
HAL Id: hal-03549341
https://hal.science/hal-03549341

Submitted on 31 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TRESC: Towards redesigning existing symmetric ciphers
Hassan Noura, Ola Salman, Nesrine Kaaniche, Nicolas Sklavos, Ali Chehab,

Raphael Couturier

To cite this version:
Hassan Noura, Ola Salman, Nesrine Kaaniche, Nicolas Sklavos, Ali Chehab, et al.. TRESC: Towards
redesigning existing symmetric ciphers. Microprocessors and Microsystems: Embedded Hardware
Design , 2021, 87, pp.103478 (11). �hal-03549341�

https://hal.science/hal-03549341
https://hal.archives-ouvertes.fr


1

TRESC: Towards Redesigning Existing Symmetric
Ciphers

Hassan N. Noura1, Ola Salman2, Nesrine Kaaniche3, Nicolas Sklavos4, Ali Chehab2, and Raphaël Couturier1

1Univ. Bourgogne Franche-Comté (UBFC), FEMTO-ST Institute, CNRS, Belfort, France
2American University of Beirut, Electrical and Computer Engineering, Lebanon

3Department of Computer Science, University of Sheffield, UK
4University of Patras, Computer Engineering & Informatics Department, Greece

Abstract—Recently, the security of existing symmetric cryp-
tographic algorithms and protocols has been threatened by
new performance challenges and vulnerabilities. In this paper,
we propose a dynamic key-dependent approach, "TRESC", to
make existing symmetric ciphers more efficient and robust. This
can be done by using dynamic substitution and permutation
primitives to reduce the number of rounds while providing better
resistance against cryptanalysis and implementation attacks. In
this paper, the Key Setup Algorithm (KSA) of Rivest Cipher 4
(RC4) and its modified variants are applied for the construction
of these dynamic key-dependent substitution and permutation
primitives. The selection of the RC4-KSA is due to its lightweight
implementation since it requires simple permutation operation
with minimal overhead. The proposed dynamic cryptographic
solution can be integrated in any existing symmetric cipher such
as Advanced Encryption Standard (AES), SIMON and SPECK.
The security and performance analysis show the robustness
and effectiveness of the proposed solution, which strikes a
good balance between the required security level and system
performance.

Keywords: Key-dependent cryptographic primitives; crypto-
graphic analysis; dynamic cryptographic approach.

‘

I. INTRODUCTION

Recently, the rapid development and spread of the
communication and computing technologies challenge the
existing cryptographic algorithms [1], [2]. In this context,
these algorithms, mainly deployed to protect the proliferated
data, exhibit several performance and security limitations. To
protect data secrecy, the existing solutions rely on symmetric
key cryptography due to its efficient memory use and reduced
computational complexity compared to the asymmetric one.
In fact, symmetric ciphers are divided into two types: block
ciphers and stream ciphers. Stream ciphers are typically less
secure compared to block ciphers, which divide the data into
separate blocks of fixed size (usually 128 bits). Note that
a block cipher can be considered as a stream cipher when
applied with Output FeedBack (OFB) or Counter (CTR)
mode [3].

The confusion and diffusion properties are key requirements
for secure cipher schemes [4]. The confusion property plays
a vital role in preventing conventional crypatanalysis attacks
such as linear and differential attacks. Thus, this property

can be ensured by applying the substitution operation.
Otherwise, the diffusion property can be ensured by using the
permutation or the matrix multiplication operation. In most
existing ciphers, the substitution and permutation operations
use static S-box and P-box, respectively. In this context, there
are two kinds of cipher structures: static and dynamic [5].
The first one employs static confusion operations that can
achieve the maximum difference propagation probability and
the maximum input-output correlation probability to defend
against differential and linear attacks. Also, it uses static
diffusion functions with high linear branch number as a
linear mixing transformation, as in AES, SAFER, and 3-WAY
algorithms [6]. This type of ciphers has proven security
against cryptanalysis attacks. However, the static structure is
prone to future potential attacks, which can be overcome by
using a dynamic cipher structure [5].

The dynamicity helps in achieving a high security level and
it should be implemented in a way to result a low overhead in
terms of computational complexity and resource requirements.
Thus, the main goal of this paper is to strike a good balance
between system performance and security level by introducing
the dynamic key-dependent approach into existing cipher
schemes. The proposed dynamic approach is designed to be
incorporated into the substitution and permutation operations
since they require less overhead compared to the optimized
diffusion mixing operation. As such, existing ciphers will be
complemented with new lightweight, simple and dynamic
key-dependent substitution and permutation techniques. This
will lead to the generation of different substitution/permutation
tables during the encryption/decryption process. In this paper,
we use the Key Setup Algorithm (KSA) of RC4 and its
modified version towards producing dynamic substitution and
permutation tables.

For each new session, a session key is generated and
hashed to produce a new dynamic key, which is then divided
into 3 sub-parts; the first one is used as the traditional session
key to produce a set of round keys. The second part is used
to produce the cryptographic primitives (substitution and
permutation tables). The third sub-key part is used to produce
the update cryptographic primitives (three permutation tables),
which are used to update the cryptographic primitives for



2

each new message (or a set of messages). In fact, the update
mechanism of the cryptographic primitives depends on the
selected configuration and the required security level. In
addition, the maximum overhead introduced in terms of
latency is reached when the S-box and P-box are changed for
each data input block. Moreover, the proposed key-dependent
substitution and permutation construction algorithm includes
a large key space to resist the different attacks such as
brute force attack. To assess the cryptographic properties
of each generated cryptographic primitive, a set of security
tests were performed. The results showed that the produced
primitives satisfy the desired cryptographic properties such
as randomness, sensitivity and independence. Therefore, the
proposed solution makes the existing ciphers more efficient
and robust.

The rest of this paper is organized as follows. Section II
reviews related dynamic key-dependent cryptographic ap-
proaches. The proposed dynamic cryptographic primitives
derivation is presented in Section III. Section III-C presents an
example of integrating the proposed dynamic key-dependent
algorithm into Advanced Encryption Standard (AES) [7].
Section V analyzes the properties of the proposed approach,
especially in terms of cryptographic performance, flexibility
and the required number of iterations. Finally, Section VI
concludes this work.

II. RELATED WORK

In this section, we review the existing lightweight and key-
dependent ciphers, and substitution and diffusion primitives.

