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Abstract

Because of the increasing energy consumption of data centers and their CO2 emissions, the ANR DATAZERO2 project
aims to design autonomous data centers running solely on local renewable energy coupled with storage devices to overcome
the intermittency issue. In order to optimize the use of renewable energy and storage devices, a MILP solver is usually
in charge of assigning the power to be supplied to the data center. However, in order to reduce the computation time
and make the approach scalable, it would be more appropriate to use a polynomial time algorithm. This paper aims at
showing and proving that it is possible to provide an optimal power profile via a deterministic algorithm using a binary
search approach. Considering the main constraints of the initial problem, numerous experimental results show similar
results to those given by the MILP. These promising results encourage us to continue in this direction for proposing an
efficient management of the data center power supply that takes uncertainty into account.

Keywords: Green data center, Renewable energy, Power management strategy, Operational Research, Polynomial
time algorithm.

1. Introduction

It is considered today that more than half of the world’s
population has access to the Internet [1], a network stored
and managed by the data center. At the same time, these
data centers represent 4.2% of the global energy consump-
tion and 3.8% of CO2 emissions and it is estimated that
these numbers is growing. Indeed, by 2025, it is estimated
that the number of users will have increased by 1.1 billion,
energy consumption will have multiplied by 2.9 and green-
house gas emissions by 3.1 according to a World Digital
Footprint Study [2].

Some projects such as GreenDataNet1 project [3] at-
tempts to reduce the environmental impact by using 80%
of the energy consumption in renewable energies and a
smart energy management tool. The ANR DATAZERO2

project [4] goes much further because its goal is to design
a data center running only on renewable energy and in
an autonomous way. As renewable energies are intermit-
tent, it is essential to combine these primary sources with
secondary sources such as batteries (for the short term)
and hydrogen (for the long term) in order to be able to
meet customer demand, whatever the renewable energies
provide.

1http://www.greendatanet-project.eu/home.html
2http://www.datazero.org

This autonomy could be studied and deepened thanks
to real meteorological values (wind and solar irradiation)
and a request from the customers, as well as real data on
the various components that will integrate the data center.
A sizing could thus be elaborated thanks to a statistical
method to predict long-term wind speeds and solar irradi-
ation and seems quite feasible [5], [6].

In order for the data center to be autonomous, we can
manage the energy in an automated way. For this, 3 mod-
ules communicate with each other in order to determine
the best profile that meets both customer demand and the
power that can be supplied, while remaining reliable over
time and during future profile negotiations: The Informa-
tion Technology Decision Module (ITDM) for the com-
puter system part ; The Power Decision Module (PDM)
for the electrical part ; And the Negotiation Module (NM)
in charge of converging the 2 modules mentioned above
towards a common profile and in accordance with their
constraints [7], [4].

However, the electrical part provides a power profile
thanks to a solver, and more precisely a Mixed Integer Lin-
ear Programming (MILP) known to have a computation
time that can be exponential, especially since the number
of variables and constraints, associated with the search
for a power profile, is enormous. Thus, in order to save
computation time and energy cost, it would be preferable
to determine this power profile via another method than
a solver like for example a deterministic algorithm (inas-
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much as the algorithm is not combinatorial, unlike MILP)
with polynomial complexity.

The rest of this paper is organized as follows: In Sec-
tion 2 we detail the related work. Section 3 provides the
problem statement. Section 4 details the methodology of
the deterministic algorithm in the non-constant case and
Section 5 in the constant case. Section 6 gives a first ap-
proach when we integrate the battery self-discharge. Fi-
nally, we conclude and give some perspectives in Section 7.

