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Abstract

The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsu-

pervised projection pursuit. It is useful as a preprocessing step to find clusters or as an outlier

detection tool for multivariate data. Except from the packages tourr and rggobi, there is no

implementation of exploratory projection pursuit tools available in R. REPPlab is an R interface for

the Java program EPP-lab that implements four projection indices and three biologically inspired

optimization algorithms. It also proposes new tools for plotting and combining the results and

specific tools for outlier detection. The functionality of the package is illustrated through some

simulations and using some real data.

Keywords: genetic algorithms, Java, kurtosis, particle swarm optimization, projection index,

Tribes, projection matrix, unsupervised data analysis
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1 Introduction

Exploratory Projection Pursuit (EPP) aims at finding potentially existing structures, typically clus-

ters or outliers, in multivariate data sets by optimizing some index that reflects the interestingness

of low dimensional linear projections. Principal Component Analysis (PCA) can be seen for exam-

ple as a projection pursuit approach when using a scale measure as projection index. However, the

main idea of EPP is to go beyond traditional PCA which only focuses on second-order moments

and to consider other projection indices usually measuring non-gaussianity. The founding papers

of EPP (Friedman and Tukey 1974), (Huber 1985) date back to the seventies and eighties and

proposed already several projection indices together with different strategies about how to apply

them for data exploration.

Recently, there is a renewed interest for EPP in several fields like for example hyperspectral im-

agery (Malpica et al. 2008), chemistry (Hou and Wentzell 2011) and genetics (Espezua et al. 2014).

In these fields, the number of variables may be high with a limited number of samples and pro-

jection pursuit is suitable since it avoids the curse of dimensionality by projecting the data onto

low dimensional subspaces. Nevertheless, as noticed by several authors, there exists almost no

implementation of static EPP tools in statistical software. The R packages tourr (Wickham et al.

2011) and tourrGui (Huang et al. 2012), which contains a graphical user interface for tourr, are

dedicated to tour animations while the rrggobi package (Cook and Swayne 2007) provides a com-

mand line interface to the interactive and dynamic graphical package GGobi. The package pcaPP

(Filzmoser et al. 2014) is concerned with robust Principal Component Analysis.

The standalone Java program EPP-lab (Berro and Larabi Marie-Sainte 2014) is a program dedi-

cated to EPP, described in (Larabi Marie-Sainte 2016) and freely available on GitHub. EPP-lab

provides the possibility to run several times an optimization algorithm for a chosen one-dimensional

projection index and to analyze the resulting projections in detail. Different projection indices and

several biologically inspired algorithms are implemented in EPP-lab. The package REPPlab (Fischer

et al. 2015) is an interface that gives R users access to all implemented projection indices and op-

timization algorithms of EPP-lab. Moreover, it provides several functions to visualize and analyze

the results from EPP-lab to permit a thorough exploratory analysis of the obtained projections

using R functionalities.
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In general, EPP has two essential ingredients: a projection index and an optimization algorithm.

Concerning the projection index, it is widely accepted in the EPP literature that it should measure

the non-gaussianity of a projection, the Gaussian distribution being considered as the most unin-

teresting. There exist several families of indices as detailed in (Caussinus and Ruiz-Gazen 2009),

(Rodriguez-Martinez et al. 2010) and (Koch 2014) that are aimed at revealing different non-gaussian

structures. The four indices implemented in EPP-lab are the Friedman-Tukey, the Friedman, the

discriminant and the kurtosis (either maximized or minimized) indices, see (Berro et al. 2010) for

details concerning these indices. They belong to different families and, except for the so-called

discriminant index which is a new proposal, they are well-known indices that have been studied in

detail in the statistical literature.

As for the optimization algorithms, many proposals have been made for EPP (see (Berro et al. 2010)

for some references and also (Tu et al. 2003), (Gou et al. 2010), (Espezua et al. 2014)). Following

(Berro et al. 2010) and (Larabi Marie-Sainte et al. 2010), EPP-lab implements genetic and particle

swarm optimization (PSO) algorithms that are biologically inspired. Such algorithms do not rely

on any smoothness assumption of the function to optimize. Moreover, the Tribe algorithm, which

is a particular PSO algorithm, is especially suited to find local optima which are of interest given

the exploratory strategy we propose to follow and describe now.

