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Abstract

The most prominent type of artifact contaminating electroencephalogram (EEG)

signals are the eye blink (EB) artifacts, which could potentially lead to misinter-

pretation of the EEG signal. Online identification and elimination of eye blink

artifacts are crucial in applications such a Brain-Computer Interfaces (BCI),

neurofeedback, and epilepsy diagnosis. In this paper, algorithms that combine

unsupervised eye blink artifact detection (eADA) with modified Empirical Mode

Decomposition (FastEMD) and Canonical Correlation Analysis (CCA) are pro-

posed, i.e., FastEMD-CCA2 and FastCCA, to automatically identify eye blink

artifacts and remove them in an online setting. The average accuracy, sensitiv-

ity, specificity, and error rate for eye blink artifact removal with FastEMD-CCA2

is 97.9%, 97.65%, 99.22%, and 2.1%, respectively, validated on a Hitachi dataset

with 60 EEG signals, consisting of more than 5600 eye blink artifacts. FastCCA

achieved an average of 99.47%, 99.44%, 99.74%, and 0.53% artifact removal

accuracy, sensitivity, specificity, and error rate, respectively, validated on the

Hitachi dataset too. FastEMD-CCA2 and FastCCA algorithms are developed
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and implemented in the C++ programming language, mainly to investigate the

processing speed that these algorithms could achieve in a different medium.

Analysis has shown that FastEMD-CCA2 and FastCCA took about 10.7 and

12.7 milliseconds, respectively, on average to clean a 1-second length of EEG

segment. As a result, they’re a viable option for applications that require online

removal of eye blink objects from EEG signals.

Keywords: Canonical Correlation Analysis (CCA), Electroencephalogram

(EEG), Eye Blink Artifact, Modified Empirical Mode Decomposition

(FastEMD).

1. Introduction

Electroencephalogram (EEG) signals are used extensively in the medical field

for diagnosing epilepsy, sleep disorders, coma, encephalopathy, brain injury, and

brain death [1–8]. EEG signals are also utilized for research purposes, for ex-

ample, in neuroscience, cognitive science, cognitive psychology, neurolinguistics,

and psychophysiology [9–11]. Although EEG signals play a vital role in many

research and medical fields, artifacts often contaminate them. The most promi-

nent type of artifacts contaminating the EEG signals is the eyeblink artifacts.

Therefore, eyeblink artifact detection and removal is an essential preprocessing

step for any EEG-based application.

Eye blink artifacts contaminate all the EEG channels or electrodes but are

not apparent on channels located further from the eyes. They appear most

prominently on the frontal electrodes, Fp1 and Fp2, as these electrodes are

very close to the position of the eyes. Various eyeblink artifact removal algo-

rithms are developed to date. They include algorithms of which are capable

of manual, semi-automated, fully-automated artifact elimination, either from

single-channel EEG or multichannel EEG. One of the most widely used tech-

niques is the manual eye blink artifact rejection method, which involves manual

inspection of the EEG signals to discard the eye blink artifact regions. This

method may result in substantial loss of data as EEG segments that are be-
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ing removed could contain useful neurological information. Alternatively, many

semi-automatic and fully-automatic eyeblink artifact removal algorithms were

developed to replace manual eyeblink artifact rejection method, which were dis-

cussed and reviewed in [12–17]. In addition to the existing automatic artifact

removal algorithms, techniques addressing and implementing the online removal

of eyeblink artifacts are essential [14].

In the brain-computer interface (BCI) devices, eye blink artifacts are the

most significant and apparent type of artifact [18, 19]. If not correctly identified

and removed, eye blink artifacts may be accidentally used as a source that

could mislead classification and the controllability of the BCI device. This

scenario could lead to a drop in the BCI system’s performance during real-

time applications. For this reason, BCIs related to severe motor disabilities are

in demand for accurate eye blink artifact recognition and elimination during

online operations, which will make the BCI device more robust [20]. Similarly,

in neurofeedback, the frequency of eye blink artifacts often overlaps with those

used for neurofeedback training. This could potentially manipulate the feedback

signal, which may strongly influence and invalidate the learning outcome [21].

Another study by Sherlin et al. [22] stated that neurofeedback training could

misinterpret eye blink artifacts, causing incorrect learning process. Therefore,

the authors have strongly suggested that real-time eye blink artifact detection

and removal is required to avoid ”artifact-driven” feedback.

In real-time epilepsy monitoring and seizure detection units [23–25], eyeblink

artifacts often lead to misinterpretation of artifactual segments as an epilepti-

form activity. Epileptiform refer to waves and spikes that may be associated

with epilepsy. Misinterpreted eye blink artifacts as an epileptiform activity may

result in incorrect medication and treatment [26]. Acar et al. have stated that

artifacts originating from eye blinks and eye movements often undermine efforts

to localize epileptic foci from the EEG signal of an epilepsy patient [27]. In

research related to Alzheimer’s disease, EEG recording during the eyes-open

state is not preferred mainly due to contamination from eye blink artifacts, and

artifact avoidance is impractical. Whenever EEG signals are recorded during
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the eyes-open state, excessive eye blink artifacts are present; thus, artifact-free

segments have to be patched together to obtain sufficient duration of EEG signal

for analysis. However, patching EEG segments together produces discontinuous

neural information, which may introduce incorrect interpretation on the analy-

sis of Alzheimer’s EEG signal [28]. In research related to cognitive development,

researchers prefer EEG portions associated with the cognitive process of inter-

est to be free of eye blink artifacts so that the data analysis is meaningful [29].

Although automatic artifact removal algorithms are available, it is clear that

studies addressing and implementing online removal of artifacts are essential.

This is particularly relevant in BCI research for proper BCI output device con-

trollability and in neurofeedback in generating distinct feedback signals. It is

therefore mandatory to remove eye blink artifacts from EEG signals in an online

manner for correct EEG signal interpretation in any EEG-based application.

As discussed, EEG based applications such as BCI, neurofeedback, and

epilepsy monitoring systems relies on the availability of instant instructions

from the brain and real-time execution of the devices. These systems must be

workable while the users perform their daily tasks or during real-time moni-

toring, which means they should operate in an online manner. Therefore, it is

mandatory for any algorithm that deals with BCI, neurofeedback, and epilepsy

monitoring to perform EEG acquisition, artifact correction, feature extraction,

and classification online. Since these applications demand online signal process-

ing, artifact removal methods and algorithms should also process data online.

