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Abstract

This work proposes an exact solution approach for the two-machine robust flow

shop problem, where operation processing times are uncertain and vary in a

given interval. Based on the concept of budgeted uncertainty, the objective is

to obtain a robust scheduling that minimizes the makespan of the restricted

worst-case scenario, where only a subset of job processing times will oscillate

to their worst-case values. To our knowledge, this is the first work to obtain

optimal solutions to this problem, by extending two classical MILP formulations

for the deterministic case and combining them with a Column-and-Constraint

Generation framework. For this purpose, a dynamic programming algorithm

was also developed, allowing the identification of worst-case scenarios in poly-

nomial time. Experiments on a set of literature instances confirm the efficacy of

our approach, including a case study that shows little overhead in the expected

solution value of obtained robust solutions.

Keywords: Scheduling, Robust Optimization, Flow Shop, Budget of

uncertainty, Column-and-Constraint Generation

1. Introduction

In permutation flow shop scheduling problems, the operations concerning

each job are performed in a serial flow (i.e., in a specific production sequence)
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on each machine, and the processing order of the jobs is the same for each subse-

quent step. Such configuration is commonly used in assembly lines throughout

several types of industry, including chemical (Cartwright & Long, 1993), petro-

chemical (Deal et al., 1994), automobile manufacturing (Yan et al., 2003), elec-

tronic (Jin et al., 2002), food and metallurgical (Hall & Sriskandarajah, 1996).

In all these applications, maintaining a continuous flow of processing tasks while

minimizing idle time and waiting time is highly important, guaranteeing process

efficiency and increasing production rates and profits.

The Permutation Flow Shop (PFS) scheduling has been widely investigated

considering deterministic processing times, assuming input data are accurate

and known in advance. However, in real-world industrial settings, manufac-

turing systems usually operate in uncertain environments where interruptions

(essentially random in nature) restrict the execution of production schedules

precisely as they were planned. In particular, variation in processing times

and other stochastic events (e.g., machine breakdowns, due-date changes, or-

der cancellations, and raw material shortages) bring increased variability in

production systems and may influence the optimization model’s quality and

feasibility (Sabuncuoglu & Goren, 2009).

A typical solution approach applied to these cases is Stochastic Optimiza-

tion (Heyman & Sobel, 1982), whose fundamental premise states that the un-

known parameters can be described using probabilities. On the other hand,

Robust Optimization (RO) (Ben-Tal & Nemirovski, 2002) provides a different

approach to optimization problems under uncertain conditions. The unknown

parameters are modeled as belonging to an uncertainty set, making it a more

suitable modeling approach when the uncertainty interval is known, but not

necessarily the probability distribution. The goal for RO is to make a feasible

decision, no matter what the constraints turn out to be, which is optimal for

the worst-case objective function.

Assuming processing times are uncertain and vary in a given interval, the

objective of the present work is to provide exact solutions for the two-machine

Robust Permutation Flow Shop (2RPFS). The only information required is the
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lower and upper bounds of processing times, obtained from historical data. We

are interested in a job permutation that minimizes the worst-case makespan for

any possible realization of job processing times under the budgeted uncertainty

set (Bertsimas & Sim, 2004). Unlike other robust optimization models, which

generate only one conservative solution, the budgeted approach allows the ad-

justment of the level of conservatism of the solution, allowing the incorporation

of different attitudes toward risk (e.g., risk-averse, risk-neutral, or risk-seeking).

As a result, the decision-maker can select the schedule that achieves the best

balance between robustness and optimality.

This text adopts the following structure. Section 2 starts with an introduc-

tion to the classical Permutation Flow Shop Problem, whose processing times

are certain, followed by Section 3, a literature review on solution methods for

the PFS problem with uncertain processing times. The two-machine Robust

Permutation Flow Shop Problem is introduced in Section 4, together with two

proposed robust counterpart formulations. Our exact solution approach, based

on Column-and-Constraint Generation (C&CG), is explained in Section 5. Fi-

nally, in Section 6, we discuss the obtained performance, based on extensive

computational experiments on existing literature instances.

2. The Deterministic Permutation Flow Shop Problem

This section presents the Permutation Flow Shop Problem (PFSP) to min-

imize the makespan. Following the well-known α|β|γ notation for scheduling

problems, established by Graham et al. (1979), where α represents the machine

environment, β stands for job characteristics, and γ symbolizes the objective

function, this problem is denoted as F |prmu|Cmax. Since job processing time

values are assumed to be known in advance, we will use the term deterministic

when referring to this version of the problem.

The problem can be stated as follows. Consider a production planning pro-

cess consisting of a set J = {J1, J2, . . . , Jn} of n jobs to be executed in a set

M = {M1,M2, . . . ,Mm} of m machines. In this process, every job Ji is com-

posed of m stages O1,i, O2,i, . . . , Om,i, named operations. Each job operation
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Or,i must only be executed on machine Mr. Every operation Or,i has a non-

negative processing time pr,i forming the matrix P ∈ R+
M×J. At any time, each

machine cannot execute more than one operation. Operation Or,i can only be

executed after operation Or−1,i is finished. Preemption is not allowed: once

an operation is started, it must be completed without any interruption. The

permutation flow shop’s particularity is that the sequence in which the jobs are

processed (permutation) is the same for all machines. Such sequence is defined

by a permutation σ: {1, . . . , n} −→ J, with σ(j) indicating the jth job to be

executed. We call Σ the set of all permutations of n jobs, hence σ ∈ Σ. The

completion time of an operation Or,σ(j), denoted by Cr,σ(j), can be defined by

the recurrence:

Cr,σ(j) =


pr,σ(j) if r = 1 and j = 1,

Cr,σ(j−1) + pr,σ(j) if r = 1 and j > 1,

Cr−1,σ(j) + pr,σ(j) if r > 1 and j = 1,

max(Cr,σ(j−1), Cr−1,σ(j)) + pr,σ(j) if r > 1 and j > 1.

The completion time of a job Ji is defined as its completion time on the

last machine: Cm,i. The makespan is the maximum completion time Cmax,

considering all jobs, i.e., Cmax = max
i∈{1,...n}

Cm,i = Cm,σ(n). The PFSP objective

is to find a sequence of jobs (permutation σ) that minimizes the makespan.

As far as the makespan objective is concerned, the PFSP was proved strongly

NP-hard by Garey et al. (1976) for instances with three or more machines.

However, the two-machine version of the problem can be solved in O(n log n)

time with the well-known algorithm proposed by Johnson (1954) in one of the

pioneering papers in the scheduling literature. Indeed, for the two-machine case,

the optimal makespan for the deterministic flow shop problem is the same with

or without the permutation constraint (Pinedo, 2016).

Several Mixed-integer linear programming (MILP) models have been devel-

oped for the PFSP with an arbitrary number of machines. For a comparative

analysis among the best performing PFSP formulations, we refer the reader

to Tseng et al. (2004), which presents an empirical study based on a standard

set of 60 problem instances.
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3. Literature Review

This section provides an overview of the flow shop problem with uncertain

processing times, concerning existing Stochastic Optimization methods (Sec-

tion 3.1) and Robust Optimization approaches (Section 3.2).

3.1. Stochastic Optimization

González-Neira et al. (2017) surveyed 100 papers that study uncertainty in

different variations of flow shop scheduling problems, published between 2001

and 2016. According to their analysis, the two most common uncertain pa-

rameters are processing times and machine breakdowns. The majority of works

are related to Stochastic Optimization, including heuristics (Dodin, 1996; El-

maghraby & Thoney, 1999; Baker & Trietsch, 2011; Framinan & Perez-Gonzalez,

2015), simheuristics (Ferone et al., 2016), probabilistic hybrid heuristics (Laha &

Chakraborty, 2007), branch-and-bound (Balasubramanian & Grossmann, 2002),

and simulation (Framinan et al., 2018).

