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Abstract: This paper addresses the problem of monocular Simultaneous Localization And Mapping
on Lie groups using fiducial patterns. For that purpose, we propose a reformulation of the classical
camera model as amodel on matrix Lie groups. Thus, we define an original-state vector containing
the camera pose and the set of transformations from the world frame to each pattern, which constitutes
the map’s state. Each element of the map’s state, as well as the camera pose, are intrinsically
constrained to evolve on the matrix Lie group SE(3). Filtering is then performed by an extended
Kalman filter dedicated to matrix Lie groups to solve the visual SLAM process (LG-EKF-VSLAM).
This algorithm has been evaluated in different scenarios based on simulated data as well as real
data. The results show that the LG-EKF-VSLAM can improve the absolute position and orientation
accuracy, compared to aclassical EKF visual SLAM (EKF-VSLAM).

Keywords: visual SLAM; coded patterns; camera model; Kalman filtering; optimization; Lie groups

1. Introduction

The problem of simultaneously localizing amobile robot and constructing amap from
sensor measurements has arisen in many research works during the last decades [1,2].
Simultaneous Localization And Mapping (SLAM) can be seen as an estimation problem,
where the state includes the pose of the robot and the position of the detected landmarks.
This estimation problem is usually solved by one of the following two methods:

• the bundle adjustment approach: this formulates the SLAM as an optimization prob-
lem, where the set of all measurements (or a part of) is used to estimate the desired
system state [3,4];

• the filtering approach: this is classically based on aKalman filter and its variants
(such as the extended Kalman filter, i.e., EKF). It provides an estimate of the state and
its associated covariance matrix at each epoch.

When avisual sensor is used for SLAM, the approach is usually referred to as visual-
SLAM (VSLAM) [5]. In this context, the classical landmarks are provided by well-known
corner-detection algorithms, such as Harris [6], FAST [7], SIFT, BRIEF, SURF, or ORB.
The use of such 2D features admit two main disadvantages:

(1) the number of detected landmarks in each image can be high (≥500), making the map
huge for big environments. This impacts directly the size of the state vector, which
increases dramatically, making afilter-based method with 2D features not well-suited
for long-term navigation;

(2) each measurement must be associated to each detection with adata association algorithm [8].
This step remains achallenge and false matching can cause the filter to diverge. Moreover,
it can be difficult to treat it from acomputational point of view.

To overcome these difficulties, we propose in this study the use of fiducial or coded
markers as landmarks [9–11]. The main advantage of such patterns is that they reduce
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the number of landmarks while solving the association step, thanks to labelled detections.
Moreover, even if it is required to instrument the environment with coded patterns, a priori
knowledge of the absolute position of one of the artificial landmarks would allow precise
absolute localization.

For this study, the chosen patterns are constituted of aconstellation of circular shapes
(see Figure 1) but can be changed for other rigid patterns such as ARTag [12] without
loss of generality. By assuming that the patterns have aknown given size L, the pose of
apattern in the global frame can be represented as a 3D affine transformation. The latter is
composed of arotation and atranslation and can be associated to the set of matrices defined
in the special Euclidean group SE(3), which has the structure of aLie group (LG). The aim
of this article is to rewrite the camera model in order to express the camera pose, as well
as the pose of each landmark, in SE(3) to reformulate the VSLAM problem as arecursive
estimation problem on LGs.

Figure 1. Representation of the coded pattern and its local frame. The detection algorithm detects
the red points q1 = [0, 0, 0]>, q2 = [0, L, 0]>, q3 = [L, 0, 0]>, and q4 = [L, L, 0]>.

1.1. Formulating VSLAM on Lie Groups

The problem of filtering on LGs has recieved alot of attention in recent years, par-
ticularly in applications such as visual navigation and robotics to estimate the rotation
and transformation matrices of arigid body [13,14]. The interest of the LG framework
is to overcome acomplex Euclidean parametrization (as Euler angles or quaternions) by
using aunified and elegant formalism, taking into account the geometric properties of these
matrices. Consequently, the LG structure of the state vector admits advantages, compared
to the classical VSLAM extended Kalman filter (EKF-VSLAM):

• We can rewrite acompact camera model, allowing us to overcome the high non-
linearities created by rotation matrices parametrization;

• The analytical development of quantities of interest, such as Jacobian matrices, are
intrinsic to LGs and are consequently less difficult to compute and to implement.

To apply filtering on LGs, several dedicated analytical algorithms have been developed
in the literature, such as the Lie Group-Extended Kalman Filter (LG-EKF) [15], the Invariant
Kalman filter [16,17], the Unscented Kalman filter (LG-UKF) [18], the information Kalman
filter (LG-IKF) [19], but also Monte-Carlo filtering, such as particle filters [20]. In the context
of SLAM, several works have been made. In [21], aVSLAM on LG is proposed and based on
aLG-UKF. The unknown state is assumed to be lying on the LG SE2+p(3). In [22], aSLAM
on LGs is developed that combines LG-EKF and LG-IKF. In [23], arobust hybrid VSLAM is
proposed to detect the loop closures: the map and the pose are constructed in aEuclidean
framework, but the loop closures are determined by estimating 3D map similarities with
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aLG modelling. All of these techniques have in common the assumption that the map is
constructed by estimating Euclidean parameters (3D points).

In this study, we propose aLG-EKF-VSLAM which estimates both the state and the map
on LGs. The advantages of this method are that it intrinsically takes into account the geom-
etry of the pose, and it copes with the high non-linearities introduced by the camera model.
Consequently, the proposed approach should theoretically improve the pose-estimation
performance.

1.2. Contribution

Our contribution is two-fold:

• Theoretical: we define anew matrix state containing the camera pose and the pattern
transformations on SE(3), which constitutes the map. Consequently, the associated
state space is (SE(3))1+K (1 + K direct products of SE(3)), where K is the number of
current patterns;

• Algorithmic: the newly detected patterns are initialized by aSE(3) transformation,
obtained by minimizing acriterion through aGauss–Newton algorithm on LGs.

1.3. Organization

This paper is organized as follows: the EKF-VSLAM associated with the camera
observation model in the context of coded patterns is detailed in Section 2. In Section 3,
abackground on LGs is introduced, and the considered camera model is detailed and
rewritten on LG SE(3). The proposed LG-VSLAM, based on LG-EKF, is then explained
in Section 4. Section 5 is dedicated to the performance evaluation. The proposed algorithm
is implemented and assessed with simulated and real data and compared to aclassical
Euclidean EKF-SLAM. Finally, conclusions and remarks are drawn in Section 6.

2. The Euclidean Approach

In this section, we present the classical Euclidean pinhole camera model. Particularly,
we provide the different Euclidean parametrizations of unknown variables and the way
the EKF-VSLAM is applied.