The exploration philosophy in EPP-lab is not one of the traditional strategies in EPP. Usually,

either a dynamical approach as in tourr or rggobi, or a global optimization method together

with a structure removal (Friedman 1987b) is used. A dynamic approach is clearly of interest, but

it may be considered as tedious for the data analyst. The usual alternative strategy consists in

iterating a two-step procedure: look for the best projection direction, namely the one associated

with the global optimum of the projection index, and remove the structure found from the data set.

However, such a strategy may have some drawbacks. For example, finding a global optimum for a

projection index is usually not a trivial task. This strategy also disregards all the possible different

local optima found during this optimization process and may be time-consuming. Moreover, as

stated in (Friedman 1987b), the structure removal based on orthogonal projections may miss some

interesting projections, and other proposals are time-consuming. The strategy in EPP-lab differs

from the previous one in the sense that all the local optima are saved for further analysis (Ruiz-

Gazen et al. 2010). Such an approach has also been recently discussed in the discussion (Villa-
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Vialaneix and Ruiz-Gazen 2015; Wickham et al. 2015a) of the paper (Wickham et al. 2015b). The

use of genetic and particle swarm optimization methods helps in exploring efficiently the space of

one-dimensional projections in this context.

The implementation of EPP-lab follows the work by (Berro et al. 2010) and (Larabi Marie-Sainte

et al. 2010) who showed the value of considering several projection indices and several optimization

algorithms to get the most of exploratory projection pursuit. It is described in (Larabi Marie-Sainte

2016).

Given the many potentially interesting projections obtained by using several projection indices and

optimization algorithms, it is necessary to summarize the information because several directions

may contain the same information as already stated in (Friedman 1987a). One way to do this is

by combining the different projection directions as proposed in (Liski et al. 2016). This method

combines several projection matrices with possibly different ranks to obtain an average projection

matrix which also automatically chooses the rank for the average projection. Using this approach

for EPP leads to summarize the similar projections in only one direction, while different directions

that may correspond to some other local minima from the same or other projection indices or

optimization algorithms, are combined in separate directions. The method is illustrated in the

present paper through simulations and on a real data set.

The package REPPlab can be used as a preliminary step before clustering. First, it may help the

data analyst in checking whether the data contains some clusters and thus helps in validating

the use of some clustering method. EPP can also give guidelines for the choice of the number

of clusters. Moreover, clustering may be performed on projection directions rather than on the

original variables. This idea will be detailed in the simulations section. Another interesting feature

of REPPlab is its ability to detect multivariate outliers. Observations that differ from the main

bulk of the data are likely to be revealed by some projections associated with local maxima of

the kurtosis for instance. Moreover, the package incorporates some specific functions to tag the

observations that are far from the mean, or other location estimates, regarding the number of

standard deviations, or other scale estimates, on the selected projection directions.

The outline of the paper is the following. The main features of the package are given in the

second section. The advantage of combining several methods and local minima is illustrated in the

third section using a simulation study in a clustering context. The data exploratory process using
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REPPlab is detailed for clusters and outlier detection in Section 4 using two data sets. The last

section concludes the paper.

2 The R-package REPPlab

The package REPPlab is freely available from the Comprehensive R Archive Network (CRAN) at

http://CRAN.R-project.org/package=REPPlab and is published under the GNU General Public

Licence (GPL) 2.0 or higher licence. For the package to work it is necessary to have besides R also

the Java Development Kit JDK, version 1.4 or higher installed.

A schematic overview of the functions of REPPlab and their corresponding methods are provided

in Figure 1. The package consists mainly of the three functions EPPlab, EPPlabOutlier and

WhitenSVD where EPPlab is the main function of the package being the R interface to the actual

Java program. The most important arguments of EPPlab are the data matrix x, the desired

projection index PPindex which should be computed using the algorithm PPalg, and how often

the index should be computed (n.simu). The default projection index is KurtosisMax. The names

of the three possible algorithms are GA for the genetic algorithm and PSO and Tribe for the two

particle swarm optimization algorithms.

2.1 Preliminary standardization

The function EPPlab always centers and scales the data, by subtracting the column means and

dividing by the columns standard deviations, and the argument sphere controls whether or not the

data should also be uncorrelated. The default is FALSE, but if set to TRUE the function WhitenSVD

is used to whiten the data. WhitenSVD uses a singular value decomposition and estimates the rank

of the data as the number of eigenvalues larger than 1E-06. Therefore whitening can also be done

if there are fewer observations than dimensions.

