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Abstract

Most popular dimension reduction (DR) methods like t-SNE and UMAP are
based on minimizing a cost between input and latent pairwise similarities.
Though widely used, these approaches lack clear probabilistic foundations
to enable a full understanding of their properties and limitations. To that
extent, we introduce a unifying statistical framework based on the coupling
of hidden graphs using cross entropy. These graphs induce a Markov random
field dependency structure among the observations in both input and latent
spaces. We show that existing pairwise similarity DR methods can be
retrieved from our framework with particular choices of priors for the graphs.
Moreover this reveals that these methods relying on shift-invariant kernels
su�er from a statistical degeneracy that explains poor performances in
conserving coarse-grain dependencies. New links are drawn with PCA which
appears as a non-degenerate graph coupling model.

1 Introduction

Dimensionality reduction (DR) is of central importance when dealing with high-dimensional
data [15]. It mitigates the curse of dimensionality, allowing for greater statistical flexibility
and less computational complexity. DR also enables visualization that can be of great
practical interest for understanding and interpreting the structure of large datasets. Most
seminal approaches include Principal Component Analysis (PCA) [31], multidimensional
scaling [23] and more broadly kernel eigenmaps methods such as Isomap [4], Laplacian
eigenmaps [5] and di�usion maps [12]. These methods share the definition of a pairwise
similarity kernel that assigns a high value to close neighbors and the resolution of a spectral
problem. They are well understood and unified in the kernel PCA framework [16].
In the past decade, the field has witnessed a major shift with the emergence of a new class
of methods. They are also based on pairwise similarities but these are not converted into
inner products. Instead, they define pairwise similarity functions in both input and latent
spaces and optimize a cost between the two. Among such methods, the Stochastic Neighbor
Embedding (SNE) algorithm [18], its heavy-tailed symmetrized version t-SNE [38] or more
recent approaches like LargeVis [36] and UMAP [30] are arguably the most used in practice.
These will be referred to as SNE-like or neighbor embedding methods in what follows. They
are increasingly popular and now considered as the state-of-art techniques in many fields
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[27, 19, 1]. Their popularity is mainly due to their exceptional ability to preserve local
structure, i.e. close points in the input space have close embeddings, as shown empirically
[40]. They also demonstrate impressive performances in identifying clusters [3, 29]. However
this is done at the expense of global structure, that these methods struggle in preserving
[41, 11] i.e. the relative large-scale distances between embedded points do not necessarily
correspond to the original ones.
Due to a lack of clear probabilistic foundations, these properties remain mostly empirical.
This gap between theory and practice is detrimental as practitioners may rely on strategies
that are not optimal for their use case. While recent software developments are making
these methods more scalable [8, 33, 28] and further expanding their use, the need for a
well-established probabilistic framework is becoming more prominent. In this work we define
the generative probabilistic model that encompasses current embedding methods, while
establishing new links with the well-established PCA model.

Outline. Consider X = (X1, ...,Xn)€
œ Rn◊p, an input dataset that consists of n vectors

of dimension p. Our task is to embed X in a lower dimensional space of dimension q < p

(typically q = 2 for visualization), and we denote by Z = (Z1, ...,Zn)€
œ Rn◊q the unknown

embeddings. The rationale of our framework is to suppose that the observations X and Z
are structured by two latent graphs with WX and WZ standing for their n-square weight
matrices. As the goal of DR is to preserve the input’s structure in the latent space, we
propose to find the best low-dimensional representation Z of X such that WX and WZ are
close. To build a flexible and robust probabilistic framework, we consider random graphs
distributed according to some predefined prior distributions. Our objective is to match the
posterior distributions of WX and WZ . Note that as they share the same dimensionality the
latter graphs can be easily compared unlike X and Z. The coupling is done with a cross
entropy criterion, the minimization of which will be referred to as graph coupling.
In this work, our main contributions are as follows.

• We show that SNE, t-SNE, LargeVis and UMAP are all instances of graph coupling
and characterized by di�erent choices of prior for discrete latent structuring graphs
(section 3). We demonstrate that such graphs essentially capture conditional inde-
pendencies among rows through a pairwise Markov Random Field (MRF) model
which construction can be found in section 2.

