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A New Approach to Model Confined Suspensions Flows
in Complex Networks: Application to Blood Flow

R. Guibert · C. Fonta · F. Plouraboué

Abstract The modeling of blood flows confined in micro-channels or micro-capillary beds
depends on the interactions between the cell-phase, plasma and the complex geometry of the
network. In the case of capillaries or channels having a high aspect ratio (their longitudinal
size is much larger than their transverse one), this modeling is much simplified from the use
of a continuous description of fluid viscosity as previously proposed in the literature. Phase
separation or plasma skimming effect is a supplementary mechanism responsible for the
relative distribution of the red blood cell’s volume density in each branch of a given bifur-
cation. Different models have already been proposed to connect this effect to the various
hydrodynamics and geometrical parameters at each bifurcation. We discuss the advantages
and drawbacks of these models and compare them to an alternative approach for modeling
phase distribution in complex channels networks. The main novelty of this new formulation
is to show that albeit all the previous approaches seek for a local origin of the phase segre-
gation phenomenon, it can arise from a global non-local and nonlinear structuration of the
flow inside the network. This new approach describes how elementary conservation laws
are sufficient principles (rather than the complex parametric models previously proposed) to
provide non local phase separation. Spatial variations of the hematocrit field thus result from
the topological complexity of the network as well as nonlinearities arising from solving a new
free boundary problem associated with the flux and mass conservation. This network model
approach could apply to model blood flow distribution either on artificial micro-models,
micro-fluidic networks, or realistic reconstruction of biological micro-vascular networks.
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List of Symbols
µ0 Plasma dynamic viscosity
u Velocity field
p Lubrication pressure field
ρ0 Plasma density
ν0 Plasma kinematic viscosity
�c Radial contribution of the Laplacian in cylindrical coordinates
W Womersley dimensionless number
T Time-scale
R Tube radius
θ Local relative volume of red blood cell
Q Longitudinal flow rate
H Discharge hematocrit
D Tube diameter
µa Apparent viscosity of blood
µ Relative apparent viscosity of blood
Ht Tube hematocrit
L Tube length
J Junction of three links i
i Link index
C Hydraulic conductance
µc Core apparent viscosity for a large tube in microns (Kiani and Hudetz 1991)
δ Width of marginal layer in microns (Kiani and Hudetz 1991)
dm Effective diameter of one red blood cell in a small tube (Kiani and Hudetz 1991)
µ0.45 Relative apparent viscosity for H = 0.45 (Pries et al. 1990)
c Parameter of Pries et al.’s (1990) model
ni Number of input nodes
no Number of output nodes
nI

int Number of internal inflow nodes

nO
int Number of internal outflow nodes

nU
int Number of internal undetermined nodes

f Subscript for the incoming branch of an inflow junction
α Subscript for an outgoing branch of an inflow junction
β Subscript for an outgoing branch of an inflow junction
κ Generic subscript for α or β

γκ Fractional blood flow entering κ-branch at the inflow junction
θκ Fractional discharge hematocrit entering κ-branch at the inflow junction
m Empiric parameter for Dellimore et al.’s (1983) phase separation model
a Plasma skimming parameter (Fenton et al. 1985a,b)
dc Size of red blood cell Fenton et al.’s model (1985a; 1985b)
I Internal inflow node
O Internal outflow node
U Internal undetermined node
HN Node hematocrit



L i Set of internal nodes linked to input nodes ni

h0 Input hematocrit

1 Introduction

Two-phase flows in porous media generally refer to the flow of two immiscible fluids inside a
porous solid matrix (Barenblatt et al. 1990). There is nevertheless another class of problems
which is more rarely considered within the same vocabulary : the flow of a suspension of dis-
persed solid/particle phase flowing within a liquid inside a porous medium. Albeit different
from polymer flows in porous media, such two-phase flows share some important common
properties. Both of them display nonlinear relationship between the concentration of the
disperse phase (polymer or particles) and the rheological parameters of the flow (Entov and
Rozhkov 1985). These non linearities are very sensitive to the structuration of the dispersed
phase at the “microscopic” level. Moreover, if at the “microscopic” level the polymer chain’s
length or the particle size is comparable with the pore size, it is then questionable to seek for
a continuum mechanics description of such a dispersed flow.

This question has been challenging since a long time when considering the modeling
of blood flow in small capillary vessels. From the fluid mechanical point of view, blood is
merely a suspension of red blood cells since they represent 99% of blood cell content. The
non-cellular part of the blood is the plasma whose rheological properties are close to water.
Red blood cells are biconcave disks the diameter of which is 7–8 microns in their larger
dimensions and 2 microns in their thinner ones. Since the thinnest capillaries diameters in
most mammalian bodies are close to 5 microns, one can see that particle size and pore size
are of the same order for this class of flows. Hence, there is an intrinsic difficulty in the
application of macroscopic continuum non-Newtonian rheological models of the blood to
describe its flow within micro-circulation. This long-standing question has motivated intense
research efforts over the last four decades to settle reliable models for confined blood flow
(Fung 1973; Popel and Johnson 2005; Lee and Smith 2008).

Moreover, the dispersed flow of plasma and red blood cells within a long tube-like
vessel is only confined within the transverse direction. Hence, it is generally worth con-
sidering that the tube length is larger than the particle size along the longitudinal direc-
tion. The same considerations also apply in micro-fluidic network channels, for which
the channel length is generally much longer than their width. In this case, a con-
tinuum mechanic approach can still hold to describe the longitudinal pressure varia-
tions. Furthermore, even if the solid phase (polymer or particles) can be confined in
the transverse direction, the fluid phase into which it is dispersed can always be con-
sidered as continuous. Indeed, many experimental researches have analyzed the blood
flux induced by a given pressure drop inside a small capillary tube. As a result of
using the analogous Poiseuille law, these measurements have permitted the evaluation
of the blood apparent viscosity which is generally defined relatively to the plasma vis-
cosity (Chien et al. 1985; Cokelet 1999). The early experiments of Fåhræus and Lind-
quist (1931) have already led to the conclusion that this apparent viscosity decreases as
the tube diameter decreases (as observed on the right part of Fig. 1a—a fairly unex-
pected result at the time). The mechanism responsible for the so-called Fåhræus–Lind-
quist effect, i.e., the reduction of the apparent viscosity when increasing the blood trans-
verse confinement is the lubrication of red blood cells by plasma. The structuration of
the flow associated with hydrodynamic forces centers the red blood cells so that the vis-
cous dissipation effects are minimized when the plasma acts as a lubricant to the red
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Fig. 1 Blood relative apparent viscosity function of tube diameter using Kiani and Hudetz (1991) (continuous
lines) and Pries et al. (1990) (dashed lines) viscosity laws for different inlet hematocrits: a H = 0.2 (square),
H = 0.4 (triangle) and H = 0.6 (circle), b H = 0.7 (diamond) and H = 0.9 (star)

blood cells’ flow. However, when the tube diameter reaches a size close to the smallest
dimension of red blood cells, a marked increase of the apparent viscosity is observed. This
dramatic increase of the apparent viscosity is associated with the viscous dissipation in the
thin lubrication films which are formed between the deformed particles and the wall (Lighthill
1968).