2. Related work

Currently the issue of using partial or total renewable
energies such as wind and solar in order to power an area,
a state, a region or data centers is becoming more and
more common [8], [9], [10], [11]. Due the intermittency of
renewable energies, it seems essential to use energy storage
element. However, some storage devices such as hydrogen
or batteries are preferred for some uses over others, while
seeking to maximize their life span [12], [13]. In order to
use use renewable energies as much as possible instead of
fossil energies, several methods and different approaches
are implemented. For example, the use of renewable ener-
gies can be optimized as much as possible while respecting
the constraints related to a good use of storage in order
to extend their life span thanks to a solver or a simulation
program [7], [13], [14]. It is also possible to look at the re-
duction of energy costs in the case of a hybrid energy sys-
tem [8], [15], or in the case where only renewable energies
is used with storage system by selling the over production
of hydrogen to a neighboring state or for private hydro-
gen cars for example [10], [16]. Ipsakis et al. in [17] deal
with the online-optimization of the usage of energy stor-
age for a constant load using a greedy algorithm. None
of these works deals with the offline-optimization of the
usage of energy storage for a constant and a non-constant
demand on a large period of time using a polynomial time
deterministic algorithm as shown in the following.

3. Problem statement

In our case, the ultimate goal is to have a sufficient
amount of primary energy (renewable energy) and stored
energy to ensure the autonomy of the data center while op-
timizing the costs, the use of these energy sources and the
response to the demand. Using a deterministic algorithm
is faster than using a MILP solver to find the best possible
power profile. The main issue is to initiate the negotiation
process mentioned above [18]. This step is a paramount
step to match both the electric demand and supply. Other
objectives have to be considered in the remaining steps of
this negotiation [7, 19].

The input data and the variables of the addressed prob-
lem are respectively defined in Table 1 and in Table 2. We

Renewable energy production
Pwtk wind turbine power production [kW ]
Ppvk solar panel power production [kW ]

Electrolyzers
ηez Efficiency
Pezmin Minimum power [kW ]
Pezmax Maximum power [kW ]

Fuel cells
ηfc Efficiency
Pfcmin Minimum power [kW ]
Pfcmax Maximum power [kW ]

Batteries
ηch Charge efficiency
ηdch Discharge efficiency
Pchmax Max charge power [kW ]
Pdchmax Max discharge power [kW ]
SOCmax Max state of charge [%]
SOCmin Min state of charge [%]
SOCinit Initial state of charge [%]
Cbat Capacity [kWh]
σ Self-discharge rate

Hydrogen
ηtank Tank efficiency
LOHinit Initial hydrogen level [kg]
LOHtarget Target hydrogen level [kg]
LOHmax Max level [kg]
HHV h2 Higher Heating Value [kWh.kg−1]
LHV h2 Lower Heating Value [kWh.kg−1]

Others parameters
ηinv Inverter efficiency
H A given time window
∆t Interval of time between two time steps
k Index for one time setp within H
K Number of time steps within H

Table 1: Input data of the optimization problems

take another look at the problem posed by the article [7].
The idea is to maximize power to be delivered to the data
center noted:

Pprodk,∀k ∈ [[0,K − 1]] (1)

With K the number of time steps within the time hori-
zon H = K∆t. It is possible to provide a non-constant
power profile (Equation (1)) or a constant power profile
(Equation (2)):

Pprodk = Pprod,∀k ∈ [[0,K − 1]], Pprod ∈ R (2)

The data center can be powered by wind turbines, pho-
tovoltaic panels (depending on weather conditions) and by
energy from storage systems like batteries and hydrogen
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Output objectives
Pprodk Objective to maximize for the non-constant

case (Eq (1))
Pprod Objective to maximize for the constant case

(Eq (2))
Variables concerning batteries

Pchk Charging power of the batteries during time
slot k [kW ]

Pdchk Discharging power of the batteries during the
time slot k [kW ]

SOCk State of charge of the batteries at instant k∆t
[%]

Variables concerning Hydrogen system
Pezk Charging power of electrolyzers during time

slot k [kW ]
Qezk Electrolyzers H2 mass during time slot k [kg]
Pfck Discharging power of fuel cells during time slot

k [kW ]
Qfck Fuel cells H2 mass during time slot k [kg]
LOHk Level of H2 in the tank at the end of the time

slot k with LOH0 = LOHinit [kg]

Table 2: Variables of the optimization problems

depending on whether we have a surplus or a lack of en-
ergy produced by the primary sources. So, ∀k ∈ [[0,K−1]],
we have in Equation (3):

