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a b s t r a c t

The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in

an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was

carried out by using various chemicals, namely 5% nitric acid, 0.2 N phosphoric acid, 0.2 N potassium

hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified

carbon materials in the buffer solution pH range of 6–7.5 in the anodic compartment. Although, these

treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX anal-

ysis, treatment with H2PO4, KOH, and H2O2 did not show significant activity during the electrochemical

test. The HNO3 treated Vulcan demonstrated significant ORR activity and when used in the single-

chamber MFC cathode, current densities (1115 mA/m2, at 5.6 mV) greater than those for a Pt-supported

un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such

chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used

in MFC cathode construction.

1. Introduction

Treatment and disposal of wastewaters represent one of the

major problems of the modern society due to insufficient and inad-

equate treatment. Present technologies used for wastewater treat-

ment are energy intensive and they are not able to recover valuable

products present in different wastewaters. This can be solved by

using microbial fuel cell (MFC), due to capacity of specific bacteria

to transform organic compounds in electricity and simultaneously

achieving wastewater treatment (Rabaey and Verstraete, 2005).

The major limitations faced by MFCs towards commercialization

is very high cost of the catalysts used for cathode construction to

harvest more power.

In order to minimize the operating cost, an air-breathing single-

chamber MFCs are being developed by the researchers (Liu et al.,

2004); such air-cathode MFC is an efficient and sustainable MFC

configuration for recovering electrical energy from organic sub-

stances. In a graphite-granule anode and tubular air-cathode

MFC, continuous electricity generation was reported at a maxi-

mum volumetric power of 50.2 W/m3 with a current density of

216 A/m3 from glucose (You et al., 2007). Increased use of single-

chamber air-cathode MFC is being observed with simple or modi-

fied carbon (pretreated or with metals coating) acting as cathode

electrode material (Liu et al., 2004; Wang and Han, 2009). The

important characteristics for any catalyst used on the electrodes

are: stability, mechanical properties, surface area and chemical

composition (Rodriguez-Reinoso, 1998).

Electrode modifications were actively investigated to increase

cathodic oxygen reduction. In fuel cells, Pt-coated carbon cathodes

yielded higher performance than those with only graphite or car-

bon cathodes, by increasing their affinity for oxygen and decreas-

ing the activation energy of the oxygen reduction reaction (ORR)

occurring on the cathode surface (Freguia et al., 2007). However,

its poor kinetics of ORR in neutral pH environment and low tem-

perature, associated with its sulphide poisoning in wastewater

applications, has limited its use in MFC cathode investigation

(Karyakin et al., 2005; Shukla et al., 2004). Other cheaper catalysts,

such as, CoTMPP, Mn(IV), Fe(III), deposited on air-breathing cath-

ode can also increase the power output (Roche and Scott, 2009;

Yu et al., 2008). For example, Park and Zeikus reported a 100-times

increase in current output of a MFC testing Mn(IV) supported on

graphite as cathode instead of graphite alone (Park and Zeikus,

2003, 2002). More recently, Yu et al. demonstrated higher activity
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towards oxygen reduction than Pt in neutral media using iron

phthalocyanine supported on Ketjenblack (FePc-KJB) (Yu et al.,

2008).

Carbon powder or activated carbon powder could be cheaper

alternative to noble metal catalyst (Auer et al., 1998; Harnisch

et al., 2009). Carbon was considered to be an inert material in com-

parison with other catalysts; however, research conducted in the

past proved that the carbon surface is not as inert as it was ex-

pected (Kukushkina and Shteinberg, 1987; Kukushkina et al.,

1987). This superficial activity can be explained due the presence

of different heteroatoms (O, H, S, N) bonded on the surface of car-

bon particles, because of which the active sites appear. Carbon cat-

alytic activity can be increased by changing the quantities of

heteroatoms bonded on the surface and by changing the material

porosity.

An exhaustive literature dealing with activated carbon produc-

tion is available (Aksoylu et al., 2000, 2001; Chen et al., 2008; de la

Fuente et al., 2006; Guha et al., 2007; Wang et al., 1999). Recently,

the effect of carbon supports treatment with oxidative acids in the

electrocatalytic oxidation of H2 (de la Fuente et al., 2006) and CO

(de la Fuente et al., 2006; Li et al., 2006) has been investigated.