It has been more recently realized that it was also associated in vivo with the compres-
sion of the glycocalyx which lies at the surface of endothelial cells (Damiano et al. 1996;
Feng and Weinbaum 2000). Even though the mechanisms are known, the elaboration of a
complete model for the apparent viscosity of blood over the whole range of diameters and
hematocrits (the red blood cells’ relative volume inside vessels) parameters heavily relies on
phenomenological models which describe experimental data (Pries et al. 1986, 1989; Kiani
and Hudetz 1991; Kiani et al. 1994; Popel et al. 1988). We will detail these models in Sect. 2.

Another important effect associated with the hydrodynamic interactions between the dis-
persed red blood cells’ phase, the plasma and the capillaries is the so-called plasma skimming
effect or phase separation. When studying the in vivo distribution of the hematocrit into the
daughter branch of a given bifurcation, it has been observed that its relative distribution was
generally non-symmetrical (even if the diameters of the daughter branches were merely iden-
tical), suggesting some complex hydrodynamical coupling to hold at the local scale. This
effect is generally described as the structuration of the flow arising at each bifurcation of
the capillary network. It leads to an asymmetric distribution of red blood cell concentration
along each daughter branch of a given bifurcation. This phenomenon has received consid-
erable attention since it is an important ingredient for the modeling of the red blood cells
(and thus oxygen) distribution inside capillary networks (Dellimore et al. 1983; Fenton et al.
1985a,b; Pries et al. 1990).

Physiologists have then proposed a number of phenomenological models to describe this
“phase separation” to provide a reliable and quantitative prediction to it.

A complete, detailed physical understanding of the mechanism at hand in those models is
still missing in the existing literature. Nevertheless, some recent in vitro experiments (Faivre
et al. 2006) and their theoretical analyses have provided evidences showing that plasma
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Fig. 2 Definition of the different categories of nodes which have to be considered. Black squares represent
input nodes ni whilst black circles represent output nodes no. White squares represent internal nodes nint ,
the quality of which is indicated with a capital letter. I stands for “inflow” node (1 influx branch, 2 outflux
ones), O for outflow node (2 influx branches, 1 outflux one) and U for undetermined. The arrows indicate
the direction of the flow in each link or branch. a ni = no = 1, nint = 4, nI

int = nO
int = 1, nU

int = 2;

b ni = no = 1, nint = 4, nI
int = nO

int = 2, nU
int = 0; c ni = 1, no = 3, nint = nI

int = 2, nO
int = nU

int = 0;

d ni = 1, no = 1, nint = nI
int = 2, nO

int = nU
int = 0. The dotted lines indicate some virtual link which have to

be considered for imposing the output boundary condition (42) when transforming the output nodes number
no > 1 of (c)

skimming arises from the hydrodynamic drift of non-spherical cells in shear flow. More-
over, recent numerical simulations also demonstrate that hydrodynamical interactions are
responsible for the cell structuration inside microcapillaries (McWhirter et al. 2009).

Before giving the details of the proposed models in Sect. 2.2, it is important to mention
that they all apply to “inflow” bifurcations but not to “outflow” ones (as described in Fig. 2).
Such discrimination between “inflow” and “outflow” bifurcations justifies the vocable “sepa-
ration” effect since it does suggest that a mother hematocrit has to be distributed into daughter
branches, so that it separates the red blood cell inflow into both of them.

Different models have been proposed in the literature the detail of which is reviewed in
Sect. 2. A common point of view shared by these models is that the phase separation mech-
anism comes from the complex interplay of geometrical and hemodynamics interaction at
the local level of each bifurcation. It is very important to stress that the in vivo experimental
data associated with the elaboration of these models have been obtained from selecting single
bifurcations among a complex network (Pries et al. 1989, 1990, 1992). Some efforts have
been made to better quantify the origin of the phase separation phenomenon either from the
analysis of numerical simulations (Enden and Popel 1994) or detailed fluid-mechanical inter-
actions (El-Kareh and Secomb 2000) arising at the level of a single bifurcation. More recent
investigations have addressed the influence of separation effect on the dynamical behavior
of very simple networks (Carr and Lacoin 2000; Carr et al. 2005; Pop et al. 2007). Never-
theless, all the above mentioned contributions always consider that phase separation results
from local mechanisms, and as such, should be modeled by local laws.

In this article, we show that local mechanisms are not a necessary condition to obtain phase
segregation in complex networks. We adopt the complementary point of view that such phase
segregation results from non-local interactions associated with the topological complexity of
networks and conservation laws when using proper boundary conditions. This new formu-
lation is proposed in Sect. 3 where a detailed description of its numerical implementation is
given. Finally, we compare our new approach with local models in Sect. 4. This section shows
that the previously proposed phenomenological models display a number of drawbacks that
our formulation avoid when considering a network with heterogeneous conductances.



2 Constitutive Equations for Confined Blood Flow

Let us assume that the flow of suspension is steady and governed by the Poiseuille law. Then,
the presence of the particles in suspension leads to an apparent viscosity µa which differs
from the plasma one µ0 and depends on the dynamic red cell fraction H (which is called the
hematocrit) as well as the channel diameter. For the steady-state flow, the total flow rate is
constant. The concentration of particles Ht and the dynamic concentration H are also con-
stant in time and space as one has no positive or negative sources of red cells. The detailed
derivation of these considerations is presented in Sect. 2.1 which might be skipped in a first
reading of this article. One then needs to know :

– The dependence of the apparent viscosity upon the hematocrit and the tube diameter
which is given in the first paragraph section 2.2.

– The hematocrit distribution along each bifurcation which is given in the second paragraph
of Sect. 2.2.

2.1 Lubrication Approximation

This section elaborates the constitutive relations associated with confined particles dispersed
within a fluid of dynamic viscosity µ0.

These constitutive equations are based upon the hypothesis that the flow occurs within
high-aspect ratio tube-like channels. Furthermore, it will be assumed (following Pop et al.
2007) that the particle suspension can be described by a continuous void fraction θ , so that
the fluid has continuous properties everywhere. Let us consider the longitudinal velocity
component u(r, z, t) and the associated lubricated pressure p(z, t), at radial and longitudinal
positions r and z, in the cylindrical coordinate systems (r, φ, z).