Pprodk ≤ Pwtk + Ppvk+ (3)
(Pfck + Pdchk − Pezk − Pchk)× ηinv

With Pwtk + Ppvk = Prek the power supplied by re-
newable energies at time k. Pwtk and Ppvk represent the
power respectively produced by wind turbines and photo-
voltaic panels at time k. Pfck and Pdchk are the power
supplied by fuel cells from hydrogen and batteries at time k
and Pezk and Pchk the charging power of hydrogen tanks
and batteries. On these variables, we have to respect the
following constraints, ∀k ∈ [[0,K − 1]]:


0 ≤ Pchk ≤ Pchmax
0 ≤ Pdchk ≤ Pdchmax
0 ≤ Pfck ≤ Pfcmax
Pezmin ≤ Pezk ≤ Pezmax

(4)

The battery state of charge is limited by the SOC range
(SOCmin and SOCmax) with k ∈ [[0,K]] and depends
both on the charge and discharge phases. Similarly, the
level of hydrogen is limited by the LOH range (0 and
LOHmax) with k ∈ [[0,K]]:


SOCmin ≤ SOCk ≤ SOCmax
SOCk = SOCk−1(1− σ)

+
Pchk−1∆t× ηch − Pdchk−1∆t/ηdch

Cbat
SOCinit = SOC0

(5)



0 ≤ LOHk ≤ LOHmax
Pezk∆t = HHV h2 ×Qezk/ηez
Pfck∆t = LHV h2 ×Qfck × ηfc
LOHk = LOHk−1 +Qezk−1 −Qfck−1/ηtank
LOHinit = LOH0

But this search for profile is subject to various con-
straints on storage to ensure the data center a certain
availability for the following days, because of the inter-
mittency of the primary energies. For example, one may
want the hydrogen level to reach a certain target level over
the time horizon H (LOHtarget), and at the same time,
the batteries must be able to ensure a return to their ini-
tial level at the end of the time horizon [19]. Moreover at
the end of each day, the batteries must return to its initial
level to ensure the next day by supplying in part the data
center when the primary energy lacks:


LOHK ≥ LOHtarget
SOCk ≥ SOCinit if k ≡ 0 (mod 24)

SOCK = SOCinit

(6)

In addition, charging and discharging batteries at the
same time, using electrolyzers and fuel cells at the same
time, or discharging batteries to charge hydrogen using
electrolyzers and discharging hydrogen using fuel cells to
charge batteries is prohibited.

Knowing this, the problem tackled by the paper is to
provide an optimal solution, i.e., by maximizing Pprodk,∀k
or Pprod, while respecting the constraints of the problem.

4. Deterministic algorithm in the non-constant case

In this part, we assume that σ = 0 (see Equation (5))
and Pezmin = 0 (see Equation (4)). In the non-constant
case, where the purpose is to maximize Pprodk,∀k (see
Equation (1)), and where we want to provide the data
center with energy according to what the renewable ener-
gies provide, it is enough to take ∀k, Pprodk = Prek, as
shown in Figure 1, with Prek = Pwtk + Ppvk the power
supplied by renewable energy at time k and Pprodk the
power to be supplied to the data center at time k.

In the case we want to charge with hydrogen, in order
to reach the targeted level of hydrogen at the end of the
resolution period, we just need to cut the top off the higher
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Figure 1: Energy attribution in the non-constant case

values, as explained in Figure 2. Inversely, in the case
we want to discharge from hydrogen, in order to reach
the targeted level of hydrogen at the end of the resolution
period, we just need to cut the bottom off the smaller
values, as shown in Figure 3.
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Figure 2: Energy attribution in the non-constant case with hydrogen
charging
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Figure 3: Energy attribution in the non-constant case with hydrogen
discharging

As we can see, in all cases, the batteries is not used,
we have Pchk = 0 and Pdchk = 0,∀k ∈ [[0,K − 1]] in
Equation (3). And since we do not take the battery self-
discharge into account, we have ensured that the con-
straint on the batteries which stipulates that their state
of charge must return to its initial state of charge at least
every 24 hours is respected (see Equation (5) and 6).