2.1. Coded Patterns

Consider amobile robot equipped with amonocular camera which tries to localize itself
by using coded patterns spread out in its close environment. In our case, each coded pattern
is a2D square surface, composed of four circles of the same size (see Figure 1). We define
the center of the bottom left ellipse as the origin of the pattern’s local frame. In this
frame, the 3D coordinates {qi}4

i=1 of the centers of each ellipse can be computed, knowing
the inter-circle distance L. Consequently, every pattern j can be fully characterized by:

• arotation matrix between the local frame and aworld frame, R(j)
WP;

• the position of the origin of the local frame expressed in this world frame, p(j)
WP;

• the distance L between the center of two ellipses;
• an ID coded by the circular bar-codes.

2.2. Camera Observation Model

At each instant k, afiducial pattern detector provides the 2D coordinates of the center
of each ellipse, u(j)

k,i , associated to the 3D point qi of pattern j in the world frame. According
to the pinhole camera model, the reprojection function provides the mathematical relation
linking {u(j)

k,i }
4
i=1 and {q(j)

i,C}
4
i=1, such as:

u(j)
k,i =

f

(q(j)
i,C)3

[
νx

(
q(j)

i,C

)
1
+ x0, νy

(
q(j)

i,C

)
2
+ y0

]
+ n(j)

k,i , (1)
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with f being the focal distance of the camera, (x0, y0) being the principal point of the image
and parameters νx and νy, the pixel densities on the horizontal and the vertical axes,

respectively. (v)l denotes the lth component of vector v. The random process, n(j)
k,i , is

considered as white Gaussian noise on R2 with covariance N, n(j)
k,i ∼ NR2(0, N). As

illustrated in Figure 2, q(j)
i,C explicitly depends on the rotation matrix R(k)

WC and the rotation

between the frame of the coded pattern and the world frame R(j)
WP. In aclassical Euclidean

framework, they can be parametrized by:

• Euler angles: the unknown variables are six angles {θ(k), φ(k), ψ(k), θ(j) φ(j), ψ(j)}, such as:

R(k)
WC = Rx(θ

(k))Ry(φ
(k))Rz(ψ

(k)) (2)

R(j)
WP = Rx(θ

(j))Ry(φ
(j))Rz(ψ

(j)), (3)

where Ru denotes an elementary 3D rotation according to the axis u;
• Quaternion: In this case R(k)

WC and R(j)
WP can be written as acomplex combination of

quaternion coefficients with the form z = a + b i + c j + d k.

Figure 2. Geometrical representation of the projection camera model.

Through this observation model and agiven dynamic model, it is possible to estimate
the global state xk containing:

• the pose of the camera
[
θ(k), φ(k), ψ(k), p(k)

WC

]
∈ R6;

• the set of parameters of the patterns {θ(j), φ(j), ψ(j), p(j)
WP}

K
j=1 ∈ R6 K, where K is

the number of detected patterns,

by performing aclassical EKF-VSLAM [24].

2.3. Why EKF-SLAM on Lie Groups?

Using the EKF-VSLAM with coded patterns and classical camera model has some
drawbacks due to the high non-linearity of the observation model. Indeed, we observe
that the unknown variables are linked to the observations by the composition of multiple
inverse and trigonometric functions for the Euler parametrization. For the quaternion
parametrization, the non-linearity is introduced by the composition of inverse and mul-
tiple square functions. Thus, the linearization in the update step of the EKF introduces
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errors. This can induce some numerical problems in the Jacobian calculation and degrade
the performance of the estimation.

In the following, we propose to resolve the SLAM problem by performing the filtering
on LGs. Indeed, this formalism enables us to overcome these problems. Particularly:

• the camera observation model can be written in acompact way and depends “linearly”
on the rotation matrix. Consequently, the approximation at order 1 is more valid;

• The Jacobian of the observation model can be computed analytically by consider-
ing the geometrical structure of the rotation matrices and does not depend on any
parametrization.

3. Background on Lie Groups
3.1. Elementary Notions

A LG G is aset which has the properties of a group and a smooth manifold [25,26]. In this
work, we deal with matrix LGs; thus, every element of G is amatrix belonging to Rn×n.

→ Due to its group structure, G has an internal composition law which is associative.
Furthermore, there is an identity element defined, so that each element of the group
has an inverse;

→ Due to its manifold structure, it is possible to compute the derivative and the integral
of two elements, or the inverse of one element.

Furthermore, the properties of Lie Groups allow us to define atangent vector space
TMG at every point M ∈ G. It is then possible to associate any point of TIG to any point of
TXG, thanks to the operator called left tangent application (see Figure 3). The latter is defined,
between two tangent spaces, by:

LL
X Y : TXG → TYG

V 7→ YX−1 V
(4)

Consequently, we can work with the tangent space to the identity In×n, also called
the Lie algebra, denoted as g. This space is avector space with adimension of m and defines
the dimension of G as manifold.

Figure 3. Geometrical relationship between TIG and TXG through the left tangent application.

We can establish arelation between G and g through the exponential mapping, ExpG :
g→ G, and its reciprocal, the logarithm mapping, LogG : G → g. They are locally bijective.
The mathematical expressions of these operators can be found in [25,27,28].

On the other hand, g can be directly linked to the Euclidean space Rm through an iso-
morphism [.]∧G and its inverse [.]∨G, such as a = [a]∧G and a = [a]∨G, ∀a ∈ Rm, ∀a ∈ g.
To condense these notations , we define a = Log∨G(X) =

[
LogG(X)

]∨ and X = Exp∧G(a) =
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ExpG

(
[a]∧G

)
, with X ∈ G and a ∈ Rm. Figure 4 shows, geometrically, the relationship

between aLG G, its Lie algebra g, and Rm.

Figure 4. Relation between the Lie group, the Lie algebra, and the Euclidean space. For each element
a ∈ Rm, we associate an element a in Lie algebra, which is converted in aelement X of LG G, thanks
to the operator Exp∧G(.) .

3.2. Non-Commutativity and Jacobian
3.2.1. Non-Commutativity

In general, aLG is non-commutative and ∀ (a, b) ∈ (Rm)2:

Log∨G(Exp∧G(a) Exp∧G(b)) 6= a + b. (5)

The adjoint representation allows one to take into account the non-commutativity of
LGs. It is an application AdG(.) : G → Rm×m, such that ∀X ∈ G, ∀a ∈ Rm, X Exp∧G(a) =
Exp∧G(AdG(X) a) X.