• We uncover the intrinsic probabilistic property explaining why such methods perform
poorly on conserving the large scale structure of the data as a consequence of a
degeneracy of the MRF when shift invariant kernels are used (theorem 1). Such
degeneracy induces the loss of the relative positions of clusters corresponding to
the connected components of the posterior latent graphs which distributions are
identified (proposition 1). These findings are highlighted by a new initialization of
the embeddings that is empirically tested (section 4).

• We show that for Gaussian MRFs, when adapting graph coupling to precision
matrices with suitable priors, PCA appears as a natural extension of the coupling
problem in its continuous version (theorem 2). Such model does not su�er from the
aforementioned degeneracy hence preserves the large-scale structure.

2 Shift-Invariant Pairwise MRF to Model Row Dependencies

We start by defining the distribution of the observations given a graph. The latter takes the
form of a pairwise MRF model which as we show is improper (i.e. not integrable on Rn◊p)
when shift-invariant kernels are used. We consider a fixed directed graph W œ SW where:

SW =
)
W œ Nn◊n

| ’(i, j) œ [n]2, Wii = 0, Wij Æ n
*

Throughout, (E, B(E), ⁄E) denotes a measure space where B(E) is the Borel ‡-algebra on
E and ⁄E is the Lebesgue measure on E.
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2.1 Graph Laplacian Null Space

A central element in our construction is the graph Laplacian linear map, defined as follows,
where S

n
+(R) is the set of positive semidefinite matrices.

Definition 1 The graph Laplacian operator is the map L : Rn◊n
+ æ S

n
+(R) such that

for (i, j) œ [n]2, L(W )ij =
;

≠Wij if i ”= jq
kœ[n] Wik otherwise .

With an abuse of notation, let L = L(W ) where W = W + W€. Let (C1, ..., CR) be
a partition of [n] (i.e. the set {1, 2, ..., n}) corresponding to the connected components
(CCs) of W . As well known in spectral graph theory [9], the null space of L is spanned
by the orthonormal vectors {Ur}rœ[R] such that for r œ [R], Ur =

1
n

≠1/2
r 11iœCr

2

iœ[n]
with

nr = Card(Cr). By the spectral theorem, U[R] can be completed such that L = U⇤U>

where U = (U1, ...,Un) is orthogonal and ⇤ = diag((⁄i)iœ[n]) with 0 = ⁄1 = ... = ⁄R <

⁄R+1 Æ ... Æ ⁄n. In the following, the data is split into two parts: XM , the orthogonal
projection of X on SM = (kerL) ¢ Rp, and XC , the projection on SC = (kerL)‹

¢ Rp. For
i œ [n], XM,i =

q
rœ[R] n

≠1
r 11iœCr

q
¸œCr

X¸ hence XM stands for the empirical means of X
on CCs, thus modelling the CC positions, while XC = X ≠ XM is CC-wise centered, thus
modeling the relative positions of the nodes within CCs. We now introduce the probability
distribution of these variables.

2.2 Pairwise MRF and Shift-Invariances

In this work, the dependency structure among rows of the data is governed by a graph. The
strength of the connection between two nodes is given by a symmetric function k : Rp

æ R+.
We consider the following pairwise MRF unnormalized density function:

fk : (X,W ) ‘æ

Ÿ

(i,j)œ[n]2

k(Xi ≠ Xj)Wij . (1)

As we will see shortly, the above is at the heart of DR methods based on pairwise similarities.
Note that as k measures the similarity between couples of samples, fk will take high values if
the rows of X vary smoothly on the graph W . Thus we can expect Xi and Xj to be close if
there is an edge between node i and node j in W . A key remark is that fk is kept invariant
by translating XM . Namely for all X œ Rn◊p, fk(X,W ) = fk(XC ,W ). This invariance
results in fk(·,W ) being non integrable on Rn◊p, as we see with the following example.

Gaussian kernel. For a positive definite matrix ⌃ œ S
n
++(R), consider the Gaussian

kernel k : x ‘æ e
≠

1
2 ÎxÎ

2
⌃ where ⌃ stands for the covariance among columns. One has:

log fk(X,W ) = ≠

ÿ

(i,j)œ[n]2

WijÎXi ≠ XjÎ
2
⌃ = ≠ tr

!
⌃≠1XTLX

"
(2)

by property of the graph Laplacian (definition 1). In this case, it is clear that due to the
rank deficiency of L, fk(·,W ) is only ⁄SC

-integrable. In general DR settings one does not
want to rely on Gaussian kernels only. A striking example is the use of the Student kernel in
t-SNE [38]. Heavy-tailed kernels appear useful when the dimension of the embeddings is
smaller than the intrinsic dimension of the data [20]. Our contribution provides flexibility by
extending the previous result to a large class of kernels, as stated in the following theorem.

