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a b s t r a c t

Most bacteria known to be electrochemically active have been harvested in the anodic compartments of

microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon,

i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the elec-

trochemically active bacteria are Gram-negative. The present study implements a transitory electro-

chemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical

reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria

are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive.

The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, show-

ing a widespread property among bacteria including Gram-positive ones, open new and interesting

routes in the field of electroactive bacteria research.

1. Introduction

Electroactive bacteria are able to exchange electrons with con-

ducting materials [1]. Therefore, these bacteria can produce cur-

rent in microbial fuel cells by converting chemical energy from

organic substrates into electrical energy.

Today, various bacteria have already been shown to be electro-

active, to exchange electrons directly (without the addition of any

exogenous mediators) with electrodes [2]. Geobacter sulfurreducens

is certainly the most thoroughly studied of these microorganisms

[3–5]. Shewanella putrefaciens also presents this characteristic [6],

as do many others like Pseudomonas aeruginosa [7], Escherichia coli

[8], etc. All these microorganisms were harvested in environmental

backgrounds like compost, sea water, and sea sediments. The

mechanisms of their electron transfers have been widely studied.

Several bacteria use their own mediators [8–10], others are able

to transfer electrons to the electrodes by direct contact via mem-

brane-bound redox compounds [11] or via conducting nanowires

produced by the cell [12,13].

Most of the research on electroactive bacteria has been done on

Gram-negative bacteria [2]. The idea that Gram-positive bacteria

can also exchange electrons with electrodes is still debated.

Gram-positive bacteria possess a cell wall that could potentially re-

duce electron exchange by direct contact. However, a few recent

studies have shown the electroactivity of Gram-positive bacteria.

The vast majority of them describe indirect transfer of electrons

between the electrode and the cells. It has been shown, for in-

stance, that Brevibacillus sp., is able to use metabolites produced

by a Gram-negative bacteria, Pseudomonas sp., to achieve extracel-

lular electron transfer [14], Desulfitobacterium hafniense is able to

use humic acids as electron shuttles [15], and Bacillus subtilis and

Corynebacterium sp. use their own mediators to reduce the elec-

trode [16,17]. To our knowledge, only two genus of Gram-positive

bacteria have already been shown to exchange electrons directly

with electrodes: Thermincola [18] and Clostridium [19,20].

These various studies have been performed for anodic processes

except the one done on Clostridium isatidis that showed a reversible

electroactivity of the strain on graphite electrodes [20]. Not so

many bacteria are known to be able to perform the opposite

process, i.e. to microbially catalyze cathodic reductions. However,

microbial catalysis of oxygen reduction remains an important chal-

lenge in the fields of biocorrosion [21] and MFC cathodes [22].

Enterobacter sp. E1, isolated from an electroactive biofilm formed

in compost, was found to be able to catalyze the electrochemical

reduction of oxygen when adsorbed on a carbon electrode [23].

This study used cyclic voltammetry to detect the catalytic effect,

which implied a prolonged contact between bacteria and the work-

ing electrode. To our knowledge, only Gram-negative bacteria have

been shown to be able to catalyze the electrochemical reduction of

oxygen.

The purpose of the present work was to test a wide range of aer-

obes and facultative anaerobes, including Gram-positive bacteria,
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for their possible ability to catalyze oxygen reduction on a carbon

electrode. Cyclic voltammetry was used as a fast method to test

many different strains in order to determine whether such electro-

activity may be widespread among aerobic bacteria or correspond

to a particular distribution.