This paper focuses on online eyeblink artifact elimination from EEG signals

as useful EEG instructions can be fed to BCI or neurofeedback applications

only if artifacts contaminating the EEG signals are correctly identified and re-

moved.The online artifact removal algorithm should have a low computational

cost so as not to introduce an undesirable time delay in an online implementa-

tion. It should also be able to perform window or block processing on the EEG

signals to reduce computational complexity. This will automatically improve

the processing speed of the online algorithm, thus not introducing an unaccept-

able time delay to the entire application. The computational environment in
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which the eyeblink artifact removal algorithm is implemented is crucial in online

applications. MATLAB is currently the most popular tool in research settings,

but MATLAB alone may not be a viable medium for online implementation.

In this paper, the proposed algorithms, FastEMD-CCA2 and FastCCA are

implemented and evaluated in an inexpensive computing environment, C++

programming language, to investigate the feasibility of the approaches in ac-

commodating online applications. Implementation of the algorithms in C++

is mainly to investigate the computation time or the processing speed of the

proposed algorithms, FastEMD-CCA2 and FastCCA, could achieve, in line to

support an online application. The developed algorithms are compared with

one of the state-of-the-art methods in MATLAB, i.e., FORCe, due to its effec-

tiveness in removing eyeblink artifacts.

2. Materials and Methods

2.1. EEG Recording and Analysis

The EEG dataset used for evaluation in this paper were recorded at Hitachi’s

Hatayoma facility in Japan. Following receipt of written informed consent, EEG

signals from volunteers were collected in accordance with the regulations of the

internal review board of Hitachi, Ltd.’s Central Research Laboratory. 20131021-

0138 is the approval number. These EEG signals were explicitly obtained for

the purpose of conducting a mental stress analysis. Since eye blink artifacts

contaminate all recorded signals, the dataset is appropriate for this research

work. Fourteen free electrodes were used to record these EEG signals, placed

on the scalp following the 10-20 system. The EEG signals were obtained from 10

participants, each of whom had six recordings, resulting in 60 EEG signals. The

participants are between the ages of 30 and 55. All the recorded signals are of

varying lengths and were captured at a sampling rate of 256 Hz. During EEG

recording, the EOG electrodes that capture eye blink events are not used to

record the EOG signals for convenience purposes. Validation, whether the eye

blink artifacts are removed, turns out to be difficult due to the unavailability of
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eye blink ground truths. Thus, an experts advice, Neuroscientist Dr. Tahamina

Begum, is required to substantiate if the approaches can effectively remove eye

blink artifacts. The total number of eye blink artifacts found in this dataset is

more than 5600, identified through manual inspection. The number of eye blink

artifacts contaminating each of the EEG signal varies, ranging from 20 to 172

occurrences.

2.2. Existing Online Artifact Removal Techniques

Some of the most related works which may be viable for online applications

are discussed in the following subsections.

2.2.1. Wavelet Neural Network

Using a combination of Wavelet Transform (WT) and Artificial Neural Net-

work (ANN), Nguyen et al. [30] have published their work on ocular artifact

elimination, naming their technique as Wavelet Neural Network (WNN). Ini-

tially, the neural network is trained to classify artifacts using a separate arti-

fact/EOG recording and non-artifacts with simulated EEG signals. Once the

network is trained, contaminated EEG signals are subjected to WT to obtain

wavelet coefficients, which are then passed to the ANN classifier for artifact iden-

tification and correction. Corrected wavelet coefficients are then reconstructed

to get a clean version of the EEG signal. The authors have mentioned that this

algorithm is computationally efficient; therefore, it may be a reliable solution

for real-time artifact removal. Though it is computationally efficient, this algo-

rithm requires an additional artifact/EOG recording to train the ANN classifier,

which may add up some time delay for its implementation in real-time. More-

over, the algorithm is only capable of removing artifacts from a single-channel

EEG signal, which is not practical for a real-world application.

2.2.2. FORCe

The Fully Online and Automated Artifact Removal for Brain-Computer In-

terfacing (FORCe) is a software plugin GUI developed by Daly et al. [31]. This

plugin works based on the combination of WT, ICA and thresholding. It is
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designed to perform in an automated online environment and to remove several

types of artifacts, such as the eyeblink artifacts, cardiac artifacts and muscle

artifacts. First, WT is added to each channel of an EEG signal for a 1-second

epoch. The approximation coefficients from WT are then subjected to ICA to

produce a collection of independent components or ICs. The artifactual ICs are

then categorised using a set of threshold parameters, with ICs exceeding these

thresholds being labelled as eye blink and cardiac artifacts, and thus excluded.

To get a set of cleaned approximation coefficients, the inverse of ICA is per-

formed on the remaining non-artifactual ICs. Then, to suppress/remove muscle

artifacts, soft thresholding is applied to the ICA approximation coefficients and

the detail coefficients acquired through WT. Finally, the algorithm produces

EEG epochs that are free of artifacts.

While the algorithm is able to remove eyeblink, cardiac and muscle artifacts

online, the algorithm relies completely on manually pre-determined thresholds

to classify if an IC is artifactual. Furthermore, the selection of thresholds was

based on the analysis performed only on the EEG signals of two participants.

Since artifact patterns or characteristics may vary for every individual, manually

adjusted and pre-determined thresholds based on signals of two participants may

not be suitable to detect and remove artifactual ICs of a wider range of EEG

datasets. The authors have also stated that the running time of the algorithm

would linearly increase with an increasing number of channels. So, this would

add up some time delay to its implementation in online operations, especially

in applications requiring additional number of channels, for example, in seizure

detection units to localize epileptic foci.

2.2.3. Real-time Source-mapping Toolbox

Tonachini et al. [32] recently published an online automated artefact rejec-

tion (REST) toolbox utilising artefact subspace reconstruction (ASR), PCA,

online recursive ICA (ORICA), and an IC classifier. ASR is an automated,

variance-based algorithm, that learns the statistical properties of an artifact-

free EEG segment. Once the learning is complete, PCA is applied to transform
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contaminated EEG segments into PCs, which are then compared with the learnt

data. PCs that are exceeding initially calibrated/learnt data are removed, where

transient and large-amplitude artifacts get removed in this stage. Remaining

PCs are re-projected back to acquire a partially cleaned EEG segment. Next,

ORICA is performed on partially cleaned EEG segments from PCA, which pro-

duces a set of ICs. These ICs are categorized into eye movement ICs and non-eye

movement ICs using an altered version of the EyeCatch classifier. The classifi-

cation is done by getting the correlation value of the ICs with the IC scalp maps

contained in the library of EyeCatch. ICs that exceed a fixed correlation value

is removed and a clean EEG segment is reconstructed.

Despite the fact that the authors claim that this algorithm works in an

online environment to remove eye blink, cardiac, and muscle artifacts, they also

note that ASR had negligible effect on eye blink artifact removal. On the other

hand, ORICA took 26 seconds to converge well on a blink-related IC to be

removed, which is too long for an online algorithm. Additionally, the authors

have pointed out that the altered version of EyeCatch classifier has introduced

some instability to the correlation values used in classifying the artifactual ICs.