After treating Vulcan XC-72R carbon powder with HNO3 an

enhancement of the amount of oxygen groups was reported (de

la Fuente et al., 2006). The objective pursued in this work was to

prepare different chemically modified Vulcan XC-72R (Cabot Cor-

poration) activated carbon and probe the surface nature variations

by employing scanning electron microscopic technique. Further-

more, the catalytic activity of such modified carbons has been

investigated towards oxygen reduction reaction in air-breathing

cathode MFC.

2. Methods

2.1. Materials used

The Vulcan XC-72R carbon powder was supplied by Cabot Cor-

poration. Sulphuric acid, nitric acid 65%, phosphoric acid, potas-

sium hydroxide, hydrogen peroxide, isopropyl alcohol (IPA) and

acetone were procured from Sigma. Entek membrane (Entek Inter-

national INC), NafionÒ 117 solution (5 wt.%, Aldrich), PTFE solution

(60 wt.%, Aldrich), carbon felt (E-TEK USA), commercial Pt catalyst

(20 wt.% Pt/C, E-TEK, USA) and Ag/AgCl reference electrode (BASi)

were used in the study. Millipore water with 18 MX cm resistivity

was used to prepare solutions.

2.2. Preparation of modified Vulcan XC-72R carbon powder

The chemical modification of Vulcan XC-72R carbon powder

was carried out by employing various chemicals namely 5% nitric

acid, 0.2 N phosphoric acid, 0.2 N potassium hydroxide and 10%

hydrogen peroxide. Carbon powder (1 g) was dispersed in a round

bottom flask with 1000 ml of the selected chemicals diluted in the

de-ionized water. The mixture was refluxed for 16 h at 120 °C

(Guha et al., 2007), except for hydrogen peroxide treatment where

it was refluxed for the same duration at 105 °C (Chen et al., 2008).

Treated carbons were filtered and washed for 15 min with de-ion-

ized water, and then dried at 110 °C in an oven for 12 h. This pro-

cedure removed the ash which is present in significant quantities

in the activated carbons.

2.3. Carbon powder analysis

SEM and EDX analyses were carried out by using a JEOL micro-

scope (model JEM-2010). The average of 10 measurements at the

surface of each sample is reported for EDX analysis.

2.4. Anodes and air-breathing cathodes preparation

All anodes were constructed using carbon felt with a projected

surface area of 12.5 cm2. Carbon felt was used in order to provide a

higher surface area for microbial development. The anodic current

was collected with a Ti wire. Air-breathing cathode was prepared

by bonding the cathode catalyst layer on top of the polymer elec-

trolyte membrane and covering this catalyst layer with Ti mesh

based current collector. The catalyst layer was made from ink ob-

tained by mixing carbon nano-powder with PTFE, Nafion 117, iso-

propyl alcohol (IPA) and acetone. This ink was sprayed on top of

the polymer electrolyte membrane in order to produce the air-

breathing cathodes. Nafion 117 solution was used as a binder in

the catalyst layer, since its ability to act as a binder in fuel cells

is proved (Duteanu et al., 2007a,b). PTFE was used in air-breathing

cathode construction in order to control hydrophobicity. The

amount of carbon powder loading on the membrane was

0.5 mg cmÿ2 for all cathodes used in this work. For the control

experiment Pt catalyst (Pt-supported on C with 20 wt.% Pt) of

0.5 mg cmÿ2 was used along with the carbon power loading of

0.5 mg cmÿ2.

2.5. Study of oxygen reduction reaction by cyclic voltammetry

The ORR performance was investigated at room temperature

(20 °C) by performing cyclic voltammetries on air-breathing cath-

odes at a scan rate of 1.0 mV/s. Each cathode involved in this work

had a projected surface area of 12.56 cm2 and was tested in a sin-

gle-chamber cylindrical MFC having volume of 50 mL with one

side exposed to air and the other side exposed to electrolyte using

a three-electrode system implemented with a potentiostat/galva-

nostat (Gill AC potentiostat/galvanostat, ACM instruments, UK).

The auxiliary electrode was a platinummesh (4 cm2) and all poten-

tials were expressed with reference to the Ag/AgCl reference

(+0.208 V versus normal hydrogen reference, NHE). The electrolyte

was 50 mM phosphate buffer solution (PBS) having pH of 7.0.

2.6. MFC tests and operation

MFC performances were evaluated in single-chamber cylindri-

cal MFC constructed using Plexiglas material having internal diam-

eter of 4 cm and a length of 4 cm. Both anode and cathode had a

projected surface area of 12.5 cm2. The anode was set parallel to

the cathode separated by a distance of 2 cm from the membrane

in the anodic chamber and connected by titanium wires.