5. Deterministic algorithm in the constant case

In this part, we consider σ = 0 in Equation (5) and
Pezmin = 0 in Equation (4).

5.1. How the algorithm works: Allocation part

The algorithm starts by testing a solution previously
determined using a binary search approach. It then per-
forms hourly energy distribution (charging/discharging bat-
teries and/or hydrogen) depending on weather conditions,
the power delivered by the renewable energy is greater or
less than what is needed to supply the data center. How-
ever, different problems can be encountered when allocat-
ing the energy. In this case, solutions are proposed by
the algorithm to overcome these problems. Different situ-
ations are illustrated and explained by the figures in order
to understand how the algorithm works, then the crite-
ria to lead the binary search algorithm to run the next
problem to test.

A first problem of energy allocation during a day ap-
pears when the battery state of charge at the end of the day
is lower than the initial battery level (see Equation (6)),
as shown on the left side of Figure 4. Here, the energy is
distributed over the first 24 hour period, with the batter-
ies being the most efficient devices (better efficiency than
electrolyzers). We notice that at the end of the day, the
state of charge of batteries is lower than its initial level.
To overcome this problem (on the right side of Figure 4),
we evaluate the difference between the targeted level at
the end of 24 hours (at least the initial level) and the level
obtained (which is lower than the initial level), and this
difference is canceled out by supplying it from hydrogen.
We therefore carry out a redistribution of energy and we
can now see that by taking the difference in hydrogen, at
the end of 24 hours, batteries level equals at least their
initial level.

A second energy allocation problem that can be en-
countered during a day is the fact of wanting to charge or
discharge batteries when one of the charging or discharg-
ing limits is reached, as shown on the left side of Figure 5,
and Equation (5) where the battery bounds are not re-
spected. The energy is distributed over the first 24 hour
period, always giving priority to the batteries. Here, we
notice that after 6 hours, the battery state of charge has
reached its minimum level (SOCmin). If we continue, this
level of charge will be negative since from hour 6 to hour
12, we must still discharge. As the minimum battery level
is reached at hour 6, it is no longer possible to discharge
batteries. We therefore discharge hydrogen. As soon as it
is possible to charge, the batteries will be favored again,
which is the case from hour 12 to hour 18. Finally, at the
end of the day, we check that the battery state of charge
at least equals to its initial level, which is the case here.
There is therefore no redistribution to be carried out over
this first 24 hour period (see the right side of Figure 5).
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Figure 4: Left: battery level problem at the end of the first day.
Right: Solution by discharging H2

This reasoning is equivalent in the case where the maxi-
mum battery state of charge is reached.
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Figure 5: Left: Problem of attribution at the level of the battery
charge. Right: Solution by discharging H2

A third energy allocation problem that can occur dur-
ing a day is when the storage is no longer sufficient, as
shown on the left side of Figure 6, and according to Equa-
tions (5) and (6) on the bounds of the batteries and hy-

drogen. The energy is distributed over the first 24 hours.
During the first 6 hours, we notice that the batteries will
not be able to ensure the lack of energy. So we comple-
ment energy production with hydrogen. However, at the
end of the 6th hour, batteries and hydrogen are completely
discharged, while we still need to discharge from hour 6 to
hour 12. If we continue to discharge the batteries, we will
exceed its minimum state of charge and its level will be
negative. The same thing happens with hydrogen. We are
in an extreme case where we have to conclude that this
solution is not valid, and therefore not optimal, because it
is too energy consuming with respect to our storage. In
this case, the iteration ends and we now test with a lower
power to be supplied to the data center, using a binary
search algorithm. Here, on the right side of the same fig-
ure, the power to be supplied Pprod = 50 kW.h−1 and,
at the end of the period, we notice that the allocation of
energy has been successful and that there is no need to
perform a redistribution, the battery state of charge being
at least equal to its initial level. This reasoning is equiva-
lent in the case of reaching the maximum level of batteries
and hydrogen, in this case increasing the Pprod (the power
to be supplied) because it is too pessimistic.
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Figure 6: Left: Lack of energy in storage. Right: Solution by choos-
ing a lower Pprod