Hence, an online implementation is certainly intolerable with the significant

amount of time consumed by ORICA to identify an eyeblink artifact related IC,

and the instability introduced by the EyeCatch classifier. Thus, it is concluded

that this algorithm may not be suitable to eliminate eyeblink artifacts in an

online manner, although it can effectively remove cardiac and muscle artifacts.

2.3. Review of Proposed Methods

2.3.1. Proposed Eyeblink Artifact Detection Algorithm (eADA)

A novel algorithm, (eADA), to automatically identify eyeblink artifacts with

adaptable and varying threshold values, without any supervision on the EEG

signal is proposed. The detailed description of how eADA works can be found

in [33]. The idea behind designing an eyeblink artifact detection algorithm

is to assist the subsequent artifact removal algorithm. The eyeblink artifacts

contaminate the EEG signal at random points of the EEG signal, which tanta-
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mount to a very short period in time compared to the entire length of the EEG

signal. The artifact correction algorithm does not have to work on long EEG

segments if accurate locations of the eyeblink artifacts are identified in advance.

Consequently, distortion to the artifact-free segments of the EEG signal can be

avoided.

2.3.2. Implementation of CCA in Artifact Removal

Canonical Correlation Analysis (CCA) is a technique that is based on the

blind source separation (BSS) concept. BSS distinguishes a collection of source

signals from a set of mixed signals without any prior knowledge of the source

signals or the weighted mixing elements, as the name implies. The linear re-

lationship between two multidimensional variables is measured. Conceptually,

BSS assumes the contaminated or the set of mixed signals as the combination of

clean EEG sources and artifacts blended together with a mixing formula. Thus,

BSS attempts to isolate EEG sources and artifacts apart with an unmixing

formula, which can be useful for artifact elimination from EEG signals.

The observed EEG signal, x(t) is the first multidimensional variable, while

the second multidimensional variable is obtained by taking a temporally delayed

component of the observed EEG signal, y(t) = x(t − 1). As BSS implies, the

observed EEG signal x(t) is a combination of sources S(t), where S(t) consists

of EEG sources and artifactual components, mixed through a weighted mixing

matrix, W:

x(t) = WxS(t)

y(t) = WyS(t).
(1)

The source signals can be obtained by projecting the weighted de-mixing matrix

onto the observed EEG signals as in Eq.(2):

A = Wx
−1

B = Wy
−1

Sx(t) = xA(t)

Sy(t) = yB(t).

(2)
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Hence, sources of the two multidimensional variables, Sx(t) and Sy(t) can be

estimated if the weighted de-mixing matrices, A and B are known.

In CCA, the sources are named as canonical variates or canonical compo-

nents, U and V. Canonical variates for a multi-channel EEG signal can be

represented through a linear combination between the de-mixing matrices with

mean removed EEG variables, x̂ and ŷ, with n number of EEG sample points

in one channel, and p are the number of channels of x(t) and y(t):

U1 = x̂1A11 + x̂2A12 + ...+ x̂pA1p

V1 = ŷ1B11 + ŷ2B12 + ...+ ŷpB1p (3)

Eq. (3) can be generalized as below, similar to Eq. (2):

U = x̂A

V = ŷB.
(4)

The purpose of CCA is to find the de-mixing matrices A and B such that the

correlation between canonical variates is maximized. The correlation between

the canonical variates, U and V is called the canonical correlation, ρ. The ρ

between U and V should be maximized, or as large as possible:

ρi = corr(Ui, Vi)

ρi =
UT
i Vi√

UT
i Ui

√
V T
i Vi

(5)

where ρi is the i-th canonical correlation, Ui and Vi are the i-th canonical

variates. From Eq. (5), canonical variate pairs are derived, where (U1, V1) is

the first canonical variate pair; similarly, (U2, V2) is the second canonical variate

pair, so on and so forth. The de-mixing matrices A1 = [A11, A12, ..., A1p] and

B1 = [B11, B12, ..., B1p] are estimated to maximise the coefficient of canonical

correlation between the first pair of canonical variates U1 and V 1. The canonical

correlation of the second pair is computed in the same way. The condition that

the second pair of canonical variates are uncorrelated or orthogonal to the first

pair and other pairs of canonical variates in the subspace.
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As discussed earlier, some rows of the canonical variates obtained through

CCA represent the clean EEG sources and one canonical variates row represents

the artifact. So, by forcing the artifactual canonical variates to zero and pro-

jecting back the artifact-free canonical components, a clean EEG section free of

artifacts can be reconstructed. The implementation of eyeblink artifact removal

from EEG using CCA is summarized below.

1. For elaboration purpose, a data set, s(t) with a length of 5 seconds is used.

2. Synthetic eyeblink artifacts are added to the EEG dataset to produce a

contaminated EEG signal. The synthetic eyeblink artifacts, eb(t) can be

simulated through exponential functions with different amplitudes, as in

Eq. (6).

eb(t) = 40e−(10t−10)2 + 40e−(10t−30)2 + 32e−(10t−45)2 + 28e−(10t−70)2

(6)

Contaminated EEG signal can be obtained by adding the EEG dataset

s(t) with synthetic eyeblink artifacts, as in Eq. (7).

x(t) = eb(t) + s(t) (7)

3. The second multidimensional data set, y(t) is taken, with y(t) = x(t−1).

4. Mean removed signals, x̂(t) in Fig. 1 and ŷ(t) in Fig. 2 are obtained by

removing the respective mean from x(t) and y(t).

5. Next, the weighted de-mixing matrices A and B are estimated.

6. Canonical variates U are computed by projecting the estimated de-mixing

weight matrix A onto the mean removed signal x̂ as in Eq. (4). The

resulting canonical variate U, is shown in Fig. 3.

7. The eyeblink artifact components are well distinguished from the neu-

ral components as they behave as the least cross-correlated components

among the canonical variate vectors. This row of canonical components
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Fig. 1: First multidimensional data set, x̂(t)
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Fig. 2: Second multidimensional data set, ŷ(t)
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Fig. 3: Canonical components of x̂
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Fig. 4: Non-artifactual Canonical components
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is excluded out by forcing it to become zero in order for it to behave

non-artifactual, Uclean as shown in Fig. 4.