It is worth noting that Stochastic Optimization approaches model random

parameters using probability distributions, which may be difficult to infer in

many cases. Additionally, optimizing the expected value of an objective may

not be the best alternative for processes that incorporate only a small number

of trials. The benefits of optimum expected value shall only be visible in the

long haul, after a large number of tests.

The problem was also investigated from the viewpoint of fuzzy program-

ming (Hong & Chuang, 2005; Mitkowski et al., 2017) and stability analysis (Lai

& Sotskov, 1999; Braun et al., 2002).

3.2. Robust Optimization

When applying Robust Optimization techniques, no assumptions are neces-

sary concerning the underlying probability distribution of uncertain data. Also,

different approaches towards risk can be incorporated into the problem. As

far as robust scheduling problems are concerned, the objective is to optimize a

performance measure considering the worst possible scenario, thus developing
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a schedule that will perform relatively well under a wide range of possible re-

alizations of processing times. Different optimization criteria may be used to

choose a robust solution (Aissi et al., 2009). The first and most straightforward

criterion is the minimax (also known as the absolute robust criterion). In this

case, given a minimization problem, the robust decision is made by choosing a

solution that minimizes the highest cost over all possible scenarios.

A second possible criterion is minimax regret, aiming to find the least max-

imum regret over all possible scenarios. Regret can be either defined as the

difference or the ratio between the resulting cost of the candidate decision and

the cost of the decision that would have been taken if uncertain input data were

known in advance (before the decision time, i.e., before solving the problem).

In the first case, where regret is defined as a difference, the so-called robust

deviation decision is obtained. For the latter case (regret being the ratio of two

values), the resulting decision is the relative robust decision.

Concerning the uncertain nature of the problem, scenarios represent the set

of possible realizations of processing time values. When applying RO, there are

two usual ways of describing the set of scenarios. In the discrete case, an explicit

scenario list is given, i.e., one processing time matrix Pλ for each scenario λ. In

the interval case, for each operation Or,i concerning the execution of job i on

machine r, a range [pLr,i, p
U
r,i] of lower and upper bounds of processing times is

defined. The so-called continuous processing time interval involves, therefore, an

infinite number of scenarios. Regardless of the scenario representation approach,

interval or discrete, once the robust counterpart formulations have been defined,

developing an appropriate solution method remains a challenge.

Table 1 summarizes existing works regarding the makespan-objective Robust

Permutation Flow Shop Problem, in terms of optimization criterium (problem

type), solution approach (heuristics or exact methods), the number of machines,

and how processing time uncertainty was represented (discrete or interval).

Given the minimax regret makespan criterion, Kouvelis et al. (2000) studied

both the discrete and interval cases of processing time uncertainty. Their work

proposed branch-and-bound and heuristic procedures to obtain robust solutions,
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along with experiments based on a considerable set of randomly generated in-

stances, with no more than 15 jobs, however. They also provided NP-hardness

proof for the discrete scenario case of the robust flow shop with m = 2. Very

recently, the 2-machine interval processing time case has been proven to be

NP-hard by Shafransky & Shinkarevich (2020).

Concerning the existing solution approaches involving only discrete-scenario

uncertainty, Kasperski et al. (2012) studied the two-machine permutation flow

shop problem (F2 | prmu | Cmax) with uncertain data, whose deterministic

counterpart is known to be polynomially solvable. The work proved that the

minimax and minimax regret versions of the problem are strongly NP-hard even

for two scenarios. The authors developed a polynomial-time approximation

scheme (PTAS) algorithm to be used with the minimax version of the problem

when the number of scenarios is constant. They also stated that the minimax

regret version is not at all approximable, even for two scenarios.

Regarding the interval scenario case with the minimax makespan criterion,

the computational complexity of the robust flow shop with m = 2 is still an

unsolved open problem (Kasperski et al., 2012). Note that the problem is NP-

hard for m ≥ 3 following the complexity of the deterministic problem. Several

solution strategies deal exclusively with processing time uncertainty represented

as intervals of known bounds. Averbakh (2006) studied the minimax regret flow

shop with m machines but only two jobs. Józefczyk & Siepak (2013) proposed a

Scatter Search metaheuristic for the PFSP and other two scheduling problems

with interval uncertainty, based on the minimax regret criterion.

Unlike previous works, Ying (2015) adopted a new approach, which searches

for a minimax robust schedule given the restricted worst-case scenario, based

Problem Type Heuristics / Approximation Exact methods
Minimax Regret 2 machines: Greedy (Kouvelis et al., 2000)D, I 2 machines:

3 machines: Evolutionary (Ćwik & Józefczyk, 2015)I Branch & Bound

m machines: Constructive (Ćwik & Józefczyk, 2018)I (Kouvelis et al., 2000)D, I

Scatter Search (Józefczyk & Siepak, 2013)I 2 jobs: O(m) (Averbakh, 2006)I

Minimax 2 machines: PTAS (Kasperski et al., 2012)D -
Minimax, 2 machines: SA and IG (Ying, 2015)I -
Budgeted uncertainty

Tab. 1 Summary of algorithms listed in the literature review regarding the Robust PFSP
(makespan objective). For each work, we specify how processing time uncertainty was repre-
sented: a D means discrete processing time matrices; an I means processing time intervals.
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on the Bertsimas & Sim (2004) budgeted uncertainty set. Simulated annealing

(SA) and Iterated Greedy (IG) metaheuristics were applied to solve the problem

over a set of 300 randomly generated instances.

In the same year, Ćwik & Józefczyk (2015) proposed an evolutionary al-

gorithm for the minimax regret makespan robust flow shop with three ma-

chines, assuming processing times belonged to known intervals. Later, the same

authors proposed another solution approach for an arbitrary number of ma-

chines (Ćwik & Józefczyk, 2018), where a constructive algorithm based on the

Nawaz-Enscore-Ham (NEH) heuristic (Nawaz et al., 1983) has been introduced

and experimentally evaluated against two other heuristic algorithms: the au-

thors’ evolutionary algorithm and a Middle Interval heuristic.

4. The two-machine Robust Flow Shop Problem

From this moment on, we will concentrate on the two-machine robust flow

shop problem. Different optimization criteria may be used to choose a robust

solution (Gerodimos et al., 1998; Aissi et al., 2009). Our research focuses on

the minimax criterion, also known as the absolute robust criterion. In this case,

considering a minimization problem, the robust decision is made by choosing

a solution that minimizes the highest solution value over all possible scenarios,

according to a predefined uncertainty set.

Given that the computational complexity remains an open problem for

2RPFS under budgeted uncertainty, in this work, we fill a gap in the literature by

providing an exact solution method (see Table 1 from Section 3). Furthermore,

it is worth noting that the models and the solution method presented in this

section can be generalized to the m-machine variant of the robust PFSP, which

is NP-hard for m ≥ 3, following the complexity of the deterministic problem.

After defining the 2RPFS problem, this section describes the application

of the budgeted uncertainty set. Finally, two robust counterpart formulations

are proposed, based on well-known Mixed-Integer Linear Programming (MILP)

formulations for the deterministic problem.
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4.1. Problem statement

Assume the matrix of individual processing times P = {pr,i} as uncertain.

A scenario λ is defined as a realization of uncertainty and, for each λ, there is

a unique matrix of processing times Pλ = {pλr,i ∈ R : r = 1, 2, i = 1, 2, . . . , n}.

We define Λ as the set indexing all possible scenarios.