It is worth noting that, as usual (Leal 1992), the lubricated pressure p(z, t) does not depend
on the radial coordinate r . We first consider within this analysis each vascular segment as a
single unit into which the lubrication equations are written in the plasma region:

∂u

∂t
= − 1

ρ0

∂p

∂z
+ ν0 �cu, (1)

where ρ0 is the fluid density, ν0 the plasma kinematic viscosity, and �c ≡ (1/r) ∂r(r∂r)

stands for the radial contribution of the Laplacian in cylindrical coordinates and the incom-
pressibility condition

div u = 0. (2)

The dimensionless form of Eq. 1 can be written as

W 2 ∂u∗

∂t∗
= −∂p∗

∂z∗ + �∗
c u∗. (3)

This dimensionless equation, where the symbol ∗ is associated with dimensionless vari-
ables, provides the Womersley number W = R/

√
T ν0 based on a typical time-scale T , the

uniform tube radius R, and the plasma kinematic viscosity. From the realization that the
shortest time-scale associated with the heart pressure pulses is T = 0.1 s (Kleinfeld et al.
1998), or with the vascular tube regulation is T = 1 s (Devor et al. 2008), one then realizes
that vessels having a 10 micron radius R = 10−5 m experiences very weak viscous dynamical
effects since W � 10−2.

Hence, at the capillary scale, the Womersley number is so small that the fluid flow instanta-
neously responds to the hydrodynamical variations. These variations are in particular related



to the presence of the solid phase within the tube which locally squeezes-out the plasma
along the tube walls. This dimensionless formulation of the momentum balance was useful
to show that the stationary limit of the lubrication equations is a reasonable approach for
micro-channel flows. In the following. we keep with a dimensional formulation of the prob-
lem to provide dimensional quantities that could be more easily related to real experimental
network configurations.

According to Pop et al. (2007) and their associated notations, we consider the local relative
volume of red blood cell θ(r, z, t) at location r and z, for which the dynamical behavior is
related to the mass conservation laws given by the equation:

∂θ

∂t
+ u

∂θ

∂z
= 0. (4)

Relations (3) and (4) are the dynamical equations governing the local fluid velocity, the
local hematocrit, and the pressure. From now, taking into consideration the W → 0 limit
of relation (3) integrated along the radial direction, it is possible to deduce a simple relation
between the longitudinal flux:

Q = 2π

R∫

0

u(r) r dr, (5)

and the discharge hematocrit H defined by

H(z, t) = 2π

Q

R∫

0

θ(r, z, t) u(r) r dr, (6)

associated with the stationary pressure/flux relationship

Q = − π

128

D4

µa(H, D)

∂p

∂z
, (7)

where

µa(H, D) = µ0 µ(H, D). (8)

The averaged relation (7) describes a modified linear relationship between the pressure
drop and the flux which obviously results from the local linear lubrication flows. It introduces
an effective viscosity coefficient which takes into account the presence of the particles in
the flow. However, the detailed derivation of this relation needs the evaluation of cumulative
pressure drop in the plasma films squeezed by the presence of the particles. It cannot simply
be obtained by an average of (1), but needs the resolution of the pressure field in different
regions to match one with another to get the total pressure drag which can be evaluated for
simple particle shapes (Lighthill 1968). It is important to mention that this relation heavily
relies on the lubrication hypothesis. It ignores the complex three-dimensional Stokes effect
which locally arises in the vicinity of each bifurcation over a length-scale which is of the order
of a few tube diameters. Furthermore, extensive experimental phenomenological laws have
also been proposed to describe the dependence of the relative apparent viscosity µ(H, D) on
the discharge hematocrit H and the tube diameter D = 2R that will be detailed in the next
section.

The discharge hematocrit H which results from a velocity-weighted averaged mass flux
is the red blood cells’ volume fraction which would result from extracting the blood flow in a



cup and measuring its cell volume fraction (the equivalent of the “mixing cup” average found
in convective thermal problems, and also from the fractional flow in the Buckley–Leverett
theory of two-phases immiscible flow through porous media).

The fluid incompressibility then leads to

∂ Q

∂z
= 0. (9)

Again, based on Pop et al. (2007) and from surface-averaging relation (4), it is possible
to get the flux–hematocrit relationship using (9)

∂ Ht

∂t
+ ∂ H

∂z
Q = dHt

∂t
+ ∂(H Q)

∂z
= 0, (10)

where Ht(z, t) is the surface average of θ also called the tube hematocrit

Ht(z, t) = 2

R2

R∫

0

θ(r, z, t) r dr. (11)

That this tube hematocrit differs from the flux–hematocrit is a long-standing observation
called the Fåhræus effect in the literature (Popel and Johnson 2005). The relationship between
Ht(z, t) and H depends on the micro-scale particles/flow configuration θ . There is a general
agreement in the literature for a nonlinear relationship Ht(z, t) = Ht(H(z, t)), and some
models have been proposed (Pries et al. 1996; Pop et al. 2007). From Fåhræus effect and
incompressibility (9), it is interesting to write (10) as

∂ H

∂t
+ Q

dH

dHt

∂ H

∂z
= 0, (12)

to realize that it describes a one-dimensional convective transport of the discharge hematocrit
H along the tube axis, at velocity Q dH

dHt
. One can then realize that the red blood cells are

not transported at the plasma mean flux Q, but at a relative flux dH
dHt

Q. This observation
could contradict relation (4) which describes a local convection of the local hematocrit at the
plasma velocity. This is because the particles are not homogeneously placed inside the flow,
but preferentially in the center of the tube where they experience higher flows, so that their
average flow transport differs from those of the fluid.

If we now consider the stationary limit of the integrated constitutive equation (10), one
then realizes that the hematocrit has to be constant along each vascular segment, so that H
is not a function of z and t anymore, in the same way as the flux Q. This property of the
stationary solution does not depend on the Fåhræus effect.

When integrating relation (7) in this stationary limit along each vessel segment, one can
then deduce the relationship between the pressure drop between two successive bifurcations
�p, the apparent viscosity µa, the segment length L , and the flux Q

Q = − π

128

D4

µa(H, D)

�p

L
. (13)

This relationship is the cornerstone of a discrete network method to compute the pressure
distribution inside very complex networks since the continuous mechanical equations have
been integrated analytically within an asymptotic formulation to obtain this discrete version
as in Plouraboué et al. (2006). It is important to realize that this relationship also ignores
Stokes pressure drop contributions coming from the complex flow in the vicinity of each
bifurcation. Since these Stokes corrections to the lubrication approximation are localized



within a distance R from the bifurcation, the contribution of these effects on the pressure
drop �p is of order O(R/L). Since the ratio R/L in almost all vascular networks is of the
order of 1/20 (Risser et al. 2009), the expected correction associated with the three-dimen-
sional complex flow at bifurcation is expected to be as small as 10% and should then safely
be discarded.