Finally, a clean EEG signal that is free from artifacts can be reconstructed

s shown in Fig. 5, by taking the inverse of the de-mixing matrix, A−1, into the

non-artifactual canonical components, Uclean:

Xclean = A−1Uclean (8)

0 200 400 600 800 1000 1200 1400

Cleaned X(t)

FP1F7
F7T7
T7P7
P7O1

FP1F3
F3C3
C3P3
P301

FP2F4
F4C4
C4P4
P4O2

FP2F8
F8T8
T8P8
P8O2
FZCZ
CZPZ

Fig. 5: Artifact-free EEG dataset

2.3.3. Modified Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) decomposes a raw signal into several

oscillating trends in a recursive manner through the interpolation and subtrac-

tion process, producing high and low oscillating decomposed trends. These

decomposed trends are called Intrinsic Mode Functions (IMFs). In comparison

to its predecessor, each IMF derived from the original signal has a lower oscil-

lating trend. The original signal can be reconstructed by adding all IMFs and
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the residual signal obtained from the decomposition. A signal can be broken

down into several IMFs using traditional EMD until the final residue becomes

a monotonic trend.

X(t) =

n−1∑
i=1

xi(t) +Rn(t) (9)

, where X(t) is the raw EEG signal, xi(t) are i number of IMFs, and Rn(t) is

the residual component, which is monotonous. The higher oscillations in the

raw EEG signal belong to EEG components and will be isolated out in the first

few IMFs; hence the sum of remaining IMFs would, by default, produce an

eye blink artifact trend. Hence, partially reconstructing the higher oscillating

trends, which are lower in amplitude, would yield the EEG trend. Alternatively,

low oscillating trends with high amplitudes are summed together to attain the

eye blink artifact trend.

Several modifications to the classical EMD algorithm are proposed, as de-

scribed in [34] to resolve the algorithm’s processing time inefficiency. The

FastEMD algorithm is designed to decompose the raw EEG signal to up to

5 IMFs only, sufficient to segregate out the clean EEG signal and the eye blink

artifact template. Consequently, this reduces the computation time, and the

algorithm does not have to repeat itself to extract too many IMFs until a mono-

tonic residue is acquired. However, the IMF selection is predetermined during

reconstruction according to an assumption made. The first two IMFs corre-

spond to EEG, and the remaining IMFs correspond to the eye blink artifact.

Thus, adding up the first two IMFs gives an EEG trend; similarly, adding up the

remaining IMFs would produce an eye blink artifact template. In this paper,

the IMF selection process is automated with CCA’s help to prevent any errors

attributed to the assumption made. The automatic selection or classification of

IMFs in FastEMD is required to categorize whether an IMF belongs to EEG or

the eye blink artifact, subsequently extracting the eye blink artifact template.

This can be accomplished by subjecting the row vectors of IMFs to CCA. Fig.

6 shows the canonical variates obtained by applying CCA on the IMFs.

The most pertinent artifactual canonical variate row is extracted out as the
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Fig. 6: Canonical Variates of the IMFs

eyeblink artifact template. The remaining canonical variates are non-artifactual

sources, so they are used to reconstruct the clean EEG trend. The eyeblink

artifact template and the clean EEG signal reconstructed using IMF’s canonical

components are shown in Fig. 7.

2.4. Proposed Eye blink Artifact Removal Algorithms

2.4.1. FastEMD-CCA2

The combination of eye blink Artifact Detection Algorithm (eADA), mod-

ified Empirical Mode Decomposition (FastEMD) and Canonical Correlation

Analysis (CCA) is proposed, producing FastEMD-CCA2, which can be used

to remove eye blink artifacts in online applications. In FastEMD-CCA2, several

eye blink artifact regions are searched, identified and saved using eADA until

two eye blink artifact regions exhibit a correlation coefficient of more than 0.9.

A high correlation, i.e., 0.9, between the eye blink artefact regions is thought to

indicate repetitiveness or similarity in an individual’s blinking pattern, which

can be assumed to be a general eye blinking pattern for that particular EEG
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Fig. 7: Extracted Eyeblink Artifact Template and Reconstructed EEG Signal

signal. FastEMD is applied only on the latter eye blink artifact region to extract

an eye blink artifact template, thus keeping the number of FastEMD applica-

tions as low as possible. This approach differs from what is used in traditional

artifact removal techniques using EMD, in which traditional EMD is used to re-

move the artifacts whenever an artifact event is detected. In FastEMD-CCA2,

the IMFs obtained through FastEMD are subjected to CCA as illustrated in

subsubsection 2.3.3 to extract out a general eye blink artifact template. Re-

maining eye blink artifacts that contaminate an EEG signal are removed with

the help of the extracted eyeblink artifact template, assuming every other eye

blink artifacts within a subject exhibit a consistent pattern with the template.

A sliding window with the length of the extracted eyeblink artifact template is

moved along the EEG signal and each EEG window is cross-correlated with the

general eyeblink artifact template extracted:

Cross-correlation =
CX(t),XEB(t)

σX(t) ∗ σXEB(t)
(10)
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where CX(t),XEB(t) is the covariance between the contaminated EEG signal,

X(t), and the eyeblink artifact template, XEB(t), while σX(t) and σXEB(t) are

the standard deviations of these signals.

Observations and validation on the Hitachi EEG signals revealed that the

correlation between the eye blink artifact template and EEG windows contami-

nated with eye blink artifacts often lies in the range of 0.4 to 0.6, so a correlation

value of more than 0.4 is used to indicate the presence of an eye blink artifact.

Hence, EEG windows that exhibit a similarity score of more than 0.4 with the

eye blink artifact template are confirmed as eye blink artifacts, thus subjected

to CCA for artifact removal. Removal of the eye blink artifacts from the spec-

ified multichannel EEG window relies on eliminating the artifactual canonical

components of CCA. CCA first estimates the canonical components that maxi-

mize temporal correlation within the given window. Then, among the canonical

variate vectors, the most relevant artifactual canonical components (Ui, Vi), typ-

ically the least cross-correlated canonical component, are forced to become zero

in order for it to behave non-artifactual. The artifact-free canonical components

are termed as Uclean. Finally, a clean EEG segment is reconstructed by project-

ing the inverse of the de-mixing matrix, A−1 into the non-artifactual source,

Uclean as explained in Eq. (8).

In this proposed technique, the extracted general eyeblink artifact template

is utilized further by CCA for eyeblink artifact elimination. So CCA is used,

first in selecting the eyeblink artifact related IMFs after FastEMD application,

and second in eliminating the remaining eyeblink artifacts that are present in

an EEG signal. Thus the entire algorithm is named FastEMD-CCA2 as CCA is

used twice. The flowchart of the proposed technique, FastEMD-CCA2, is shown

in Fig. 8.
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Fig. 8: Flowchart of the Proposed Technique FastEMD-CCA2
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2.4.2. FastCCA

In FastEMD-CCA2, the elimination of eye blink artifacts from the entire

multichannel EEG signal is conducted through cross-correlation between EEG

segments and the eye blink artifact template extracted out through FastEMD.