A. Lightweight key-dependent Cipher

Existing symmetric ciphers rely on static cryptographic
primitives that are independent of the secret key. Traditional
symmetric ciphers, such as the Advanced Encryption Standard
(AES) [8], consist of running a round function across several
rounds. This round function consists of several substitution
and permutation operations. Being computationally expensive,
existing symmetric ciphers require a large number of rounds
to guard against cryptanalysis attacks. For example, the
Hummingbird2 cipher requires a minimum of 4 rounds
to be immune against existing security attacks [5]. This
imposes a high overhead in terms of latency and resources.
However, given the huge amount of generated data in the
emerging network technologies, especially in the Internet
of Things (IoT) era, lightweight cryptographic algorithms
are required [9]. In this context, recently, new ciphers have
been proposed, requiring less number of rounds. Examples
of these ciphers are Simon and Speck [10]. However, these
ciphers present high latency, and require high resources and
computational overhead [11].

Having time-critical applications running on tiny IoT
devices, decreasing the number of rounds is not enough to
guarantee a high performance level. Moreover, the security
of static key ciphers could be threatened by attackers who
are equipped with ever-increasing capabilities [12], [13]. The

attackers would try to recover the secret key given that the
static ciphers use fixed cryptographic primitives [14]. Thus,
dynamic lightweight cipher schemes are required to strike
the balance between security and performance[15], [16], [17],
[18], [19], [20].

A recent solution was to apply the "chaotic" approach
to design lightweight ciphers [11], [21]. However, chaotic
cryptography requires specific hardware implementations,
floating-point computations, conversion operations, finite
periodicity, and a multi-round structure. More recently,
another approach has been proposed based on the dynamic
key approach with low number of rounds [5], [22], [23].
These ciphers reduce the computational complexity, yet,
they require hardware optimization. In this paper, we aim
at redesigning existing ciphers by introducing the dynamic
key approach while reducing the required number of rounds.
Thus, the proposed solution does not require any specific
hardware implementation and can be easily adopted.

B. Existing Substitution Construction Techniques

Random key-dependent S-boxes generation techniques
are presented in [24], [25], [26]. These techniques enable
the generation of variable S-boxes under the control of
a secret key. In [27], a recursive generation technique of
key-dependent S-boxes is continuously performed until a
good S-box is found, which requires a variable overhead.
This technique discards the produced S-box if it possesses
a weak cryptographic performance, until an S-box with a
good performance level is found. In [25], a pseudo-random
S-box key-dependent method is presented. Moreover, another
method based on chaos theory is presented in [28], where
the S-boxes are obtained by using a discretization of the
exponential or logistic maps. Similarly, another approach is
proposed in [29] and it is based on the 2D discretized chaotic
baker map. The 2D map was further extended to a 3D one
in [30]. Another method is presented in [31] and it consists
of iterating a continuous chaotic map with key-dependent
starting points. In [32], a dynamic S-box generation method is
presented based on the Lorenz system and a special shifting
method. A hyper-chaotic based method for generating a
dynamic S-box is presented in [33]. However, these methods
exhibit many limitations inherited from the pseudo-random
generators and chaotic functions. Thus, constructing pseudo-
random dynamic primitives is not a straightforward task.
Moreover, the performance and security of these methods are
not guaranteed [28]. For example, the chaotic based methods
use floating chaotic functions that typically introduce high
computational complexity. Moreover, the presented methods
require specialized hardware implementations.

In this paper, we aim at redesigning existing cipher schemes
to become more efficient and robust. For this reason, we
propose a new dynamic key-dependent, efficient and secure
method to generate dynamic substitution and permutation
tables, with the aim of attaining the desired cryptographic



3

properties. Thus, the contributions of this paper can be sum-
marized as follows:

• Proposing a new dynamic lightweight key-dependent
method for generating dynamic substitution/permutation
tables with minimum overhead in terms of latency and
resources.

• Reducing the number of rounds, which minimizes the
required latency and resources overhead for the encryp-
tion/decryption process. This reduction helps in achieve
the balance between security level and performance.

• Integrating the dynamic key-dependent approach into
existing symmetric ciphers to achieve a high level of se-
curity and to defend against modern cryptanalysis attacks.

III. CONSTRUCTION OF DYNAMIC CRYPTOGRAPHIC
PRIMITIVES

In this section, we describe the dynamic key generation,
the construction of the cryptographic and update cryptographic
primitives, and the integration into the existing ciphers. Let us
indicate that TABLE I represents all of the notations used in
this paper.

A. Dynamic Key Generation

For each new session, to produce the dynamic key
(DK = h(SK)), the session secret key SK is hashed,
Where h represents any secure cryptographic hash function
(e.g. SHA-512). Moreover, the size of the nonce is 512 bits.
Therefore, a large set of different nonces can be employed
(2512). Consequently, the proposed approach has a low nonce
collision. NIST recommends 4 secure Deterministic Random
Bit Generator (DRBG) algorithms that can be employed
for key and Initial Vector (IV) generation for cryptographic
applications. These DRBG algorithms are detailed in the
NIST SP800-90A specification, where two of them are based
on keyed hash function. These DRBG based hash functions
can be employed for the nonce generation in this paper.
Indeed, the generated nonces ensure a high periodicity with
a low collision probability. Given that a new session key
is produced for each new session, different dynamic keys
will be produced even with the same nonce. This is due to
the fact that the dynamic key depends of the nonce and the
session secret key. As such, the attacker cannot know if the
nonce is regenerated and consequently this is not an issue in
practical deployments of the proposed solution. In the worst
case, if the attacker recovers the nonce, the secret key cannot
be recovered (one-way hash function) from the collected
ciphertext.

The obtained dynamic key is longer than the session key
and it is split into 4 sub-keys, as described next (see Fig. 1).

1) The sub-key DkRK : it consists of the first l least
significant bits of DK and it is used as input to the
key expansion algorithm to generate a set of round keys
(as the session key in the traditional case). l represents
the size of the session key and it can be equal to 128,
192 or 256 in case of AES.

2) The second sub-key represents the next 128 most sig-
nificant bits of DK as it is divided into:

• The sub-key DkS : it consists of the first 64 least
significant bits of the second sub-key. It is used to
produce a primary substitution table S via KSA, as
described in [5].

• The sub-key DkUS : it consists of the first 64 most
significant bits of the second sub-key. It is used
to produce a permutation table US by using the
Modified Key-Scheduling Algorithm (MKSA) of
RC4. This permutation table has 256 elements with
pseudo-random values varying between 0 and 255.

3) The sub-key DkP : it consists of the second 128 most
significant bits of DK. It is used to produce a primary
permutation table π via MKSA, as described in [5], [34].