Finally, a fourth problem is the surplus of energy in
the batteries at the end of the resolution period (here 3
days), as shown on the left side of Figure 7. Therefore,
a redistribution of energy is performed at the end of the
72 hour period. In this example, the energy is allocated
over the entire 72 hour period, paying attention to the
various problems that can arise as we have seen previously
and respecting the fact that the battery state of charge
must return to at least its initial level at the end of each
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day. We can see that at the end of the 72 hour period,
the battery state of charge is much higher than initially.
This energy excess in the batteries could be transferred
into hydrogen, because of the constraint in Equation (6).
We therefore redistribute the energy so that at the end of
the 72 hour period the battery state of charge is equivalent
to the initial state of charge. This surplus is then charged
in hydrogen (see the right side of Figure 7).
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Figure 7: Left: Surplus in batteries at the end of the resolution
period. Right: Reallocation of the energy in H2

The final level of hydrogen is checked (Figure 8). If
the quantity of hydrogen obtained at the end of the 72
hour period is lower than the quantity of hydrogen which
one wishes to have (i.e., LOHtarget), then one restarts
an iteration by decreasing the power to be provided in
order to charge more energy and thus to reach the desired
quantity as explained by Equation (6), provided that the
difference between the two bounds of the binary search
algorithm is always greater than the approximation error ε.
Otherwise, we stop. Otherwise, if the amount of hydrogen
obtained at the end of the 72 hour period is greater than
the desired amount of hydrogen (LOHtarget), then we
restart an iteration by increasing the power to be supplied
to the data center in order to charge less energy and thus
to meet the desired amount of hydrogen LOHtarget.

5.2. Binary search approach

So that the algorithm tests a solution as shown pre-
viously, it is necessary before all to provide it one: this
one is determined beforehand using a binary search algo-
rithm. We start by defining our upper bound (by taking
the maximum provided by the renewable energies) and
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Figure 8: Solution change criterion for the binary search algorithm
(comparison between the desired and the obtained hydrogen level,
LOHtarget and LOH72)

lower bound (by taking 0) between which the optimal so-
lution lies. Then, we begin the first iteration of the binary
search by testing the following solution (Eq (7)):

Pprod =

max
k∈[[0,K−1]]

(Prek) + 0

2
=

200

2
= 100 kW (7)

This approach is illustrated in Figure 9.
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Figure 9: Definition of upper and lower bounds (200 and 0) for the
binary search algorithm (Left) and first tested solution Pprod =
100 kW (Right)

Then, through different criteria defined after, the bi-
nary search algorithm provides a new solution to test:

• Lack of energy in storage devices: in this case, the
upper bound becomes the current solution which
is not valid because of the lack of energy in storage
devices because the optimal solution cannot be
beyond this one since electricity demand is higher
than renewable energy supply. The new demand
Pprod is then lower for the next iteration of the
binary search algorithm.

• Surplus of energy in storage devices: in this case,
the lower bound becomes the current solution which
is not valid because of the surplus of energy in
storage devices because the optimal solution can-
not be below this one since electricity demand is
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lower than renewable energy supply. The new de-
mand Pprod is then higher for the next iteration
of the binary search algorithm.

• LOHK < LOHtarget: In this case, the upper
bound becomes the current solution in order to
test at the next iteration a lower solution, which
allows to charge more in hydrogen and thus ap-
proach the optimal Pprod.

• LOHK > LOHtarget: In this case, the lower
bound becomes the current solution in order to
test at the next iteration a higher solution, which
allows to discharge more hydrogen and thus ap-
proach the optimal Pprod.

The binary search algorithm stops by returning the so-
lution that maximizes the objective function when the dif-
ference between the two bounds is lower than the error of
approximation ε that we determine before the launching of
the algorithm. The complexity of the algorithm that con-
siders one value of Pprod is O(K). Thus the complexity
of the whole method is O(K log2(maxk∈[[0,K−1]](Prek)).