EEG segments that are highly correlated with the eye blink artifact template

are subjected to CCA for artifact removal. Since an automatic eADA is already

developed and it could accurately identify the eye blink artifact locations, the

proposed algorithm’s performance without dependency on the eye blink artifact

template to determine the eye blink artifact locations is investigated. There-

fore, another algorithm is proposed by combining eADA and CCA to develop the

FastCCA algorithm, which is purely a correlation-based approach. In FastCCA,

the unsupervised eye blink artifact detection algorithm, eADA is performed in

windows of about 1.95s on Fp1 and Fp2 EEG channels. Once an eye blink arti-

fact region is found on the Fp1 channel, this region’s multichannel EEG signal

is subjected to CCA for artifact elimination. Then eADA is executed again to

search for the next eye blink artifact region on the Fp1 channel. Multichannel

artifact elimination is performed on the newly found eye blink artifact region

via CCA. So, eADA and CCA are used repeatedly until all eye blink artifacts

contaminating the EEG signal are identified and removed. The flowchart of

the proposed FastCCA algorithm is shown in Fig. 9. In this approach, CCA

is directly applied to EEG segments identified with eye blink artifacts through

eADA. So this algorithm bypasses the requirement to have an eye blink artifact

template extracted via FastEMD and CCA, which could reduce the computa-

tion time as well. This allows an adaptive detection and removal of eye blink

artifacts for every event of blink, without the need to have a general template

for artifact identification.

20



Start

EB onset = 1st sample > threshold

EB start = 100 samples before EB start

EB end = 1 second after EB onset,

EB frame = EB start to EB end,

Store this frame as an EB artifact region

End

Compute Amplitude Displacement (Deviation)

Threshold = ( mean + 2 σ ) of Displacement 

Distribution

NO

YES

Find Correlation Coefficient (CC) between 

Fp1 & Fp2 windows

k=1:length of X(t)

Window size = 500,

Windows (Fp1 & Fp2) = k + Window size

CC > 0.9

k = k + Window size

End of EEG Signal?

k = EB end

NO

YES

Apply CCA on “EB artifact region” 

Remove eyeblink artifact

Reconstruct clean EEG segment

Fig. 9: Flowchart of the Proposed FastCCA Algorithm

The simplified workflow of both algorithms are shown in Fig. 10.
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2.5. Implementation Strategies for Online Artifact Removal

In order to achieve an online implementation of the proposed approaches in

removing eye blink artifacts from EEG signals, two implementation procedures

are proposed. First, the proposed algorithms are executed and processing is

performed in small EEG windows, rather than applying the proposed algorithms

to the entire EEG signal. Secondly, the proposed algorithms are implemented

and evaluated with a compiled language, the C++ language on an Ubuntu Linux

14.04 (64-bit OS, 4GB RAM).

FastEMD-CCA2 and FastCCA are initially implemented in MATLAB, then

followed by C++. In MATLAB, the entire multichannel EEG signal is imported

into MATLAB’s workspace for processing. The algorithms are executed, and

artifact correction is performed on overlapping windows, with each window being

about 1.95s in length. In the C++ language, the algorithms are executed in

Ubuntu to process the EEG signals in a simulated online setting. The proposed

algorithms are designed to fill a buffer by streaming EEG recording on a sample-

by-sample basis. After buffering a 1.95s EEG epoch, the samples in the buffer

are subjected to unsupervised artifact detection and elimination.
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2.6. Performance Evaluation

The competency of an online eyeblink artifact removal algorithm relies on the

processing speed of the algorithm, where the time taken for artifact elimination

from EEG signals should be acceptable for an online application. The time

taken for a system to be considered as real-time is still debatable, but estimated

to be between 6 and 20 milliseconds [35]. As stated earlier, the reason for

the proposed algorithms implemented in C++ is to investigate the processing

speed the algorithms can achieve. So, other performance measures apart from

the computation time should remain the same as they are the same algorithms,

regardless of the implementation platform. This is feasible only if the algorithms

are correctly implemented in both MATLAB and C++. So, visual inspection

and quantitative analysis in the time domain are performed on the EEG signals

to verify the algorithms’ effectiveness in both MATLAB and C++. On the

whole, the algorithms should achieve instantaneous artifact correction without

loss of neural information, to be useful in online applications. The proposed

algorithms, FastEMD-CCA2 and FastCCA, are then compared with one of the

state-of-the-art algorithm, FORCe, as it was proven to remove eye blink artifacts

from multi-channel EEG signals. The FORCe algorithm is evaluated only in

MATLAB and not in C++ as it was originally developed and evaluated in

MATLAB by [31]. The other two algorithms, i.e., WNN and REST, are not

used for comparison because WNN could only remove artifacts from single-

channel EEG signal, while REST had a negligible effect on eyeblink artifact

removal.

2.6.1. Offline Evaluation through Visual Inspection

The proposed algorithms are evaluated in MATLAB and C++ using offline

analysis on the online processed EEG signals after artifact correction. The anal-

ysis is conducted on 60 EEG signals, described in section 2.1. Since the ground

truths are not available for real EEG signals, the effectiveness of the proposed

algorithms in recognising and eliminating eyeblink artefacts while maintaining

artifact-free EEG segments is checked using manual visual inspection (MVI)
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with the assistance of an expert, Neuroscientist Dr. Tahamina Begum. The eval-

uation parameters are derived from various binary prediction measures [36, 37],

evaluating the algorithms’ accuracy, sensitivity, specificity, and error rate..

2.6.2. Offline Evaluation through Quantitative Evaluation

Supplementary to eyeblink artifact detection and rejection, the performance

of the proposed algorithms in retaining the neural information is quantitatively

assessed. This is accomplished by selecting artifact-free EEG segments at ran-

dom from the 60 EEG recordings mentioned above. Each EEG signal is evalu-

ated for one artifact-free EEG segment chosen randomly. Ideally, it is expected

that these segments remain undistorted, even after the artifacts have been re-

moved.

In the time domain, the correlation coefficient (CC), root mean square er-

ror (RMSE) and similarity index (ηdB) [38] are used to measure how well the

proposed algorithms have preserved the artifact-free EEG segments after arti-

fact correction. CC in Eq. (11) measures the similarity between the original

artifact-free EEG segment, Xin(t) with its corresponding reconstructed EEG

segment, Xout(t) after artifact removal.