4) The sub-key DkUP : it consists of the first 128 most
significant bits of DK and it is used to produce the
update permutation table Uπ , using MKSA. This update
table has a length related to the employed permutation
table in the adapted cipher. For example, it is equal to
16 in the case of AES (shiftRows).

Note that the dynamic key is updated after τ message
blocks and the cryptographic primitives can be updated after
δ message blocks, with δ ≤ τ . τ and δ are configured based
on the application requirements. US is used to permute the
produced substitution table S and Uπ is used to permute the
produced permutation table π, as follows:

S = S(US)

π = π(Uπ)
(1)

B. Dynamic Cryptographic Primitives Construction

1) Dynamic Substitution Primitives: In the proposed
approach, the KSA step of RC4 is used to initialize a
substitution table S ≜ {s[0], · · · , s[255]} with 256 elements,
using a secret key. The size of the secret key is variable and
ranges between 64 and 256 bits. For a secure use of RC4,
the key size must be at least 128 bits. The pseudo-code for
the KSA step of the RC4 algorithm is shown in Algorithm 1.
The parameter LK is the length of the dynamic key in bytes;
i and j are iteration variables. A numerical example of a
produced dynamic substitution table with its corresponding
inverse is presented in Fig. 2.

The cryptographic performance of the proposed substitu-
tion table is quantified for a DkS with 64-bit length. The
obtained results, illustrated in Fig. 6, show that the produced
substitution tables satisfy the desired cryptographic properties
(LPF , SAC, BIC and DPF ) as presented in Section IV-B.
Therefore, each S-box is obtained by applying KSA for a
secret key DkS of size ≥ 64 bits.

On the other hand, the inverse substitution table is com-
puted for the decryption process, which is feasible since the
produced substitution table is bijective. Hence, the inverse
substitution table, S−1 is also bijective, and can be obtained
using the produced S-box by using the following operation:



4

TABLE I: Table of notations

Notation Definition
SK Secret session key
l The size of the session key
DK The produced dynamic key
DkRK A dynamic sub-key, which is used as the input of the key expansion algorithm to generate a set of round keys
DkS A dynamic substitution sub-key and it is used to produce a primary substitution table S.
DkUS A dynamic update substitution sub-key and it is used to produce an update substitution table US by using the MKSA of RC4.
DkP A dynamic permutation sub-key and it is used to produce a primary permutation table P
DkUP A dynamic update permutation sub-key and it is used to produce an update permutation table Uπ by using the MKSA of RC4.
Lpk Length of the dynamic permutation sub-key DkP and DkUP

Lk Length of the dynamic substitution sub-key DkS and DkUS

len Number of elements in a permutation table
LS Number of elements in a substitution table
r Number of rounds (iterations)
π Permutation table
π−1 Inverse permutation table
S Substitution table
S−1 Inverse substitution table
⊕ Exclusive-OR (XOR)
h Secure cryptographic hash function ( SHA-512 is used as an example in this paper)
δ and τ The dynamic key is updated after τ message blocks and the cryptographic primitives can be updated after δ message blocks, with

δ ≤ τ .

Fig. 1: The proposed key derivation method and the cipher primitives construction technique

Algorithm 1 KSA algorithm of RC4

Input: LK length of key; K ≜ {k1, k2, . . . , kLK
}; LS

length of state array S
Output: S ≜ {S[0], S[1], · · · ,S[LS − 1]}
procedure S = RC4-KSA(K,LK ,LS)

for i← 0 to LS − 1 do
S[i]← i

j ← 0
for i← 0 to LS − 1 do

j ← j + s[i] + k[i (mod LK)] (mod LS)
SWAP(S[i],S[j]) ▷ swap values of S[i] and S[j]

return S

S−1[S(j)] = j, j = 0, 1, . . . , 255 (2)

where S represents the produced S-box and 0 ≤ S(j) ≤ 255.

2) Dynamic Permutation Primitives: The permutation
operation in a symmetric cipher can be applied at the bit
or byte level. As for the substitution table generation, the
proposed method uses the modified KSA of RC4 to produce
the permutation tables. To do so, an input key of length Lpk
is passed to the generation function to obtain a dynamic
permutation table π with len elements (see Algorithm 2).
This permutation table will be updated using Uπ .

For decryption, the inverse permutation table π−1 has to be
computed. This is possible since π is bijective. The inverse
π−1 of π can be obtained given that π−1[π(i)] = i, with π(i)
being the value of π at the ith index and 1 ≤ π(i) ≤ len.
The permutation is a swap function, with (π(i)) being the
permuted byte or bit position of the ith element.

C. Proposed Dynamic Cryptographic Approach

In this section, we present a proof of concept of the
proposed solution modification in a block cipher. For this



5

(a) (b)

Fig. 2: Example of a produced dynamic substitution table S-box (a) and its corresponding inverse one (b) by using KSA of
RC4.

Algorithm 2 Proposed Modified KSA (MKSA)
1: procedure MKSA(K = {k1, k2, . . . , kL},Lpk, len)
2: for 1← 1 to len do
3: π [i]← i

4: j ← 1
5: for i← 1 to len do
6: j ← (j + π[i] + k[j mod Lpk + 1]) mod len+ 1
7: swap(π[i], π[j])

8: return π

purpose, we selected the actual cipher standard AES that is
widely deployed in various applications. AES is an iterative
symmetric block cipher shown in Fig. 3, operating on input /
output data block sequences of 128 bits. First, the plain text
message is divided into 16 bytes blocks. Then, each block is
reshaped into a 4 × 4 matrix, called state, which is the input
data for AES, where each byte represents a value of GF (28).
The key size can be of size 128 bits, 192 bits, or 256 bits.
The key size defines the number of encryption / decryption
iterations: 10, 12, and 14 iterations for a 128, 196, 256-bit key,
respectively. In addition, the round function of AES consists
of 4 distinct byte-oriented processes, SubBytes, ShiftRows,
MixColumns, and AddRoundKey, as described below.

1) SubBytes (SB): This operation applies a non-linear
transformation at the byte level (8-bit input/output)
based on a static substitution table S-box.

2) ShiftRows (SR): This operation rotates all the lines of
the state to the left (0 for the first line, 1 for the second,
2 for the third, and 3 for the fourth). It can be considered
as a byte permutation operation and uses a specific
permutation table.

3) MixColumns (MC): In this operation, each column of

(a)

Fig. 3: AES algorithm

the input matrix is multiplied by a static MixColumns



6

matrix in GF (28). This operation ensures the diffusion
at the column level.