The non-commutativity of LGs can be also explicited through the Baker–Campbell–
Hausdorff formula (BCH):

Log∨G(Exp∧G(−a) Exp∧G(a + b)) = φG(−a)b + O(‖b‖2)., (6)

and depends of the left Jacobian matrix, which is written:

φG(a) =
+∞

∑
n=0

adG(a)n

(n + 1)!
, (7)

where adG : Rm → Rm×m is an adjoint operator characterizing the non-commutativity
directly on the Lie algebra.

3.2.2. Jacobian on LGs

We can define the notion of Jacobian according to afunction. Let us consider f : G → R
an integrable function. We define LG Jacobian of f by the following expression:

DX f =
∂ f (X Exp∧G(δ) )

∂δ

∣∣∣∣
δ=0

, (8)

which can be seen as ageneralization of the classical directional derivative.

3.3. Lie Groups of Interest

Two useful LGs in our application are introduced in this part.
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3.3.1. The Special Orthogonal LG SO(n)

The LG SO(n) is the group of rotation matrices of dimension n. Every element R of
SO(n) belongs to the following set:

SO(n) = {R ∈ Rn×n|R R> = I, |R| = 1}, (9)

where |R| is the determinant of matrix R. Its Lie algebra is the set of skew-symmetric
matrices:

so(n) = {[w]×|w ∈ Rm}, (10)

where w is the vector of Rm isomorph to the element of [w]×. The notation [.]× refers to
the skew-symmetric matrix operator. In the case of n = 3, every element of SO(3) is a3D
rotation matrix, which can be classically parametrized in different ways (quaternions or
Euler angles), as seen previously. With the LG formalism, we may parametrize it with
an angle vector θ ∈ Rm (m = 3) . It is written, according to the Rodrigues formula [29], as:

R = I3×3 +
[θ]×
‖θ‖ sin(‖θ‖) +

[θ]2×
‖θ‖2 (1− cos(‖θ‖)). (11)

Every element of its Lie algebra has the following structure:

[θ]× =

 0 −(θ)3 (θ)2
(θ)3 0 −(θ)1
−(θ)2 (θ)1 0

. (12)

3.3.2. The Special Euclidean LG SE(n)

The LG SE(n) corresponds to the semi-direct product between SO(n) and Rn:

SE(n) =
{

A =

[
R x

01×n 1

]∣∣∣∣R ∈ SO(n), x ∈ Rn
}

. (13)

Its Lie algebra is:

se(n) =
{[

[w]× u
01×n 0

]∣∣∣∣w ∈ R
n (n−1)

2 , u ∈ Rn
}

. (14)

3.4. Camera Observation Model on LGs

The observation camera model (1) can be written in acompact way on the LG SE(3).
Indeed, the camera rotation R(k)

WC and the associated translation p(k)
WC constitute the rigid-

body transformation of the camera and has the following form:

X(k)
WC =

[
R(k)

WC p(k)
WC

01×3 1

]
∈ SE(3). (15)

In asimilar way for the landmarks, the rotation matrix R(j)
WP and the associated transla-

tion p(j)
WP are written as:

X(j)
WP =

[
R(j)

WP p(j)
WP

01×3 1

]
∈ SE(3). (16)
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According to Figure 2, we can express the successive SE(3) transformations between
the camera frame C and the pattern frame P in the following way:[(

q(j)
i,W

)>
, 1
]
= X(j)

WP

[
q>i , 1

]
(17)[(

q(j)
i,C

)>
, 1
]>

=
(

X(k)
WC

)−1
[(

q(j)
i,W

)>
, 1
]>

. (18)

Consequently, the pinhole model (1) can be written as:[(
u(j)

k,i

)>
, 1
]>

= h(X(k)
WC, X(j)

WP) +

[(
n(j)

k,i

)>
, 0
]>

, (19)

where:

h(X(k)
WC, X(j)

WP)=
K I3×4

(
X(k)

WC

)−1
X(j)

WP
[
q>i , 1

]>(
I3×4

(
X(k)

WC

)−1
X(j)

WP
[
q>i , 1

]>)
3

, (20)

and K corresponds to the camera’s calibration matrix:

K =

νx f 0 x0
0 νy f y0
0 0 1

. (21)

It is also interesting to note that the model can be written by substituting L:[(
u(j)

k,i

)>
, 1
]>

= hL(X(k)
WC, X(j)

WP; L) +
[(

n(j)
k,i

)>
, 0
]>

, (22)

where:

hL(X(k)
WC, X(j)

WP, L)=
K I3×4

(
X(k)

WC

)−1
X(j)

WP [L ei, 1]>(
I3×4

(
X(k)

WC

)−1
X(j)

WP [Lei, 1]>
)

3

(23)


e1 = [0, 0, 0] (24)

e2 = [1, 0, 0] (25)

e3 = [0, 1, 0] (26)

e4 = [1, 1, 0]. (27)

This reformulation allows us to define an inverse problem for L. Thus, when the latter
is unknown, it is also possible to estimate it conjointly with the camera pose.

4. SLAM Filtering Problem on Lie Groups

In the state-of-the-art VSLAM approaches (Euclidean or Lie groups), the aim is to
obtain arecursive estimation of both the pose of the camera and the pose of each pattern
in the world frame. The unknown state contains, at each instant, the pose parameters
(on SE(3) or on R6) and the set of 3D points on R3. Contrary to the Euclidean VSLAM ap-
proach, we propose, in the same way as [21], to define the pose parameters as aSE(3) matrix,
but instead of estimating the positions of the 3D points that compose each pattern, we take
advantage of the coded patterns approach in order to estimate the SE(3) transformation
X(j)

WP. Consequently, if the pattern size is known, the estimation of this transformation pro-
vides directly the estimation of the 3D position of the center of each ellipse in that pattern.
In this way, the global state belongs to several direct products of SE(3). To achieve this
estimation, we perform SLAM-extended Kalman filtering on LGs (LG-EKF-VSLAM) based
on the LG-EKF proposed in [23]. Classically, on aEuclidean space, an extended Kalman
filter is arecursive filtering algorithm which enables the approximation of the posterior
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distribution of parameters of interest by aGaussian distribution. The LG-EKF can be seen
as ageneralization of the latter in the case where the parameters are lying on LG.

The main difference with the algorithm proposed in [23] is that we express the land-
mark initialization phase (mean and covariance) using aconcentrated Gaussian on LG.

4.1. Gaussian Distribution on LGs

To perform filtering on LGs, probability distributions on these manifolds have to be
defined. Some have already been introduced in the literature, in particular for smooth
manifolds [30,31]. We focus, in this paper, on the Gaussian distributions (CGD) on LGs,
introduced in [32], which generalizes the concept of Euclidean Gaussian multivariate
probability distribution functions (pdf). Indeed, they have similar properties, such as
minimizing the entropy under some constraints.