CC =
CXin(t),Xout(t)

σXin(t) ∗ σXout(t)
(11)

RMSE measures the reconstruction error between original artifact-free EEG

segment and the reconstructed EEG segment. In Eq. (12), n is the number of

sample points in the EEG segment:

RMSE =

√∑n
t=1(Xin(t) −Xout(t))2

n
(12)

Similarity index (ηdB) in Eq. (13), of the artifact-free EEG segment is

computed to quantify the degree of neural information preservation.

ηdB = 10 log10

[∑n
t=1(1 −Xin(t) −Xout(t))

n

]
(13)

2.6.3. Online Evaluation

The online performance of the proposed algorithms is evaluated in terms of

the computation time taken by the algorithms in removing artifacts from EEG

24



signals. The processing speed taken by both algorithms in two different plat-

forms, MATLAB R2018b in Windows 7 Professional (64 bit OS, 4GB RAM)

and C++ language on an Ubuntu Linux 14.04 (64-bit OS, 4GB RAM), are

recorded for evaluation purposes. The computation time is interpreted as the

computing efficiency of the algorithms in cleaning the eyeblink artifacts online.

Hence, it is used to evaluate the feasibility of the algorithms for online pro-

cessing, whether they can achieve instantaneous artifact removal. Whichever

algorithm that achieves a shorter computation time denotes better computing

efficiency, making it a more suitable candidate for online eyeblink artifact re-

moval applications.

3. Results and Discussions

3.1. Offline Analysis Results through Visual Inspection

The EEG signals are subjected to online eyeblink artifact elimination via

FORCe, FastEMD-CCA2 and FastCCA in the MATLAB computing environ-

ment and C++ programming language. Visual comparison of Fp1 channel

of EEG 3, before and after artifact correction using FORCe in MATLAB,

FastEMD-CCA2 and FastCCA in MATLAB and C++, are presented in Figs.

11, 12 and 13.

Screen-shots of EEG3’s Fp1 channel display in the C++ programming lan-

guage, after artifact correction through FastEMD-CCA2 and FastCCA, are

shown in Figs. 14 and 15.

Figs. 16, 17, 18, 19 and 20 visualize multichannel EEG signal of EEG 3,

before and after artifact correction using FORCE in MATLAB, FastEMD-CCA2

and FastCCA in MATLAB and C++.

The average error rate, accuracy, sensitivity, and specificity obtained through

offline visual inspection on the corrected EEG signals are presented in Table 1.

3.1.1. Discussion

FastEMD-CCA2 has achieved similar performance measures in both MAT-

LAB and C++, i.e., an error rate of 2.10%, accuracy of 97.9%, sensitivity of
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Fig. 11: Recovered EEG Signal from Fp1 Channel through FORCe in MATLAB

97.65%, and specificity of 99.22%. Similarly, FastCCA has achieved an error rate

of 0.53%, accuracy of 99.47%, sensitivity of 99.44%, and specificity of 99.74%,

in both MATLAB and C++. Achieving similar performance measures in re-

moving the eye blink artifacts in both platforms is expected, proving that the

algorithms are implemented correctly in both MATLAB and C++.

The accuracy represents the ability of the proposed algorithms in accurately

identifying the eyeblink artifacts and uncontaminated EEG segments, in order

for it to remove the eyeblink artifacts. The proposed algorithms have achieved

an average of 97.9% and 99.47% of accuracy compared to 91.7% by FORCe.

The proposed algorithms achieved a slightly higher accuracy level compared

to the FORCe algorithm. Failing to correctly identify the eyeblink artifacts

and EEG segments are interpreted through the error rate produced by the al-

gorithms, where it counts the chance of the algorithms to miss an eyeblink

artifact. FastEMD-CCA2 produced an average error rate of 2.10%, FastCCA

26



0 1 2 3 4 5 6 7 8

104

-100

0

100
(a)- Raw EEG Signal

0 1 2 3 4 5 6 7 8

104

-100

0

100
(b)- Corrected with FastEMD-CCA

2
 in MATLAB

Raw EEG

Corrected Signal

0 1 2 3 4 5 6 7 8

EEG Samples 104

-100

0

100

A
m

p
lit

u
d
e
(u

V
)

(c)- Corrected with FastEMD-CCA
2
 in C++

Raw EEG

Corrected Signal

Fig. 12: Recovered EEG Signal from Fp1 Channel through FastEMD-CCA2 in MATLAB

and C++

with 0.53%, while FORCe yield 8.30%. This denotes that these algorithms are

still susceptible to miss out eyeblink artifacts. FORCe records the highest error

rate and lowest accuracy level on average among the three algorithms, which

means FORCe has a higher probability of identifying eye blink artifacts or EEG

segments erroneously.

Apart from error rate and accuracy, sensitivity is used to measure how precise

the algorithms are in correctly identifying and removing the eye blink artifacts

compared to the actual number of observed eye blink artifacts. Similarly, speci-

ficity is used to measure the algorithms’ precision in properly recognizing EEG

segments and retaining them. Again FORCe records the lowest sensitivity on

average for both datasets, but not significantly low. The results indicate that

the proposed algorithms, FastCCA and FastEMD-CCA2 have achieved 99.44%

and 97.65% of sensitivity respectively, which are 9.97% and 8.18% higher than
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Fig. 13: Recovered EEG Signal from Fp1 Channel through FastCCA in MATLAB and C++

that of FORCe algorithm. This demonstrates that FastCCA and FastEMD-

CCA2 were able to detect and remove eye blink artifacts more effectively than

FORCe. Manually adjusted threshold values are used to classify or make a

binary judgement if an IC is artifactual in FORCe during ICA application on

the wavelet coefficients. So, having manually adjusted thresholds may lead to

detection errors, thereby some artifacts are not removed.

Specificity is the ratio of undistorted artifact-free EEG segments before and

after artifact elimination. The ideal expectation is to have these portions undis-

torted after artifacts have been removed. Through visual inspection, FastCCA,

FastEMD-CCA2 and FORCe records an average specificity of 99.74%, 99.22%

and 98.65% respectively. This signifies that these algorithms do not introduce

much distortion to the EEG signals’ neural information under evaluation via

visual inspection. However, visual inspection alone is not sufficient to confirm if

the artifact-free EEG segments are undistorted. So, quantitative analysis on the
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Fig. 14: Display of Recovered EEG Signal from Fp1 Channel through FastEMD-CCA2 in

C++

Table 1: Average Performance Metrics of FORCe, FastEMD-CCA2 and FastCCA in MATLAB

and C++

Average (%)

Algorithm FORCe FastEMD-CCA2 FastCCA

MATLAB MATLAB C++ MATLAB C++

Error Rate 8.30 2.10 2.10 0.53 0.53

Accuracy 91.70 97.9 97.9 99.47 99.47

Sensitivity 89.47 97.65 97.65 99.44 99.44

Specificity 98.65 99.22 99.22 99.74 99.74

artifact-free EEG segments is conducted as well, which is analysed and discussed

in subsection 3.2.