Theorem 1 If k is ⁄Rp-integrable and bounded above ⁄Rp-almost everywhere then fk(·,W )
is ⁄SC

-integrable.

We refer to appendix A.1 for the proof. We can now define a distribution on (SC , B(SC)),
where Ck(W ) =

s
fk(·,W )d⁄SC

:

Pk(dXC |W ) = Ck(W )≠1
fk(XC ,W )⁄SC

(dXC) . (3)
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Remark 1 Kernels may have node-specific bandwidths ⌧ , set during a pre-processing step,
giving fk(X,W ) =

r
(i,j) k((Xi ≠ Xj)/·i)Wij . Note that such bandwidth does not a�ect the

degeneracy of the distribution and theorem 1 still holds.

Between-Rows Dependency Structure. By symmetry of k, reindexing gives:
fk(X,W ) =

r
jœ[n]

r
iœ[j] k(Xi ≠ Xj)W ij . Hence distribution (3) boils down to a pair-

wise MRF model [10] with respect to the undirected graph W , Ck playing the role of the
partition function. Note that since fk (Equation 1) trivially factorize according to the cliques
of W , the Hammersley-Cli�ord theorem ensures that the rows of XC satisfy the local and
global Markov properties with respect to W .

2.3 Uninformative Model for CC-wise Means

We showed that the MRF (1) is only integrable on SC , the definition of which depends on the
connectivity structure of W . As we now demonstrate, the latter MRF can be seen as a limit
of proper distributions on Rn◊p, see e.g. [35] for a similar construction in the Gaussian case.
We introduce the Borel function f

Á(·,W ) : Rn◊p
æ R+ for Á > 0 such that for all X œ Rn◊p,

f
Á(X,W ) = f

Á(XM ,W ). To allow f
Á to become arbitrarily non-informative, we assume

that for all W œ SW , f
Á(·,W ) is ⁄SM

-integrable for all Á œ Rú
+ and f

Á(·,W ) ≠≠≠æ
Áæ0

1 almost
everywhere. We now define the conditional distribution on (SM , B(SM )) as follows:

PÁ(dXM |W ) = C
Á(W )≠1

f
Á(XM ,W )⁄SM

(dXM ) (4)
where C

Á(W ) =
s

f
Á(·,W )d⁄SM

. With this at hand, the joint conditional is defined
as the product measure of (3) and (4) over the row axis, the integrability of which is
ensured by the Fubini-Tonelli theorem. In the following we will use the compact notation
C

Á
k(W ) = Ck(W )CÁ(W ) for the joint normalizing constant.

Remark 2 At the limit Á æ 0 the above construction amounts to setting an infinite variance
on the distribution of the empirical means of X on CCs, thus loosing the inter-CC structure.

As an illustration, one can structure the CCs’ relative positions according to a Gaussian
model with positive definite precision Á⇥ œ S

R
++(R), as it amounts to choosing f

Á : X æ

exp
!
≠

Á
2 tr

!
⌃≠1X€U[:R]⇥U€

[R]X
""

such that: vec(XM )|⇥ ≥ N

1
0,

!
ÁU[:R]⇥U€

[R]

"≠1
¢ ⌃

2

where ¢ denotes the Kronecker product.

3 Graph Coupling as a Unified Objective for Pairwise Similarity

Methods

In this section, we show that neighbor embedding methods can be recovered in the presented
framework. They are obtained, for particular choices of graph priors, at the limit Á æ 0
when f

Á becomes non informative and the CCs’ relative positions are lost.
We now turn to the priors for W . Our methodology is similar to that of constructing
conjugate priors for distributions in the exponential family [39], notably we insert the
cumulant function C

Á
k (i.e. normalizing constant of the conditional) as a multivariate term

of the prior. We consider di�erent forms: binary (B), unitary out-degree (D) and n-edges
(E), relying on an additional term (�) to constraint the topology of the graph. For a matrix
A, Ai+ denotes

q
j Aij and A++ denotes

q
ij Aij . In the following, ⇡ plays the role of the

edge’s prior. The latter can be leveraged to incorporate some additional information about
the dependency structure, for instance when a network is observed [26].