PBS (50 mM) supplemented with 1 g/L of sodium acetate was

used as a feed. These MFCs were inoculated with a 20% anaerobic

sludge solution previously acclimated to acetate. An external resis-

tance of 100X was applied between both the cathode and the an-

ode of each cell. Resulting voltage was recorded, at an interval of

5 min, using a data acquisition system (Pico data logger, PicoTech-

nology, UK) connected to the computer. Electrochemical polariza-

tion curves were performed periodically by varying the external

resistance over a range from 1 to 3 MX. The chemical oxygen de-

mand (COD) was measured in duplicate using standard methods

(APHA and WPCF, 1998). The Coulombic efficiency was calculated

as reported by Logan et al. (2006).

3. Results and discussion

3.1. Analysing carbon properties

The sulphur (S) content and the surface morphology of the

different carbon materials used in this work were analysed by

SEM-EDX analysis. Table 1 shows the C and S content of the



samples obtained by EDX. The atomic sulphur content of the un-

treated Vulcan XC-72R was 0.3%. Analysing the data presented in

Table 1, it is obvious that the 5% nitric acid treatment decreased

the sulphur content to 0.18%, and this is the least sulphur content

produced among all other treatments. This observation clearly

indicates that the strong mineral acid treatment (5% nitric acid)

leads to the removal of sulphur impurity from the carbon support,

correlated with a large increase of oxygen content (Tricás et al.,

2005) and simultaneously increase the number of carboxylic acidic

groups on the carbon surface (Aksoylu et al., 2001). This increase in

superficial oxygen content was correlated with further increase in

catalytic activity for ORR (Borrós et al., 2005).

The other treatments, like 0.2 N phosphoric acid and 10% hydro-

gen peroxide, also removed the sulphur content from the carbon

support, but to a lesser extent. On the other hand the 0.2 N KOH

treatment resulted in a sulphur content of 0.33%, which was in ex-

cess amount than the original value of 0.3%. It may due to the fact

that the KOH treatment normally leads to an increase in N atomic

content with enormous removal of O atomic content so that even-

tually the S atomic content will be raised in that sample. Further

work is in progress to quantify the ratio of different atomic content

on the surface by employing XPS technique.

The SEM morphology of different carbon powders used in this

work showed that the different chemical treatments yield to a dif-

ferent kind of carbon surfaces with different porosity. Especially

the strong mineral acid treatment (5% nitric acid) leads to a more

porous and dispersed surface rather than the un-treated carbon

powder (Aksoylu et al., 2000, 2001). The other treatments like

0.2 N phosphoric acid and 10% hydrogen peroxide also influences

the surface but to a lower extent.

3.2. Electrochemical study of oxygen reduction reaction

The ORR performance furnished by different air-breathing cath-

odes was compared using cyclic voltammetry. This test was per-

formed on the air-breathing electrode using a platinum mesh as

a counter electrode and Ag/AgCl reference electrode placed in ano-

dic chamber. Linear sweep voltammetry curves recorded at a low

scan rate of 1 mV/s are presented in Figs. 1 and 2. All these curves

were obtained using 50 mM PBS of pH 7.0 excepting the curves ob-

tained when pH influence was studied.

Best performance was demonstrated by Pt/C air-breathing

cathode – around 4 A/m2 at ÿ0.300 V versus Ag/AgCl. In the small

current region – under 0.2 A/m2 – all air-breathing cathodes con-

structed using only carbon catalyst showed similar behaviour,

e.g., at ÿ0.100 V versus Ag/AgCl they furnished a maximum current

around 0.2 A/m2. When the current is increased, the HNO3 treated

Vulcan XC-72R carbon air-breathing cathode demonstrated the

second best performance, after Pt/C cathode, with a current around

2 A/m2 at ÿ0.300 V versus Ag/AgCl. The un-treated Vulcan XC-72R

air-breathing cathode had a slightly lower performance (around

1 A/m2 at ÿ0.300 mV versus Ag/AgCl) in comparison with HNO3

treated carbon. All other chemically treated air-breathing cathodes

showed very poor performance with a maximum current density

of 0.2 A/m2 at ÿ0.300 mV versus Ag/AgCl.