Despite the fact that the FastEMD-CCA2 and FastCCA algorithms achieve

attractive performance scores, these algorithms still fail to detect and remove

some of the eye blink artifacts. FastEMD-CCA2 was unable to detect and re-

move nearly 137 eye blink artifact events, which accounts for about 2.10% of

error rate. The undetected and unremoved eye blink artifacts are analyzed to

determine the failure’s root cause, although the error rate is relatively low. In

FastEMD-CCA2, a general eye blink template is assumed to closely correlates
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Fig. 15: Display of Recovered EEG Signal from Fp1 Channel through FastCCA in C++

with all eye blink artifact events in that EEG signal, so it is used as a refer-

ence template to locate the remaining eye blink artifacts. The invalidity of the

assumption mostly causes failure cases. Theoretically, the correlation between

the general eye blink artifact template and every EEG segment that is contam-

inated by eye blink artifact is expected to be ≥0.9. In a practical scenario, this

is not the case, whereby observations and validation on the real EEG signals

revealed that the correlation often lies in the range of 0.4 to 0.6. Hence, using

an artifact template with a low correlation threshold of 0.4 to rule out if an

EEG segment is contaminated by eye blink artifact may fail occasionally. For

instance, if an EEG segment contaminated with eye blink artifact exhibits a

correlation of lower than 0.4 with the eye blink artifact template, this EEG

segment will not be identified as containing an eye blink artifact, producing a

false negative scenario. Similarly, if an uncontaminated EEG segment exhibits

a correlation of more than 0.4 with the eye blink artifact template; this EEG

segment will be identified as containing an eye blink artifact, although it does

not, developing a false positive scenario. Subsequent application of CCA to

this EEG segment to remove eye blink artifact is irrelevant and may cause loss

of neural information. Whereas in FastCCA, CCA is directly applied to EEG

segments identified contaminated by eye blink artifacts with the existing eADA
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Fig. 16: Recovered Multichannel EEG Signal through FastEMD-CCA2 in MATLAB

algorithm. This allows an adaptive detection and removal of eye blink artifacts

for every event of blink.

This explains why the average accuracy, sensitivity, and specificity of FastEMD-

CCA2 are lower than FastCCA by 1.57%, 1.79%, and 0.52%, respectively. In

summary, it can be concluded that in FastEMD-CCA2, eye blink artifacts that

are irregular in pattern compared with the eye blink template extracted are not

classified as eye blink artifacts, thereby not getting removed. Similarly, when an

artifact-free EEG segment exhibits an artifact-like pattern, this segment is mis-

classified as an eye blink artifact and subjected to eye blink artifact rejection,

although it isn’t contaminated by an eye blink artifact. The high accuracy, sen-

sitivity, and specificity level of both algorithms suggest that these approaches

are reliable in detecting and removing eye blink artifacts in real-time; however,

FastCCA is a better choice because of its better performance over FastEMD-

CCA2.
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Fig. 17: Recovered Multichannel EEG Signal through FastEMD-CCA2 in MATLAB

3.2. Offline Analysis Results through Quantitative Evaluation

The proposed algorithms’ performance in preserving the underlying neural

information of an EEG signal is evaluated on randomly selected artifact-free

EEG segments after artifact correction. One artifact-free Fp1 EEG segment is

evaluated on every EEG signal. Twenty-seven EEG signals out of the 60 EEG

signals are excluded from this analysis. Too many eye blink artifacts contam-

inate them; thus, selecting a proper artifact-free EEG segment is challenging.

Hence, only 33 EEG signals out of 60 EEG signals are used for quantitative

analysis.

Figs. 21 and 22 show a visual comparison of a short segment of EEG

recording (EEG 3), corrected using FORCe, FastEMD-CCA2 and FastCCA

in MATLAB and C++. From Fig. 21, it can be seen that the artifact is

not entirely removed with FORCe; it was suppressed instead, while the pro-

posed algorithms can remove eyeblink artifacts effectively. Fig. 22 shows a
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Fig. 18: Recovered Multichannel EEG Signal through FastEMD-CCA2 in C++

portion of the reconstructed artifact-free segment that overlaps well with the

raw EEG segment. Visual inspection on the removed eyeblink artifacts and the

reconstructed artifact-free EEG segment shows that the proposed algorithms

effectively remove eyeblink artifacts and preserve the neural information.

Table 2 presents the average CC, RMSE and Similarity Index (ηdB) of the

artifact-free Fp1 EEG segments.

Table 2: Average CC, RMSE and ηdB of FORCe, FastEMD-CCA2 and FastCCA in MATLAB

and C++

Average

Algorithm FORCe FastEMD-CCA2 FastCCA

MATLAB MATLAB C++ MATLAB C++

Correlation Coefficient (CC) 0.9582 0.9992 0.9999 0.9993 0.9998

Root Mean Square Error (RMSE) 1.2454 0.1572 0.0154 0.1010 0.0227

Similarity Index (ηdB) -0.7002 -0.3132 0.0010 -0.1377 0.0009
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Fig. 19: Recovered Multichannel EEG Signal through FastCCA in MATLAB

3.2.1. Discussion

The artifact-free EEG segments in an EEG signal are expected to be unaf-

fected, and the neural information in these segments should remain intact after

artifact elimination is performed. Ideally, a perfect artifact removal algorithm

will produce CC value of 1, RMSE, and ηdB of 0, but this is impractical in

real scenarios. Hence, the proposed algorithms’ effectiveness in preserving the

underlying EEG information can be deduced through CC value that approaches

very close to 1, RMSE, and ηdB close to 0. There hasn’t been any researches

that outline a threshold for CC because a closer CC to 1 denotes the best re-

construction after artifact removal.

Among the three algorithms, FORCe achieved the least average CC and

ηdB , i.e., 0.9582 and -0.7002, respectively. On top of that, it records the highest

RMSE of 1.2454, which denotes that FORCe introduces a higher amount of er-

ror to the EEG signals after eye blink artifacts have been removed. The average
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Fig. 20: Recovered Multichannel EEG Signal through FastCCA in C++

RMSE and ηdB for FastEMD-CCA2 and FastCCA are very low compared to

FORCe, RMSE ranges between 0.0154 to 0.1572 and ηdB range between -0.3132

to 0.0010. FastEMD-CCA2 in MATLAB recorded the highest average RMSE,

but it produced the least RMSE in C++. The average CC value for FastEMD-

CCA2 is 0.9992 and 0.9999 in MATLAB and C++, respectively. FastCCA has

achieved an average CC value of 0.9993 in MATLAB and 0.9998 in C++. Quan-

titative analysis of the artifact-free EEG segments has shown a slight difference

in MATLAB and C++ results. This may be due to the QR decomposition and

SVD within CCA used in MATLAB and C++ are from different toolboxes and

libraries, producing decomposition difference. This difference in decomposition

eventually causes a slight difference during EEG reconstruction. However, the

average CC values for both proposed algorithms in MATLAB and C++ are

comparable, and the difference among them is considered insignificant. In gen-

eral, the individual CC values produced by FastEMD-CCA2 and FastCCA in
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reconstructing artifact-free segments are more than 0.99 for all 33 analysed EEG

signals, in both MATLAB and C++. This indicates that both algorithms do not

introduce much distortion to the artifact-free EEG segments during reconstruc-

tion in comparison to FORCe, thus reliable in preserving neural information of

an EEG signal.