2.2 Input parameters for the optimization algorithms

To fine-tune the algorithms it is possible to specify the number of particles (particles) for the

standard particle swarm optimization algorithm and the number of individuals (individuals) for

the genetic algorithm. Concerning the stopping criterion, it can be modified either by specifying
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Figure 1: Schematic overview over the functions in the REPPlab package.
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the maximum number of iterations (maxiter) or by specifying the convergence criteria step_iter

and eps. The algorithms stop as soon as one of the two following conditions holds: the maximum

number of iterations is reached or the relative difference between the index value of the present

iteration i and the value of iteration i-step_iter is less than eps. In the last situation, the

algorithm is said to converge and the function EPPlab will return the number of iterations needed

to attain convergence. If the convergence is not reached, but the maximum number of iterations is

attained, the function will return a warning.

2.3 Description of the outputs of the EPPlab function

The function EPPlab returns an object of class epplab which contains the estimated n.simu direc-

tions and their criterion value as well as other useful information. The found directions are ordered

according to their criterion (index) value. For convenient working with an object of class epplab,

the methods print, summary, plot, pairs, screeplot, fitted, predict and coef are provided.

Since in common applications of the function EPPlab the number of times the algorithms are

called (n.simu) will be large it will often not be meaningful to look at all results at once. For

example print will present only information about the direction with the largest index criterion

whereas all the other functions usually have an argument which to decide which directions should

be investigated. By default often only the first ten directions will be presented. A natural first

option to explore the results is to investigate them graphically. The function screeplot can be

used to compare the objective criterion values from the different runs. The function plots the run

number against its criterion value, and this should give an impression which directions might be

the same. The plot function offers three types of plots controlled by the type argument. For

type = "angles", the angles between the run with the largest objective criterion and all other

runs are plotted. This again should give an idea which directions might differ and which not. The

default plotting type is however type = "density" which plots for the chosen directions marginal

kernel density estimates while type = "hist" will give the corresponding histograms. Both options

indicate if the corresponding directions yield anything interesting like clusters or outliers. Similarly

the function pairs produces a scatter plot matrix of the directions included in which to evaluate

correlations between directions or possible multidimensional structures. For further analysis of

the desired directions, the projected data can be easily extracted using the fitted function, for
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new observations the function predict computes the corresponding projections. The projecting

directions can be obtained using the coef function.

2.4 Description of the EPPlabOutlier function

If the purpose of the analysis is outlier detection the function EPPlabOutlier is the best way to

extract the relevant information from an epplab object. In the EPPlabOutlier function the user

can specify which location and scale measure are to be used and what is the factor k that classifies an

observation as an outlier based on the location and scale used. The location and scale arguments

take as input, functions which return the corresponding quantities for a vector. The defaults are

mean and sd but, for example, also median and mad might be used. The EPPlabOutlier creates

an object of class epplabOutlier for which print, summary and plot functions are available.

The output of these three functions is most meaningful if the data given to EPPlab before calling

epplabOutlier has row labels for the observations. Just printing the object of class epplabOutlier

returns a binary matrix where 1 in its ij-th element indicates that the observation i is considered

an outlier in direction j. A visual presentation of this binary matrix is obtained using plot where

the user can choose the colors for outliers and non-outliers and whether only those rows should be

plotted which are considered at least in one direction as an outlier. A maybe more informative

overview is provided using summary which informs about the total number of outliers found and in

how many directions each of the identified outliers are considered atypical.

2.5 Description of the EPPlabAgg function

This function is designed to combine and summarize the different projection directions. The input

for the function is either an epplab object or a list of such objects when, for example, results from

different calls with different indices or algorithms should be combined. The combining idea is quite

simple. Denote as ui, i = 1, . . . , N the N unit projection vectors which should be combined and

as Pi, i = 1, . . . , N the corresponding projection matrices which all have rank 1. This function

performs an eigenvalue - eigenvector decomposition of

P ∗ =
1

N

N∑
i=1

Pi
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obtaining the p eigenvalues λ1 ≥ . . . ≥ λp and corresponding eigenvectors. The idea is then to

keep those k eigenvectors which explain “most” of P ∗. For a detailed description and the theoretic

foundation see (Liski et al. 2016) who also suggest methods to automatically decide upon the value k.

The function EPPlabAgg offers then three options to decide upon k using the method argument. Two

automatic ones denoted "inverse" and "sq.inverse" follow (Liski et al. 2016) or as alternative

the method "cumulative", which chooses the minimal k such that
∑k

i=1 λi/
∑N

i=1 λi ≥ c where c

is the percentage given by the argument percentage.