From the data presented in Fig. 1, we can conclude that the best

performance after the Pt catalyst was delivered by HNO3 treated

carbon powder which is also in confirmation with the data ob-

tained by SEM and EDX analyse. The better performance observed

for HNO3 treated carbon, in comparison with un-treated carbon,

can be attributed to incorporation of oxygenated groups into the

carbon black structure and also due to an increase of electrochem-

ically active groups. The poor performance demonstrated by other

air-breathing cathodes can be explained by the reduced real sur-

face area correlated with some pore-blockage caused by certain

oxygenate groups fixed at micro-pores entrance, probably blocking

the diffusion of species into the micro-pores (Carmo et al., 2008).

Effect of pH on ORR was studied, in order to determine the opti-

mum pH for energy harvesting using MFC. The linear sweep curves

for ORR were recorded for different solution pH in the anodic com-

partment. Data presented in Fig. 2 shows that, for the noble cata-

lyst air-breathing cathode, the highest performance improvement

occurred when the pH was increased from 6 to 7.5. Almost no

influence of pH change was found on the performance of un-trea-

ted Vulcan XC-72R carbon powder. The H2O2 treated carbon per-

formance was slightly affected by the anodic pH. For HNO3

treated carbon powder a slight increase in current was observed

when the pH of anodic chamber was increased from 6 to 7.5. The

Vulcan XC-72R carbon powder treated with H2PO4 and KOH, and

H2O2 did not show any current during the electrochemical test (re-

sults not presented), and hence, it was decided not to use these

materials for the cathode in the MFC.

3.3. MFC performances

Since the cathode made from Vulcan XC-72R carbon powder

treated with nitric acid showed interesting performance concern-

ing oxygen reduction, it was tested as an air-breathing cathode

in a single-chamber MFC. To assess the real value added by

HNO3 treatment, two additional cells were constructed and studied

in parallel. In the first MFC the air-breathing cathode was made

using only un-treated carbon powder (Vulcan XC-72R), and in

the second with a Pt-supported cathode, with a uniform distribu-

tion of 0.5 mg of catalyst per cm2.

Starting from the first day, these MFCs were connected with an

external resistor of 100X. After one week of operation, the open

Table 1

Elemental content for un-treated and, respectively, treated carbon powder.

Sample C% S%

Un-treated Vulcan XC-72R 99.70 ± 0.0047 0.30 ± 0.0047

5% HNO3 treatment 99.82 ± 0.0082 0.18 ± 0.0082

0.2N H3PO4 treatment 99.71 ± 0.020 0.29 ± 0.020

0.2N KOH treatment 99.67 ± 0.024 0.33 ± 0.024

10% H2O2 treatment 99.77 ± 0.0124 0.23 ± 0.0124
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HNO3 treated carbon Vulcan XC-72R, and (d) platinum supported on carbon Vulcan

XC-72R. Scan rate 1 mV/s, phosphate buffer solution 50 mM, pH 6.0.



circuit voltage (OCV) reached 340, 370 and 520 mV for MFC

equipped with un-treated Vulcan XC-72R, HNO3 treated Vulcan

and Pt-supported air-cathode, respectively. MFCs performances

were first evaluated during this start-up period by recording cell

polarization curves (Fig. 3). At this step, the power density ob-

tained from the MFCs equipped with cathodes constructed using

un-treated XC-72R and HNO3 treated Vulcan were comparable.

Maximum power densities of about 20–27 mW/m2 were obtained.

After 6 weeks, OCVs stabilized at 507, 481 and 640 mV for un-

treated, HNO3 treated and Pt-Vulcan XC-72R cathode MFCs,

respectively, and steady-state behaviours were reached (Table 2).

Two consecutive scans were performed and almost similar behav-

iour was obtained. With acclimatised reactors, as expected, the

highest power density of 217 mW/m2 was produced using the Pt

catalyst; while MFC equipped with HNO3 treated Vulcan cathode

produced 170 mW/m2. The performance of the MFC with a cathode

of un-treated Vulcan powder was poor, reaching only a power den-

sity of 51 mW/m2 and a maximum current density of 352 mA/m2.

Power densities produced using HNO3 treated Vulcan XC-72R car-

bon powder were comparable with Pt/C cathode MFC performance.

At current densities less than 500 mA/m2, the Pt/C cathode cell had

the better performance, whilst at current densities over 500 mA/

m2 the HNO3 treated carbon cathode showed better performance.