Definition 2 Let ⇡ œ Rn◊n
+ , Á œ R+, – œ R, k satisfies the assumptions of theorem 1 and

P œ {B, D, E}. For W œ SW we introduce:

PÁ
P,k(W ;⇡, –) Ã C

Á
k(W )– �P(W )

Ÿ

(i,j)œ[n]2

fi
Wij

ij

where �B(W ) =
r

ij 11WijÆ1, �D(W ) =
r

i 11Wi+=1 and �E(W ) = 11W++=n
r

ij(Wij !)≠1.
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When – = 0, the above no longer depends on Á and k. We will use the compact notation
PP(W ;⇡) = PÁ

P,k(W ;⇡, 0). Note that by W ≥ PP(· ;⇡) we have the following simple
Bernoulli (B) and multinomial (M) distributions, where matrix or vector division is to be
understood as element-wise.

• If P = B, ’(i, j) œ [n]2, Wij
‹‹
≥ B (fiij/(1 + fiij)).

• If P = D, ’i œ [n], Wi
‹‹
≥ M (1,⇡i/fii+).

• If P = E, W ≥ M (n,⇡/fi++).

We now show that the posterior distribution of the graph given the observations takes a
simple form when the distribution of CC empirical means XM di�uses i.e. when Á æ 0 (a
proof of the following result can be found in appendix A.2). In the following, § stands for
the Hadamard product and D for the convergence in distribution.

Proposition 1 Let ⇡ œ Rn◊n
+ , k satisfies the assumptions of theorem 1 with KX = (k(Xi ≠

Xj))(i,j)œ[n]2 and P œ {B, D, E}. If W Á
≥ PÁ

P,k(· ;⇡, 1) then

W Á
|X

D
≠≠≠æ
Áæ0

PP(· ;⇡ § KX) .

Remark 3 For all W œ SW , C
Á(W ) diverges as Á æ 0, hence the graph prior (definition 2)

is improper at the limit. This compensates for the uninformative di�use conditional and
allows to retrieve a well-defined tractable posterior limit.

3.1 Retrieving Well Known DR Methods

We now provide a unified view of neighbor embedding objectives as a coupling between
graph posterior distributions. To that extent we derive the cross entropy associated with the
various graph priors at hand. In what follows, kx and kz satisfy the assumptions of theorem 1
and we denote by KX and KZ the associated kernel matrices on X and Z respectively. For
both graph priors we consider the parameters ⇡ = 1 and – = 1. For (PX , PZ) œ {B, D, E}

2,
we introduce the cross entropy between the limit posteriors at Á æ 0,

HPX,PZ
= ≠EWX ≥PPX

(·;KX )[logPPZ
(WZ = WX ;KZ)]

defining a coupling criterion to be optimized with respect to embedding coordinates Z. We
now go through each couple (PX , PZ) such that supp (PPX

) µ supp (PPZ
) for the cross-entropy

to be defined.

SNE. When PX = PZ = D, the probability of the limit posterior graphs factorizes over
the nodes and the cross-entropy between limit posteriors takes the form of the objective of
SNE [17], where for i œ [n],PD

i = KX,i/KX,i+ and QD
i = KZ,i/KZ,i+,

HD,D = ≠

ÿ

i ”=j

P
D
ij log Q

D
ij .

Symmetric-SNE. Choosing PX = D and PZ = E, we define for (i, j) œ [n]2, QE
ij =

KZ,ij/KZ,++ and P
D
ij = P

D
ij + P

D
ji . The symmetry of QE yields:

HD,E = ≠

ÿ

i ”=j

P
D
ij log Q

E
ij = ≠

ÿ

i<j

P
D
ij log Q

E
ij

and the symmetrized objective of t-SNE [38] is recovered.

LargeVis. Now choosing PX = D and PZ = B, one can also notice that QB =
(KZ,ij/(1 + KZ,ij))(i,j)œ[n]2 is symmetric. With this at hand the limit cross-entropy reads

HD,B = ≠

ÿ

i ”=j

P
D
ij log Q

B
ij +

!
1 ≠ P

D
ij

"
log

!
1 ≠ Q

B
ij

"
= ≠

ÿ

i<j

P
D
ij log Q

B
ij +

1
2 ≠ P

D
ij

2
log(1 ≠ Q

B
ij)

which is the objective of LargeVis [36].
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Table 1: Prior distributions for WX and WZ associated with the pairwise similarity coupling
DR algorithms. Grey-colored boxes are such that the cross-entropy is undefined.