3 Simulations

EPP is often used as preprocessing step to find clusters in data. In the following simulation

study, we will compare different indices and combination methods implemented in REPPlab for

that purpose. For the comparison we consider two settings each having three underlying clus-

ters. In the first setting the cluster sizes are balanced with n1 = n2 = n3 = 100 whereas in

the second setting the sizes are unbalanced with n1 = 200, n2 = 80, n3 = 20. For the clus-

ter design we follow (Hou and Wentzell 2011) and have three 10-variate normal populations with

N10(µi,Σ), where µ1 = (−1,−0.58, 0, . . . , 0)>, µ2 = (1,−0.58, 0, . . . , 0)>, µ3 = (0, 1.15, 0, . . . , 0)>

and Σ = diag(0.1, 0.2, 1, . . . , 1). In order to make the design not simply visible, we then rotate

the observations with a random orthogonal matrix. Hence when performing dimension reduction,

k=2 directions should be sufficient to find the clusters. The success of the different preprocessing

methods will be evaluated using the adjusted Rand index (Rand 1971) when k-means clustering

is used when searching for the three clusters. The index has the range 0 to 1 and the larger, the

better.

For both settings we simulated 1000 times all indices in the package epplab with the settings PPalg

= "Tribe", n.simu = 100, maxiter = 200 and sphere = TRUE.

To get an idea of the computational complexity the computation times for each setting and all the

indices are shown in Figure 2. As can be seen here, the setting does not matter, but there are

considerable differences between the indices. Both kurtosis indices (kmin and kmax) are the fastest

to compute whereas the discriminant index (disc) and the Friedman Tukey index (ft) are quite slow

to compute. The Friedman index (fried) is intermediate regarding the computation time.
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Figure 2: Computation times for the 100 projection directions based on 1000 repetitions in both
cluster settings.

Therefore, when evaluating the performance of combination methods we either combine all indices

or only the fast indices designed for clustering (kmin and fried) and the two combinations will be

denoted as ‘all’ and ‘fast’ respectively in what follows.

When combining results we used the in-build methods as provided by EPPlabAgg. We used options

"inverse", "sq.inverse" and "cumulative" with percentages 85% and 95%, denoted as ‘cum85’

and ‘cum95’. We will show however only the results of inverse and cum85 as using sq.inverse

was a little worse than inverse and cum95 was clearly the worst from all of them.

Figure 3 shows the performance for both cases. Obviously, maximizing kurtosis is not a good idea

as preparation for clustering since the index is designed for finding outliers. The Friedman-Tukey

index is also not very good, and the discriminant index differs a lot between the two settings.

However when combining all indices the performance is in general good, but better with only the

fast indices. Note that, when combining all methods, the performance does not fail although bad

performing indices are included. When comparing the two aggregation methods, it seems that for

the balanced case cum85 is better while for the unbalanced case the inverse method is better.

Figure 4 shows how many directions the different aggregation methods choose. Recall that the

number of clusters is 3 and so k = 2 should be right but naturally from the figure one cannot

conclude if the right two directions are chosen. The Figure nevertheless gives the number of

10



Index

A
dj

us
te

d 
R

an
d 

In
de

x

0.0

0.2

0.4

0.6

0.8

1.0

fried.inverse fried.cum85 disc.inverse disc.cum85 ft.inverse ft.cum85 kmax.inverse kmax.cum85 kmin.inverse kmin.cum85 fast.inverse fast.cum85 all.inverse all.cum85

●

●

●

●

● ●
● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●
●●
●
●

●

●

●

●

●

●
●●●●
●
●

●●

●

●

●

●

●

●

●●
●
●

●

●

●●●●

●●

●
●
●
●
●●
●
●●
●●●
●

●●

●

●●

●

●
●●

●
●

●●●

●
●
●

●

●●
●
●
●

●

●

●

●●●

●

●
●

●●●
●

●

●

●
●●

●

●

●

●
●
●●●
●

●

●●

●

●

●
●
●

●
●

●

●

●●
●
●

●
●
●

●

●

●●

●

●

●
●
●
●
●●

●

●

●

●
●●●
●
●

●
●●

●

●●
●
●

●●
●●

●●

●●●
●
●
●

●●

●●●

●●●

●

●●

●
●

●●
●

●

●

●
●●
●●●

●●

●
●

●

●
●

●

●

●

●●●

●

●
●●
●●●
●
●●●

●

●

●
●
●●
●●●

●

●
●
●●

Unbalanced

0.0

0.2

0.4

0.6

0.8

1.0
●

●

● ●

● ● ● ●

●

●

●

●

●
●

●●
●●
●●●
●
●

●●

●

●
●●

●

●

●
●●

●

●●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●
●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●
●