From the conservation law written in another form (9) and (13) for the sets of vascular
segments i associated with a given junction J , we arrive at the following discrete sets of
equations for the pressure and hematocrit of a complex network

∑
i∈J

Qi = −
∑
i∈J

Ci (Di , Hi )�i p = −
∑
i∈J

π

128

D4
i

µa(Hi , Di )

�i p

Li
= 0, (14)

where the flux Qi in each branch (each link related to the junction J ) is taken to be positive
for influx and negative for out-flux (this is the Kirchhoff’s law for electrical circuits). �i p
stands for the pressure difference between the central node minus each adjacent ones, and
Ci is the hydraulic conductance of each branch. From the integration of the stationary limit
of relation (10) we also arrive at ∑

i∈J

Hi Qi = 0. (15)

This mass conservation for the hematocrit is again established when neglecting complex
three-dimensional hydrodynamic effects arising in the vicinity of each bifurcation.

As for the previous incompressibility condition, (14), such correction should be of order
O(R/L) so that it will lead to a negligible correction for micro-vascular networks.

It is worth noting that, from now on, no additional hypothesis rather than momentum
balance, mass conservation, fluid incompressibility, and lubrication approximation would be
used to establish the discrete network formulation equations (14) and (15). Furthermore, it
is also interesting to note at this stage, that, if some homogeneous input hematocrit h0 is
injected in the network, then the homogeneous trivial solution, Hi = h0, is always a possible
solution. This comes from the fact that factorizing an homogeneous hematocrit value in (15)
leads to flux conservation which is automatically verified from (14). This is nevertheless not
an interesting one since it is generally not the one which is observed in experiments. This
is why we consider other possible solutions, either from using additional local “segregation
models,” or by developing a new formulation.

2.2 Phenomenological Models for Blood Flow

2.2.1 Apparent Viscosity

The first important supplementary ingredient which is needed to describe the flow of con-
fined suspensions in channels is the knowledge of the apparent viscosity. Previous theoretical
attempts toward this direction are longstanding since Lighthill’s (1968) study where it is real-
ized that the viscous drag on elastically deformable spherical objects is mainly concentrated
in thin regions, the precise contribution of which could be computed from matching tech-
niques. Nevertheless, the resulting drag coefficient depends on the detail of the deformation
of the particle suspension. For non-deformable spherical object, it can be safely computed,
but for object as complicated as red blood cells, it is much more difficult to evaluate. Since
then, many other efforts have been dedicated to the accurate computation of the coupled
Stokes flow around axisymmetrical red blood cells using complex membrane rheological
models (see Quéguiner and Barthès-Biesel 1997, for example).



More recently, it has been pointed out that when the red blood cell is very much con-
fined in vivo into small capillary vessels, it can experience a supplementary drag coming
from the compression of the glycocalyx layer (Damiano et al. 1996; Feng and Weinbaum
2000). Hence, depending on the specific particles and the precise channel into which they are
confined, the precise apparent viscosity law can change. From now on, we will restrict our
interest to models that have been proposed to describe the experimental results associated
with blood flow into in vitro cylindrical tubes. Nevertheless, the approach which is proposed
in Sect. 3 is rather generic and can also be adapted to other contexts using the proper apparent
viscosity law.

Kiani and Hudetz (1991) have proposed a semi-empirical model based on hydrodynamical
considerations associated with the lubrication of red blood cells by plasma. The apparent vis-
cosity of this model which depends on the discharge hematocrit H and on the tube diameter
D is given by

µ(H, D) =
(

1 −
(

1 − µ0

µc

)(
1 − 2 δ

D

)4
)−1 (

1 −
(

dm

D

)4
)−1

, (16)

where µc represents the blood viscosity in large vessels and is given by the following empir-
ical law:

µc = exp(0.48+2.35 H) . (17)

Parameter δ represents the thickness of the marginal plasma layer which lubricates red blood
cells and is given in microns by

δ = 2.03 − 2 H. (18)

Finally, parameter dm represents the maximal size of deformation of a red blood cell and is
deduced from experimental observation to be equal in micron units to

dm = 2.7. (19)

The advantage of the Kiani–Hudetz model over others is that it could be parameterized
for suspensions other than blood because each given parameter has a physical interpretation.

Another popular model for confined blood rheology is the one proposed by Pries et al.
(1990, 1996) to describe the in vitro relative apparent viscosity. On the contrary to the previ-
ous one, this model is based on a number of phenomenological parameters the interpretation
of which is not easy (see Pries et al. (1996) for more details on the interpretation of parameters
µ0.45 and c). The relative apparent viscosity is given by

µ(H, D) = 1 + (µ0.45 − 1)
(1 − H)c − 1

(1 − 0.45)c − 1
, (20)

µ0.45 = 200 exp(−1.3 D) +3.2 − 2.44 exp
(−0.06 D0.645)

, (21)

c =
(

0.8 + exp(−0.075 D)
) (

−1 + 1

1 + 10−11 D12

)
+ 1

1 + 10−11 D12 . (22)

Surprisingly enough, when considering the difference between both formulations, they
provide consistent viscosities in the range of the most meaningfully physiological parame-
ters as illustrated in Fig. 1a. However, when the hematocrit reaches values as high as 0.7,
both models display distinct differences in the apparent viscosity, especially for large vessel
diameters as shown in Fig. 1b. For hematocrit values as large as 0.9, the validity of the values
given by the models is questionable, as also illustrated on Fig. 1b.



2.2.2 Plasma Skimming Laws or Phase Separation Effect

All the above considerations are restricted to networks having only three-branched junctions
called bifurcations, and “inflow” configurations. We will see below that some supplementary
relationships are needed to describe the “outflow” bifurcations to close the set of equations
associated with the determination of pressure and hematocrit in a complex network. It is also
important to mention that all the above sets of equations have been elaborated in the context
of stationary flows, so that a direct application to dynamical formulations as done in Carr
and Lacoin (2000); Carr et al. (2005) and Pop et al. (2007) should be taken with caution.

From now on, we denote the mother incoming branch with a m subscript and the daughter
outgoing branches with subscripts, α and β.

Based on the clear notations of Pop et al. (2007), the models can be synthetically described
using the fractional outgoing flow

γκ = Qκ/Qm. (23)

The subscript κ is equal to either α or β. Mass conservation (14) implies

Qα + Qβ = Qm, (24)

so that one of the fractional flux is a trivial function of the other one

γβ = 1 − γα. (25)

The other quantity to consider is the fractional discharge hematocrit

θκ = Hκ/Hm (26)

Plasma skimming models then provide the dependence of the fractional discharge hemat-
ocrit θκ with the fractional flux and, for some of them, other parameters such as the diameters
of the branches. We hereby detail three different skimming models proposed by Dellimore
et al. (1983), Fenton et al. (1985a; 1985b), and Pries et al. (1989; 1990).
The hypotheses of those models differs depending on which parameters are considered to
influence the fractional discharge hematocrit θκ .