4) AddRoundKey (AK) : The input state (matrix) is mixed
(Xor) with the produced sub-key of the current round.
Note that all sub-keys are related only to the secret key.

Furthermore, the secret key is mixed with the input state
plain block before the first round, and in the last round,
the MixColumns function is eliminated. The decryption
scheme is similar to the encryption one, but it is performed
in the reverse order. Moreover, in the decryption process, the
diffusion, permutation, addition, and substitution primitives
are replaced by their inverses.

Indeed, the substitution process (using look up table
S-box) and key expansion (employing S-box in the round
key generation as in AES) are affected by the dynamic
S-boxes generation technique. Consequently, this will lead
to dynamic characteristics of the cryptographic algorithm’s
output, leading to higher robustness against attacks since
the round keys are dynamic. Moreover, for the same input,
the substitution’s output changes in different sessions, which
complicates the attacker’s task in disclosing the secret key.
Moreover, we use a dynamic permutation table to increase
the dynamicity and to reach better immunity against attacks.

Therefore, the proposed method presents low complexity,
as shown later in Section V, which results into low latency
and reduces the required resources, while providing high
robustness against attacks. In fact, the execution time and
energy consumption overhead can be reduced by decreasing
the number of rounds r to the minimum required level to
reach the avalanche effect.

IV. SECURITY ANALYSIS

In this section we analyse and evaluate the desired cryp-
tographic properties of the proposed dynamic key-dependent
cryptographic approach. This security analysis is based on
the methodology presented in [5], [35]. This part focuses
on analyzing the produced cryptographic primitives and their
update mechanism to prove that they achieve the desired
cryptographic properties. In the following, the randomness
tests of the generated dynamic key and cryptographic primi-
tives are detailed. In addition, the sensitivity of the dynamic
cipher primitives (update of permutation/substitution boxes)
and cipher-texts are verified. It should be noticed that, for the
following tests, some parameters are fixed such as the number
of iterations, set to 10, 000.

A. Robustness of the Proposed Dynamic Key Generation

The proposed solution uses a secret session key SK which
changes at each session time, depending on the application
requirements. SK is hashed using SHA − 512 to produce
a dynamic key DK. Hence, the cryptographic hash function
ensures the avalanche effect [36], as shown in Fig. 4 for a
test with 1000 random secret keys.

The results are very close to 50%, and the samples follow
the normal distribution, with a mean equals to 49.9285%
and a standard deviation equals to 2.1871. Moreover, the
minimum difference is equal to 43.3594%, which is sufficient
to have different S-boxes when using different secret keys
(even with a one bit of difference). Consequently, the use
of a dynamic session secret key overcomes the fixed key
problem and prevents the production of the same S-box, which
translates into better resistance against attacks. Note that the
secret key SK size can be 128, 256, or 512 bits, while the
size of dynamic key DK is 512 bits.

(a)

Fig. 4: Dynamic key sensitivity of the proposed dynamic key
generation versus 1000 iterations. Each iteration, only one bit
of the secret key is changed.

B. Cryptographic Primitives Related Tests

The dynamic permutation/substitution tables should be ran-
dom and independent compared to primary or previous ob-
tained ones to guarantee their secure implementation in the
proposed cipher variants. To assess the randomness of the
permutation/substitution tables for different inputs, recurrence
and correlation coefficient ρ measures are used [37], [13]. Note
that these tests were applied for 1, 000 random dynamic keys.

1) Recurrence Test: To measure the randomness among
a vector, the recurrence test is employed to measure the
correlation between a sequence of data (vector) xi =
x(i,1),x(i,2),x(i,3), ..x(i,m), and another vector with delay t ≥
1 given by xi(t) = x(i,t),x(i,2t),x(i,3t), ....x(i,mt). Thus, the
correlation coefficient rxy between two vectors x and y can
be calculated using the following equation:

rxy =
cov(x, y)√
D(x)×D(y)

(3)



7

where

Ex =
1

N
×

N∑
i=1

xi

Dx =
1

N
×

N∑
i=1

(xi − E(x))2

cov(x, y) =
1

N
×

N∑
i=1

(xi − E(x))(yi − E(y))

The recurrence of a primary substitution table that is
generated by using KSA with a dynamic random key
is shown in Fig. 5-a). As it can be seen, the generated
substitution table has a highly dispersed recurrence map, and
thus has the desired degree of randomness. Moreover, Fig. 5-
b) shows the variation of the correlation coefficient between
the original (primary S-box) and the updated substitution
table as a function of the number of iterations, which is
always close to zero. This shows that the updated S-box is
independent of the original S-box. The obtained correlation
coefficient values are within {−0.15, 0.15} (always close to
zero), which validates the uncorrelation (independence) of the
original and updated substitution tables. Moreover, Fig. 5-c)
shows the variation of the correlation coefficients between
the recurrence of the permuted index versus 1,000 random
dynamic keys (for α = 256). The recurrence correlation is
close to zero, and hence it can be inferred that the produced
permutation table is highly random. More specifically,
most values are spread evenly over {−0.2, 0.2} (optimum
value, 0). Finally, Fig. 5-d) shows the variation of the
correlation coefficient (which is also close to zero) between
two successively updated S-boxes for 1,000 iterations. This
proves the independence of any two successive substitution
tables. These results reveal that there is no correlation among
the primary and the updated substitution tables.

The statistical results are presented in TABLE II. The
standard deviation for all three considered cases (TABLE II)
is near zero, which proves that most correlation coefficient
values are close to the mean value of zero, which is the ideal
value. This confirms the high uniqueness and dynamicity
level of the produced substitution and permutation tables.

On the other hand, similar results are obtained with the
proposed method to construct dynamic permutation tables.
These results are expected since the same technique is used
to produce updated permutation tables. Therefore, different
permutation and substitution tables are produced for each
input message (or a set of messages, depending of the
configuration). This results into a high immunity against
attacks such that no useful information can be disclosed by
the attackers.

From the previous results, it is clear that the primary and the
produced P-boxes are uncorrelated. This is also true for any
two successively updated P-boxes. Therefore, the produced
permutation tables possess high dynamicity and uniqueness
levels, which guards against eavesdropping and prevents ille-

Algorithm 3 The proposed update selection table cipher
primitive algorithm
Input: Number of blocks it
Two substitution tables S, πS ,
Two permutation tables(π, πp)
Output: Update substitution and permutation tables (S and
P , respectively)

1: procedure UP_TABLE_PRIM(S, US , P, Up)
2: if it%δ = 0 then
3: π ← Perm(π, Up)
4: S ← Sub(S, US)

5: return S and P

gitimate users from acquiring useful information. Moreover,
the results clearly show that the proposed update permutation
scheme produces independent/un-correlated versions of the
same cipher primitive (for example a permutation table), which
enables the resistance against current cryptanalysis techniques.