B D E

ÂB UMAP

D LargeVis SNE T-SNE

PX

PZ

UMAP. Let us take PX = PZ = B and consider the symmetric thresholded graph
ÊWX = 11WX +W €

X Ø1. By independence of the edges, ÊWX,ij ≥ B

1
ÂP B

ij

2
where ÂP B

ij =

P
B
ij + P

B
ji ≠ P

B
ij P

B
ji and PB = (KX,ij/(1 + KX,ij))(i,j)œ[n]2 . Coupling ÊWX and WZ gives:

HÂB,B
= ≠2

ÿ

i<j

ÂP B
ij log Q

B
ij +

1
1 ≠ ÂP B

ij

2
log

!
1 ≠ Q

B
ij

"

which is the loss function considered in UMAP [30], the construction of ÊWX being borrowed
from section 3.1 of the paper.

Remark 4 One can also consider HE,E but as detailed in [38], this criterion fails at posi-
tioning outliers and is therefore not considered. Interestingly, any other feasible combination
of the presented priors relates to an existing method.

3.2 Interpretations

As we have seen in section 3.1, SNE-like methods can all be derived from the graph coupling
framework. What characterizes each of them is the choice of priors considered for the latent
structuring graphs. To the best of our knowledge, the presented framework is the first that
manages to unify all these DR algorithms. Such a framework opens many perspectives for
improving upon current practices as we discuss in section 4 and section 5. We now focus on
a few insights that our work provides about the empirical performances of these methods.

Repulsion & Attraction. Decomposing HPX,PZ
with Bayes’ rule and simplifying constant

terms one has the following optimization problem:

min
ZœRn◊q

≠

ÿ

(i,j)œ[n]2

P PX

ij log kz(Zi ≠ Zj) + logP(Z). (5)

The first and second terms in eq. (5) respectively summarize the attractive and repulsive
forces of the objective. Recall from proposition 1 that P PX is the posterior expectation
of WX . Hence in SNE-like methods, the attractive forces resume to a pairwise MRF log
likelihood with respect to a graph posterior expectation given X. For instance if kz is the
Gaussian kernel, this attractive term reads tr

!
Z€LıZ

"
where Lı = EW≥PPX

(·;KX )[L(W )],
boiling down to the objective of Laplacian eigenmaps [5]. Therefore, for Gaussian MRFs,
the attractive forces resume to an unconstrained Laplacian eigenmaps objective. Such link,
already noted in [7], is easily unveiled in our framework. Moreover, one can notice that only
this attractive term depends on X as the repulsion is given by the marginal term in (5). The
latter reads P(Z) =

q
WœSW

P(Z,W ) with P(Z,W ) Ã fk(Z,W )�PZ
(W ). Such penalty

notably prevents a trivial solution, as 0, like any constant vector, is a mode of fk(·,W ) for
all W . Also note that the prior for WX only conditions attraction while the prior for WZ

only a�ects repulsion. In the present work we focus solely on deciphering the probabilistic
model that accounts for neighbor embedding loss functions and refer to [6] for a quantitative
study of attraction and repulsion in these methods.

Global Structure Preservation. To gain intuition, consider that WX is observed. As
we showed in section 2.2, when one relies on shift invariant kernels, the positions of the
CC means are taken from a di�use distribution. Since the above methods are all derived
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from the limit posteriors at Á æ 0, XM and ZM have no influence on the coupling objective.
Hence if two nodes belong to di�erent CCs, their low dimensional pairwise distance will
likely not be faithful. We can expect this phenomenon to persist when the expectation on
WX is considered, especially when clusters are well distinguishable in X. This observation
is central to understand the large scale deficiency of these methods. Note that this happens
at the benefit of the local structure which is faithfully represented in low dimension, as
discussed in section 1. In the following section we propose to mitigate the global structure
deficiency with non-degenerate MRF models.

4 Towards Capturing Large-Scale Dependencies

In this section, we investigate the ability of graph coupling to faithfully represent global
structure in low dimension. To gain intuition on the case where the distribution induced by
the graph is not degenerate, we consider a proper Gaussian graph coupling model and show
its equivalence with PCA. We then provide a new initialization procedure to alleviate the
large scale deficiency of graph coupling when degenerate MRFs are used.

