP values while accelerating their computational approximation.

VII. CONCLUSION AND FUTURE WORK

The three research questions were positively answered, with experiments conducted in two socially challenging multi-agent RL environments (Harvest from Sequential Social Dilemmas [START_REF] Leibo | Multi-Agent Reinforcement Learning in Sequential Social Dilemmas[END_REF], [START_REF] Vinitsky | An Open Source Implementation of Sequential Social Dilemma Games[END_REF] and Particle Multiagent [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF]) and two different RL algorithms (MADDPG [START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF] and A3C [START_REF] Mnih | Asynchronous Methods for Deep Reinforcement Learning[END_REF]). Experiments showed thatthe computation of Shapley values could be a potential breakthrough elucidating understanding towards attaining multiagent XRL environments. They can efficiently assess the contribution of agents to the global reward in cooperative settings. They also provide insightful information about the agents' behaviour and their social interactions.

Nonetheless, numerous issues remain to be explained in future work. Different interpretations of Shapley values to further explain deep RL issues must be explored to increase the levels of explanation granularity. Robustness and reproducibility remain a critical issue for XRL (and XAI in a more general sense), and other statistical methods could prove very useful for that purpose, as presented in [START_REF] Huber | Robust statistics[END_REF]- [START_REF] Hampel | Robust Statistics: The Approach based on Influence Functions[END_REF] (e.g., Winsorised or trimmed estimators). Moreover, Shapley values could also be combined with a robust model selection measure (such as the Lorenz Zonoids [START_REF] Giudici | Shapley-Lorenz Decompositions in eXplainable Artificial Intelligence[END_REF]). Besides, Shapley values or other additive and non-additive methods could be used not only to explain the roles taken by agents when learning a policy to achieve a collaborative task, but also to detect defects in agents while training, or in the fed data. Furthermore, the dynamic nature of RL (vs. the static settings of most ML models where only a single data point needs to be explained) could be taken into account in order to create a novel approach that evaluates the contributions of agents through time (e.g. during evaluation time). Here, "temporal" Shapley values could be approximated with a model as in [START_REF] Wang | Shapley Q-value: A Local Reward Approach to Solve Global Reward Games[END_REF]. However, one of the main advantages of SHAP being a post-hoc XAI method (i.e., being agnostic to the RL algorithm) would be lost, as the Shapley prediction model would be dependent on the policy learning model used. Finally, a different contribution ranking scheme than the one presented in Section IV could also be proposed (i.e., accounting for more complex objective metrics to better highlight the order of importance in the team). For instance, each set of observations per agent could be ranked in order of quality or average didactic importance in order to assess the learning agents more fairly, with respect to the quality of the data they were exposed to.
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 2 Figure 2: Predator-Prey environment, same agents' speeds. Comparison of MC approximation of Shapley values with the exact Shapley values. Each point relates to one of the 5 different models run.

Figure 3 :

 3 Figure 3: Predator-Prey environment, variable agents' speeds. The left plot shows predator agents' performance comparison for 10,000 sample episodes and 5 different models (2,000 sample episodes for each of the five trained models) while the right plot presents the Monte Carlo estimation of Shapley values (M=1,000) for each predator agent (averaged over 5 model runs) with the "random" player exclusion option.
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 4 Figure 4: Predator-Prey environment, variable agents' speeds. Monte Carlo approximation of Shapley values (M=1,000) obtained by a single predator agent with respect to its speed.

Figure 5 :

 5 Figure 5: Predator-Prey environment, variable agents' speeds. Comparison of the Monte Carlo approximation of Shapley values with the real Shapley values. Each point represents one of the five model runs..

Figure 6 :

 6 Figure 6: Harvest environment: The left plot shows the Monte Carlo estimation of Shapley values obtained for each agent (M=1,000, "noop" action selection method). The right plot displays Shapley values computed over agents with the same settings but without Agent 5 present.

Figure 7 :

 7 Figure 7: Harvest environment. Monte Carlo estimation of Shapley values (M=1,000) for each agent using each of the three agent substitution methods. The same settings were used for all agents.

  1 describes the process to estimate Shapley values via Monte Carlo sampling of coalitions of players: Algorithm 1 Monte Carlo approximation of Shapley values applied to a multi-agent RL context with shared payout

Input: List: agents Input: Integer: M (number of coalition permutations to be used) Output: List: shapley values 1: shapley values ← empty list() 2: for i ← 1 to length(agents) do 3: marginal contributions ← empty list() 4:

Table I :

 I Speed settings for each agent used in Experiment 1 and 2 (RQ1, RQ2, RQ3), conducted on the Predator-Prey setting of Multiagent Particle[START_REF] Lowe | Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments[END_REF].

	Prey Pred. 1 (slow) Pred. 2 (medium) Pred. 3 (fast)
	Speed in exp. #1 1.3	1.0	1.0	1.0
	Speed in exp. #2 1.3	0.2	0.8	2.0
	Table II: Table reporting Shapley value computation times for
	the Harvest [44] experiments (5 agents) run on a 6-core AMD
	Ryzen 5 5600X CPU, using Algorithm 1. Computation time
	grows proportionally to M .		
	M	100	500	1000
	Computation time ≈ 1 hour ≈ 5 hour ≈ 10 hour

  Harvest environment: Evolution of the Shapley values and social metrics from[START_REF] Perolat | A Multi-Agent Reinforcement Learning Model of Common-Pool Resource Appropriation[END_REF] over different training episodes with A3C model. From top to bottom are displayed the Shapley values (noop action selection method; MC estimation with M=500), the mean of those Shapley values of all agents, the efficiency, equality, and sustainability metrics.

	Shapley value	40 60 80 100 120						Player agent-0 agent-1 agent-2 agent-3 agent-4	Mean of Shapley values of all agents	85 90 95 100 105 110									Efficiency	115 85 90 105 110 95 100
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	Figure 8:																			

§ The Peace metric, also presented in[START_REF] Perolat | A Multi-Agent Reinforcement Learning Model of Common-Pool Resource Appropriation[END_REF], was not included because it relies on a specific mechanism (i.e., a time-out period during which a tagged agent cannot harvest apples anymore) that was deemed as of limited utility by the authors, since agents would learn very quickly not to use it.
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