Let ϕ(σ,Pλ) be the makespan of a sequence σ ∈ Σ in scenario λ (i.e., given

processing time matrix Pλ). The objective of the two-machine robust (minimax

makespan) flow shop is to find a job permutation σ ∈ Σ that minimizes the

maximum possible makespan over all possible scenarios λ ∈ Λ:

2RPFS: min
σ∈Σ

max
λ∈Λ
{ϕ(σ,Pλ)} (1)

For any sequence σ ∈ Σ, the value

Z(σ) := max
λ∈Λ
{ϕ(σ,Pλ)} (2)

is called the worst-case makespan or robust cost for σ. The maximizer in (2)

is called a worst-case scenario for σ.

4.2. Budgeted uncertainty set for the 2RPFS problem

Ying (2015) compared the three classical Robust-Counterpart Optimization

(RCO) models in terms of the number of variables, the number of required

constraints, and if the respective formulation is linear or not. The first and

simplest model, by Soyster (1973), consists of a linear formulation that presents

the smallest number of variables and constraints. However, it is not possible to

adjust its degree of solution conservatism. Following a new approach, Ben-Tal

& Nemirovski (2000) proposed an RCO model with safety parameters, which

allow a trade-off between robustness and performance. However, the resulting

formulation is non-linear (conic quadratic) and more challenging to solve than

the original problem. Finally, the model developed by Bertsimas & Sim (2004)

provided a linear formulation that allows controlling the level of conservatism of

the robust solution without resulting in a substantial increase in problem size.

With the inclusion of a budget parameter for each constraint, it is possible to ad-

just the number of coefficients that simultaneously take their largest variations,
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thus providing a compromise between robustness and optimality. Therefore,

the so-called budgeted uncertainty set, defined by this RCO model, comes as a

natural choice to model processing time uncertainty in scheduling problems.

The budgeted uncertainty set for the 2RPFS problem was proposed by Ying

(2015). We reproduce their definition below, with some modifications in nota-

tion as well as additional comments.

As stated in Section 3, there are two common ways of representing scenario

set Λ. Given the interval approach for representing uncertain values, consider

two positive processing time matrices P={pr,i} and P̂={p̂r,i}, that represent

the nominal values of and the maximum allowed deviations of P, respectively.

Additionally, we introduce two positive integers Γ1 and Γ2, which will be called

budget parameters, that denote the maximum number of operations whose un-

certain processing times can reach their worst-case values in machines M1 and

M2, respectively. We can define the bounded (processing time) uncertainty sets

of operations in M1 and M2, denoted as Ur (r = 1, 2), as follows:

Ur =

{
Pr = {pr,i} : pr,i = pr,i + δr,i p̂r,i, δr,i ∈ {0, 1}, i ∈ {1, . . . , n},

n∑
i=1

δr,i ≤ Γr

}
, (3)

where Pr is the projection of P in the space defined by machine Mr (r = 1, 2).

We can now define the budgeted uncertainty set as:

UΓ = U(Γ1,Γ2) = U1 × U2.

Notice that a scenario λ ∈ Λ is defined by the matrix Pλ ∈ UΓ. Also, for

a given r ∈ M and i ∈ J, let δλr,i be the value defining the deviation of the

processing time regarding the execution of job i on machine r in scenario λ, i.e.,

pλr,i = pλr,i+ δλr,ip̂
λ
r,i. Therefore, the total number of operations whose processing

time can deviate to its maximum value in machine Mr is limited to Γr.

The main advantage of applying budgeted uncertainty sets is the ability

to model the risk-averseness of the decision-maker by varying Γ1 and Γ2. As

mentioned by Bertsimas & Sim (2004), the idea is that an event where all

uncertain parameters pr,i reach their worst-case values at the same time has

a very low probability of happening. In particular, higher values of Γ1 and

Γ2 lead to larger uncertainty sets and thus more conservative solutions. When
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Γ1 = Γ2 = 0, the problem is equivalent to the nominal problem, i.e., the PFSP

with two machines. If Γ1 = Γ2 = n, we obtain the box uncertainty set (Soyster,

1973). For a given value of Γ1 and Γ2, there are
(

Γ1

n

)
×
(

Γ2

n

)
possible worst-case

scenarios, given the budgeted uncertainty set UΓ.

Ying (2015) affirmed that obtaining an exact solution for the two-machine

Robust PFSP under budgeted uncertainty would be computationally intractable

for real-sized problem instances. However, with the method introduced in this

research, it turns out that it is possible to obtain exact solutions for most in-

stances from that work in reasonable execution time (see results in Section 6).

4.3. Robust counterparts

We now present the robust counterparts for Wagner (Wagner, 1959) and

Wilson (Wilson, 1989) PFSP MILP models. According to the empirical study

conducted by Tseng et al. (2004), these two assignment-problem-based models

are the best performing ones, based on results obtained on a standard set of 60

problem instances. In both models, the number of constraints and the model

matrix size are smaller than the other two competing integer programming

models from the literature (Jr & Tseng, 1990; Liao & You, 1992). Experimental

data suggests that this factor greatly influences the computational time of the

PFS models, apparently more than the number of binary variables.

4.3.1. Robust Counterpart for Wagner PFS Model

Wagner (1959) proposed an all-integer programming model for a

three-machine deterministic flow shop, later extended to an m-machine

MILP model by Stafford (1988), and commonly named in the lit-

erature as Wagner model. We now present its robust counterpart

for two machines. In this two-stage RO formulation, y and Zi,j are

the first-stage variables, while Xλ
j and Y λj are in the second stage.

Zi,j =

{
1, if σ(j) = i (job i occupies position j in the sequence σ)
0, otherwise.

Xλ
j idle time on machine M2 before the start of operation concerning the job

in sequence position j given scenario λ.

Y λj idle time of the job in sequence position j after it finishes processing on
machine M1 given scenario λ.
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min y (4)

st
∑n
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
+
∑n
j=1 X

λ
j ≤ y, λ ∈ Λ, (5)∑n

i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,j+1 + Y λj+1 =

∑n
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,j +Xλ

j+1 + Y λj ,

1 ≤ j ≤ n− 1, λ ∈ Λ, (6)∑n
i=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,1 = Xλ

1 , λ ∈ Λ, (7)∑n
i=1 Zi,j = 1, j = 1, . . . , n, (8)∑n
j=1 Zi,j = 1, i = 1, . . . , n, (9)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (10)

Xλ
j ≥ 0, Y λ1 = 0, Y λj ≥ 0, j = 1, . . . , n, λ ∈ Λ, (11)

y ≥ 0. (12)

The objective function (4) and constraint (5) have the goal of finding a robust

schedule that minimizes the makespan y of the worst-case scenario, among all

possible scenarios. Constraints (6) and (7) are the Job-Adjacency and Machine-

Linkage (JAML) constraints from the Wagner model, written for each scenario

λ ∈ Λ. We refer the reader to Figure 1 for an illustrative JAML diagram. They

ensure that, for each scenario λ: (a) the job in sequence position j cannot begin

processing on machine M2 until it has completed its processing on machine

M1, and (b) the job in sequence position j + 1 cannot begin its processing on

machine Mr until the job in sequence position j has completed its processing on

that same machine. Remark that the original Wagner model does not enforce an

important aspect: all jobs are processed on machine M1 without any in-sequence

machine idleness, i.e., the idle time before any job is processed on machine M1

is always zero. As a consequence, the idle time of the first job after processing

P
1,1

P
1,1

TT
1,1
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P
1,1

P
1,1

X
1
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X
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Fig. 1 JAML diagram for Wagner model, where TTr,j =
∑n
i=1

(
pr,i + p̂r,iδ

λ
r,i

)
Zi,j .
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on M1 is zero (Y1 = 0).Constraints (8) and (9) are the classical assignment

constraints, ensuring, respectively, that each job is assigned to one and only one

sequence position; and that each sequence position is filled by one and only one

job. Finally, constraints (10)-(12) define the domain of the variables.