2. Experimental

2.1. Bacterial strains, culture conditions and chemicals

All the reference strains were provided by Institut Pasteur

(Paris, France). Clinical isolates were obtained from the Hospital

Bacteriology and Hygiene Laboratory in Toulouse (France). The

strains are described in Table 1. They were maintained on Trypcase

Soy agar (Biomérieux, France) under aerobic conditions except for

S. mutans and Kingella sp., which were maintained on Columbia

blood agar (Biomérieux, France), and L. farciminis, on M.R.S. agar

(AES, France). Before each experiment, the strains were grown

overnight in 20 mL Trypcase Soy broth (Biomerieux, France) at

37 °C under gentle stirring except for S. mutans and L. farciminis,

which were not stirred. Bacterial suspensions were then centri-

fuged (10 min, room temperature, 3000g), washed twice in phos-

phate buffer (K2HPO4/KH2PO4, 0.1 M, pH 7), and re-suspended in

the same buffer. All experiments were performed in the same buf-

fer at room temperature (22 ± 2 °C).

Catalase and oxidase characterization were performed using the

ID color catalase test (Biomérieux, France) and oxidase reagent test

(Biomérieux, France).

2.2. Cyclic voltammetry (CV)

CVs were performed with 0.07 cm2 glassy carbon rods (Glassy

Carbon V25, 3 � 150 mm, Carbone Lorraine, Gennevilliers, France)

used as working electrodes and with a platinum wire used as a

counter electrode. Potentials were monitored with respect to a sat-

urated calomel reference electrode (SCE) and CVs were performed

at a scan rate of 100 mV/s with a Princeton Applied potentiostat.

Voltammograms started at 0.1 V/SCE to 0.7 V/SCE and continued

with 3 cycles from 0.7 V/SCE to ÿ1 V/SCE. In the figure, only the

first cycle is shown, to make the curves clearer.

Experiments were conducted in a 40 mL cell. A first CV was run

in 20 mL buffer to control the quality of the clean working elec-

trode surface. The cell suspension was added to obtain a cell den-

sity of around 108 bacteria/mL measured by the optical density at

640 nm. A second voltammogram was performed immediately

after the addition of the microorganisms into the cell. Then the sus-

pension was stirred for 1 h or more, depending on the strains (Ta-

ble 1), to maintain a homogeneous oxygen concentration and CV

was performed again. The filtrate of M. luteus was also tested. After

1 h of stirring, 20 mL of bacterial suspension was filtered through a

0.45 lm sterile filter then through a 0.20 lm one. The CV test was

done on the resulting filtrate immediately and after one hour of

stirring. Measurements under anaerobic conditions were carried

out after removing oxygen from the solution by 20 min of nitrogen

bubbling. There was no stirring or gas bubbling during current

recording. Each CV experiment was performed three times, with

clean working electrodes each time.

3. Results and discussion

The control voltammograms performed on phosphate buffer

alone (Fig. 1A) showed a reproducible wave starting at

ÿ0.37 ± 0.01 V/SCE (seven independent experiments). Initial CVs

were strictly identical to the CVs recorded after 1 h of stirring

(Fig. 1A, lines a and b). This wave corresponded to the electrochem-

ical reduction of dissolved oxygen since it disappeared after oxy-

gen was removed by nitrogen bubbling (Fig. 1A, line c).

After 1 h of stirring in presence of Micrococcus luteus, the wave

corresponding to the electrochemical reduction of oxygen started

at higher potential and higher currents were obtained (Fig. 1B, line

b). The oxygen reduction started at the potential Estart =

ÿ0.19 ± 0.01 V/SCE and reached its maximum of current at

Epeak = ÿ0.46 ± 0.03 V/SCE with Ipeak = ÿ13.48 ± 0.21 lA (average

values of three independent experiments). These three parameters,

Estart, Ipeak, and Epeak, characterized the oxygen reduction reaction.

Occurrence of a catalytic effect was identified by a shift of Estart

Table 1

Electroactivity of Gram-positive and Gram-negative bacteria tested by cyclic voltammetry. CVs were performed in phosphate buffer (0.1 M, pH 7) on 0.07 cm2 glassy carbon rods

(Glassy carbon V25, 3 � 150 mm, Carbone Lorraine, Gennevilliers, France) at 100 mV/s. The oxygen reduction started at the potential Estart and reached its maximum of current

(Ipeak) at Epeak. These three parameters, Estart, Ipeak, and Epeak, characterized the catalyzed oxygen reduction. The detection time corresponded to the contact duration between

electrodes and bacteria. Average values and standard deviations were calculated from three independent experiments for each strain.