It is possible to obtain arealization from aCGD thanks to aEuclidean Gaussian sample.
Indeed, if ε is aGaussian vector with covariance matrix P, and µ is amatrix defined on
aLG G of intrinsic dimension m, then X = µ Exp∧G(ε) is distributed according to aleft-
concentrated Gaussian pdf (CGD) (in asimilar way, we can define aright CGD where sample
X can be written X = Exp∧G(ε) µ) on G, with parameters µ ∈ G and P ∈ Rm×m. We note that
X ∼ N L

G(X; µ, P). If µ is close to I, the expression of this pdf can be approximated by:

p(X) ' 1√
(2 π)m |P|

exp−
1
2 ||Log∨G(µ

−1 X)||2P , (28)

where |P| is the determinant of the matrix P and ‖.‖2
P is the Mahalanobis distance.

4.2. Unknown State and Evolution Model

The unknown state is constituted of the camera pose X(k)
WC ∈ SE(3) and the transfor-

mation X(j)
WP of every pattern j, ∀j ∈ J1, mkK, where mk is the number of already-detected

patterns from an initial instant to instant k.
Due to the dynamics of the robot, some other Euclidean parameters (for instance,

the vehicle velocity or the ellipse size) may have to be integrated in the state. Thus, to keep
the LG compact in form, such additional parameters can be added into avector g(k) ∈ Rp.
Thus, the global state (without landmarks) of our VSLAM problem can be written as:

X(k)
a =

 X(k)
WC 04×(p+1)

0(p+1)×(p+1)
Ip×p g(k)

01×p 1

 ∈ SE(3)×Rp.

As aconsequence, the LG unknown global state X(k), containing X(k)
a and the set of

pattern transformations, can be written as:

X(k) =


X(k)

a 0(5+p)×4 . . . 0(5+p)×4

04×(5+p) X(1)
WP 04×4

...
. . .

...
04×(5+p) 04×4 . . . X(mk)

WP

, (29)

with X(k) ∈ G = SE(3)×Rp × SE(3)mk being asquare matrix with size dX
k = 5 + p + 4 mk.

To perform the filtering, we have to define the evolution model of this state. By as-
suming that the patterns are static, the global evolution model can be written as:

Π(X(k))=Π(X(k−1))Exp∧G′(Ω(X(k−1), w(k−1))+n(k)) , (30)

where Π is afunction which expresses the state on the LG G′ = SO(3)×R3×Rp× SE(3)mk

and defines two separated dynamic models on the rotation R(k)
WC and the position p(k)

WC.
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• Ω : G′ → Rdim(G′) =
[
ΩX(X

(k)
a )>, 01×6 mk

]>
is adynamic evolution function (where

dim(G′) corresponds to the dimension of G′);
• w(k−1) is acontrol input;

• n(k) =

[(
n(k)

a

)>
, 01×6 mk

]>
, where n(k)

a is a white Gaussian noise on Rdim(G′), with

covariance matrix Q(k)
a .

4.3. Principle of LG-EKF

The aim of the LG-EKF is to recursively approximate the posterior distribution of the un-
known parameters defined on LG by aleft CGD (note that it also possible to define the LG-EKF-
SLAM with aright CGD). Precisely, in our case, we want to approach p(X(k)|u(1:k)) by:

p(X(k)|u(1:k)) ' N L
G(X

(k); X̂(k|k), P(k|k)), (31)

where u(1:k) is the set of all collected measurements from instant 1 to k. In the same way as
the classical EKF, the estimation is done in two steps: prediction and update.

4.3.1. The Prediction Step

The objective of this step is to estimate the distribution p(X(k)|u(1:k−1)) (i.e., estimating
the values {X̂(k|k−1), P(k|k−1)}), given aprior on the distribution p(X(k−1)|u(1:k−1)) (defined

by {X̂(k−1|k−1), P(k−1|k−1)}). As n(k)
a is zero-mean, the prediction of X̂(k−1|k−1) is given,

thanks to the noise-free dynamic model (30) on LG, by:

Π(X̂(k|k−1)) = Π(X̂(k−1|k−1))Exp∧G′(Ω(X̂(k−1|k−1)) ) (32)

and P(k|k−1) is given by:

P(k|k−1) = F(k) P(k−1|k−1)
(

F(k)
)>

+

φG(−Ω(X̂(k−1|k−1)))Q(k) φG(−Ω(X̂(k−1|k−1)))>, (33)

where:

F(k) = AdG(Exp∧G(Ω(−X̂(k−1|k−1)) ) + φG(Ω(−X̂(k−1|k−1)))C(k−1) (34)

C(k−1) = DX̂(k−1|k−1)Ω (35)

Q(k) =

[
Q(k)

a 09×6 mk
06 mk×9 06 mk×6 mk

]
. (36)

4.3.2. The Update Step

The update step takes advantage of the camera observation u(j)
k,i provided at instant k

of the jth already-known pattern, in order to approximate:

p(X(k)|u(1:k)) ' N L
G(X

(k); X̂(k|k), P(k|k)). (37)

The parameters {X̂(k|k), P(k|k)} are written as:

X̂(k|k) = X̂(k|k−1) Exp∧G(K
(k) m(k)) , (38)

P(k|k) = φG(−K(k) m(k))P(k|k,−) φG(−K(k) m(k))>, (39)
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where:

m(k) =

Innovation vector︷ ︸︸ ︷(
ũ(j)

k − h̃(X̂(k|k−1)
a , X̂(j)

WP)
)

(40)

K(k) = P(k|k−1)
(

J(k)
)>
×(

J(k) P(k|k−1)
(

J(k)
)>

+ Ñ
)−1

(41)

P(k|k,−) = (I−K(k) J(k))P(k|k−1), (42)

and:

• Ñ =

[
N 0
0 0

]
(43)

• ũ(j)
k =

[
ũ(j)

k,1

>
, . . . , ũ(j)

k,4

>
]>

(44)

with ũ(j)
k,i =

[(
u(j)

k,i

)>
, 1
]>

(45)

• h̃(X̂(k|k−1)
a , X̂(j)

WP) =[
h(X̂(k|k−1)

a , X̂(j)
WP)

>, . . . , h(X̂(k|k−1)
a , X̂(j)

WP)
>
]>

︸ ︷︷ ︸
repeated 4 times for the 4 measurements

(46)

• J(k) =
[
J(k)c 02×6 (j−1) J(j)

p 02×6 (mk−j)

]
� I4×1 (47)

is the Jacobian matrix of h̃, according to X̂(k|k−1), with:

J(k)c = D
X̂(k|k−1)

a
h (48)

J(j)
p = D

X̂(j)
WP

h, (49)

and �defines the Kronecker product.

Remark 1. It is important to note that if several patterns are detected at the same instant, the update
step is recursively realized for each of them.