4.3.2. Robust Counterpart for Wilson PFS Model

Rather than using equality constraints and idle time variables for controlling

the so-called JAML relationships, Wilson (1989) applied sets of inequality con-

straints based on start time variables defined for each job operation and each

machine. This variant of the model uses the following decision variables:

Zi,j =

{
1, if σ(j) = i (job i occupies position j in the sequence σ)
0, otherwise.

Bλj = start time of operation concerning job σ(j) (in position j) on machine M2

given scenario λ.

Based on the above definitions, where variables Zi,j and Bλj are in the first

and second stage, respectively, the two-stage robust-counterpart of the Wilson

model for 2RPFS can be formulated as follows:

min y (13)

st Bλn +

n∑
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,n ≤ y, λ ∈ Λ, (14)

∑n
i=1

∑j
`=1

(
p1,i + p̂1,iδ

λ
1,i

)
Zi,` ≤ Bλj , j = 1, . . . , n, λ ∈ Λ, (15)

Bλj +
∑n
i=1

(
p2,i + p̂2,iδ

λ
2,i

)
Zi,j ≤ Bλj+1, j = 1, . . . , n− 1, λ ∈ Λ, (16)∑n

i=1 Zi,j = 1, j = 1, . . . , n, (17)∑n
j=1 Zi,j = 1, i = 1, . . . , n, (18)

Zi,j ∈ {0, 1}, i, j = 1, . . . , n, (19)

Bλj ≥ 0, j = 1, . . . , n, λ ∈ Λ, (20)

y ≥ 0. (21)

The objective function (13) and constraint (14) state that this formulation aims

to find a robust schedule that minimizes the makespan y of the worst-case

scenario, among all possible scenarios. Constraints (15) and (16) guarantee that

the robust schedule is feasible and that start time variables are appropriately

calculated for each scenario λ. Constraints (17) and (18) are as defined in the
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previous formulation. Constraints (19)-(21) define the domain of the variables.

Solving the two models above, for all possible combinations of λ ∈ Λ, is unre-

alistic. Therefore, in the next section, we will introduce an algorithm capable of

obtaining optimal results for 2RPFS with only a subset of these combinations.

5. Column-and-Constraint Generation applied to 2RPFS problem

This section presents an exact method for solving 2RPFS under budgeted

uncertainty. Our approach is based on Column-and-Constraint Generation, a

cutting plane procedure for two-stage RO problems which has been recently

used to solve different robust scheduling problems (Ruiz Duarte et al., 2020;

Silva et al., 2020). The method’s name originated from how the decomposition

operates: besides new constraints, each cutting plane is also associated with a

set of new decision variables for the recourse problem (Zeng & Zhao, 2013).

Given one of the robust counterparts presented in Section 4, the main idea is

to relax it into a master problem (MP) where each robust constraint is written

only for a finite subset U ′ of the uncertainty set UΓ. Then, given a feasible

solution to the MP, the solution is checked for feasibility by solving an ad-

versarial separation subproblem (SP). If the SP solution indicates that one or

more robust constraints become infeasible, the uncertainty set U ′ is expanded

by one or more vectors, and the master problem is augmented, according to the

column-and-constraint generation procedure.

For the 2RPFS problem, the adversarial separation problem is represented

by the worst-case procedure, which, given the sequence σ returned by the MP

solution, returns the highest possible makespan under the uncertainty set UΓ.

Since the uncertainty set UΓ, defined in Section 4, is polyhedral, the number

of possible extreme solutions that the procedure can fetch is finite, and the

algorithm terminates (Zeng & Zhao, 2013).

5.1. C&CG algorithm

In order to explain the C&CG algorithm, we will consider the 2-stage RO for-

mulations defined in Section 4.3. Given that uncertainty set U(Γ1,Γ2) is discrete
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Algorithm 1: Column-and-constraint generation algorithm

Set LB = −∞, UB = +∞, v = 1 and Θ = {λ(0) : δ
(0)
r,i = 0,∀r = 1, 2, ∀i = 1, . . . , n};

while UB− LB > ε do
if model = Wagner then Solve the MP defined in (4)-(12) with Λ := Θ ;
if model = Wilson then Solve the MP defined in (13)-(21) with Λ := Θ ;
Let (Z∗

(v)
, y∗, R∗model) be the MP optimal solution ;

Update LB := max
[
LB, y∗

]
;

Call the oracle to solve subproblem (SP) in (22) with Z := Z∗
(v)

;

Let S∗
(v)

be the SP optimal solution value with associated scenario λ∗
(v)

;

Update UB := min
[
UB, S∗

(v)

]
;

if UB− LB > ε then

Add recourse decision variables R(v)
model for scenario λ∗

(v)
on MP ;

if model = Wagner then Generate MP constraints (5)-(7)&(11) for λ∗
(v)

;

if model = Wilson then Generate MP constraints (14)-(16)&(20) for λ∗
(v)

;

Update Θ := Θ ∪ {λ∗
(v)

: δ(v) = δ∗} and set (v) := (v + 1) ;

Return UB, Z∗
(v)

and finite, obtaining a solution for one of these formulations is equivalent to

solving a probably large-scale MILP, enumerating all variables and constraints

for each scenario λ in the set Λ. This possibility, as we can expect, is unrealistic.

Zeng & Zhao (2013) propose an alternative solution approach, generating only a

subset of scenarios Θ = {λ1, . . . , λv} ⊆ Λ. With the application of the so-called

C&CG procedure, if the problem is formulated in a master-subproblem frame-

work, it can be solved iteratively, with each iteration generating one scenario

λv ∈ Θ, obtained by solving a subproblem.

With this idea in mind, we define the Master Problem (MP) by choosing

an appropriate 2-stage RO formulation, in our case, either Wagner or Wilson

robust counterpart models. Let RWagner = {X(1), . . . ,X(v),Y(1), . . . ,Y(v)} and

RWilson = {B(1), . . . ,B(v)} be the corresponding recourse decision variables of

each model, respectively. The master problem is solved iteratively, with each

step generating Wagner constraints (5)-(7) or Wilson constraints (14)-(16), as

well as recourse variables linked with one or more scenarios λv ∈ Λ, obtained

by solving the associated subproblem.

In order to deal with the scenarios defined by Θ, we assume that an oracle

can obtain an optimal solution to the worst-case subproblem for a given value
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of the first-stage decision variables Zi,j . The subproblem SP is defined as:

(SP) S(σ) = max
λv∈UΓ

ϕ(σ,Pλv ) (22)

where job permutation σ is derived using (MP) optimal values of variables Zi,j .

In our case, the optimal solution for (SP) can be obtained by the worst-case

procedure defined in Section 5.2.

The C&CG method is presented in Algorithm 1, where LB denotes the lower

bound, UB denotes the upper bound, v is the iteration counter, Θ is the set

of worst-case scenarios generated by the method, and ε ∈ R+ represents the

tolerance of optimality.

5.2. Worst-case evaluation

We now discuss how to determine the worst-case realization under the bud-

geted uncertainty set UΓ, for a specific sequence of jobs σ = {σ(j), j = 1, . . . , n}.

From equation (2), given a protection level Γ = (Γ1,Γ2) and a schedule σ, we

extend the definition of worst-case makespan or robust cost Z(σ,Γ) as follows:

Z(σ,Γ) := max
λ∈UΓ

{ϕ(σ,Pλ)}. (23)

We assume that parameters Γ1 and Γ2, from the budgeted uncertainty set,

are non-negative integers. Based on this assumption, statement (23) reflects

a problem with a convex function being maximized over a polytope defined

by uncertainty set UΓ. Thus, in order to obtain the worst-case realization of

uncertainty, only specific realizations of UΓ are needed, namely the extreme

points of the polytope. For each machine Mr and job Ji, the set of extreme

scenarios are characterized either by the values pr,i or pr,i+ p̂r,i (Kouvelis et al.,

2000), i.e., any worst-case realization will use as much budget of uncertainty as

possible. Therefore, for the optimal solution of (23), with worst-case scenario

λ∗,
∑n
i=1

|pλ
∗
r,i−pr,i|
p̂r,i

= Γr,∀r ∈ {1, 2}.