●●

●

●

●

●●

●

●●●
●●●

●

●

●
●

●●

●

●●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●
●●
●

●

●●
●

●

●

●●
●●

●

●
●

●

●●
●

●

●●

●
●
●
●
●●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●
●

●●

●●

●

●

●
●
●●●
●
●
●
●
●

●
●
●●
●●
●●●
●●

●
●

●
●
●
●

●

●
●●●●●●
●●●
●
●

●
●●
●

●

●
●
●●
●●
●
●

●●●

●

●
●
●●●●●●●
●
●●

●

●
●

●●
●

● ●

●

●●

●

●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

Balanced

Figure 3: Adjusted Rand index for the different combinations of the found projections based on
1000 repetitions in both settings (balanced at the top and unbalanced at the bottom).

directions selected, and in general, it seems that cum85 chooses more directions than inverse.

At the end of this Section, we put EPP in context to competing methods. We consider applying

k-means to the raw data using all ten dimensions as well as principal component analysis, where

we use the first PC, the first two PCs and the first l PCs which explain 80% of the variation. We

also compare EPP to invariant coordinate selection (ICS) (Tyler et al. 2009) using the default as

implemented in ICS (Nordhausen et al. 2008) and choose the first two and last two components.

The corresponding adjusted Rand index values are compared to our EPP approach in Figure 5.

From this comparison, one can conclude that using PCA in this context is not beneficial at all. It

seems even worse than applying k-means on the raw data. ICS is a clear improvement but still

not as good as EPP. While for the balanced setting the Friedman index is performing best when

aggregated using 85% in the cumulative approach, for the unbalanced setting, the combination of

Friedmann and minimizing kurtosis using the inverse aggregation approach seems best. In general,

we believe that the best index and aggregating method is data dependent. However, combining

several projections using the inverse aggregation seems to be a safe choice.

11



k

F
re

qu
en

cy

0

200

400

600

800

1 2 3 4 5 6 7 8

fried
Unbalanced

Cumulative 85

1 2 3 4 5 6 7 8

ft
Unbalanced

Cumulative 85

1 2 3 4 5 6 7 8

disc
Unbalanced

Cumulative 85

1 2 3 4 5 6 7 8

kmax
Unbalanced

Cumulative 85

1 2 3 4 5 6 7 8

kmin
Unbalanced

Cumulative 85

1 2 3 4 5 6 7 8

all
Unbalanced

Cumulative 85

1 2 3 4 5 6 7 8

fast
Unbalanced

Cumulative 85

fried
Balanced

Cumulative 85

ft
Balanced

Cumulative 85

disc
Balanced

Cumulative 85

kmax
Balanced

Cumulative 85

kmin
Balanced

Cumulative 85

all
Balanced

Cumulative 85

0

200

400

600

800

fast
Balanced

Cumulative 85
0

200

400

600

800

fried
Unbalanced

Inverse

ft
Unbalanced

Inverse

disc
Unbalanced

Inverse

kmax
Unbalanced

Inverse

kmin
Unbalanced

Inverse

all
Unbalanced

Inverse

fast
Unbalanced

Inverse

fried
Balanced
Inverse

ft
Balanced
Inverse

disc
Balanced
Inverse

kmax
Balanced
Inverse

kmin
Balanced
Inverse

all
Balanced
Inverse

0

200

400

600

800

fast
Balanced
Inverse

Figure 4: Number of directions chosen by the different aggregation methods for the two cluster
settings.
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Figure 5: Adjusted Rand index for k-means underlying different component selection methods for
the two cluster settings.

4 Examples

The following examples will show how to use the REPPlab package for exploratory data analysis to

find clusters and outliers in multivariate data.

4.1 Detecting clusters

First, we consider how to detect clusters in multivariate data using the REPPlab package. For this

demonstration purpose, we use the so-called Lubishew data which is available in the package amap.

The data set is known to contain three clusters, and the goal is to find all of them assuming that the

number of clusters is also unknown. It is a very simple example helpful to understand the different

steps of the strategy that can be implemented using REPPlab.

We first load the necessary packages and the data and also fix the random seed.