The quantitative results of FastEMD-CCA2 and FastCCA suggest that they

have caused an insignificant loss of neural information to the EEG signals in

comparison to FORCe. In FastEMD-CCA2, the eADA algorithm is first im-

plemented to identify the first few eyeblink artifact locations, and an eyeblink

artifact template is extracted out through FastEMD and CCA. The eyeblink

artifact template is cross-correlated with sliding EEG windows, where highly

correlated EEG windows are subjected to eyeblink artifact removal. CCA is

applied to remove artifacts, only on EEG windows that were confirmed to be

contaminated by eyeblink artifacts. Hence, this is the reason that the artifact-

free EEG segments are unaffected in FastEMD-CCA2, causing negligible loss of

neural information during the reconstruction of the neural signal. In FastCCA,
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CCA is used to remove eye blink artifacts on eye blink artifact locations identi-

fied through eADA. Similar to FastEMD-CCA2, the artifact-free EEG segments

are unaffected, preventing loss of neural information during the reconstruction

of a clean EEG signal.

3.3. Online Analysis Results

The average computation time taken by these algorithms in MATLAB com-

puting environment and C++ programming language to remove eyeblink arti-

facts from 14-channel EEG signals are tabulated in Table 3.

Table 3: Average Computation Time of FORCe, FastEMD-CCA2 and FastCCA in MATLAB

and C++

Average Processing Time (s)

Algorithm FORCe FastEMD-CCA2 FastCCA

MATLAB MATLAB C++ MATLAB C++

Clean Entire EEG 85.10 6.78 3.35 6.87 3.96

Clean 1s of EEG 0.2725 0.0217 0.0107 0.0220 0.0127
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The proposed algorithms are carried out on every 1.95s epoch of the recorded

EEG signal to remove any eye blink artifact that is present. FORCe took about

85.10s in MATLAB to remove eye blink artifacts from 14-channel EEG signals

with an average signal length of 312s (Hitachi dataset). This is equivalent to

an average processing time of 272.5 milliseconds to process and remove any

eye blink artifact from a 1-second length of 14-channel EEG signal (256 sam-

ple points x 14 EEG channels). This high processing time of FORCe may not

accommodate an online application, although it can remove eye blink artifacts

from EEG signals. The average computation time of FastEMD-CCA2 is 6.78s

in MATLAB and 3.35s in C++. It takes an average of 21.7 milliseconds in

MATLAB and 10.7 milliseconds in C++ to process and remove any eye blink

artifact from a 1-second length of 14-channel EEG signal. The average compu-

tation time of FastCCA is 6.87s in MATLAB and 3.96s in C++. The average

processing time to process and clean a 1-second length of 14-channel EEG sig-

nal by FastCCA is 22 milliseconds in MATLAB and 12.7 milliseconds in C++.

Comparing all three algorithms, FastEMD-CCA2 achieves a shorter processing

time of 10.7 milliseconds in C++, followed by FastCCA, with a processing time

of 12.7 milliseconds in C++. It has to be noted that although FastCCA is bet-

ter than FastEMD-CCA2 as demonstrated by the qualitative and quantitative

measurements, it is slower than FastEMD-CCA2 in terms of processing time.

This can be due to the difference in the eye blink artifacts’ detection mechanism

in these algorithms. In FastEMD-CCA2, a general eye blink artifact template

is extracted out and used to identify the remaining eye blink artifact events in

that EEG signal. Whereas in FastCCA, every eye blink artifact event is contin-

uously searched by the eADA algorithm to be removed by CCA, so justifying

the time difference between these algorithms. Considering the average process-

ing time, FastEMD-CCA2 is a better choice for online applications compared to

FastCCA, but again the processing time of FastEMD-CCA2 is not significantly

better than FastCCA. So, both proposed algorithms can be used for applications

requiring online removal of eye blink artifacts with high accuracy.

Results clearly show that the eyeblink artifact removal in C++ is well-suited
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for real-time implementation. Both proposed algorithms took about 10 to 13

milliseconds on average to clean an EEG epoch of 1s length (256 x 14 EEG

sample points) in C++ environment. This is because the proposed algorithms

in C++ are designed to stream the EEG signal on a sample by sample basis into

a buffer, before the eyeblink artifacts are located and removed. The streaming

of EEG sample points into the buffer, and the cleaning process are performed

in parallel. Therefore the processing speed of proposed algorithms in C++ is

purely dependent on the speed of EEG sample point acquisition and instanta-

neous processing, hence the processing is considered online. Considering the

average processing time, FastEMD-CCA2 is a better choice for online applica-

tions compared to FastCCA, but again the processing time of FastEMD-CCA2

is not significantly better than FastCCA. So, both proposed algorithms can be

used for applications requiring online removal of eyeblink artifacts with high

accuracy.

4. Conclusion

FastEMD-CCA2 and FastCCA are proposed, analysed and discussed in this

paper. The performance of these algorithms in removing eye blink artifacts in

real-time, and how well the algorithms are able to preserve artifact-free EEG

segments, without distorting the neural signal is evaluated. The algorithms are

implemented in MATLAB and C++, both in a real-time setting. It appears that

both algorithms have achieved instantaneous eye blink artifact elimination, with

very fast processing time in C++. The artifact removal accuracy of FastCCA

is 1.57% higher than FastEMD-CCA2 in both MATLAB and C++, indicating

FastCCA is slightly better in artifact removal, regardless of the implementation

medium, MATLAB or C++. On the other hand, quantitative analysis has

pointed out that both FastEMD-CCA2 and FastCCA are effective in retaining

underlying neural information, with insignificant distortion to the artifact-free

EEG segments. Thus, any of these two algorithms are suitable to be used

in EEG-based applications requiring eye blink artifact removal without loss of
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neural information in real-time, with FastCCA is slightly desirable in terms of

artifact removal accuracy.
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