4.1 PCA as Graph Coupling

As we argue that the inability of SNE-like methods to reproduce the coarse-grain dependencies
of the input in the latent space is due to the degeneracy of the conditional (3), a natural
solution would be to consider graphical models that are well defined and integrable on the
entire definition spaces of X and Z. For simplicity, we consider the Gaussian model and
leave the extension to other kernels for future works. Note that in this case integrability
translates into the precision matrix being full-rank. As we see with the following, the natural
extension of our framework to such models leads to a well-established PCA algorithm. In
the following, for a continuous variable ⇥Z , P(⇥Z = ·) denotes its density.

Theorem 2 Let ‹ Ø n, ⇥X ≥ W(‹, In) and ⇥Z ≥ W(‹ + p ≠ q, In). Assume that ⇥X and
⇥Z structure the rows of respectively X and Z such that:

vec(X)|⇥X ≥ N (0,⇥≠1
X ¢ Ip), (6)

vec(Z)|⇥Z ≥ N (0,⇥≠1
Z ¢ Iq) . (7)

Then the solution of the precision coupling problem:
min

ZœRn◊q
≠E⇥X |X [logP(⇥Z = ⇥X |Z)]

is a PCA embedding of X with q components.

We now highlight the parallels with the previous construction done for neighbor embedding
methods. First note that the multivariate Gaussian with full-rank precision is inherently a
pairwise MRF [35]. When choosing the Gaussian kernel for neighbor embedding methods,
we saw that the graph Laplacian LX of WX was playing the role of the among-row precision
matrix, as we had X|WX ≥ N (0,L≠1

X ¢ Ip) (equation 2). Recall that the later always has a
null-space which is spanned by the CC indicator vectors of W (section 2.1). Here, the key
di�erence is that we impose a full-rank constraint on the precision ⇥. Concerning the priors,
we choose the ones that are conjugate to the conditionals (6) and (7), as previously done
when constructing the prior for neighbor embedding methods (definition 2). Hence in the
full-rank setting, the prior simply amounts to a Wishart distribution denoted by W.
The above theorem further highlights the flexibility and generality of the graph coupling
framework. Unlike usual constructions of PCA or probabilistic PCA [37], in the above
the linear relation between X and Z is recovered by solving the graph coupling problem
and not explicitly stated beforehand. To the best of our knowledge, it is the first time
such a link is uncovered between PCA and SNE-like methods. In contrast with the latter,
PCA is well-known for its ability to preserve global structure while being significantly less
e�cient at identifying clusters [2]. Therefore, as suspected in section 3.2, the degeneracy of
the conditional distribution given the graph is key to determine the distance preservation
properties of the embeddings. We propose in section 4.2 to combine both graph coupling
approaches to strike a balance between global and local structure preservation.
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4.2 Hierarchical Graph Coupling

The goal of this section is to show that global structure in SNE-like embeddings can be
improved by structuring the CCs’ positions. We consider the following hierarchical model
for X, where PX œ {B, D, E}, kx satisfies the assumptions of theorem 1 and ‹X Ø n:

WX ≥ PÁ
PX ,kx

(· ;1, 1), ⇥X |WX ≥ W(‹X , IR)

XC |WX ≥ Pkx(· |WX), vec(XM )|⇥X ≥ N

1
0,

!
ÁU[:R]⇥XU

€

[R]

"≠1
¢ Ip

2

where U[R] are the eigenvectors associated to the Laplacian null-space of WX . Given a
graph WX , the idea is to structure the CCs’ relative positions with a full-rank Gaussian
model. The same model is considered for WZ , ⇥Z and Z, choosing ‹Z = ‹X + p ≠ q for
the Wishart prior to satisfy the assumption of theorem 2. With this in place, we aim at
providing a complete coupling objective, matching the pairs (WX ,⇥X) and (WZ ,⇥Z). The
joint negative cross-entropy can be decomposed as follows:

E(WX ,⇥X )|X [logP((WZ ,⇥Z) = (WX ,⇥X)|Z)]
= EWX |X [logP(WZ = WX |Z)] + (8)
E(WX ,⇥X )|X [logP(⇥Z = ⇥X |WZ = WX ,Z)] (9)

where (8) is the usual coupling criterion of WX and WZ capturing intra-CC variability
while (9) is a penalty resulting from the Gaussian structure on SM . Constructed as such, the
above objective allows a trade-of between local and global structure preservation. Following
current trends in DR [21], we propose to take care of the global structure first i.e. focusing
on (9) before (8). The di�culty of dealing with (9) lies in the hierarchical construction of
the graph and the Gaussian precision (see fig. 3). We state the following result.