Dellimore et al. (1983) propose that the fractional hematocrit fulfils the following power
law versus the fractional flux:

θκ(γκ) = γκ
m−1

γκ
m + (1 − γκ)m

, (27)

where the phenomenological parameter m is chosen to be equal to m = 1.2. From this rela-
tion, it is easy to verify that the mass conservation (15) when using (25) can be expressed
as

θαγα + θβ(1 − γα) = 1. (28)

Fenton et al. (1985a,b) propose the following model:

θκ(γκ , Dm) = a + 1 − a

2γκ

, (29)

a = 1

1.4 − √
dc/Dm

, (30)

where dc is related to the red blood cell size, and a is greater than or equal to 1. The parameter
dc is not specified in each publication, and its value ranges from 5 to 8µm. In the subsequent



computations, we will choose the value dc = 5µm. Again, this model verifies the conserva-
tion equation (28).

Pries et al. (1989, 1990) have proposed the following more elaborated model:

θκ(γκ , Dα, Dβ, Dm) = 1

γκ

⎧⎨
⎩

Fκ (γκ , Dα, Dβ, Dm) x0 < γκ < 1 − x0

0 γκ ≤ x0

1 γκ ≥ 1 − x0

(31)

where

Fκ (γκ , Dα, Dβ, Dm) = 1

1 + exp (Aκ − B ln Gκ )
, (32)

for which

Gκ (γκ) = γκ − x0

1 − γκ − x0
, (33)

and

B = 1 + 6.98

(
1 − Hm

Dm

)
, x0 = 0.4

Dm
, Aα = −Aβ = 6.96

Dm
ln

(
Dα

Dβ

)
. (34)

It is also possible to verify that this model fulfills the mass conservation equations (28). It
is important to note that all these models provide two relations for the fractional hematocrit
of each daughter branch of inflow bifurcations. For “outflow” bifurcations, only a single
relation associated with the mass conservation (28) is imposed. Hence, there is a distinct dif-
ference between “inflow” and “outflow” bifurcations in these models, and a supplementary
information is given in the first case which relies on the hypothesis that the phase separation
occurs from a local mechanism.

The fractional hematocrit of the three models is presented in Fig. 3a and b. They all present
similar variations with a first increase of the hematocrit ratio versus the corresponding flux
ratio. Nevertheless, some details of the curve differ when varying certain parameters such as
a zero plateau for the hematocrit ratio for the smallest γα values or the presence of a maxi-
mum for large γα values. One important common feature of these models is the possibility
for the daughter branch to reach an hematocrit value larger than the mother one (when the
hematocrit ratio is larger than one). Such feature has been observed experimentally (see, for
example, Fig. 4 of Pries et al. (1989)), and it is found in highly asymmetrical bifurcations for
which the flux distribution is predominantly going into one of the daughter branch when it
is, therefore, needed. From relation (28), if θα < 1, then θβ > 1 and vice-versa. It can also
be observed on Fig. 3b that the model proposed in Fenton et al. (1985b) displays undesirable
negative hematocrits at low relative flux values. This is a problem of this early model, and
much later, another one such as Pries et al. (1989) cures this drawback by prescribing a zero
value at low γα as observed in the continuous lines set of Fig. 3a.

This common property of the models can lead to undesirable effects in some networks
where some of the hematocrits at a given link can reach values that are larger than one as
will be seen in Sect. 4.

In the next section, we present an alternative formulation which treats equally inflow and
outflow bifurcations and provides phase separation from a global coupling effect.
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Fig. 3 Fractional discharge hematocrit θα versus the Fractional blood flow γα for the various phase separation
models used. Two configurations are tested: dm = dα = dβ = 15µm (continuous lines) and dm = 20µm,
dα = 10µm, dβ = 15µm (dashed lines). Dellimore et al.’s (1983) model (dotted line) is represented on
the two graphs as reference, a Pries et al.’s (1990) model with continuous lines and b Fenton et al.’s (1985a;
1985b) model with continuous lines

3 New Formulation for the Computation of Confined Suspensions in Complex
Networks

3.1 Theoretical Formulation

3.1.1 Previous Formulations

Let us now describe in more detail a theoretical description of confined suspension models
associated with the previous formulations. We did not find in the literature a detailed descrip-
tion of the close set of equations to be solved in complex networks. This is why we describe
it in this first paragraph.

Let us introduce a general complex network having n nodes associated with either bifur-
cations or input/output nodes. Among the total n nodes let us distinguish ni input nodes, nint

internal nodes and no output nodes, as illustrated in Fig. 2, and by definition

n = ni + nint + no. (35)

Furthermore, in an oriented graph, one should also consider, among the internal nodes
the inflow ones nI

int and the outflow contribution nO
int. Furthermore, when, for some reason,

the flux associated with one of the link related to an internal node is zero, this link has an
undetermined orientation. Hence, all the related nodes are also neither inflow or outflow ones.
We will call the number of these undetermined nodes nU

int, so that

nint = nI
int + nO

int + nU
int. (36)

Let us also introduce the total number of links nl associated with the vascular segment
between two nodes (or channel between two successive cross-links). These various elements
are illustrated in Fig. 2a–c.



In the special case of a network having only bifurcations associated with three links con-
nected to one single internal node, there is a simple relationship between the link and node
numbers:

2nI
int + nO

int + 3

2
nU

int + ni = nl . (37)

This relation is easily obtained from spanning along the graph each successive internal
node and counting only the outgoing links from each node. A given link is only outgoing
for a single node, so that the total number of outgoing links is the total number of links.
There are two output links for “inflow” node, I but only one for an “outflow” node O , so
that the first two terms on the left-hand side of relation (37) contribute. Furthermore, for
two undetermined nodes U , there is a single undetermined link, but there are also two other
outgoing links leaving each undetermined node. Hence, for two undetermined nodes U , there
are, in fact, three associated links to count among which two are outgoing ones and one is a
zero flux undetermined one. Hence, there is a pre-factor 3/2 before the third left-hand side
of (37). Finally, the input nodes have systematically output links associated with them, so
that they contribute to the link number. There is no need to count the output nodes no since
they are not associated with any outgoing link.

Let us now discuss how this relation can be used to show that the previous formula-
tions provide a close number of equations for the problem. The pressure problem associated
with relation (14) provides nint relations associated with the internal nodes. Furthermore,
the boundary conditions associated with the imposed pressure on input and output nodes
give ni + no supplementary relations. From (35), it is clear that the problem is closed for the
pressure, so that the number of unknowns is equal to the number of equations. Let us now turn
to the hematocrit problem. When using the phase separation models, the daughter hematocrit
fraction given by the different models (27), (29) or (31) leads to 2nI

int relations for each inflow
internal node I for which they are written. On the other outflow internal node O , one has to
write the mass conservation (15) which provides nO

int supplementary relations. Finally, there
is a special treatment to be applied to the undetermined node U , which has generally not been
given in the previous literature. Since the link relating two undetermined nodes U has zero
flux, it can be ignored, and the mass conservation (15) can be trivially applied to each unde-
termined node U with only two associated outgoing links. Furthermore, one supplementary
condition has to be chosen to set the hematocrit value for the undetermined link. There is an
arbitrary choice opting for which has no consequence on the final result, and we chose to fix the
hematocrit value of undetermined link to zero in the following. This procedure leads to three
relations for each pair of undetermined nodes U , which leads to a total of 3/2 nU

int relations.
Finally, the input hematocrit conditions associated with the input links are equal to the input
nodes ni so that there is a total of 2nI

int +nO
int +3/2 nU

int +ni relations which from (37) provides
the exact number of relations needed to find the hematocrit at each link of the network.