Using the proposed simple update process, the
cryptographic primitives are changed for every input
frame, regularly and randomly. Therefore, each input frame
will be encrypted using a set of completely different selection
tables and diffusion matrices, which obscures the relation
between the original frames and their encrypted versions.
Hence, threats related to chosen-plaintext attacks and chosen-
ciphertext attacks are successfully mitigated. This is due to
the fact that choosing a set of original or encrypted frames
will not help the adversary in acquiring the used primitives
nor the the secret key itself.

In the following, the cryptographic properties of
the proposed dynamic key-dependent construction of
substitution and permutation tables are presented. The most
important substitution tests are applied in order to prove its
performance such as linear [38], and differential probability
approximation [39], strict avalanche criterion (SAC) and
output bits independence criterion (BIC) [40]. Also common
tests such as randomness and key sensitivity measures were
performed on produced substitution and permutation tables to
assess their security level and to show how far it is consistent
with existing cipher standards. In the following, we start by
analyzing the substitution tests, then the common tests are
described.

2) Bijectivity: in order to check the bijectivity of the ob-
tained S-box, we compute the number of its unique elements,
using the unique function. If the length is equal to 2q , then, the
bijectivity is attained of the S-box under test; else the S-box
is not bijective. Thus, given that we used the swap function
and the permutation layer is bijective, so the bijectivity is
preserved.

3) Linear Probability Approximation Boolean Function
(LPF ): One of the important properties of the substitution
layer is its non-linearity for resisting linear cryptanalysis
attacks. LPF is used to measure the degree of non-linearity for



8

(a) (b)

(c) (d)

Fig. 5: (a) The recurrence plot of a randomly generated primary substitution table. The variation (20000 times) of the correlation
coefficient of (b) the recurrence of produced dynamic substitution tables, (c) the correlation coefficient between the primary
substitution table and its updated version (permuted version), and (d) the correlation coefficient between two successive
substitution tables.

TABLE II: Statistical results for 1000 update permutation iterations

Coefficient Correlation Tests Min Mean Max Std
ρ of the recurrence of produced dynamic
substitution tables

-0.2083 0.0010 0.2093 0.0623

ρ between the primary substitution table and
its updated version (permuted version)

-0.2016 0.0028 0.2681 0.0623

ρ between two successive substitution tables -0.2421 0.0001 0.2835 0.0626

TABLE III: Statistical results of the first proposed substitution algorithm

Test Min Mean Max Standard deviation
LPF 2−5.6601 2−4.8067 2−3.6601 0.3234
DPF 2−4.6781 2−4.4939 2−3.8301 0.1527
SAC 0.4854 0.5014 0.5166 0.0054
BIC 0.4939 0.5020 0.5098 0.0027
KS 45.8008 49.3245 52.8320 1.0933

a given substitution function [38]. Decreasing LPF tends to
increase the linear attack complexity. The non-linearity degree

of a given confusion layer F is calculated using the linear
probability approximation Boolean function LPF according



9

to the following equation:

LPF = Maxα,β ̸=0[LPF (α,β)] =

Maxα,β ̸=0

{card{i/i ◦ α = S(i) ◦ β} − 2n−1

2n−1

} (4)

where α = [α1,α2, . . . ,αn],β = [β1,β2, . . . ,βn],α,β ∈
[1, 2n−1] and card is the cardinal. Theoretically,
LPF (α,β) ≈ 1

2n−1 and so decreasing LPF leads to
increasing the complexity of the linear attack.

Furthermore, the immunity of the S-box against the linear
cryptanalysis depends on the uniformity of LPF versus α
or β. The low LPF signifies that the complexity of the
linear attack is much higher. For example, LPF of the AES
confusion layer is equal to 2−6 = 0.015625. In Fig. 6-a),
the variation of LPF versus 1000 different dynamic keys
are shown.Besides, the LPF obtained maximum, minimum,
and average are: 2−3.66, 2−5.66, and 2−4.8, respectively.
These results obtained for the LPF criterion show clearly
that the majority of the produced substitution values are
close to the average value. This means that the proposed
dynamic substitution technique satisfies the non-linearity
property and thus ensures the resistance against linear
attacks. In fact, having a linearity probability (≈ 2−5)
higher than the minimum value achieved by AES S-box (2−6)
is not an issue since dynamic substitution tables are employed.

4) Differential Probability Approximation Function (DPF ):
Differential uniformity is one of the important properties of
the S-box to resist the differential cryptanalysis attacks [39].
Hence, the produced S-box should ensure the differential
uniformity; an differential input should uniquely map to a
differential output, which can provide a uniform mapping
probability. The differential uniformity degree of a given
substitution function S is calculated using the differential
approximation probability DPF [41], given by:

DPF = Max(∆i ̸=0,∆s)[DPF (∆i,∆s)]

= Max∆i ̸=0,∆F

{card{i/S(i) ◦ S(i⊕∆i) = ∆s}
2n

} (5)

where ∆i ∈ [1, . . . , 2n−1],S(i),∆s ∈ [0, 2n−1].

In fact, DPF is the maximum probability of output
difference ∆f , when the input difference is ∆i. In Fig. 6-b),
the variation of DPF versus 1000 different dynamic keys are
shown and the probability of DPF < 2−4 is 0.8477, and only
0.0156 of the substitution layers have DPF > 2−3.5. Besides,
the DPF obtained maximum, minimum, and average are:
2−3.8301, 2−4.678, and 2−4.4939, respectively. These results
show that the majority of the produced substitution tables
reach the required security level to resist against differential
attacks. Similarly, having a differential probability (≈ 2−4.7)
higher than the minimum value achieved by AES S-box (2−6)
is not an issue since dynamic substitution tables are used.

5) Strict Avalanche Criterion (SAC): SAC was introduced
by Webster and Tavers in 1985 when they described the
avalanche effect [40]. A cipher scheme is said to satisfy the
SAC if each time a single input bit is complemented, at
least half of the output bits are changed. SAC is certainly
considered as mandatory property, so any strong cipher
scheme should use a substitution table that can achieve this
criterion. It is used to quantify the degree of local avalanche
effect at the byte (or word) level. The average SAC value
(average of 8x8 values of the dependency matrix) is given
in Fig. 6-c) for 1000 iterations and with 64-bit key length.
It can be observed that the produced substitution tables have
SAC values very close to the ideal value of 0.5. This shows
that the majority of the produced substitution tables, using
KSA with dynamic sub-key, meet this criterion.