4.4. Initialization of Pattern on SE(3)

If anew pattern is detected by the camera, the step is called the mapping step. As anew
object X(j)

WP is detected, the current state X(k) is augmented as follows:

X(k)
p =

 X(k) 0dX
k−1×4

04×dX
k−1

X(j)
WP

. (50)

Consequently, the associated covariance to this state can be written as:

P(k|k)
a =

 P(k|k) P(k|k)
CP(

P(k|k)
CP

)>
P(k|k)

WP

, (51)

where:

• P(k|k)
CP corresponds to the correlation between the new pattern and the previous state;
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• P(k|k)
WP is the covariance associated to the new pattern j.

At this step, we need to have an initial estimation of the pose of the pattern and of
its associated covariance matrix. Classically, in aEuclidean framework, the initialization
of apattern is determined by finding the solution of the inverse of the observation model,
and the covariance matrix is approximated by computing correlations using associated
Jacobians [33].

In the case of the camera model, this approach is not feasible due to its analytical
complexity, and numeric approaches must be considered. For instance, it is possible to
find the initial state by implementing alocal bundle adjustment, which optimizes acriterion
built from the observation model. The covariance matrix of pattern j can be obtained by
aGauss–Laplace approximation [34], and then the global covariance matrix of the new
state is updated according to Equation (39). In this work, we propose an adaptation of this
method, using the LG formalism.

The initialization of X(j)
WP can be obtained by minimizing the anti-logarithm (opposite of

the logarithm) of the posterior distribution p(X(j)
WP|{u

(j)
k,i }

4
i=1, u(1:k−1), X̂(k|k−1)

WC ), associated
to the measurement j. Due to its non-tractability, we propose approaching it by aleft CGD
with parameters {X̂WP, PWP}:

p(X(j)
WP|{u

(j)
k,i }

4
i=1, u(1:k−1), X̂(k|k−1)

WC )

' N L
SE(3)(X

(j)
WP; X̂WP, PWP), (52)

where X̂WP is the estimated pose of the new pattern and PWP its associated covariance.

4.4.1. Computation of X̂WP

X̂WP can be determined by maximizing the posterior distribution (52). Due to the Bayes
rule, we show that:

p(X(j)
WP|{u

(j)
k,i }

4
i=1, u(1:k−1), X̂(k|k−1)

WC )

∝
4

∏
i=1

p(u(j)
k,i |X̂

(k|k−1)
WC , u(1:k−1), X(j)

WP) (53)

'
4

∏
i=1
NR2

(
u(j)

k,i ; hp(X̂
(k|k−1)
WC , X(j)

WP), N
)

, (54)

where hp is afunction conserving the two first components of h. Consequently, we seek to
find the minima of the following criterion corresponding to the anti-logarithm of (54):

X̂WP = argmin
XWP∈SE(3)

1
2
‖φ(XWP)‖2

Σ, (55)

where:

{
[φ(XWP)]i = u(j)

k,i − hp(X̂
(k|k−1)
WC , XWP) ∀i ∈ {1, . . . , 4} (56)

Σ = N� I4×4 (57)

and defines an optimization problem on SE(3). A local minima is obtained thanks to
aGauss–Newton algorithm on LG [35]. At each iteration l, the updated recursive formula
is written as:

X(l)
WP = X(l−1)

WP Exp∧SE(3)(δ
(l)) , (58)
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where δ(l) is adescent direction, computed in the following way:

δ(l) = −
((

J(l−1)
φ

)>
Σ−1 J(l−1)

φ

)−1 (
J(l−1)

φ

)>
Σ−1 φ(l−1), (59)

with:

J(l−1)
φ = D

X(l−1)
WP

φ (60)

φ(l−1) = φ(X(l−1)
WP ). (61)

4.4.2. Computation of PWP

The initial covariance of XWP is obtained by using aGauss–Laplace approximation on
LG. It consists to approximate φ around X̂WP under the form:

φ(XWP) ' φ(X̂WP) + Jφ Log∨SE(3)(X
−1
WP X̂WP) . (62)

As X̂WP is acritical point of ‖φ(X)‖2
Σ, we obtain:

p(X(j)
WP|u(1:k−1), X̂(k|k−1)

WC ) ' (63)

exp
−

1
2

Log∨SE(3)(X
−1
WP X̂WP)

> J>φ Σ−1 Jφ Log∨SE(3)(X
−1
WP X̂WP)

. (64)

By identification, with the expression of the CGD, it implies that PWP is approximated by:

PWP = J>φ Σ−1 Jφ. (65)

To obtain the cross-correlation matrix P(k|k)
CP , as in (51), we perform an update step of

the increased state (50) with the measurement u(j)
k,i .

5. Experiments

In this section, we compare our proposed approach, the LG-EKF-VSLAM, to the stan-
dard EKF-VSLAM algorithm while using coded patterns. We first carried out two Monte-
Carlo simulations in order to evaluate the usefulness of performing LG modelling for
monocular visual SLAM. In the first scenario, we considered that the distance between
the center of two ellipse on the coded patterns, L, is perfectly known. For the second
simulation, L is added to the state vector as aparameter to be estimated.

We then evaluated the LG-EKF-VSLAM with real data obtained within our labora-
tory, since, to the best of our knowledge, there are no available public benchmarks with
coded patterns.

5.1. Experiments with Simulated Data

In the simulated scenarios, we considered awheeled robot following atrajectory gen-
erated according to aconstant velocity model. The control input is given by asimulated
angular velocity w(k). The unknown state is constituted of the camera pose X(k)

WC and
the linear velocity v(k):

X(k)
a =

 X(k)
WC 04×4

04×4
I3×3 v(k)

01×3 1

 ∈ SE(3)×R3.
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The discrete dynamic model is written as:

v(k) = v(k−1) + nv δt (66)

p(k)
WC = p(k−1)

WC + v(k−1)δt + np δt (67)

R(k)
WC = R(k−1)

WC Exp∧SO(3)(w
(k−1) δt + nr δt) , (68)

where δt is the sampling rate. nv, nw, np, and nr are four white Gaussian noises on linear
and angular velocity, position, and orientation, respectively. These equations can be written
on G with the form (30), where:

ΩX(X
(k−1)
a ) =

[(
w(k−1)

)>
δt,
(

v(k−1)
)>

δt, 01×6 mk

]>
(69)

n(k)
a =

[
n>r δt, np δt>, nv δt>

]>
. (70)

The obtained trajectory is generated during T = 885 s with δt = 1 s, and is shown
in Figure 5. The positions of each coded pattern are defined with anull z-axis and are
randomly distributed all along the ground-truth trajectory. Their orientations are obtained
by sampling from aCGD on SO(3), with mean I3 and covariance 0.22 I3.