We shall mention as a final remark that the above formulation has not considered the pos-
sibility of having undetermined nodes with three null fluxes (which is, in principle, possible).
This very special case can easily be handled from isolating this special kind of undetermined
node from the network to which it is, in fact, decoupled.

3.1.2 New Formulation

We now propose a new formulation for the problem to be solved for determining the
pressure/hematocrit distribution in a complex network. Our main purpose is to show how the
mass conservation (15) can be the only relation to consider for determining the hematocrit
distribution.



At first, such proposition seems difficult to realize since it has to be written on the internal
nodes so that it only provides nint relations which is not enough for determining the nl hemat-
ocrit values at each link. Our main proposition to circumvent this difficulty is to consider a
new quantity that we call the node hematocrit HN j defined at each node j of the network.
We then define the relationship between this field and the hematocrit which is

�i HN = Hi , (38)

where index i refers to a given oriented link of the network relating two successive nodes,
and the �i symbol is the difference between the upstream to downstream node hematocrit
field, as used in relation (14). This new node hematocrit field can be viewed as a potential for
the hematocrit field. It permits to transpose the hematocrit conservation relation from links
to nodes, so that the number of equations which are needed to close the problem will then be
available, as for the pressure formulation of the flux conservation. (15) can then be rewritten

∑
i∈J

�i HN
π

128

D4
i

µa(�i HN, Di )

�i p

Li
= 0. (39)

This new formulation for mass conservation provides nI
int + nO

int relations to the node
hematocrit field at each internal node. It is worth mentioning that even if the i index of (39)
refers to links, for dimensional quantities Di , Li to be evaluated at each link, all the unknowns
of HN and p fields are evaluated at the adjacent nodes of the link i based on the evaluations
of their adjacent differences using �i operator.

One now has to find the proper boundary conditions to complement this constitutive mass
conservation for the node hematocrit field. The input boundary conditions of fixed hematocrit
h0 on each input link related to input nodes can be translated into the following equality:

HN j − HNi = h0, (40)

where the index j refers to each internal node which is related to an input node i where the
node hematocrit is HNi . There is obviously ni relations (40).

A supplementary condition for the output nodes has then to be found. Let us first consider
the special case for which there is only one output node no = 1, as exemplified in Fig. 2a
and b. In this special case, the flux in the output link relating the single output node has a
known associated flux Qtot which is the total input flux which is injected in the network:

Qtot =
∑
j∈Li

Q j , (41)

where Li is the set of all the links which are related to the ni input nodes. Since this flux
is a priori unknown and because it enters in the boundary condition to be applied to the
node hematocrit field, this field thus fulfills a free boundary problem. We will discuss in the
next section the way it could be computed when needed. We will assume here that this total
flux is known from solving the pressure problem. Furthermore, the hematocrit of the single
output link is also the input hematocrit h0 which is injected at the input nodes. Thus, the
mass conservation associated with the output node where a node hematocrit field HNo and a
pressure value po can be written

−
∑
j∈No

(HNo − HN j )
π

128

D4
i

µa(�i HN, Di )

po − p j

Li
= h0 Qtot, (42)

where No is the set of all the nodes connected to the single output node o, and index i is
related to the links j between output and internal nodes. This supplementary relation permits



to close the problem when there is a single output node no = 1 since there is a total of
nI

int + nO
int + ni + 1 relations to produce the total number of unknown n which from relation

(35) are just enough.
After having found the potential for the hematocrit field at each node HN which fulfills mass
conservation (39), input condition (40), and output condition (42), it is then a direct proce-
dure to deduce the hematocrit field H from relation (38). The hematocrit field H will then
automatically fulfill the input condition H = h0 on input nodes, the mass conservation (15),
and the mass conservation constraint associated with output links.

Let us now discuss the more complicated case where no > 1, as illustrated on the example
of Fig. 2c. In this case, there is a difficulty since there is no apparent relation between the
output nodes to fix a node hematocrit value. Nevertheless, mass conservation still holds for
the hematocrit outflux, so that one can define a virtual single output node to impose this
outflux mass conservation as illustrated on Fig. 2d. The real output nodes are thus suppressed
from the network and replaced by a virtual single output node. The analysis of the previous
paragraph can thus apply and relation (42) will provide the unique necessary supplementary
relation to close the problem.

3.2 Numerical Implementation

We now describe the numerical implementation of the two theoretical formulations described
in the previous sections. They both have the common feature that pressure and hemato-
crit/node hematocrit are computed independently with a successive iteration procedure. Nev-
ertheless, the hematocrit computation differ from the node hematocrit computation.

3.2.1 Previous Formulations

A successive iteration procedure first used in Pries et al. (1990) is associated with the
pressure/hematocrit fields which, at each time step k, is denoted (pk, Hk). The pressure
field is defined on the n network nodes and the hematocrit on the nl links. The initial value
for the hematocrit field is chosen to be uniformly distributed among all the links with the
entrance value h0. Then, the pressure problem p0 is solved by inverting the linear prob-
lem (14) while using the known uniform initial hematocrit field and the applied Dirichlet
boundary conditions on nodes ni and no.

Then, the first hematocrit field H0 is found among the output links of the inflow internal
nodes nI

int from using one phase separation fractional hematocrit relation among (27), (29) or
(31) which propagates the entrance hematocrit values h0 known on the ni input nodes using
the initial flux Q0. Furthermore, after exploring all the inflow internal nodes, one then applies
to each outflow internal node the mass conservation relation (15). Finally, the ni input links
conditions associated with the input hematocrit h0 provide the necessary information to find
the nl hematocrit values on the network links.

This procedure is applied iteratively at each order k > 0, by replacing the initial uniform
hematocrit field by the hematocrit field Hk−1 obtained in the previous step. The convergence
is generally obtained, but it is possible to find some networks for which the convergence does
not occur as illustrated in the next section.