6) Output Bits Independence Criterion (BIC): BIC
is another desirable property of the encryption algorithms
described by Webster and Tavers [40]. The BIC specifies
that two output bits j, k must independently change when
a single i input is changed. The mean value results of BIC
(average of 8x8 values of the BIC matrix without the diagonal
part) as a function of the number of iterations rs (for each
iteration, a new pseudo-random byte is used) is given in
Fig. 6-b). It can be observed that the majority of the mean
values of BIC are all around the optimal value of 0.5. The
results in Fig. 6-d) clearly show that the majority of the
produced S-boxes satisfy the BIC criteria. Thus, the proposed
dynamic substitution primitives construction method achieves
the required cryptographic properties (see tables III and IV)
and can successfully overcome the known chosen plain/cipher
text attacks.

TABLE IV: Comparison analysis of the substitution layer

Test Average (proposed solution) AES (static)
LPF 2−4.8 2−6

DPF 2−4.49 2−6

SAC 0.5022 0.4998
BIC 0.5018 0.499

Now, the common tests such as key sensitivity and
randomness level are presented to validate that the produced
substitution and permutation tables satisfy the desired
cryptographic properties.

7) Sub-Keys Sensitivity: An appropriate dynamic key-
dependent substitution generation technique should be sen-
sitive to its dynamic secret key in the sense that a change
of one bit should give a completely different output S-box.
The sensitivity is examined according to the percent Hamming
distance measured in bits between two S-boxes resulting
from two input secret keys Kw and K ′

w. All the elements
of K ′

w are equal to those of the wth key Kw, except a
random Least Significant Bit (LSB), which was flipped. The
percent Hamming distance is defined and used to quantify the



10

(a) (b)

(c) (d)

Fig. 6: Variation of the LPF (a) and DPF (b), SAC (c) and BIC (d) versus versus 1000 secret keys, where each key has
8 bytes length.

sensitivity as in Eq. (6).

KSw =

∑T
k=1 SKw

⊕ SK′
w

T
× 100. (6)

where w = 1, 2, . . . , 1000, T is the length in bits of the
S-box and it is equal to 256 × 8, and SKw

and SK′
w

are the
corresponding S-box using Kw and K ′

w, respectively. All the
bits of Kw are equal to K ′

w, except the least significant bit
of a random byte that was flipped.

In this test, the Hamming distance is used to measure the
difference at the bit level between the two produced dynamic
substitution tables S-boxes (S1 and S2) using DKS and DK ′,
respectively. To realize these tests, 1000 different random
dynamic keys are used. For each one of the 1000 dynamic
substitution sub-keys, Kw,w = 1, 2, 1000, the percent

Hamming distance is computed between two corresponding
S-boxes S1 and S2. In Fig. 7-a), the percent Hamming
distance over 1000 random dynamic sub-substitution keys
is shown. The probability of dynamic key possessing
KS ≥ 48% is 99.6% and only 0.4% of the produced S-boxes
possess KS between 45.8% and 48%. Besides, maximum,
minimum averages and standard deviation obtained from the
PDH are: 52.83, 45.8, 49.32, respectively, and the standard
deviation is 1.093. These results indicate that the percent
Hamming distance between S and S′ is close to 50% for
overall control parameter vectors, which means that the secret
key sensitivity is satisfied.

8) Number of Fixed Points: The effect of the number of
Fixed Points (FP ) of the permutation operation is critical



11

since more rounds would be needed to achieve the avalanche
effect. This means that when the number of fixed points is
high, a poor diffusion of the permutation table is realized as
the elements (bits or bytes) in these blocks are left unchanged
when producing the output blocks. Also note that the expected
number of fixed points in a random permutation is one [42].
Moreover, the percentage distribution of the non-fixed points
for the produced permutation table with a length equals to 64
is shown in Fig. 8-b). This shows that the number of FP is
decreased, and the produced permutation tables have FP ≤ 5
for a permutation table of 64 elements. These results indicate
that the presented technique produce permutation tables with
a low number of fixed points. As a summary, the proposed
solution provides important properties such as flexibility and
dynamicity.

In addition, the correlation coefficient between SKw
and

SK′
w

allows for measuring the degree of similarity between
them. In fact, the coefficient of correlation varies between
-1 and 1. A correlation coefficient close to +-1, means
the presence of a strong linear correlation between both
functions, while a coefficient of correlation close to zero,
means practically the absence of correlation between both
corresponding ones. In Fig. 7-b), the correlation coefficient
between SKw

and SK′
w

versus 1000 different keys is shown.
The results show that the correlation coefficient is always
close to zero, which indicates that no detectable correlation
exists between the dynamic S-boxes, which validates the
sensitivity of the dynamic secret key.

In conclusion, the proposed key-dependent dynamic sub-
stitution algorithm possesses the most suitable properties for
being used in any block or stream cipher algorithm that
employs a static S-box. Moreover, similar results are obtained
with the proposed technique to construct dynamic permutation
tables in terms of randomness, uniqueness, and key sensitivity
(see Fig. 8). Let us indicate that the desired cryptographic
performance of permutation tables are unique number of
permutation tables in addition to a high randomness order.

V. PERFORMANCE ANALYSIS

The proposed dynamic cryptogprahic solution employs
dynamic substitution and permutation tables instead of the
static ones. Therefore, the proposed solution introduces a
small overhead to generate these dynamic tables (primary
and update cryptographic primitives) for each τ input blocks.
In fact, the dynamic key generation requires a round of
SHA-512 with a secret session key as input. The generated
dynamic key is used to generate dynamic substitution and
permutation tables, which are based on the KSA and MKSA
of RC4 that exhibit linear computational complexity O(n),
where n is the size of the S-box for the substitution process
and the number of bits/bytes per block in case of permutation.
Furthermore, to reduce the initialization latency overhead
(dynamic key and construction of cryptographic primitives),
an update process is presented and it is based on only one
operation (permute the permutation table by employing the

update permutation table and substitute the substitution table
by using the update substitution table) for each δ input blocks.