The camera measurements are simulated according to the model (22), with:

K =

200 0 240
0 200 320
0 0 1

, N = σ2
n I2

σn = 10−1pixel, L = 5 m.

The Jacobian matrices C(k−1), J(k), and φG(.) of the LG-EKF-VSLAM (from
Equations (7), (35), and (47), respectively) have been implemented according to the formu-
lation given in Appendices A.1, B, and C.

Figure 5. Simulated true trajectory and ellipse center positions of 9 coded labelled patterns.

The performance of the method must be evaluated on astate belonging to SE(3).
Consequently, we studied it by separating the estimator associated with the rotation matrix
R̂(k|k)

WC and the estimator associated with the position p̂(k|k)
WC .

(1) The quality of R̂(k|k)
WC can be evaluated by using two intrinsic metrics on LGs, which

enables us to compute the rotation error directly on SO(3):
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• aRMSE (Root Mean Square Error) metric, which can be seen as ageneralization of
the classical Euclidean RMSE. The classical distance is substituted by the geodesic
distance on SO(3) [36]:

RMSER =√√√√ 1
Nr T

T

∑
k=1

Nr

∑
i=1
‖Log∨SO(3)(

(
R(k)

WC

)−1
R̂(k|k),i

WC ) ‖2, (71)

where R̂(k|k),i corresponds to the Monte-Carlo realization i of the rotation matrix
estimator at epoch k. Nr is the number of realizations;

• amean RPE (Relative Pose Error) metric to evaluate the relative pose error between
two consecutive epochs for several realizations of the algorithm.

RPER = (72)

1
Nr T

T

∑
k=1

Nr

∑
i=1

∣∣∣∣‖Log∨SO(3)(
(

R(k−1)
WC

)−1
R(k)

WC) ‖−

‖Log∨SO(3)(
(

R̂(k−1|k−1),i
WC

)−1
R̂(k|k),i

WC ) ‖
∣∣∣∣; (73)

(2) As the position parameter p(k)
WC is Euclidean, the quality of its estimator is determined

with the classical Euclidean RPE and RMSE.

These performances are compared to aEuclidean EKF-VSLAM. In the latter, the ro-

tation matrix is parametrized by Euler angles
[
θ(k), ψ(k), φ(k)

]>
. Consequently, the un-

known state is avector which belongs to R6+p+6 mk . The estimation error on rotation
and position are directly evaluated by aclassical RPE and RMSE between the vector[

θ(k), ψ(k), φ(k),
(

p(k)
WC

)>]>
and the estimated vector

[
θ̂(k), ψ̂(k), φ̂(k),

(
p̂(k)

WC

)>]>
.

5.1.1. Case 1: L Perfectly Known

According to Table 1, we observe that the proposed method slightly outperforms
the classical EKF-VSLAM. Two arguments can explain these results:

• Firstly, the LG modelling takes into account the intrinsic properties of the unknown
state belonging to SE(3). Consequently, the indeterminacy of the Euler angle estimates
is deleted;

• Secondly, through this modelling, the observation model is freed from the non-linearity
introduced by the cosine and sine functions of the rotation matrix in the Euclidean modelling.
In this way, the approximation of the covariance estimation error is more precise.

Table 1. Simulation results with known L. Obtained performance estimation for Nr = 500 realizations.

LG-EKF-VSLAM EKF-VSLAM

RMSE position (m) 0.298 0.427
RMSE orientation (rad) 0.0048 0.0055

RPE position (m) 0.0172 0.0205
RPE orientation (rad) 5.12× 10−4 6× 10−4

5.1.2. Case 2: L Is Misspecified

In order to challenge the proposed algorithm, we assume that the distance between
two ellipses of apattern is incorrectly specified. Consequently, L is initialized with an initial
error on the true value (5 m) equal to 1 m, and added to the state:
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[
X(k)

a 0
0 L

]
∈ SE(3)×R4. (74)

In order to estimate L with the LG-EKF-VSLAM, the observation model that explic-
itly involves L is considered. From anumerical point of view, we also have to compute
the Jacobian of the observation model according to L.

From the obtained results given in Table 2 and Figure 6, we can observe that the LG-
EKF-VSLAM achieves the best results. Indeed, compared to the EKF-VSLAM, it is able to
asymptotically converge to the true value of L, in spite of high initialization errors (here,
1 m). Indeed, the estimation error becomes inferior to 0.1 m. Moreover, the precision of
the estimator, after convergence, is better than for the Euclidean EKF-VSLAM (see Table 2).

Table 2. Simulation results with misspecified L. Obtained performance estimation for Nr = 500 realizations.

LG-EKF-VSLAM EKF-VSLAM

RMSE position (m) 0.758 1.257
RMSE orientation (rad) 0.0158 0.065

RPE position (m) 0.0398 0.0924
RPE orientation (rad) 7.2× 10−4 7.7× 10−4
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Figure 6. Evolution of the RMSE on L for Nr = 500 realizations.

5.2. Experiment with Real Data
5.2.1. Experiment Setup

To validate the methodology presented in the previous section (Section 4), we per-
formed an experiment with amonocular camera (PointGrey Blackfly from Flir @7fps),
with a3.8–13-mm Varifocal lens, embedded on amobile cart. Additionally, an Optitrack
motion-capture system provided the ground truth for the pose of the camera and the coded
patterns. The camera’s reference trajectory and the true positions of the coded patterns (i.e.,
the center of the bottom-left ellipse) are represented in Figure 8. The camera’s calibration
matrix is given by:

K =

1250.94 0 667.14
0 1251.77 532.89
0 0 1

. (75)

In this experiment, 12 coded patterns, each printed on aA3 paper, with L = 0.1415 m,
were placed in different places of the room, as illustrated in Figures 7 and 8. The camera
moved in acircular motion and the fiducial pattern-detection algorithm provided obser-
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vations for each frame. The state X(k)
a contains the pose, but also the linear and angular

velocity w(k). Indeed, in our experiment, no angular sensor is available; thus, we used
aconstant velocity model. Consequently, we have:

X(k)
a =


X(k)

WC 04×4 04×4

04×4
I3×3 v(k)

01×3 1
04×4

04×4 04×4
I3×3 w(k)

01×3 1

 ∈ SE(3)×R6. (76)

Figure 7. First image frame integrated in the detector: it computes the ellipse coordinates of the
pattern with labels 18, 19, and 21.

Figure 8. Ground truth obtained by an Optitrack motion capture system in the XY–plane, superim-
posed to the position of the center of the bottom-left ellipse of each coded pattern.