The maximum current density obtained with this cathode was

1115 mA/m2 and thus it performed better than the MFC using plat-

inised cathode (Table 2). MFCs equipped with HNO3 treated Vulcan

XC-72R and Pt/C cathodes achieved the highest Coulombic effi-

ciency (62%). Over 87% COD was removed from synthetic wastewa-

ter in all tested MFCs.

3.4. Behaviours of electrodes potentials

During generation of the MFCs polarization curves on week 6,

values of both the anodic and cathodic potential were recorded

and are reported in Fig. 4. The current–potential curves of bioa-

nodes obtained after 6 weeks showed ‘‘zero-current” at potential

between ÿ580 and ÿ530 mV versus Ag/AgCl, instead of +100 mV

versus Ag/AgCl before anodic biofilm formation. Such a negative

‘‘zero-current” potential value is a significant advantage in an

MFC. These bioanodes generated current density up to 500 mA/

m2, at ÿ250 mV versus Ag/AgCl considering a total projected sur-
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Fig. 2. Effect of pH on non-catalyzed oxygen reduction – linear sweep of oxygen reduction with air-breathing cathode prepared from (a) un-treated carbon Vulcan XC-72R,

(b) H2O2 treated carbon Vulcan XC-72R, (c) HNO3 treated carbon Vulcan XC-72R, and (d) platinum supported on carbon Vulcan XC-72R. Scan rate 1 mV/s, phosphate buffer

solution 50 mM.



face area of 12.5 cm2, with exception of bioanode that formed in

the MFC equipped with the un-treated Vulcan XC-72R cathode.

In fact, in the case of un-treated Vulcan XC-72R cathode, the fas-

ter decrease in cathodic potential from open circuit potential (OCP)

to short-circuit potential indicated the poor reaction kinetics on

classical graphite material (Fig. 4). The high activation energy of

ORR on graphite material can explain this high cathodic overpoten-

tial observed with the un-treated Vulcan XC-72R cathode. The

HNO3 treatment of Vulcan XC-72R lowered the cathodic overpo-

tential proving the decrease of activation energy needed for ORR.

Moreover, even if the OCP of HNO3 treated cathode is about

ÿ200 mV, more negative than the Pt-supported cathode (Fig. 4),

its overpotential was lower than that observed with the platinum

cathode, confirming the positive effect of the acidic treatment on

oxygen reduction catalysis.

As explained by Freguia et al. (2007), the ORR overpotential can

be reduced either by using a catalyst to reduce the activation en-

ergy or by increasing the specific surface area of the graphite mate-

rial (Freguia et al., 2007). Many studies have reported solutions to

increase the rates of ORR involving innovative and cheap catalysts

(Aelterman et al., 2008; Cheng et al., 2006; Clauwaert et al., 2007;

Freguia et al., 2007; Sun et al., 2009). Recently, Zhang et al. com-

pared the performance of manganese dioxides (MnO2) to Pt as cat-

alyst material in an air-cathode MFC systems constructed with

Klebsiella pneumoniae biofilm (Zhang et al., 2009). Maximum power

density of 466 mW/m3, using MnO2 as catalyst, is reported which

is four-times higher than that obtained with non-catalyzed cath-

ode (102 mW/m3). However, the power generated by this MnO2

based MFC was only 64% of the performance of Pt-catalyzed MFC

(726 ± 19 mW/m3). In a study with graphite-granules, Freguia

et al. (2007) have demonstrated the possibility to sustain stable

high performance output of a MFC integrated with catalyst-free

material as cathode (Freguia et al., 2007).

In the present work, it has been shown that chemical treatment

with nitric acid played a role not only in modifying the specific sur-

face area (Erable et al., 2009) but also in improving the catalytic

property of the graphite material, since the current densities com-

parable to that of a Pt-supported carbon cathode were observed.

Improved performance of MFC with chemically modified carbon

cathode demonstrates that the research should not be only focus

on new catalyst development at neutral pH, but should also in-

clude development of new high surface area materials with better

catalytic property by chemical modification.

4. Conclusions

It has been shown that chemical treatment with HNO3 played

significant role in modifying the specific surface and in improving

the catalytic property of the Vulcan XC-72R carbon powder. During

electrochemical analysis the best performance, after the Pt
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materials after 1 and 6 working weeks under 1000X resistance.

Table 2

Summary of MFC performances.