We developed a worst-case solution method based on dynamic programming.

The complexity of this algorithm is O(n2). Given 1 ≤ r ≤ 2, 1 ≤ k ≤ n, and

0 ≤ γ ≤ n, let us define a value function α(r, k, γ) as the optimal value of

the restricted separation problem for machine Mr and job positions {1, . . . , k},
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when at most γ jobs are using their maximum processing time on machine Mr.

The optimal value of the problem is then defined by Z(σ,Γ) = α(2, n,Γ2).

The value-function is defined by the recursion:

α(1, k, γ) = max
[
p1,σ(k) + α(1, k − 1, γ), p1,σ(k) + p̂1,σ(k) + α(1, k − 1, γ − 1)

]
,

for 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ1, (24)

α(2, k, γ) = max
[
p2,σ(k) + max[α(2, k − 1, γ), α(1, k, Γ1)] ,

p2,σ(k) + p̂2,σ(k) + max[α(2, k − 1, γ − 1), α(1, k, Γ1)]
]
,

for 1 ≤ k ≤ n, 0 ≤ γ ≤ Γ2, (25)

and the following initialization values:

α(r, k, γ) = −∞ if γ < 0, α(r, k, γ) = 0 if k = 0 and γ ≥ 0,

α(2, k, 0) = p2,σ(k) + max[α(2, k − 1, 0), α(1, k, Γ1)], for 1 ≤ k ≤ n.

If r = 1, the first maximizer argument accounts for the case when there is no

delay of execution regarding job σ(k) on the first machine, while the second

expression handles the case where a delay occurs. Similarly, for r = 2, we take

the maximum of two cases: with or without delay when executing job σ(k) on

the second machine. However, the job start time has to be computed as the

maximum between the previous job’s σ(k − 1) worst-case completion time on

the same machine M2, and the worst-case completion time of the same job σ(k)

on the previous machine M1, taking into account its budget of uncertainty Γ1.

6. Experimental results

We conducted extensive experiments on randomly generated datasets to as-

sess the performance of the proposed solution method, as well as solution robust-

ness, the trade-off between robustness and optimality, and the impact of data

uncertainty on the obtained schedules. The analyses employed in this section

follow the same lines as recent works on RO under budget uncertainty (Lu et al.,

2014; Feizollahi & Feyzollahi, 2015; Silva et al., 2020). Sub-section 6.1 presents

the testbed and environment setup, while 6.2 examines the robust method per-

formance regarding execution time and the number of optimal solutions. Finally,

based on Monte-Carlo simulation, we close with a case study that analyses the

expected behavior of robust, stochastic, and deterministic solutions, to verify a
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possible increase in the expected solution cost in the long run.

6.1. Test instances and computational environment

Our experiments were based on a set of random instances generated by Ying

(2015). In his work, six groups of instances were created, each one with a

different number of jobs n = {10, 20, 50, 100, 150, 200}. The expected pro-

cessing time pr,i (r = 1, 2; i = 1, . . . , n) is an integer drawn from the uni-

form distribution [10, 50] and the largest processing time deviation was set

as a ratio of the expected processing time (i.e., p̂r,i = αpr,i), where α =

{10%, 20%, 30%, 40%, 50%}. Ten instances were generated for each combina-

tion of n and α for a total of 300 test instances. All test instances are available

at https://github.com/levorato/2RPFS_Cmax_Budget.

The C&CG algorithm was coded in Julia 1.4.0, and IBM CPLEX 12.9.0 (with

default parameters) was used to solve 2RPFS MILP models. All experiments

were performed on a workstation with an Intel Xeon® CPU E5640 @2.67GHz

with 32 GB RAM, under Ubuntu 18.04 LTS. Time limit was set to 2 hours to

solve each instance and the ε convergence parameter for C&CG was set to 10−8.

With a particular interest in examining the impact of budget parameters

on the performance of the proposed robust scheduling algorithms, when solving

each instance, we tested the 2RPFS models by varying Γ1 and Γ2 according

to five ratios (20%, 40%, 60%, 80%, and 100%) of the number of operations

subject to processing time deviation on machines M1 and M2, respectively.

6.2. Comparative performance of the algorithms

This section examines the performance and effectiveness of the C&CG algo-

rithm when using either Wagner or Wilson 2RPFS models. The comparison is

based on the computational efficiency in terms of CPU time and the percentage

of instances solved to optimality (i.e., zero solution gap).

We first present in Tab. 2 overall results, comparing the performance of the

algorithms. Wagner-model C&CG is the one that solves the majority of the

instances to optimality with the best execution time. The % Best Performance
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measurement indicates that, from the total number of instances solved to opti-

mality, the Wagner model solved 86% of these instances faster, using less CPU

time, followed by Wilson, which solved 14%. Measurements % Solved 150 and

% Solved 200 indicate that the Wilson-based algorithm could not obtain opti-

mal solutions for most of the 150 and 200-job instances within the time limit.

The other presented measurements (%Solved, Avg % Gap, and Median time)

also favor the Wagner model. In this analysis, we present medians to mitigate

the effect of instances not solved within the time limit.

Tab. 3 presents, for every instance size, the average performance of the

C&CG algorithm with each robust-counterpart model, including average run

time values. When using average, the results of all instances (even outliers) are

taken into account. Standard deviation is also included as a secondary measure.

Additionally, the average number of iterations and the standard deviation are

listed. These results evidence that, as instance size grows, the models become

harder to solve (especially the Wilson model), as seen on the smaller percentage

of instances solved to optimality and increased average execution time.

6.3. Case study on two representative instances

In this subsection, we assess the quality and level of robustness of scheduling

solutions for two large problem instances, the first one with small uncertainty

(α = 20%) and the second with high uncertainty (α = 50%). The following

solution methods were used:

• Det(P=): deterministic PFSP solution with P = {pr,i},∀r ∈M, i ∈ J;

• 2RPFS(Γ1,Γ2): Wagner-based 2RPFS model, solved with the C&CG frame-

work. The Γ parameters are used to control the level of the conservativeness

of the robust model, and both vary in the set {20%, 40%, 60%, 80%, 100%} as

a fraction of the number of jobs n. The robust model with Γ1 = Γ2 = 0 is

equivalent to Det(P=), while the one with Γ1 = Γ2 = n is the deterministic

model that is entirely risk-averse and overestimates all parameters. The other

values of Γ1 and Γ2 model intermediate risk aversions;

• SimGRASP: stochastic PFSP simheuristic solution from Ferone et al.
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(2016). SimGRASP is a modified GRASP metaheuristic that incorporates

Monte Carlo Simulation to solve the PFSP with random processing times.

The objective is to find a schedule that minimizes the expected makespan.

Given its stochastic nature, we obtained 25 independent runs for each instance

file (and respective α parameter). For result comparison, when calculating

the robust cost of each (Γ1,Γ2) combination, we stored, for each instance, the

smallest and largest robust costs found within these 25 simheuristic execu-

tions. We call them SimGRASP-Min(25) and SimGRASP-Max(25).

We assessed the robustness of each solution method by calculating the robust

cost at different protection levels (Γ1%,Γ2%), using the dynamic programming

algorithm defined in Section 5.2. Fig. 2 depicts the robust cost Z(σ) of each so-

lution σ under different protection levels (Γ1%,Γ2%). For clarity of the graphs,

the robust costs for some protection levels were omitted.