The required initialization time for the proposed scheme is
quantified and compared to the original AES encryption time.
These measures were performed on different machines such
as desktop machine with Intel(R) Core(TM) i7-4910MQ @
2.90GHz, Raspbery Pi Zero and 3 in addition to Arduino Uno.
The proposed solution uses the optimized AES implementa-
tion, which uses AES-NI instructions. On the Intel machine,
the standard AES initialization is very efficient since it uses
only AES-NI instructions [43]. In addition, on Raspeberry Pi
Zero and on Arduino Uno, a dedicated optimized C code is
used since AES-NI instructions cannot be implemented. The
obtained results in terms of execution times are reported in
TABLE V. This table illustrates the variation of the introduced
latency overhead versus the employed devices such as Arduino
Uno, Raspberry Pi Zero, Raspberry Pi 3 and Intel I7. This table
contains the average execution times of the construction of
cryptographic primitives in addition to the execution times of
the AES encryption of one block (of 16 bytes) for 1000 times.
Moreover, the reported overhead ratio is computed according
to the following equation:

R =
Required time to produced cryptographic primitives

Encryption time of an input block
×100
(7)

It can be seen from the results that with our proposed
solution, if the number of encrypted/decrypted blocks with
the same produced cryptographic primitives increases, the
required latency and resources overhead decreases. Thus, the
proposed solution incurs the maximum overhead when the
cryptographic primitives are changed for each input data block
with a maximum level of security. Furthermore, the overhead
introduced by the proposed solution decreases exponentially as
a function of the number of blocks nb. Moreover, the obtained
results indicate that the introduced overhead by the proposed
solution is lower than the one introduced by standard AES for
the constrained devices such as Arduino Uno and Raspberry
Pi Zero compared to Raspberry Pi 3 and Intel I7. This can
be explained by the fact that Arduino Uno and Raspberry Pi
Zero devices are limited and do not support hardware opti-
mization. Differently, the powerful devices support hardware
optimization and thus the overhead of standard AES is reduced
to become comparable to our proposed solution’s introduced
overhead.

A. Memory Consumption

The memory overhead in the proposed dynamic key depen-
dent cryptographic approach is imposed by the generation of
two primitives:

1) An update substitution table US of 256 bytes length,
2) and one update permutation table Uπ , having a length

that depends on the number of permutation tables in the
adapted cipher such as 16 in the case of AES (shift-
Rows).



12

(a) (b)

Fig. 7: (a)-(b) Variation of the key sensitivity at the bit level and the coefficient correlation ρ{S1, S2} between two substitution
tables (S1 and S2) versus 1000 random dynamic keys for the proposed permutation construction technique, respectively.

(a) (b) (c)

Fig. 8: Variation of the key sensitivity (a) and fixed points (b) at the element level in addition to the coefficient correlation
ρ{P1, P2} (c) between two permutation tables (P1 and P2) versus 1000 random dynamic keys for the proposed permutation
construction technique, respectively.

TABLE V: Average Execution times in seconds of the required dynamic key generation and construction initialization and of
the one block encryption on different devices in addition to its corresponding overhead ratio

Hardware Dynamic key generation and construction initialization Encryption of one block R

Intel I7 6.54× 10−8 2.89× 10−9 37.7163
Raspberry Pi 3 6.66× 10−6 1.15× 10−6 9.6522

Raspberry Pi Zero 9.27× 10−6 3.73× 10−6 4.1421
Arduino Uno 0.6× 10−3 1.28× 10−3 0.7812

VI. CONCLUSION

In this paper, a dynamic cryptographic solution is proposed
to generate dynamic key-dependent substitution and permuta-
tion tables towards reinforcing the security level of existing
symmetric ciphers. This helps in reducing the required rounds
number to 4 for AES, as an example, which in turn reduces
the computational overhead, while providing better immunity

against future powerful attacks. Indeed, for each session (or
a set of messages), a dynamic key is generated based on the
secret session key. This dynamic key is used to generate the
dynamic cryptographic and update cryptographic primitives.
The update cryptographic primitives are used to update the
cryptographic primitives after a set of messages. The update
mechanism of the cryptographic primitives is lightweight and



13

is used to achieve the required dynamicity with minimum
possible overhead (only one operation that can be either
permutation or substitution). The proposed dynamic primi-
tives generation and update method achieves an acceptable
trade-off between security and efficiency compared to static
cryptographic primitives. Equally important, the proposed
key-dependent substitution and permutation construction al-
gorithms have been subjected to all possible cryptographic
metrics that are essential for any substitution and permutation
generation technique to be considered credible and robust.
Simulation results show that maximum time overhead of the
proposed cipher is incurred when the cryptographic primitives
are changed for each data block and the introduced latency
overhead is lower than the one introduced by a standard cipher
scheme (AES) for limited devices.

ACKNOWLEDGEMENT

This paper was partially supported by funds from the
Maroun Semaan Faculty of Engineering and Architecture at
the American University of Beirut and by the EIPHI Graduate
School (contract "ANR-17-EURE-0002").

REFERENCES

[1] Nicolas Sklavos, Ricardo Chaves, Giorgio Di Natale, and Francesco
Regazzoni. Hardware security and trust. Cham, Switzerland: Springer,
2017.

[2] Wen Wen Koh and Chai Wen Chuah. A robust security framework with
bit-flipping attack and timing attack for key derivation functions. IET
Information Security, 2020.

[3] Morris Dworkin, Rebecca M Blank, Patrick D Gallagher, et al. Recom-
mendation for block cipher modes of operation: Methods and techniques.
In NIST Special Publication. Citeseer, 2001.

[4] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell
Systems Technical Journal, 28:656–715, 1949.

[5] Hassan Noura, Ali Chehab, Lama Sleem, Mohamad Noura, Raphaël
Couturier, and Mohammad M Mansour. One round cipher algorithm
for multimedia iot devices. Multimedia Tools and Applications, pages
1–31.

[6] D. Kwon, S.H. Sung, J.H. Song, and S. Park. Design of block ciphers
and coding theory. Trends in Mathematics, 8(1):13–20, 2005.

[7] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. Advanced
Encryption Standard. Alpha Press, 2009.

[8] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2002.

[9] Hichem Mrabet, Sana Belguith, Adeeb Alhomoud, and Abderrazak
Jemai. A survey of iot security based on a layered architecture of sensing
and data analysis. Sensors, 20(13):3625, 2020.

[10] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. The simon and speck lightweight
block ciphers. In Proceedings of the 52nd Annual Design Automation
Conference, pages 1–6, 2015.

[11] Kerry A McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky
Mouha. Report on lightweight cryptography. NIST DRAFT NISTIR,
8114, 2016.