5.3. Experiment and comparison

In order to compare the solutions given by the MILP
and by the deterministic algorithm, as the deterministic
algorithm does not take into account currently the bat-
tery self-discharge and some charge and discharge bounds
of the batteries, electrolyzers and fuel cells, we take σ = 0
and the bounds large enough so as not to reach them. The
values used for the numerical application are given by Ta-
ble 3. Figure 10 shows the solution given by the MILP and
Figure 11 shows the solution given by the deterministic al-
gorithm. In both cases, the power to be supplied to the
data center is the same with Pprod = 255.08 kW . The dif-
ference lies in the way energy is allocated to hydrogen and
batteries. Indeed, in the case of the MILP, the allocation
is less orderly than in the case of the deterministic algo-
rithm. This shows that in this case there is a multitude of
optimal solutions.

6. Consideration of the battery self-discharge

Currently, the goal is to improve the deterministic al-
gorithm in order to use it. As it stands, the self-discharge
of the batteries is not yet taken into account. However,
even if this constant does not greatly influence the power
supplied to the data center, the way the algorithm man-
ages the energy allocation is different, since the goal is to
find the optimal solution.

Electrolyzers efficiency ηez 0.6
Fuel cells efficiency ηfc 0.6
Charge efficiency ηch 0.8
Discharge efficiency ηdch 0.8
Inverter efficiency ηinv 1
Tank efficiency ηtank 1
Max state of charge SOCmax 100%
Min state of charge SOCmin 0%
Initial state of charge SOCinit 50%
Capacity Cbat 1000 kW
Initial hydrogen level LOHinit 300 kg
Target hydrogen level LOHtarget 300 kg
Max level LOHmax 20 000 kg
LHV h2 33.3 kWh.kg−1

HHV h2 39 kWh.kg−1

Year 2004
Days 200–202
Time interval ∆t 1h
Time horizon H = K∆t 72h
Approximation error ε 10−4

Table 3: Input data used for the numerical application
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Figure 10: An optimal solution given by the MILP

6.1. Charge in batteries as late as possible

If we consider the battery self-discharge, charging as
late as possible in the batteries is an optimal process as
shown by the Theorem 1

Theorem 1. Charging batteries as late as possible is op-
timal.
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Figure 11: An optimal solution given by the deterministic algorithm

Proof. Let be 0 < σ < 1 the self-discharge rate, a
resolution timeK > 1 in hour and SOCmin ≤ SOCinit ≤
SOCmax the battery state of charge at hour 0. Let P > 0
be a surplus of energy that we charge the batteries at hour
0 and 0 < ηch < 1 the charge efficiency of the batteries.
The batteries are no longer used after charging this amount
P . Let SOCb

k be the battery state of charge at hour k when
charged as soon as possible (beginning). So, we have:

SOCb
1 = SOCinit× (1− σ) + P × ηch

Then:
SOCb

2 = SOCb
1 × (1− σ)

that is to say:

SOCb
2 = SOCinit× (1− σ)2 + P × ηch × (1− σ)

and by iteration, we have:

SOCb
K = SOCinit× (1− σ)K + P × ηch × (1− σ)K−1

Let SOCe
k be the battery state of charge at hour k when

charged as late as possible (end). If we load the quantity
P in batteries at the last hour (k = K), we have:

SOCe
K = SOCinit× (1− σ)K + P × ηch

As we can see, we have a difference in batteries at the end
of the period (k = K):

∆SOCK = SOCe
K − SOCb

K

= P × ηch × (1− (1− σ)K−1)

And we have ∆SOCK ≥ 0,∀K ≥ 1. So it is more inter-
esting to charge as late as possible, because we have more
energy in batteries at hour k = K. This concludes the
proof.

Figure 12 highlights this difference by charging bat-
teries at hour 0 and at hour 48 by taking as an example
σ = 0.01, ηch = 0.82, SOCinit = 50 % and P = 300 kW
withK = 48 h. By choosing to charge the batteries as soon
as possible, we obtain SOC48 = 46.20 %, but by choosing
to charge as late as possible, we have SOC48 = 55.47 %.
This rule is very useful if we have charging periods lasting
several hours and we need to charge both batteries and
hydrogen during these periods. For example, in Figure 11
given by the deterministic algorithm with σ = 0, if we con-
sider σ > 0, the charging period will be rearranged from
hour 1 to hour 15 in order to charge as late as possible in
batteries, and the rest of the time in hydrogen. Same for
the charging period from hour 45 to hour 63.
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Figure 12: Highlighting the difference in battery state of charge at
the end of the day by charging as early as possible (Green) and
charging as late as possible (Pink): SOCe

K > SOCb
K .