Observe that, as the protection level (Γ1%,Γ2%) increases, so does the ro-

bust cost, i.e., makespan of the worst-case scenario defined by the protection

Model
%Best Per
formance % Solved

% Solved
10-20

% Solved
50

% Solved
100

% Solved
150

% Solved
200

Avg. %
gap

Median
time

Median
Iterations

Wagner
Wilson 7.0

9.0
148.62
14.05

1.21%
1.11%

37%
67%

46%
68%

58%
90%

86%
97%

100%
100%

45%
55%

14%
86%

Tab. 2 Wagner vs. Wilson Robust PFSP C&CG performance comparison, given all instances.
% Best Performance is the percentage of instances solved to optimality where the model
achieved shorter execution time; % Solved contains the percentage of instances solved to
optimality within the time limit; % Solved < n > represents the percentage of solved instances
of size n; Avg. % gap is the average percentage gap of solutions from instances not solved to
optimality; Median time is the median execution time, in seconds; Median iterations is the
median of the number of iterations performed.

n  /  Model
10

Wagner Wilson
20

Wagner Wilson
50

Wagner Wilson
100

Wagner Wilson
150

Wagner Wilson
200

Wagner Wilson
% Best Performance
% Solved
Avg. % gap
Avg. time opt. (s)
Std. dev. of time opt. (s)
Avg. Iterations
Std. dev. of Iterations 2

4
1
0

100%
39%

2
4
1
0

100%
61%

8
7
54
7

100%
19%

8
7
7
2

100%
81%

23
20
888
310

0.86%
86%
5%

24
17
616
117

0.40%
97%
95%

15
21

1,177
526

1.68%
58%
5%

32
31
684
258

1.09%
90%
95%

8
14

1,233
878

1.62%
46%
7%

28
28
877
338

1.21%
68%
93%

4
11

1,888
2,362
0.61%
37%
5%

44
30
752
441

1.09%
67%
95%

Tab. 3 Wagner vs. Wilson Robust PFSP C&CG performance comparison, for each instance
size n. % Best Performance is the percentage of instances solved to optimality where the
model achieved shorter execution time; % Solved contains the percentage of instances solved
to optimality within the time limit; Avg. % gap is the average percentage gap of solutions
from instances not solved to optimality; Avg. time opt. and Std. dev. of time opt. are
the mean and standard deviation in solution time, respectively, regarding instances solved to
optimality; Avg. iterations and Std. dev. of iterations are the mean and standard deviation
of the number of iterations performed.
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level. In other words, higher values of Γ1% and Γ2% are equivalent to a greater

quantity of operations with deviated processing times, which directly impacts

the makespan. In the examples from Fig. 2, the extreme cases occur whenever

Γ2% = 100, yielding the highest robust costs.

From the viewpoint of the decision-maker who needs to hedge against worst-

case costs, it would be preferable to obtain a solution method that performs

well under different protection levels. With this in mind, in the two graphs pre-

sented, we identify which scheduling method (and respective solution) presents

the best (smallest) robust cost, considering all (Γ1%,Γ2%) values. Regarding

the first graph (small uncertainty instance), note that both 2RPFS(80,40)

and 2RPFS(60,40) offer improved protection against worst-case scenarios, re-

gardless of (Γ1%,Γ2%) values used for worst-case evaluation. We also highlight

the disappointing worst-case performance of both the nominal solution Det(=)

and the stochastic method. The vast distance between the robust costs of the

stochastic method, i.e., SimGRASP-Min(25) and SimGRASP-Max(25),

reveals a significant exposure to the realization of worst-case scenarios.

In its turn, the “large uncertainty range” instance (α = 50%) presents

increased robust cost differences between distinct protection levels. For this

instance, the variation of Γ1 and Γ2, i.e., the number of operations whose

processing times can deviate on each machine, has even more impact on the

worst-case makespan. In Fig. 2(b), we can observe that either 2RPFS(40,40)

or 2RPFS(60,60) offer the best protection against worst-case scenarios, de-

pending on the combination of (Γ1%,Γ2%) values. Once again, the solutions

Det(=) and SimGRASP-Max(25) present high robust costs. In particu-

lar, for (Γ1%,Γ2%) = (60, 60), the solution provided by 2RPFS(60,60) is 8%

cheaper than Det(=) and SimGRASP-Max(25).

In summary, the choice of a robust solution depends on the instance and the

desired protection level. The examples above illustrate how 2RPFS can provide

a pool of robust schedules, depending on the value of (Γ1,Γ2). With these

options, the decision-makers can choose one of the schedules based on their risk

preferences. Also, remark that, if the stochastic method is chosen, depending
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on the solution returned by the algorithm, the worst-case performance may be

weak, as can be seen on the robust costs achieved by SimGRASP-Max(25).

Indeed, neither SimGRASP nor the deterministic models have the objective

of minimizing the worst-case makespan.

As a complementary analysis, we evaluate the expected behavior of obtained

problem solutions. The makespan distribution of the obtained robust schedules

was simulated by subjecting the processing time matrix to random perturba-

tions. In particular, in each Monte Carlo simulation run, the (actual) processing

time p̃r,i,∀r ∈M, i ∈ J, was independently drawn from a predefined probability

distribution, yielding a random processing time matrix P̃ . For this purpose, we

used lognormal, symmetric triangular, and uniform distributions in [p− p̂, p+ p̂]

to generate random processing times. We generated 10, 000 processing time

matrices P̃ . Then, for each 2RPFS solution σ(Γ1,Γ2), obtained with a specific

protection level (Γ1,Γ2), we processed the set of all corresponding makespan

values ϕ(σ(Γ1,Γ2), P̃ ) obtained through simulation on P̃ . The same was made

(a) Small uncertainty instance #8, n = 150, α = 20% (RB1502008)
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(b) Large uncertainty instance #10, n = 200, α = 50% (RB2005010)
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Fig. 2 Robust cost of deterministic, 2RPFS and SimGRASP solutions versus protection level
(Γ1%, Γ2%). All presented 2RPFS solutions are optimal.
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for the solutions returned by Det(P=) and SimGRASP-Min(25).

We first focus on simulation results presented in Fig. 3(a). Regard-

ing the small uncertainty instance, the expected makespan performance of

2RPFS(40,60), 2RPFS(40,80), 2RPFS(60,40) and 2RPFS(80,80), are

equivalent to SimGRASP. However, depending on the budget parameters,

if we return to worst-case evaluation, as seen in Fig. 2(a), the protection

against worst-case scenarios varies considerably. The best performing solutions,

from smallest to largest robust cost, are: 2RPFS(60,40), 2RPFS(80,40),

SimGRASP-Min(25) and 2RPFS(40,60). When analyzing the large un-

certainty instance in Fig. 3(b), the following robust solutions present ex-

pected makespan performance quite similar to SimGRASP: 2RPFS(40,40),

2RPFS(60,60) and 2RPFS(80,40). However, according to the worst-case

evaluation, only the first two provide better protection against worst-case costs.

Finally, Tab. 4 presents some statistics related to the simulation of processing
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Fig. 3 Probability distributions of makespan value for 2RPFS and SimGRASP solutions,
according to simulation results from lognormal, triangular, and uniform distributions for un-
certain job processing times.
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times of the large uncertainty instance. Given 10, 000 processing time matrices

P̃ obtained after simulation runs, let ϕ(σ) be the random cost (makespan) of

scheduling σ, which depends on the realization of P . E(ϕ(σ)) and SD(ϕ(σ))

are empirical estimations of expectation and standard deviation of ϕ(σ), re-

spectively. Also, ϕ0.95(σ) and ϕ0.99(σ) are the 0.95 and 0.99 quantiles of ϕ(σ),

respectively, and ϕmax(σ) is the maximum observed ϕ(σ) in the simulation.