To take into account the circular motion of the mobile in the filter, we propose leverag-
ing aposition-prediction model correlating its position and orientation. Indeed, the correla-
tions between these two variables are especially high in the turns.
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The proposed model has the following structure:

p(k)
WC = p(k−1)

WC + R(k−1)
WC

[(
v(k−1)

)
1
, 0, 0

]>
δt + np δt. (77)

The translation velocity and rotation matrix are assumed to follow the evolution
models (66) and (68). Moreover, we suppose that the angular velocity follows arandom
walk process with aGaussian white noise nw. Consequently, the function ΩX(X

(k−1)
a ) is

written as:

ΩX(X
(k−1)
a ) =[

(w(k−1))> δt,
(

R(k−1)
WC

[(
v(k−1)

)
1
, 0, 0

]>)>
δt, 01×6

]>
. (78)

The computation of the Jacobian of ΩX is provided in Appendix A.2.

5.2.2. Obtained Results

In order to use the method with real data, we first have to define the noise parameters.
Concerning the observation model, the covariance noise is taken to be sufficiently high
in order to take into account the uncertainties introduced by non-analytical phenomenons.
Consequently, we take N = σ2

n I3 with σn = 2 pixels. Concerning the dynamic model,
the standard deviation of noises nr, np, nv, and nw are, respectively, fixed at σp = 10−4

δt
m.s−1

σr =
10−2

δt
rad.s−2, σv = 10−6

δt
m.s−2, and σw = 10−4

δt
rad.s−2.

In order to quantify the estimation error of the trajectory, we use the Optitrack refer-
ence system and compare it with the estimated trajectory given by each of the two methods.
This is done by computing the absolute error on the position at each instant of the trajectory,
as represented in Figure 9.

0 500 1000 1500 2000 2500
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Figure 9. Absolute position error obtained for the two methods.

In the two approaches, we first observe, through the Figures 10 and 11, that the esti-
mated position is particularly degraded in some parts of the trajectory, especially between
the coded patterns 9 and 11 and 6 and 7. This is due to the pattern detector, which does not
provide any detection because of blur and specular reflection on the objects. Consequently,
during these instants, the estimation is only realized by dead-reckoning navigation, and
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the non-linearities of the models increases the pose-estimation error. In Figure 9, we observe
that the performance of the two approaches are quite similar in terms of absolute error
estimation, even if the LG-EKF-VSLAM performs alittle bit better all over the trajectory.
This is confirmed through Figure 11. Indeed, we observe that during the last turn of
the trajectory, the EKF-VSLAM tends to deviate from the ground truth, implying ahigher
estimation error.

Figure 10. Estimated trajectory for EKF–VSLAM.

Figure 11. Estimated trajectory for LG–EKF–VSLAM.

6. Conclusions

In this paper, we propose an original modelling on LGs in order to perform monocular
VSLAM. After reformulating the classical pinhole on LGs, we propose aEKF-VSLAM
algorithm on LG for coded-pattern landmarks. We take into account the particularity of the
SLAM problem by proposing aLG method to initialize new patterns. Our algorithm has
been compared with aclassical EKF-VSLAM using aEuler parametrization on simulated
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data as well as on real-world data. Both the simulation and the experiments showed
the validity and the performance improvement provided by the proposed LG-EKF-VSLAM,
compared to the state-of-the-art solution. In addition, we have shown that amisspecified
value on the size of the coded pattern has alarge impact on the estimation solution. When
this parameter is taken into account as anew state in the estimation process, the EKF-
VSLAM reduces the estimation error, but is outperformed by the LG-EKF-VSLAM, which
converges asymptotically to the true value of L. This is mostly due to the LG formalism,
which copes better with system non-linearities.

A pertinent perspective would be to propose aLG-based approach by taking into
account the lack of knowledge of non-estimated parameters models. In our case, L could
be considered uncertain, but not estimated. There exist Euclidean filtering approaches
dedicated to this problem [37]; consequently, it would be pertinent to adapt them for
parameters lying on LGs.

Moreover, in ageneral way, it would be interesting to adapt the formalism of LG
(especially the optimization method) to other applications in computer vision and signal
processing. For instance, we can quote the well-known problems of Structure of Motion
(SfM) [38] and image registration [39].

From an application point of view, another perspective would be to fuse the camera
measurements with, for instance, information from Ultra-Wide-Band sensors or with a
Global Navigation Satellite System for outdoor navigation, in order to improve the perfor-
mance of the algorithm, especially in situations where camera frames can be lost or where
no patterns are present in the close environment of the vehicle.
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Appendix A. Computation of C(k−1)

It should be remembered that:

C(k−1) =
∂ Ω(X̂(k−1|k−1) Exp∧G(δ) )

∂δ

∣∣∣∣∣
δ=0

. (A1)

Appendix A.1. Case of ΩX

(
X(k)

a

)
from (69)

We know that ΩX : G → R9 is defined by:

ΩX(X(k−1)) =

[(
w(k−1)

)>
δt,
(

v(k−1)
)>

δt, 01×3

]>
. (A2)
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Consequently, the Jacobian of Ω, according to X(k−1), is written as:

C(k−1) =
[
JR, Jp, Jv, 09×6 mk−1

]
∈ R9×9, (A3)

with:

JR =
∂ ΩX(R̂

(k−1|k−1)
WC Exp∧SO(3)(δR) , ., .

∂ δR

∣∣∣∣∣∣
δR=0

(A4)

Jp =
∂ ΩX(., p̂(k−1|k−1)

WC + δp, .)
∂ δp

∣∣∣∣∣
δp=0

(A5)

Jv =
∂ ΩX(., ., v̂(k−1|k−1) + δv)

∂ δv

∣∣∣∣∣
δv=0

. (A6)

Due to the structure of ΩX, we show that:

JR = 09×3 (A7)

Jp = 09×3 (A8)

Jv =
[
0>6×3, δt I3×3

]>
. (A9)

Appendix A.2. Case of ΩX

(
X(k)

a

)
from (78)

We know that ΩX : G → R12 is defined by:

ΩX(X
(k−1)
a ) =[

(w(k−1))>,
(

R(k−1)
[(

v(k−1)
)

1
, 0, 0

]>)>
δt, 01×6

]>
. (A10)

The Jacobian has the following structure:

C(k−1) =
[
JR, Jp, Jv, Jw, 012×6 mk−1

]
∈ R12×12, (A11)

where JR, Jp, and Jv are defined by (A4), (A5), and (A6). We show that:

JR =

[
03×3,

[
G(1)

so(3) u(k−1) δt . . . , G(6)
so(3) u(k−1) δt

]>
, 03×6

]>
(A12)

u(k−1) =
[(

v̂(k−1|k−1)
)

1
, 0, 0

]>
(A13)

Jp = 012×3 (A14)

Jv =

[
03×3,

(
R̂(k−1|k−1)

WC [1, 0, 0]>
)>

δt, 03×6

]>
(A15)

Jw = [03×9, I3×3 δt]>, (A16)

where {G(l)
so(3)}

3
l=1

(
G(l)

so(3) ∈ R3×3
)

is avector basis of Lie algebra so(3).
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Appendix B. Computation of J(k)

It should be remembered that:

J(k) =
[
J(k)c 02×6 (j−1) J(j)

p 02×6 (mk−j)

]
� I4×1. (A17)

Consequently, we have to compute two quantities: J(k)c and J(j)
p .