> library("REPPlab"); library("amap")

> set.seed(4567)

> data("lubisch")
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Figure 6: Scatterplot matrix of the Lubishew data.

> X <- lubisch[, 2:7]

> Class <- lubisch[, 8]

For convenience, we denoted the variables which will be used to identify the clusters as X and stored

the correct class labels in the vector Class. Looking at the scatterplot matrix in Figure 6 does

indicate that there are clusters but not so clear that there are three clusters.

> pairs(X)

We use now the function EPPlab to obtain 100 directions using the Friedman index for the sphered

data using the Tribes algorithm.

> res.Fried.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex = "Friedman",

+ n.simu = 100, maxiter = 200, sphere = TRUE)

> summary(res.Fried.Tribe, digits=4)

REPPlab Summary

---------------
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Figure 7: Screeplot of the criterion values of the Friedman index for the Lubishew data.

Index name : Friedman

Index values : 0.5517 0.5517 0.5517 0.5517 0.5517 0.5517

0.5517 0.5517 0.5517 0.5517

Algorithm used : Tribe

Sphered : TRUE

Iterations : 48 52 48 53 47 55 42 53 58 46

The summary is here not too informative but tells us which index and algorithm were used as well

as if the data was sphered or not. It also shows the index value of the first ten directions and how

many iterations they needed. For the first ten directions the criterion value is always the same, but

to see if different directions are found, plots are more informative.

First, we look at the screeplot of the res.Fried.Tribe object

> screeplot(res.Fried.Tribe, which = 1:100)

which, as Figure 7 reveals, gives the same criterion value for around the first 60 directions. Then
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Figure 8: Angles between the first direction and all other directions for the Lubishew data.

there is a sharp drop and the next around 20 directions have the same criterion value before a

final small drop occurs for around ten directions. Finally, the last six directions are associated

with some dispersed index values. Naturally, two identical criterion values do not exclude different

directions, and the last small drop might also not be a new interesting direction. This can be

further investigated by looking at the angles between the directions.

> plot(res.Fried.Tribe, type = "angles", which = 1:100)

Figure 8 shows that the directions in each of the three criterion groups are identical and supports

the hypothesis that the three different criterion groups correspond to different directions of interest.

This can be verified for example by looking at candidates from all these groups. We choose for this

purpose one direction from each of the three groups using Figure 8, namely directions 1, 70 and 90

which have the criterion values

> res.Fried.Tribe$PPindexVal[c(1, 70, 90)]

[1] 0.5517 0.5223 0.5214
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Figure 9: Marginal density plots for direction 1, 70 and 90 for the Lubishew data.

The code

> plot(res.Fried.Tribe, which = c(1, 70, 90), layout = c(3, 1))

> pairs(res.Fried.Tribe, which = c(1, 70, 90))

gives the different marginal kernel density estimates as shown in Figure 9 and reveals that, at least

for direction 1 and 70, there seem to be two clusters. Looking therefore at the scatter plot matrix

of these three directions shows in Figure 10 that the directions 1 and 70 combined reveal three

clusters whereas direction 90 seems not really to add anything of interest.

This can be verified as shown in Figure 11 using the class information labels and the code

> plot(fitted(res.Fried.Tribe, which = c(1, 70)), col = Class, pch = 16)

The analysis above is fast to do but focuses on one index only and is difficult to automatize.

Following the recently suggested methodology of (Liski et al. 2016) to summarize many projections,
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Figure 10: Scatter plot matrix of directions 1, 70 and 90 for the Lubishew data.
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Figure 11: Scatter plot of directions 1, 70 for the Lubishew data with colored groups.
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as implemented in the function EPPlabAgg, provides therefore a way to combine several indices as

already demonstrated in Section 3.

For this data, we will then compute, three more indices, each with 100 runs.

> set.seed(1234)

> res.Dis.Tribe <- EPPlab(X, PPalg = "Tribe",PPindex = "Discriminant",

+ n.simu = 100, maxiter = 200, sphere = TRUE)

> res.Kmin.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex = "KurtosisMin",

+ n.simu = 100, maxiter = 200, sphere = TRUE)

> res.FT.Tribe <- EPPlab(X, PPalg = "Tribe", PPindex = "FriedmanTukey",

+ n.simu = 100, maxiter = 200, sphere = TRUE)

Note from the previous warning that the convergence criterion was not reached for one simulation

run but this has no impact on the final result given the large number of runs.