6.2. Discharge the batteries as soon as possible

If we consider the battery self-discharge, discharging
batteries as soon as possible is an optimal process as shown
by the Theorem 2

Theorem 2. Discharge batteries as soon as possible is
optimal.

Proof. Let be the same parameters as in the proof of
the Theorem 1. Let SOCb

k be the battery state of charge
at hour k when discharged as soon as possible. So, we
have:

SOCb
1 = SOCinit× (1− σ)− P × ηdch

then:

SOCb
2 = SOCinit× (1− σ)2 − P × ηdch × (1− σ)

8



and by iteration, we have:

SOCb
K = SOCinit× (1− σ)K − P × ηdch × (1− σ)K−1

Let SOCe
k be the battery state of charge at hour k when

discharged as late as possible. If we discharge the quantity
P from batteries at the last hour (k = K), we have:

SOCe
K = SOCinit× (1− σ)K − P × ηdch

So, the difference comes from the second term. As we can
see, if we discharge as soon as possible, we have a difference
in batteries at the end of the period (k = K):

∆SOCK = SOCb
K − SOCe

K

= P × ηdch × (1− (1− σ)K−1)

And we have ∆SOCK ≥ 0,∀K ≥ 1. So it is more inter-
esting to discharge as soon as possible, because we have
more energy in batteries. This concludes the proof.

6.3. Experiment with the MILP

A new MILP experiment is performed with the same
values as in Table 3, but with σ = 0.01 and whose results
are presented in Figure 13.

During the first 24 hours we have to discharge and then
charge before a new period of charge and discharge. Dur-
ing the first discharge period, the MILP favors the use of
batteries because of their better efficiency and in order to
limit the losses due to the self-discharge of the batteries.
Then, during the subsequent charging period, the MILP
instructs to charge the batteries as late as possible and
until the upper limit is reached. The rest of the time is
charged using H2. Then, the MILP discharges the bat-
teries as soon as possible, but not completely, because the
next charging period must have enough energy to ensure
a return to the initial state of charge at the end of the
period, all this in order to avoid the use of hydrogen as
much as possible.

The next day is approximately the same. Finally, dur-
ing the last day, the MILP charges the batteries as late as
possible and discharges the batteries as soon as possible,
and charges in H2 the rest of the time in order to have the
targeted hydrogen level. It is sufficient to compare Fig-
ure 13 with Figure 10 to realize the change in the energy
allocation strategy.

7. Conclusion and Perspectives

In this paper, we have proposed an polynomial time
algorithm to find the optimal constant and non-constant
autonomous renewable power production based on wind
and sunlight to supply a data-center disconnected from the
classical power grid. In previous studies, a MILP has been
written to find constant or non-constant optimal power
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Figure 13: An optimal solution given by the MILP with σ = 0.01

profiles that the electrical part of a data-center can supply
considering a power demand and expected weather condi-
tions for the next few days (almost 3 days as in this paper).
Even if the solver is efficient, this approach is not scalable.
It is why we have proposed an alternative approach based
on a deterministic algorithm that helps a binary search
algorithm to exhibit optimal power profiles. Experimen-
tal results show similar results to those optimally obtained
using a MILP solver.

Currently, the proposed algorithm is promising. As an
option, we can improve the approach by taking into ac-
count bounds of the batteries, electrolyzers and fuel cells.
But this limitation does not question the approach. Con-
sidering the chosen model and our assumptions, the pro-
posed polynomial time algorithms have been proved as op-
timal algorithms when considering battery self discharge.

The main advantage of the proposed approach is that it
will be now possible to take uncertainty into account in the
power supply process. Indeed, this concerns is one of the
challenge addressed by the ANR DATAZERO2 project.
In this way, the power supply management should become
robust and reliable. The presented results are essential to
address this challenge as future work within the project.
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