Appendix B.1. Computation of J(k)c

J(k)c corresponds to the Jacobian of the observation, according to X̂(k|k−1)
a . Conse-

quently:

J(k)c =
∂h(X̂(k|k−1)

a Exp∧G(δc) , X̂(j)
WP)

∂δ

∣∣∣∣∣
δ=0

(A18)

=


∂h(X̂(k|k−1)

WC Exp∧SE(3)(δc))

∂δc
,

∂h(., g(k) + δg)

∂δg︸ ︷︷ ︸
0p×1


∣∣∣∣∣∣∣∣∣∣
δc=0,δg=0

. (A19)

Furthermore:

∂h(X̂(k|k−1)
WC Exp∧SE(3)(δc), X̂(j)

WP)

∂δc

∣∣∣∣∣∣
δc=0

=

∂ K I3×4

(
X̂(k|k−1)

WC Exp∧SE(3)(δc)
)−1

X̂(j)
WP
[
q>i , 1

]>
∂δc

(
I3×4

(
X̂(k)

WC Exp∧SE(3)(δc)
)−1

X̂(j)
WP
[
q>i , 1

]>)
3

∣∣∣∣∣∣∣∣
δc=0

. (A20)

In order to compute this Jacobian, we need to know:

• the classical derivative product rule according to δc ∈ R6;

• the fact that
∂ Exp∧SE(3)(δc)

∂(δc)l

∣∣∣∣∣
δc=0

= G(l)
se(3) ∀l ∈ J1, 6K, where G(l)

se(3) ∈ R4×4 is the lth

vector basis of Lie algebra se(3).

Consequently, by computing:

d(l) =
∂ h(X(k)

WC Exp∧SE(3)(δc) , X(j)
WP)

∂(δc)l

∣∣∣∣∣∣
δc=0

∈ R3,

J(k)c can be obtained in the following way:

J(k)c =
[
d(1), . . . , d(6), 0p×1

]
. (A21)

d(l) is, thus, obtained thanks to the product rule:

d(l) =
1
α2 {−K I3×4 G(l)

se(3)

(
X(k)

WC

)−1
X(j)

WP

[
q>i , 1

]>
α+(

I3×4 G(l)
se(3)

(
X(k)

WC

)−1
X(j)

WP

[
q>i , 1

]>)
3

β}, (A22)
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with: 
α =

(
I3×4

(
X̂(k)

WC

)−1
X̂(j)

WP

[
q>i , 1

]>)
3
∈ R (A23)

β = K I3×4

(
X̂(k)

WC

)−1
X̂(j)

WP

[
q>i , 1

]>
∈ R3. (A24)

Appendix B.2. Computation of J(j)
p

J(j)
p corresponds to the Jacobian of the observation, according to X̂(j)

WP. Thus:

J(j)
p =

∂h(X̂(k|k−1)
a , X̂(j)

WP Exp∧SE(3)(δp))

∂δp

∣∣∣∣∣∣
δp=0

(A25)

=
∂ K I3×4

(
X̂(k)

WC

)−1
X̂(j)

WP Exp∧SE(3)(δp)
[
q>i , 1

]>
∂δp

(
I3×4

(
X̂(k)

WC

)−1
X̂(j)

WP Exp∧SE(3)(δp)
[
q>i , 1

]>)
3

∣∣∣∣∣∣∣∣
δp=0

. (A26)

By using the classical derivative product rule, according to δp ∈ R6, we obtain:

f(l) =
∂h(X̂(k)

WC, X̂(j)
WP Exp∧SE(3)(δp))

∂
(
δp
)

l

∣∣∣∣∣∣
δp=0

=

1
α2 {K I3×4

(
X̂(k)

WC

)−1
X̂(j)

WP G(l)
se(3)

[
q>i , 1

]>
α−(

I3×4

(
X̂(k)

WC

)−1
X̂(j)

WP G(l)
se(3)

[
q>i , 1

]>)
3

β}. (A27)

Thus, J(j)
p is given by:

J(j)
p =

[
f(1), . . . , f(6)

]
. (A28)

Appendix C. Expression of φG(.)

Appendix C.1. Case of SO(3)

The left Jacobian of SO(3) is given by the following expression [26]:

φSO(3)(a) = I +
1− cos(‖a‖)
‖a‖2 [a]× +

‖a‖ − sin(‖a‖)
‖a‖3 [a]2×. (A29)

Appendix C.2. Case of SE(3)

The left Jacobian of SO(3) is given by the following expression [32]:

φSE(3)(a) =
[

φSO(3)(ar) Q(a)
03×3 φSO(3)(ap)

]
, (A30)
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with a =

 >
ar︸︷︷︸
∈R3

, ap︸︷︷︸
∈R3


>

and

Q(a) =
1
2
[
ap
]
× +

(
‖ar‖ − sin(‖ar‖)

‖ar‖3

)
×(

[ar]×
[
ap
]
× +

[
ap
]
× [ar]× + [ar]×

[
ap
]
× [ar]×

)
−1− ‖ar‖1

2 − cos(‖ar‖)
‖ar‖4

×
(
[ar]

2
×
[
ap
]
+
[
ap
]
[ar]

2
× − 3 [ar]× [ar]× [ar]

2
×

)
−

1
2

1− ‖ar‖ − cos(‖ar‖)
‖ar‖4 − 3

‖ar‖ − sin(‖ar‖)− ‖ar‖3

6
‖ar‖5

×
(
[ar]×

[
ap
]
× [ar]

2
× + [ar]

2
×
[
ap
]
× [ar]×

)
. (A31)

Appendix C.3. Case of G

In our case, the LG of interest is written as G = SE(3)×Rp × SE(3)mk , such that:

φG(a) =

φSE(3)(a1) 0 0
0 φRp(a2) 0
0 0 φSE(3)mk (a3)

, (A32)

with a =

 >
a1︸︷︷︸
∈R6

,
>
a2︸︷︷︸
∈R3

,
>
a3︸︷︷︸
∈R6 mk


>

. As Rp is acommutative LG, φRp(a2) = Ip×p. Furthermore,

φSE(3)mk (a3) is the block diagonal concatenation of mk repetitions of φSE(3)(.).
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