[12] Like Chen and Runtong Zhang. A key-dependent cipher dsdp. In
Electronic Commerce and Security, 2008 International Symposium on,
pages 310–313. IEEE, 2008.

[13] Hassan Noura, Raphaël Couturier, Congduc Pham, and Ali Chehab.
Lightweight stream cipher scheme for resource-constrained iot devices.
In 2019 International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), pages 1–8. IEEE, 2019.

[14] William Stallings. Cryptography and network security: principles and
practice. Pearson Upper Saddle River, NJ, 2017.

[15] Hassan Noura, Ali Chehab, and Raphael Couturier. Lightweight dynamic
key-dependent and flexible cipher scheme for iot devices. In 2019 IEEE
Wireless Communications and Networking Conference (WCNC), pages
1–8. IEEE, 2019.

[16] H. N. Noura, A. Chehab, and R. Couturier. Overview of efficient sym-
metric cryptography: Dynamic vs static approaches. In 8th International
Symposium on Digital Forensics and Security (ISDFS), pages 1–6, 2020.

[17] Hassan Noura, Mohamad Noura, Ola Salman, Rapha ël Couturier, and
Ali Chehab. Efficient & secure image availability and content protection.

[18] Hassan N Noura, Ali Chehab, and Raphael Couturier. Efficient & secure
cipher scheme with dynamic key-dependent mode of operation. Signal
Processing: Image Communication, 78:448–464, 2019.

[19] Hassan Noura, Ola Salman, Ali Chehab, and Raphaël Couturier. Pre-
serving data security in distributed fog computing. Ad Hoc Networks,
94:101937, 2019.

[20] Mohammad Noura, Hassan Noura, Ali Chehab, Mohammad M Mansour,
Lama Sleem, and Raphaël Couturier. A dynamic approach for a
lightweight and secure cipher for medical images. Multimedia Tools
and Applications, 77(23):31397–31426, 2018.

[21] Axel Poschmann. Lightweight cryptography. Ruhr-University Bochum,
Bochum, 2009.

[22] Hassan N Noura, Mohamad Noura, Ali Chehab, Mohammad M Man-
sour, and Raphaël Couturier. Efficient and secure cipher scheme for
multimedia contents. Multimedia Tools and Applications, pages 1–30,
2018.

[23] Hassan N Noura, Ali Chehab, Mohamad Noura, Raphaël Couturier, and
Mohammad M Mansour. Lightweight, dynamic and efficient image
encryption scheme. Multimedia Tools and Applications, pages 1–35,
2018.

[24] Liam Keliher and Henk Meijer. A new substitution-permutation network
cipher using key-dependent s-boxes, 1997.

[25] Kazys Kazlauskas and Jaunius Kazlauskas. Key-dependent s-box gen-
eration in aes block cipher system. Informatica, 20(1):23–34, January
2009.

[26] Bruce Schneier. Description of a new variable-length key, 64-bit block
cipher (blowfish). In Ross Anderson, editor, Fast Software Encryption,
volume 809 of Lecture Notes in Computer Science, pages 191–204.
Springer Berlin Heidelberg, 1994.

[27] Piotr Mroczkowski. Generating pseudorandom s-boxes−−a method of
improving the security of cryptosystems based on block ciphers, 2009.

[28] N. Masuda, G. Jakimoski, K. Aihara, and L. Kocarev. Chaotic block
ciphers: from theory to practical algorithms. Circuits and Systems I:
Regular Papers, IEEE Transactions on, 53(6):1341–1352, 2006.

[29] Guoping Tang, Xiaofeng Liao, and Yong Chen. A novel method for
designing s-boxes based on chaotic maps. Chaos, Solitons & Fractals,
23(2):413 – 419, 2005.

[30] Guo Chen, Yong Chen, and Xiaofeng Liao. An extended method
for obtaining s-boxes based on three-dimensional chaotic baker maps.
Chaos, Solitons & Fractals, 31(3):571 – 579, 2007.

[31] Ruming Yin, Jian Yuan, Jian Wang, Xiuming Shan, and Xiqin Wang.
Designing key-dependent chaotic s-box with larger key space. Chaos,
Solitons & Fractals, 42(4):2582 – 2589, 2009.

[32] Fatih Ozkaynak and Ahmet Bedri Ozer. A method for designing strong
s-boxes based on chaotic lorenz system. Physics Letters A, 374(36):3733
– 3738, 2010.

[33] Jun Peng, Xiaofeng Liao, and Du Zhang. A novel approach for designing
dynamical s-boxes using hyperchaotic system. Int. J. Cogn. Inform. Nat.
Intell., 6(1):100–119, jan 2012.

[34] Hassan N Noura, Ola Salman, Ali Chehab, and Raphaël Couturier.
Distlog: A distributed logging scheme for iot forensics. Ad Hoc
Networks, 98:102061, 2020.

[35] Reem Melki, Hassan N Noura, Mohammad M Mansour, and Ali
Chehab. An efficient ofdm-based encryption scheme using a dynamic
key approach. IEEE Internet of Things Journal, 6(1):361–378, 2018.

[36] S William. Cryptography and network security: Principle and practice,
ed. 7th. 2017.

[37] Hassan N Noura, Reem Melki, Ali Chehab, and Mohammad M Mansour.
A physical encryption scheme for low-power wireless m2m devices: a
dynamic key approach. Mobile Networks and Applications, 24(2):447–
463, 2019.

[38] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In
Workshop on the theory and application of cryptographic techniques on
Advances in cryptology, EUROCRYPT ’93, pages 386–397, Secaucus,
NJ, USA, 1994. Springer-Verlag New York, Inc.

[39] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like
cryptosystems. In CRYPTO’91, 1991.

[40] A. F. Webster and Stafford E. Tavares. On the design of s-boxes. In
Advances in Cryptology, CRYPTO ’85, pages 523–534, London, UK,
UK, 1986. Springer-Verlag.



14

[41] Kaisa Nyberg. Differentially uniform mappings for cryptography. In
Workshop on the theory and application of cryptographic techniques on
Advances in cryptology, EUROCRYPT ’93, pages 55–64, Secaucus, NJ,
USA, 1994. Springer-Verlag New York, Inc.

[42] Muhammad Reza Z’aba. Analysis of linear relationships in block
ciphers. PhD thesis, Queensland University of Technology, 2010.

[43] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong
Kuo. Intel avx: New frontiers in performance improvements and energy
efficiency. Intel white paper, 19:20, 2008.