Bacteria Reference Phenotype Catalyzed oxygen reduction peak

Cat, catalase Detection time Estart (V/SCE) Ipeak (lA) Epeak (V/SCE)

Ox, oxidase

Pseudomonas aeruginosa PA01 GramÿCat+Ox+ 1 h ÿ0.19 ± 0.03 ÿ11.71 ± 0.19 ÿ0.45 ± 0.05

Pseudomonas fluorescens Clinical isolate GramÿCat+Ox+ 1 h ÿ0.18 ± 0.01 ÿ10.01 ± 0.08 ÿ0.45 ± 0.01

Brevundimonas diminuta CIP 103020 GramÿCat+Ox+ 1 h ÿ0.13 ± 0.02 ÿ14.21 ± 3.97 ÿ0.33 ± 0.01

Burkholderia cepacia CIP 80.24 GramÿCat+Ox+ 1 h ÿ0.14 ± 0.03 ÿ17.14 ± 2.75 ÿ0.36 ± 0.05

Branhamella catarrhalis CIP 73.21 GramÿCat+Ox+ 1 h ÿ0.18 ± 0.01 ÿ13.43 ± 0.13 ÿ0.44 ± 0.00

Enterobacter cloacae Clinical isolate GramÿCat+Oxÿ 6 h ÿ0.19 ± 0.01 ÿ10.33 ± 1.02 ÿ0.48 ± 0.01

Escherichia coli K 12 GramÿCat+Oxÿ 3 h ÿ0.21 ± 0.02 ÿ10.25 ± 1.37 ÿ0.49 ± 0.01

Shigella flexneri CIP 82.48 GramÿCat+Oxÿ 3 h ÿ0.21 ± 0.01 ÿ11.54 ± 0.71 ÿ0.51 ± 0.00

Acinetobacter sp. Clinical isolate GramÿCat+Oxÿ 1 h ÿ0.16 ± 0.01 ÿ10.14 ± 0.68 ÿ0.41 ± 0.05

Kingella kingae CIP 80.16 GramÿCatÿOxÿ 3 h ÿ0.22 ± 0.01 ÿ9.59 ± 0.99 ÿ0.49 ± 0.01

Kingella denitrificans CIP 103473 GramÿCatÿOxÿ 1 h ÿ0.21 ± 0.01 ÿ12.05 ± 0.21 ÿ0.49 ± 0.01

Micrococcus luteus CIP 53.45 Gram+Cat+Ox+ 1 h ÿ0.19 ± 0.01 ÿ13.48 ± 0.21 ÿ0.46 ± 0.03

Bacillus subtilis CIP 52.62 Gram+Cat+Ox+ 1 h ÿ0.18 ± 0.01 ÿ11.57 ± 0.81 ÿ0.49 ± 0.02

Staphylococcus carnosus CIP 103274 Gram+Cat+Oxÿ 1 h ÿ0.22 ± 0.01 ÿ9.54 ± 0.49 ÿ0.52 ± 0.00

Staphylococcus aureus CIP 4.83 Gram+Cat+Oxÿ No catalysisa

Staphylococcus epidermidis CIP 68.21 Gram+Cat+Oxÿ No catalysisa

Enterococcus faecalis Clinical isolate Gram+CatÿOxÿ No catalysisa

Enterococcus hirae CIP 58.55 Gram+CatÿOxÿ No catalysisa

Lactobacillus farciminis CIP 103136 Gram+CatÿOxÿ No catalysisa

Streptococcus mutans CIP 103220 Gram+CatÿOxÿ No catalysisa

a No catalysis was observed even after a 24-h immersion of the electrode in the cell suspension.