Cell Treatment OCV (mV) Current density

(mA/m2)

Power density

(mW/m2)

CE (%)

A – 507 352 51 25.5

B HNO3 481 1115 170 61.8

C +Pt 640 849 217 61.2

OCV: open circuit voltage and CE: Coulombic efficiency.
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Fig. 4. Current density versus potential of the bioanodes and potential of the air-

cathodes after 6 working weeks under 1000X resistance: (�) un-treated Vulcan

XC-72R, (N) HNO3 treated Vulcan, and (s) platinum.



catalyst, was delivered by HNO3 treated carbon powder (2 A/m2 at

ÿ0.300 V versus Ag/AgCl), followed by slightly lower performance

by using un-treated Vulcan XC-72R. Performance of HNO3 treated

carbon was not much affected by anodic solution pH between 6

and 7.5. Such chemically modified carbon material can become a

cheaper alternative for expensive platinum based catalyst used in

MFC cathode construction.

Acknowledgements

This research was financially supported by the European Com-

munity as part of the ‘‘Biological Fuel Cell” Marie Curie Project

(FP6 Contract – MKTD-CT-2004-517215).

References

Aelterman, P., Versichele, M., Marzorati, M., Boon, N., Verstraete, W., 2008. Loading
rate and external resistance control the electricity generation of microbial fuel
cells with different three-dimensional anodes. Bioresource Technology 99,
8895–8902.

Aksoylu, A.E., Freitas, M.M.A., Figueiredo, J.L., 2000. Bimetallic Pt–Sn catalysts
supported on activated carbon I. The effects of support modification and
impregnation strategy. Applied Catalysis A: General 192, 29–42.

Aksoylu, A.E., Madalena, M., Freitas, A., Pereira, M.F.R., Figueiredo, J.L., 2001. The
effects of different activated carbon supports and support modifications on the
properties of Pt/AC catalysts. Carbon 39, 175–185.

APHA, A., WPCF, 1998. Standard Methods for Examination of Water and
Wastewater, 20th ed. American Public Health Association, Washington, DC.

Auer, E., Freund, A., Pietsch, J., Tacke, T., 1998. Carbons as supports for industrial
precious metal catalysts. Applied Catalysis A: General 173, 259–271.

Borrós, S., Tricás, N., Herranz, J., 2005. Cold-plasma modification of carbon black
used as a catalyst for oxygen reduction in PEMFC’s. In: Proceedings of the 1st
European Fuel Cell Technology and Applications Conference 2005 – Book of
Abstracts, p. 195.

Carmo, M., Linardi, M., Poco, J.G.R., 2008. H2O2 treated carbon black as
electrocatalyst support for polymer electrolyte membrane fuel cell
applications. International Journal of Hydrogen Energy 33, 6289–6297.

Chen, W., Xin, Q., Sun, G., Wang, Q., Mao, Q., Su, H., 2008. The effect of carbon
support treatment on the stability of Pt/C electrocatalysts. Journal of Power
Sources 180, 199–204.

Cheng, S., Liu, H., Logan, B.E., 2006. Power densities using different cathode catalysts
(Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber
microbial fuel cells. Environmental Science and Technology 40, 364–369.

Clauwaert, P., Van Der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K.,
Verstraete, W., 2007. Open air biocathode enables effective electricity
generation with microbial fuel cells. Environmental Science and Technology
41, 7564–7569.

de la Fuente, J.L.G., Rojas, S., Martínez-Huerta, M.V., Terreros, P., Peña, M.A., Fierro,
J.L.G., 2006. Functionalization of carbon support and its influence on the
electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon 44,
1919–1929.

Duteanu, N., Scott, K., Vaszilcsin, N., Kellenberger, A., 2007a. Increasing of the
performances of direct methanol combustion fuel cells. Revista de Chimie 58,
1207–1211.

Duteanu, N., Vlachogiannopoulos, G., Shivhare, M.R., Yu, E.H., Scott, K., 2007b. A
parametric study of a platinum ruthenium anode in a direct borohydride fuel
cell. Journal of Applied Electrochemistry 37, 1085–1091.

Erable, B., Duteanu, N., Kumar, S.M.S., Feng, Y., Ghangrekar, M.M., Scott, K., 2009.
Nitric acid activation of graphite granules to increase the performance of the
non-catalyzed oxygen reduction reaction (ORR) for MFC applications.
Electrochemistry Communications 11, 1547–1549.

Freguia, S., Rabaey, K., Yuan, Z., Keller, J., 2007. Non-catalyzed cathodic oxygen
reduction at graphite granules in microbial fuel cells. Electrochimica Acta 53,
598–603.