> res.ALL <- list(res.Fried.Tribe, res.Dis.Tribe, res.Kmin.Tribe, res.FT.Tribe)

The object res.ALL is then a combination of all the different indices and to summarize the results

we use the function EPPlabAgg with the option method = "inverse" which automatically chooses

the rank of the final projection matrices as recommended in (Liski et al. 2016).

> ALL.agg.inverse <- EPPlabAgg(res.ALL, method = "inverse")

> ALL.agg.inverse$k

[1] 3

Hence we can see that, by combining all the 400 one-dimensional projections, three interesting

directions are suggested by this method. Looking at the scatterplot based on these three directions,

> pairs( as.matrix(X) %*% ALL.agg.inverse$O, col = Class, pch=16)

reveals in Figure 12 also the three clusters of interest. appropriately.

However, actually, for the separation here, the second direction is not useful at all moreover, also,

with the first and second directions, the separation is not as clear as in Figure 11 with the two
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Figure 12: Scatter plot matrix of three directions derived from AOP for the Lubishew data, where
the different colors correspond to the different classes.

directions 1 and 70. However, the second analysis was more automated and can combine results

from different indices. Note that it is also possible to combine projection matrices obtained using

different optimization algorithms.

4.2 Outlier detection example

In this example the goal is to detect outliers. For the demonstration we use the ReliabilityData

which is made available in REPPlab. The data provides 55 measurements made on 520 units during

one production process. For the producer, it is of interest to find those produced units which might

be faulty in order to check them before selling them.

Looking first at all marginal boxplots as shown in

> library("REPPlab")

> data("ReliabilityData")
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Figure 13: Boxplots for all variables in the data set ReliabilityData.

> boxplot(ReliabilityData)

reveals, that the scales of the variables differ considerably and shows marginal outliers. The exact

number of marginal outliers can be obtained for example using the code

> id.out <- function(x)

+ { ind <- 1:length(x)

+ BD <- boxplot.stats(x, do.conf = FALSE, do.out = FALSE)

+ ind[x < BD$stats[1] | x > BD$stats[5]]}

> OUT.IDS <- apply(ReliabilityData,2,id.out)

> OUT.IDS.unique <- sort(unique(unlist(OUT.IDS)))

> (N.out <- length(OUT.IDS.unique))

[1] 239

However, according to the manufacturer all marginal measurements are in the acceptable range and

such a vast number of outliers seems unrealistic. Therefore rather multivariate methods should be

applied. For many multivariate methods, it is, however, a problem that several of these variables

have almost no variation

> round(head(sort(apply(ReliabilityData, 2, sd))), 4)
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V1 V42 V21 V38 V24 V52

0.0066 0.0095 0.0104 0.0108 0.0121 0.0122

> round(head(sort(apply(ReliabilityData, 2, mad))), 4)

V24 V22 V1 V11 V20 V14

0.0000 0.0033 0.0040 0.0060 0.0068 0.0086

For example, methods based on the MCD (Minimum Covariance Determinant), a popular estimate

for robust scatter, cannot be computed here for the whole data set due to these variables with

almost equal measurements. EPP, on the other hand, does not have such problems as we will

demonstrate now. The recommended projection index for outlier detection is KurtosisMax for

which we will compute 100 runs for this data.

> set.seed(4567)

> res.KurtM.Tribe <- EPPlab(ReliabilityData, PPalg = "Tribe", n.simu = 100,

+ maxiter = 200, sphere = TRUE)

To perform outlier detection, we call the function EPPlabOutlier on the object. To define an

outlier in this context, we use first the rule that the observation must deviate by more than five

standard deviations from the mean.

> OUTms <- EPPlabOutlier(res.KurtM.Tribe, k = 5, location = mean, scale = sd)

> summary(OUTms)

REPPlab Outlier Summary

-----------------------

Index name : KurtosisMax

Algorithm used : Tribe

Location used : mean

Scale used : sd

k value used : 5

-----------------------
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Figure 14: Visual representation of the observations considered outliers for the ReliabilityData

when using mean and standard deviation.

Number of outliers detected: 5

Observations considered outliers:

OutlierID: obs57 obs268 obs414 obs503 obs512

Frequency: 2 1 73 1 79

Percentage: 2 1 73 1 79

The summary of this function reveals that five observations are considered outliers in this context.