3.2.2 New Formulation

We equally proceed with an iterative procedure for (pk, Hk
N). The difference with the itera-

tive scheme described in the previous section ( last paragraph) concerns the second step of



the procedure. Instead of solving the hematocrit problem, we now wish to solve the node
hematocrit problem defined in Hk

N.
For the first step k = 0, this node hematocrit is found by inverting the linear system

(39) defined on the internal nodes of the network with the pressure field p0 associated with
the first step. This inversion necessitates boundary conditions (40) associated with the input
nodes and (42) associated with the output node. The free boundary condition (42) can be
found from the knowledge of Q0

tot computed at the first step from the known pressure field
p0 and apparent viscosity relations (16) or (20) applied with the initial uniform hematocrit
field. It is worth mentioning that the linear system defined by relation (39) and its associated
boundary conditions has a non-empty kernel. It is shown in the Appendix that this kernel
is indeed associated with the trivial uniform hematocrit solution. The interesting solution
associated with a non-uniform hematocrit, complementary to the kernel space, is the one
we are interested in. Depending on the method used for the inversion of the linear system
(direct or iterative procedure), one should take into account the existence of a trivial kernel
(e.g. making use of a singular value decomposition method for direct inversion) in the inver-
sion procedure. Finally, the inversion of the linear system for the node hematocrit field H 0

N,
provides the hematocrit field H0 from relation (38). Each subsequent iterative step can then
be performed solving the new pressure problem with the previous hematocrit solution until
convergence.

4 Comparison of Phase Separation Models

4.1 Elementary Networks

In this section, we wish to illustrate some interesting specificities of our new formulation
as well as pointing out some limitations of the previous models on the most simple possi-
ble networks proposed by Carr and Lacoin (2000). For this purpose, we examine two basic
configurations which are sketched on the various Figs. 4, 5, 6, 7 and 8. We analyze the most

0.450

(a) 0.413

(c) 0.398
(d) 0.450

(a) 0.469

(c) 0.478
(d) 0.450

2 C
(b) 0.493 (b) 0.374

0.450

Fig. 4 Plasma skimming results for a simple loop network using the apparent viscosity law of Pries et al.
(20) and different models (a) Dellimore et al. (27), b Fenton et al. (29), c Pries et al. (31) and d our new
approach. The left figure indicates the branch where a conductance, which is twice the other one, is chosen.
The conductance C is computed using the apparent viscosity model and a uniform hematocrit distribution, so
that it is associated with diameter or length differences associated with the branches. The hematocrit values
obtained for the different models are indicated on each branch on the right figure. The top and bottom values
indicates the hematocrit H = 0.45 in the input and output branches



Fig. 5 Same convention as
Fig. 4 but using conductance in
the left branch which is 10 times
the value of right branch
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Fig. 7 Same convention as Fig. 6 with a conductance in the left branch which is ten times the value of right
branch

simple possible networks which are either a single loop also studied in Pop et al. (2007), or
two adjacent ones (similar to a Wheatstone bridge).

Our motivation is to illustrate some non-trivial features of the phase separation mod-
els which are more easy to point out on simple networks. Each elementary segment has a
L = 100µm length, and a D = 10µm diameter. We also define the initial conductance C
using the above values for D, L and the inlet hematocrit h0 = 0.45. Then, we change tube
diameter to break the network symmetry in Figs. 4, 5, 6, 7, 8 and 9 using C , 2 C and 10 C .
The impact of the different viscosity laws is very weak for these simple networks. Hence,
the results of Figs. 4, 5, 6, 7, and 8 are merely identical for the two viscosity laws previously
mentioned. We first analyze a non-symmetrical loop on Fig. 4 for which phase separation
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Fig. 9 Plasma skimming in a simple tree-like network. Same conventions as in Fig. 4

models provide a non-symmetrical distribution of the left and right hematocrits. This behavior
slightly differs from one model to another, but the observed trend of an increased left-hemat-
ocrit and decreased right-hematocrit is similar. On the contrary, our formulation preserves
the hematocrit symmetry when considering this very simple network.

When increasing the asymmetry of the network in Fig. 5 by increasing the conductance
ratio between the left and right side, the qualitative behavior of the phase separation models is
still the same albeit they differ more markedly especially for the value of the right-hand side
branch low hematocrit. It turns out that not all phase separation models provide a solution.



Fenton et al.’s model cannot accept this contrasted configuration and does not provide any
converged value for the hematocrit field. Again, our formulation does not produce any spatial
variation for the hematocrit field. Hence, even for non-symmetrical single loops, the mass
conservation prescribed on the output node does not give enough degree of freedom for the
hematocrit to change on the right or left branch of a single loop. This homogeneous field
result is found even if the fluxes at each internal node bifurcation are non symmetrical. This
illustrates the fact that our formulation does not provide a plasma skimming effect from a
local balance principle which governs each node. It will rather appear from a more subtle
non local effect that we now consider.

In the case of the Wheatstone bridge configuration sketched on Fig. 2a, the internal link
will experience a zero flux, and thus a zero hematocrit when the bridge is equilibrating, i.e.,
when the network is symmetrical. Breaking the symmetry of the network will result in a non-
zero central flux which brings a non-zero hematocrit. Two symmetry-broken configurations
are displayed in Figs. 6, 7, and 8. The first configuration displayed in Fig. 6 is associated with
a given link having twice the conductance of the other one as for the single loop configuration
illustrated in Fig. 4. The results of the phase separation models exposed in Sect. 2.2.2 are
given in Figs. 6a–c. They display the same qualitative trend albeit the results differ quantita-
tively by a mere factor two for the center’s hematocrit value which is found between 0.17 and
0.34. In this case, our model also predicts a non-zero value for the hematocrit which also fol-
lows the same trend with nevertheless a much lower amplitude. Increasing the conductance
contrast to a factor of 10 does not change much the results obtained with the Dellimore et al.’s
model as illustrated in Fig. 7a. It is not the case for the two other phase separation models
displayed in Fig. 7b and c for which there is an important increase of the center hematocrit
as compared to the one of Fig. 6b and c. A similar increase is also observed with our new
formulation in Fig. 7d albeit the hematocrit values differ by a significant amount. Hence,
this configuration could be an interesting benchmark for testing the experimental relevance
of plasma skimming models, since the value obtained at the center significantly differs from
one model to another.

Another interesting comparison between our new formulation and the previous ones is
the response to a change in the flow direction. Since our model does not make any difference
between inflow and outflow internal nodes, this flow direction should not affect the results
given by our model. A more physical interpretation of this property relies on the fact that
neither the mass conservation nor the incompressibility are changed by inverting the flow
direction. This is not the case for the other models which are highly sensitive to changes
in the flow orientation since the inflow internal nodes are changed into outflow nodes and
vice versa. Such phenomena can be observed in Fig. 8, which is the same configuration as
Fig. 7 except for the flow which is directed in the opposite direction. One can observe in
those figures that none of the hematocrit computed by our model changes as opposed to all
the other models. This is again an interesting property to look at for testing the experimental
validity of the proposed model.

4.2 Simple Tree-Like Networks

We now turn to tree-like networks which are interesting structures to consider from different
perspectives. They are first more clearly related to physiological networks, albeit very ide-
alized ones. Furthermore, they are also interesting in the context of artificial micro-fluidic
networks for which there is generally one single input and output.