Guha, A., Lu, W., Zawodzinski Jr., T.A., Schiraldi, D.A., 2007. Surface-modified
carbons as platinum catalyst support for PEM fuel cells. Carbon 45, 1506–1517.

Harnisch, F., Wirth, S., Schroder, U., 2009. Effects of substrate and metabolite
crossover on the cathodic oxygen reduction reaction in microbial fuel cells:
platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry
Communications 11, 2253–2256.

Karyakin, A.A., Morozov, S.V., Karyakina, E.E., Zorin, N.A., Perelygin, V.V., Cosnier, S.,
2005. Hydrogenase electrodes for fuel cells. Biochemical Society Transactions
33, 73–75.

Kukushkina, I.A., Shteinberg, G.V., 1987. Oxygen reduction kinetics at active carbons
with different surface properties in solutions of intermediate pH values. Soviet
Electrochemistry 23, 583–588.

Kukushkina, I.A., Shteinberg, G.V., Kaisheva, A.R., 1987. Characteristics of air
electrodes with carbon catalyst in chloride solutions. Soviet Electrochemistry
23, 1171–1174.

Li, L., Wu, G., Xu, B.Q., 2006. Electro-catalytic oxidation of CO on Pt catalyst
supported on carbon nanotubes pretreated with oxidative acids. Carbon 44,
2973–2983.

Liu, H., Ramnarayanan, R., Logan, B.E., 2004. Production of electricity during
wastewater treatment using a single chamber microbial fuel cell.
Environmental Science and Technology 38, 2281–2285.

Logan, B.E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman,
P., Verstraete, W., Rabaey, K., 2006. Microbial fuel cells: methodology and
technology. Environmental Science and Technology 40, 5181–5192.

Park, D.H., Zeikus, J.G., 2003. Improved fuel cell and electrode design for production
electricity from microbial degradation. Biotechnology and Bioengineering 81,
348–355.

Park, D.H., Zeikus, J.G., 2002. Impact of electrode composition on electricity
generation in a single-compartment fuel cell using Shewanella putrefaciens.
Applied Microbiology and Biotechnology 59, 58–61.

Rabaey, K., Verstraete, W., 2005. Microbial fuel cells: novel biotechnology for energy
generation. Trends in Biotechnology 23, 291–298.

Roche, I., Scott, K., 2009. Carbon-supported manganese oxide nanoparticles as
electrocatalysts for oxygen reduction reaction (or) in neutral solution. Journal of
Applied Electrochemistry 39, 197–204.

Rodriguez-Reinoso, F., 1998. The role of carbon materials in heterogeneous
catalysis. Carbon 36, 159–175.

Shukla, A.K., Suresh, P., Berchmans, S., Rajendran, A., 2004. Biological fuel cells and
their applications. Current Science 87, 455–468.

Sun, J., Hu, Y., Bi, Z., Cao, Y., 2009. Improved performance of air-cathode single-
chamber microbial fuel cell for wastewater treatment using microfiltration
membranes and multiple sludge inoculation. Journal of Power Sources 187,
471–479.

Tricás, N., Borrós, S., Schuster, R.H., 2005. Carbon black surface chemical
modification by atmospheric plasma. KGK Kautschuk Gummi Kunststoffe 58,
511–517.

Wang, B., Han, J.I., 2009. A single chamber stackable microbial fuel cell with air
cathode. Biotechnology Letters 31, 387–393.

Wang, H., Côtè, R., Faubert, G., Guay, D., Dodelet, J.P., 1999. Effect of the pre-
treatment of carbon black supports on the activity of Fe-based electrocatalysts
for the reduction of oxygen. Journal of Physical Chemistry B 103, 2042–
2049.

You, S., Zhao, Q., Zhang, J., Jiang, J., Wan, C., Du, M., Zhao, S., 2007. A graphite-granule
membrane-less tubular air-cathode microbial fuel cell for power generation
under continuously operational conditions. Journal of Power Sources 173, 172–
177.

Yu, E.H., Cheng, S., Logan, B.E., Scott, K., 2008. Electrochemical reduction of oxygen
with iron phthalocyanine in neutral media. Journal of Applied Electrochemistry
1, 7.

Zhang, L., Liu, C., Zhuang, L., Li, W., Zhou, S., Zhang, J., 2009. Manganese dioxide as an
alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors and
Bioelectronics 24, 2825–2829.