Observations 414 and 512 were extreme in 73 and 79 runs out of the 100 runs while the other three

observations were only rarely considered outliers. A graphical display (see Figure 14) of this result

is obtained as

> plot(OUTms, las = 1)

In case it is costly to check for production errors, one may require that observation is an outlier

only when it is detected so in at least four directions.
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> totms <- apply(OUTms$outlier, 1, sum)

> totms[totms > 3]

obs414 obs512

73 79

This condition leaves two candidates.

It is however well known that both mean and standard deviation suffer considerably from the

presence of outliers. Therefore also robust measures can be used to categorize outliers. Common

choices are for example to replace the mean and the standard deviation with the median and the

median absolute deviation respectively.

> OUTmm <- EPPlabOutlier(res.KurtM.Tribe, k = 5, location = median, scale = mad)

> summary(OUTmm)

REPPlab Outlier Summary

-----------------------

Index name : KurtosisMax

Algorithm used : Tribe

Location used : median

Scale used : mad

k value used : 5

-----------------------

Number of outliers detected: 32

Observations considered outliers:

OutlierID: obs34 obs48 obs57 obs74 obs129 obs135 obs156 obs164 obs173 obs174

Frequency: 2 2 33 2 2 2 1 2 2 2

Percentage: 2 2 33 2 2 2 1 2 2 2

OutlierID: obs178 obs183 obs196 obs225 obs259 obs268 obs319 obs326 obs344

Frequency: 2 3 2 1 1 1 3 1 2

Percentage: 2 3 2 1 1 1 3 1 2

OutlierID: obs355 obs363 obs367 obs372 obs375 obs414 obs429 obs460 obs461
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Figure 15: Visual representation of the observations considered outliers for the ReliabilityData

when using median and median absolute deviation.

Frequency: 3 1 6 2 1 74 2 1 2

Percentage: 3 1 6 2 1 74 2 1 2

OutlierID: obs466 obs478 obs503 obs512

Frequency: 2 2 1 81

Percentage: 2 2 1 81

In that case, 32 observations are considered outliers. The most extreme ones are, as for the non-

robust call, observations 414 and 512. However, also observation 57 is now considered quite often

as an outlier. Again we can also visualize this (Figure 15) via

> plot(OUTmm, las = 1)

Selecting now only those observations which were considered in at least 4 directions as outlier, gives

the following observations

> totmm <- apply(OUTmm$outlier, 1, sum)

> totmm[totmm > 3]
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obs57 obs367 obs414 obs512

33 6 74 81

Hence, next to the same two observations from the previous call, we have to add two more suspects.

A scatter plot of the first and second direction (Figure 16) will then be used to see how extreme

the observations are in these directions.

> ProjDir1 <- fitted(res.KurtM.Tribe)

> ProjDir2 <- fitted(res.KurtM.Tribe, which = 2)

> range(ProjDir1)

[1] -10.22 15.17

> range(ProjDir2)

[1] -12.98 13.64

> plot(ProjDir1[-c(57, 367, 414, 512)], ProjDir2[-c(57, 367, 414, 512)], ylim =

+ = c(-16, 16), xlim = c(-16, 16), ylab = "Projection 1", xlab = "Projection 2")

> points(ProjDir1[c(57, 367, 414, 512)], ProjDir2[c(57, 367, 414, 512)],

+ col = 2:5, pch = 15)

> text(ProjDir1[c(57, 367, 414, 512)], ProjDir2[c(57, 367, 414, 512)], pos = 2,

+ label = row.names(ReliabilityData)[c(57, 367, 414, 512)])

As can be seen in this last figure, the two directions lead to a similar representation and all four

observations can be considered as quite extreme with observations 414 and 512 being more extreme

than 57 and 367.

5 Conclusion

EPP is a useful and interesting preliminary step in data analysis that may reveal non-gaussian

hidden structures such as clusters or outliers in multivariate numerical data sets. However, very

few EPP tools are available in the standard statistical software. The package REPPlab is an excellent

opportunity for R users to access several projection indices and optimization algorithms that are
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Figure 16: Visual inspection of the four outlier candidates in the ReliabilityData for the first
two projections.

already available in the Java program EPP-lab. REPPlab also offers some extra functionality to

explore and summarize the obtained projections. Some of the functionalities, such as the exploration

of the projection index values and the cosines between projection directions and also some outlier

detection tools, were already present in EPP-lab. Nevertheless, the novel approach of combining

several projections from many different indices or/and algorithms is original and seems promising

given the shown simulation results and examples. The implementation of other PP indices like the

Stahel-Donoho index used for instance in (Maronna and Yohai 1995) for outlier detection is one of

the perspectives of the present work.
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