Observe that 2RPFS(60,60) has the least E(ϕ(σ)) in lognormal distribu-

tion, while 2RPFS(40,20) presents the smallest expected makespan in sym-

metric triangular and uniform distributions. When analyzing the largest ob-

served makespan, 2RPFS(60,60), 2RPFS(80,80), and 2RPFS(80,80) have

the lowest ϕmax(σ) for lognormal, triangular and uniform distributions, respec-

tively. The best solutions for Det(P=) and SimGRASP did not provide min-

imum values for any measure of the simulated distributions. Also, by analyzing

the smallest maximum makespan obtained in uniform distribution simulations,

the value ϕmax(σ) observed for scheduling 2RPFS(80,80) is 2% cheaper than

SimGRASP, and, at the same time, its expected makespan is 0.5% less than

the stochastic schedule. Based on these observations, the hedge provided by the
Large uncertainty instance #10, n = 200, α = 50% (RB2005010)

Method

Probability Distribution  /  Measure
Lognormal Distribution

E(𝜑(σ)) SD(𝜑(σ)) 𝜑⁰ˑ⁹⁵(σ) 𝜑⁰ˑ⁹⁹(σ) 𝜑ᵐᵃˣ(σ)
Symmetric Triangular Distribution

E(𝜑(σ)) SD(𝜑(σ)) 𝜑⁰ˑ⁹⁵(σ) 𝜑⁰ˑ⁹⁹(σ) 𝜑ᵐᵃˣ(σ)
Uniform Distribution

E(𝜑(σ)) SD(𝜑(σ)) 𝜑⁰ˑ⁹⁵(σ) 𝜑⁰ˑ⁹⁹(σ) 𝜑ᵐᵃˣ(σ)
2RPFS(20,20)
2RPFS(20,40)
2RPFS(20,60)
2RPFS(20,80)
2RPFS(20,100)
2RPFS(40,20)
2RPFS(40,40)
2RPFS(40,60)
2RPFS(40,80)
2RPFS(40,100)
2RPFS(60,20)
2RPFS(60,40)
2RPFS(60,60)
2RPFS(60,80)
2RPFS(60,100)
2RPFS(80,20)
2RPFS(80,40)
2RPFS(80,60)
2RPFS(80,80)
2RPFS(80,100)
2RPFS(100,20)
2RPFS(100,40)
2RPFS(100,60)
2RPFS(100,80)
2RPFS(100,100)
Det( P = )
SimGRASP

6,125.6 52.4 6,214.5 6,254.6 6,320.1 6,143.6 84.6 6,288.4 6,352.5 6,467.6 6,162.2 116.2 6,360.4 6,446.8 6,627.1
6,161.4 54.3 6,252.7 6,291.4 6,348.8 6,177.5 88.7 6,328.5 6,397.0 6,559.7 6,195.0 119.7 6,400.8 6,483.0 6,688.0
6,151.5 53.8 6,241.8 6,280.4 6,342.5 6,165.5 87.0 6,312.7 6,379.8 6,499.7 6,182.0 118.7 6,383.1 6,472.4 6,677.8
6,164.1 54.5 6,256.3 6,294.4 6,384.2 6,176.8 88.5 6,328.6 6,394.3 6,561.2 6,191.3 119.7 6,394.8 6,491.6 6,703.6
6,211.5 54.9 6,302.3 6,340.8 6,444.0 6,228.4 93.9 6,385.6 6,450.2 6,571.4 6,247.2 126.0 6,455.8 6,544.9 6,709.3
6,125.6 52.5 6,214.6 6,254.3 6,317.2 6,143.0 84.8 6,288.5 6,353.4 6,476.9 6,160.9 116.5 6,359.3 6,445.3 6,639.6
6,129.9 50.7 6,215.7 6,257.6 6,321.3 6,153.9 83.2 6,294.9 6,358.3 6,466.5 6,177.3 114.8 6,371.5 6,462.6 6,667.6
6,142.7 53.4 6,232.8 6,273.3 6,347.5 6,157.7 86.6 6,305.5 6,372.1 6,493.2 6,174.6 118.0 6,374.2 6,468.2 6,694.6
6,140.7 53.2 6,229.8 6,268.7 6,326.6 6,159.3 86.3 6,307.6 6,372.7 6,508.4 6,178.8 117.1 6,376.1 6,460.3 6,636.4
6,234.3 54.4 6,324.3 6,358.5 6,431.3 6,253.3 92.9 6,409.4 6,472.9 6,631.6 6,273.7 128.1 6,485.6 6,573.4 6,740.0
6,127.5 51.3 6,214.7 6,254.9 6,336.5 6,147.4 83.8 6,291.9 6,354.5 6,529.1 6,167.7 114.9 6,360.5 6,447.1 6,681.4
6,129.1 50.1 6,215.2 6,252.7 6,315.6 6,151.4 82.8 6,291.6 6,357.5 6,491.5 6,172.1 114.0 6,364.7 6,451.6 6,627.3
6,125.4 52.5 6,214.4 6,254.2 6,313.5 6,143.5 84.5 6,287.4 6,350.5 6,479.8 6,161.3 115.2 6,353.3 6,446.8 6,643.0
6,164.2 54.3 6,255.4 6,295.1 6,362.1 6,176.7 88.8 6,330.5 6,394.2 6,518.9 6,191.9 119.9 6,396.2 6,486.2 6,711.7
6,138.8 52.8 6,228.6 6,266.2 6,335.9 6,163.4 85.1 6,307.0 6,372.0 6,506.3 6,189.2 117.6 6,386.3 6,473.2 6,628.6
6,269.6 54.6 6,360.7 6,400.4 6,483.5 6,289.8 95.0 6,446.2 6,512.8 6,711.9 6,309.8 129.0 6,524.2 6,613.2 6,884.9
6,129.4 50.0 6,214.0 6,253.1 6,318.0 6,151.9 82.9 6,294.5 6,354.0 6,484.0 6,173.1 114.3 6,365.7 6,456.4 6,687.7
6,128.7 50.3 6,215.1 6,252.1 6,334.1 6,152.2 82.8 6,291.2 6,355.0 6,478.6 6,175.0 114.3 6,367.7 6,454.8 6,660.6
6,126.8 51.7 6,214.3 6,254.8 6,320.3 6,147.4 84.2 6,291.7 6,353.3 6,464.4 6,168.1 114.9 6,361.4 6,451.5 6,623.2
6,148.4 53.9 6,238.9 6,276.7 6,345.9 6,167.0 86.7 6,315.8 6,379.3 6,497.7 6,187.8 118.0 6,387.2 6,483.1 6,695.6
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,144.5 46.8 6,224.0 6,260.9 6,342.8 6,178.2 81.1 6,312.8 6,372.5 6,531.9 6,208.8 113.6 6,402.6 6,487.4 6,655.5
6,142.8 49.0 6,223.8 6,264.4 6,325.0 6,178.0 82.4 6,316.9 6,375.9 6,523.4 6,211.0 114.4 6,399.8 6,485.5 6,626.0
6,136.2 50.6 6,221.8 6,259.3 6,366.0 6,167.4 83.8 6,309.0 6,370.4 6,544.3 6,198.1 115.7 6,391.8 6,477.7 6,783.3

Tab. 4 Simulation summary for 2RPFS, Det(P=), and SimGRASP solution methods from
lognormal, triangular, and uniform distributions of processing times. Minimum values for
each column are highlighted.
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obtained robust solutions does not cause a significant increase in the expected

solution cost when compared to stochastic and deterministic solutions.

6.4. Evaluating price of robustness and hedge value

Given a protection level Γ, besides robust cost Z, two other measures can

be used to evaluate performance: price of robustness η and hedge value H.

η(Γ) = ϕ(σ∗Γ, P )− ϕ(σ̄∗, P ), (26)

H(Γ) = Z(σ̄∗,Γ)−Z(σ∗Γ,Γ), (27)

where ϕ(.) is the makespan function, σ∗Γ is the optimal solution of

2RPFS(Γ1,Γ2) and σ̄∗ is the optimal solution of Det(P=).