Similar to the previous section, we analyze the behavior of the different models when
breaking the symmetry of the successive bifurcations of the tree. The left column of Fig. 9



Fig. 10 Plasma skimming in a small network using a Dellimore et al. and b Fenton et al. phase separation
laws. For the same network the fields obtained using our approach is reported in (c). Here, Pries et al. viscosity
law is used and h0 = 0.45. Line thickness symbolizes the vessel diameter. Decreasing colourisation in each
branch represents the corresponding hematocrit field from dark to light

shows the distinct behaviors of the models in a uniform tree having identical conductances
in each of its branches. The qualitative trend is that the left branches of this non-symmetri-
cal tree is the same for all models leading to an increase of the hematocrit as compared to
the injected value h0 = 0.45. Furthermore, similar behaviors are observed for the different
models on the right branches.

When stressing this asymmetry from increasing the conductance of the right side of the
tree as done in the second column of Fig. 9, distinct behaviors of the phase separation models
occur, some of which decrease the left hematocrit, whilst on the contrary, some others increase
it from the initial input value. However, the second branch of the right-hand side of the tree
keeps symmetrical values for the hematocrit for all models since it is symmetrical. The third
column of Fig. 9 shows that when the asymmetry reaches some extreme value, even the quali-
tative behavior of our model is distinct from the other ones since the predicted value for the left
hematocrit is increased, whereas it is always decreased for all the other models. Furthermore,
in our formulation, the right side of the tree keeps a symmetrical response of the hematocrit
whereas all the other models display non-symmetrical behavior of their right branches. The
behavior of our model (d) in the last third right branch of Fig. 9 is consistent with the result
obtained in Fig. 4 where it is found that a simple loop does not provide any hematocrit asym-
metry. Since the boundary condition applied at the output nodes illustrated in Fig. 2d leads
to a simple loop for the two uppermost right output nodes, it is consistent to find the same
value 0.421 for the hematocrit as in the mother branch. This illustrates the influence of the
chosen output boundary condition associated with mass conservation at the output nodes.

The variety of different behaviors is finally illustrated in a very idealized convergent–
divergent tree similar to that of a “vascular bed,” where the changes in branches’ diameters
are illustrated in Fig. 10. It is interesting to note that the diameters which have been chosen are
physiologically relevant, within the range of 5–20µm. In such a simple network, the phase
separation model proposed by Pries et al. does not provide a convergent result. This lack of
convergence results from the output given by the separation model (31) for special configu-
rations for which it leads to non-physical hematocrits larger than the one inducing numerical
blow-up. Such effect can also occur in very special configurations for all the other models
including ours. Nevertheless, it is possible to cure this numerical difficulty by imposing an
upper threshold for the hematocrit solution at each link at each successive step. The other



models display rather different behaviors for the hematocrit field as shown in Fig. 10 in col-
ors. The results obtained with the model of Dellimore et al. (27) illustrated in Fig. 10a provide
a relative uniform hematocrit field compared with the two others where the diameter’s varia-
tions have opposing influence, in particular, on the simple loop in the right part of the network.

5 Conclusion

We propose a new approach to model confined suspension flows in complex network. It is
based on the formulation of a network approach and conservation principles which can be
derived from lubrication approximation for high aspect ratio channels.

The corresponding problem for the pressure/hematocrit is translated into a non linear
free boundary problem for a new node hematocrit field. This field is defined at each node,
and its difference at both end of a given link is the hematocrit. Solution of this new for-
mulation on simple but non-trivial networks have permitted to exhibit a non-local origin
of phase segregation. More precisely, we have shown that both uniform trivial solution and
another non-uniform non-trivial hematocrit field solution fulfil the stationary flux and mass
conservation equations when applying uniform input hematocrit boundary conditions. The
non-uniform solution is the more interesting one since it is robust to small variations around
uniform input concentrations, and since experiments never provide strictly uniform inputs.
On the contrary, the trivial solution can only occur for exactly uniform inputs.

The salient properties of our model such as the invariance over directional changes of
the flow, sensitivity to broken symmetry, and boundary conditions have been illustrated. We
also compare our formulation with previously proposed phenomenological local models for
phase separation, and we suggest benchmark configurations for future comparisons with
experimental observations.

It is interesting to note that our approach provides a consistent treatment of both the
pressure and hematocrit field resolutions. In both cases, local hydrodynamical effects arising
in the vicinity of each bifurcation are consistently neglected, since their contribution is small
in high aspect ratio channels. This is not the case with previous formulations where the first
pressure step neglects local effects whilst the second separation model considers that local
effects are an essential explanation for the hematocrit local separation at a bifurcation.

This new approach could be applied to model confined particles suspensions or blood
flow distribution in natural or artificial networks, and it might help the design of interesting
micro-fluidic networks.
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Appendix

In this appendix, we give an explicit form for the discrete numerical implementation of our
new formulation. We then show that the kernel associated with the linear operator is related
to the trivial homogeneous hematocrit solution.

Let us consider the node hematocrit field HN as a vector which is structured from first
considering the input nodes components HI

N, and then the internal nodes components Hint
N

ordered so that those adjacent to an input node are listed first, and then (possibly virtual)
single output node HO

N . Then HN reads



HN =
⎛
⎝ HI

N
Hint

N
HO

N

⎞
⎠ . (43)

The linear system applied to this hematocrit field associated with relation (39), input
condition (40), and output condition (42) can be implemented in the following way:

A · HN = b, (44)

with,

A =
(

I | −I | 0
Q

)
. (45)

where I designs the identity matrix, and Q the flux matrix. Q is a rectangular matrix associating
the flux at each link with their adjacent nodes. It is known at each step of the iterative procedure
described in the second paragraph of Sect. 3.2. Qi j is thus the assigned flux arising between
node i and node j regardless of whether these nodes are inputs, internal or outputs. By
construction Qi j = −Q ji . The second member vector b is

b = h0

⎛
⎝ 1

0
−Qtot

⎞
⎠ . (46)

where 1 and 0 are the vectors whose components are all equal to 1 and 0 and associated with
input and internal nodes, respectively.

Let us now show that the kernel of the linear system (44) is associated with the trivial
solution Hi = h0.

For this, let us consider an auxiliary hematocrit field which is just a translation of the
original one H ′

i = Hi −h0. Similarly, one can define the auxiliary node hematocrit H′
N asso-

ciated with this auxiliary field H′. Since the translation does not affect the node difference,
H′

N = HN. Hence, the constitutive relations associated with H′
N are the same as those for

HN, i.e., (39). However, the input condition (40) and output condition (42) for H′
N should

be considered with h0 = 0. Hence, for the linear system (44) associated to the auxiliary
field H′

N, b = 0 since h0 factorizes the right-hand side of relation (46). The kernel of matrix
A associated with the mass conservation relation (14) provides a node hematocrit field H′

N
which equals a constant everywhere. This single degree of freedom kernel is one-dimensional
and leads to H′ = 0, or Hi = h0, i.e., the trivial uniform solution.
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