towards positive potential and/or an increase in Ipeak with respect

to the control experiment (Fig. 1A). Ipeak was four times the inten-

sity obtained with the control at the same potential. After 1 h of

stirring in presence of bacteria and 20 min of nitrogen bubbling,

the CV was identical to the one obtained in phosphate buffer alone

after nitrogen bubbling (Fig. 1B, line c). After one hour of stirring,

the bacteria were filtered out of the suspension, and clean elec-

trodes were plunged into the filtrate. The voltammogram did not

reveal any catalysis of oxygen reduction for the filtrate, even after

one hour of stirring (Fig. 1B, line d). Consequently, no soluble medi-

ator was involved in the electron transfer pathway. This is the first

time to our knowledge that a Gram-positive bacterium has been

shown to be electroactive in cathodic reactions in presence of oxy-

gen with neither addition of exogenous mediators nor involvement

of an endogenous mediator.

Nineteen other bacteria were tested using the same protocol

(Table 1). Each strain was tested 3 times independently. All the

Gram-negative strains tested were able to catalyze the electro-

chemical reduction of oxygen and one-third of the tested Gram-po-

sitive bacteria were electroactive. The electrocatalytic capacity

does not seem to be related to the genus since one of the three

tested species of Staphylococcus was able to catalyze the reduction

of oxygen, while two were not (Table 1). Statistical analyses were

carried out on the data that characterized the catalyzed peak: Ipeak,

Epeak, and Estart using the Student’s t test. Fluctuations were ob-

served but no significant difference appeared among any of the po-

sitive strains. This indicates that the catalysis observed with all the

bacteria was probably due to the same kind of mechanism. This

phenomenon seems widespread among bacteria.

Using the filtrate from M. luteus (Fig. 1B) demonstrated that the

catalytic mechanism did not involve diffusible mediators. Thus,

membrane-bound compounds may be suspected of being involved.

The electrochemistry of several enzymes has already been studied

and, among them, catalase adsorbed on glassy carbon electrodes

gave an oxygen reduction peak very close to the one observed in

the present study [24]. However, Kingella species that did not pres-

ent any catalase also induced a catalytic effect, showing that the

phenomenon cannot be attributed to the presence of catalase or,

at least, not only to the presence of catalase. No correlation was ob-

served with oxidase activity either. Catalase and oxidase do not

seem necessary for this catalysis.

Each aerobic strain tested was able to catalyze the electrochem-

ical reduction of oxygen. Among the facultative anaerobes tested,

Gram-negative bacteria, especially Enterobacteriaceae, were elec-

troactive. A delay in the catalysis of oxygen reduction was noted

for E. coli, E. cloacae, and S. flexneri, for which a contact time greater

than 1 h was required before a significant catalytic effect was ob-

served (Table 1). The majority of the active strains were ubiquitous

and possessed a large capacity of adaptation. The bacteria that did

not reveal activity were Gram-positive facultative anaerobic or

aerotolerant strains, some of them having higher cultural require-

ments (S. mutans and L. farciminis). The difficulty in detecting these

bacteria might simply be due to the fact that the assay conditions

impaired their physiological activity. However, CFU counting

showed that there was no bacterial death after 1 h in this buffer

(data not shown).

4. Conclusion

For the first time, M. luteus, a Gram-positive bacterium, has

been shown to be able to catalyze the electrochemical reduction

of oxygen on a carbon electrode. The electron transfer was not sup-

ported by exogenous or endogenous mediators. A wide range of

aerobic and facultative anaerobic bacteria, including several

Gram-positive bacteria presented the same electrochemical prop-

erty. Catalase and oxidase, which have already been shown to af-

fect oxygen reduction in similar ways, were not responsible for

the phenomenon observed here. However, we still suspect mem-

brane-bound redox compounds. The present work shows that the

electrochemical property of bacteria is not restricted to species

harvested in MFCs. All bacteria, including Gram-positive ones,

should now be considered as potentially electroactive.
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