The first measure, η(Γ), is defined as the price paid by the decision-maker

for employing the robust sequence σ∗Γ in place of the optimal nominal sequence

σ̄∗ in the scenario of nominal processing times (when P = P , i.e., no processing

time deviations). H(Γ) represents the value gained from adopting the robust

sequence σ∗Γ, instead of the optimal nominal sequence σ̄∗ in the occurrence of

the worst-case scenario associated with protection level Γ = (Γ1,Γ2). In other

words, η(Γ) can be seen as the trade-off between robustness and optimality, and

H(Γ) represents the regret of employing sequence σ̄∗ in the worst-case scenario.

Tab. 5 displays the relative price of robustness η(Γ)% =
ϕ(σ∗

Γ,P )−ϕ(σ̄∗,P )

ϕ(σ̄∗,P )
and

hedge value H(Γ)% =
Z(σ̄∗,Γ)−Z(σ∗

Γ,Γ)
Z(σ∗

Γ,Γ) for various protection levels, based on

instance #8 with n = 150, with different degrees of processing time uncertainty

α. Observe that, given a protection level Γ, as α grows, so does the regret

H(Γ)% of employing the optimal nominal sequence in the occurrence of the

worst-case scenario defined by Γ. The only exception is for extreme values of

Γ1 and Γ2, where H(Γ)% = 0. Regarding the relative price of robustness, for
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Tab. 5 Relative robustness price η(Γ)% and hedge value H(Γ)% for instance #8, n = 150, for
different degrees of uncertainty α ∈ {10%, 20%, 30%, 40%, 50%}. Best values are highlighted.
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-0.4%

64%

-0.3%

62%

-0.4%

64%

0.4%

32%

0.3%

35%

-0.4%

63%

-0.4%

63%

-0.3%

62%

-0.3%

62%

0.6%

27%

-0.4%

62%

-0.4%

63%

-0.4%

64%

-0.3%

64%

-0.3%

62%

-0.3%

61%

-0.3%

60%

-0.4%

64%

-0.4%

63%

-0.1%

55%

0.0%

50%

-0.2%

56%

-0.4%

63%

-0.4%

65%

0.1%

47%

-0.6%

67%

-0.5%

63%

-0.6%

66%

0.4%

37%

0.4%

37%

-0.7%

66%

-0.6%

66%

-0.5%

63%

-0.4%

64%

0.6%

31%

-0.6%

65%

-0.7%

67%

-0.6%

67%

-0.4%

64%

-0.4%

62%

-0.6%

66%

-0.6%

63%

-0.7%

67%

-0.6%

67%

-0.2%

55%

-0.1%

53%

-0.4%

60%

-0.6%

66%

-0.6%

67%

0.1%

47%

-0.2%

61%

-0.2%

61%

-0.2%

62%

-0.2%

61%

0.2%

28%

0.1%

37%

-0.2%

59%

-0.2%

61%

0.4%

28%

0.2%

28%

-0.1%

55%

0.1%

36%

-0.2%

62%

-0.1%

61%

0.2%

28%

1.2%

4%

0.3%

20%

-0.2%

57%

-0.2%

62%

0.2%

28%

1.1%

3%

-0.1%

48%

0.1%

32%

-0.2%

62%

0.2%

28%

-0.5%

66%

-0.5%

66%

-0.5%

66%

-0.2%

60%

0.3%

35%

-0.3%

55%

-0.5%

65%

-0.4%

63%

0.4%

36%

0.3%

35%

-0.4%

62%

-0.3%

56%

-0.5%

65%

-0.2%

59%

0.3%

35%

0.9%

23%

0.0%

47%

-0.5%

64%

-0.5%

65%

0.3%

35%

1.0%

20%

-0.4%

60%

-0.3%

54%

-0.5%

65%

0.3%

35%

-0.8%

67%

-0.8%

68%

-0.7%

67%

-0.3%

57%

0.4%

36%

-0.5%

60%

-0.8%

66%

-0.5%

63%

0.4%

40%

0.4%

36%

-0.5%

62%

-0.6%

62%

-0.7%

67%

-0.3%

58%

0.4%

36%

0.6%

34%

-0.4%

55%

-0.9%

67%

-0.7%

67%

0.4%

36%

0.9%

30%

-0.6%

64%

-0.6%

60%

-0.7%

67%

0.4%

36%

Tab. 6 Simulation results for instance #8, n = 150, for different degrees of uncertainty
α ∈ {10%, 20%, 30%, 40%, 50%}. Comparison is based on two measures: (i) ω(Γ) is the %
of simulated scenarios (over a total of 10,000) where 2RPFS(Γ) obtained smaller makespan

cost when compared to Det(P=); (ii) ∆Φ(Γ) = Avgλ∈S
[
ϕ(σ∗

Γ,P
λ)−ϕ(σ̄∗,Pλ)

ϕ(σ̄∗,Pλ)

]
is the average

relative cost difference between 2RPFS(Γ) and Det(P=), given all simulated scenarios λ.

several protection levels Γ, the relative robustness price η(Γ)% is zero, i.e., in the

absence of processing time deviations, most robust schedules present the same

makespan as the optimal nominal solution. Among these schedules, the best

ones, which maximize hedge value H(Γ)%, are 2RPFS(60,20) for α = 10%,

2RPFS(60,40) for α ∈ {20%, 30%, 40%}, and 2RPFS(40,40) for α = 50%.

Based on the simulation framework presented in Section 6.3, we close this

section with a further analysis of the actual cost overhead of robust solutions

in the long run. Two performance measures are calculated for each variability

level α, as shown in Tab. 6. The obtained results show that, for different pro-

tection levels Γ, several solutions present two important characteristics: (i) high

proportion of cheapest solutions (ω(Γ) > 50%), and (ii) smaller expected costs,

i.e., negative relative cost difference ∆Φ(Γ). All in all, 2RPFS provides a pool

of robust schedules decision-makers can choose based on their risk preferences.

7. Concluding remarks

This work proposed the first exact solution method for the two-machine

robust flow shop problem, based on budgeted uncertainty (Bertsimas & Sim,
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2004). As main contributions, we developed a worst-case determination pro-

cedure for the problem, using polynomial-time dynamic programming. To-

gether with new robust-counterpart formulations, we employed Column-and-

Constraint Generation techniques. Extensive experimental results demon-

strated that the proposed algorithm was effective in obtaining optimal robust

schedules for small and medium-sized problems (e.g., instances with n ≤ 100).

However, it requires more computational power and thus CPU time for larger

instances (n ≥ 150) and as processing time variability level α increases.

Based on a case study with two representative instances, we have also as-

sessed the trade-off between solution quality and cost, comparing robust so-

lutions to deterministic and stochastic ones. The adoption of the budget of

uncertainty avoids the over-conservativeness of conventional robust scheduling

approaches and, at the same time, provides a pool of robust schedules, many

of which perform well under different levels of realization of uncertainty. Also,

according to simulations based on three probability distributions, such robust

schedules presented only a small overhead in the expected solution cost.

Subsequent research will be devoted to solving the m-machine version of the

same problem using metaheuristics. In addition, the computational complexity

of the two-machine problem under budgeted uncertainty remains an important

topic to be studied. Another direction for future research involves extending the

solution method to similar scheduling problems with different objective func-

tions, such as total tardiness, total flow time, or their weighted combinations.
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Józefczyk, J., & Siepak, M. (2013). Scatter search based algorithms for min-
max regret task scheduling problems with interval uncertainty. Control and
Cybernetics, 42 , 667–698.

Jr, E. F., & Tseng, F. T. (1990). On the Srikar-Ghosh MILP model for the N
x M SDST flowshop problem. International Journal of Production Research,
28 , 1817–1830. doi:10.1080/00207549008942836.
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