Corollary 1 Let WX œ SW , L = L(WX) and S
q
M = (kerL) ¢ Rq, then for all Á > 0, given

the above hierarchical model, the solution of the problem:

min
ZœS

q
M

≠E⇥X |X [logP(⇥Z = ⇥X |WZ = WX ,Z)]

is a PCA embedding of U[:R]U€
[R]X where U[:R] are the CCs’ membership vectors of WX .

Remark 5 Note that while (8) approximates the objective of SNE-like methods when Á æ 0,
the minimizer of (9) given by corollary 1 is stable for all Á.

Figure 1: Left: MNIST t-SNE (perp : 30) em-
beddings initialized with i.i.d N (0, 1) coordi-
nates. Middle: using these t-SNE embeddings,
mean coordinates for each digit are represented.
Right: we compute a matrix of mean input
coordinates for each of the 10 digits and em-
bed it using PCA. For t-SNE embeddings, the
positions of clusters vary accross di�erent runs
and don’t visually match the PCA embeddings
of input mean vectors (right plot).

From this observation, we propose a sim-
ple heuristic to minimize (9) that con-
sists in computing a PCA embedding of
EPPX

(·;KX )
#
U[:R]U€

[R]

$
X. The distribution of

the connected components of the posterior of
WX being intractable, we resort to a Monte-
Carlo estimation of the above expectation.
The latter procedure called ccPCA aims at
recovering the inter-CC structure that is fil-
tered by SNE-like methods. ccPCA may
then be used as initialization for optimizing
(8) which is done by running the DR method
corresponding to the graph priors at hand
(section 3.1). This second step essentially
consists in refining the intra-CC structure.

4.3 Experiments with ccPCA

Figure 1 shows that a t-SNE embedding of a balanced MNIST dataset of 10000 samples [14]
with isotropic Gaussian initialization performs poorly in conserving the relative positions
of clusters. As each digit cluster contains approximately 1000 points, with a perplexity of
30, sampling an edge across digit clusters in the graph posterior PPX

(·;KX) is very unlikely.
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Figure 2: Top: MNIST embeddings produced by PCA, Laplacian eigenmaps, ccPCA and
finally t-SNE launched after the previous three embeddings to improve the fine-grain structure.
Bottom: mean coordinates for each digit using the embeddings of the first row. The color
legend is the same as in fig. 1. t-SNE was trained during 1000 iterations using default
parameters with the openTSNE implementation [34].

Recall that the perplexity value [38] corresponds to the approximate number of e�ective
neighbors of each point. Hence images of di�erent digits are with very high probability in
di�erent CCs of the graph posterior and their CC-wise means are not coupled as discussed
in section 3.2. To remedy this in practice, PCA or Laplacian eigenmaps are usually used as
initialization [21].
These strategies are tested (fig. 2) together with ccPCA. This shows that ccPCA manages to
retrieve the digits that mostly support the large-scale variability as measured by the peripheral
positioning of digits 0 (blue), 2 (green), 6 (pink) and 7 (grey) given by the right side of fig. 1.
Other perplexity values for ccPCA are explored in appendix B.2 while the experimental setup
is detailed in appendix B.1. In appendix B.3, we perform quantitative evaluations of ccPCA
for both t-SNE and UMAP on various datasets using K-ary neighborhood criteria. We
find that using ccPCA as initialization is in general more reliable than PCA and Laplacian
eigenmaps for preserving global structure using both t-SNE and UMAP.
Compared to PCA, ccPCA manages to aggregate points into clusters, thus filtering the
intra-cluster variablity and focusing solely on the inter-cluster structure. Compared to
Laplacian eigenmaps which performs well at identifying clusters but su�ers from the same
deficiency as t-SNE for positioning them, ccPCA retains more of the coarse-grain structure.
These observations support our unifying probabilistic framework and the theoretical results
about the MRF degeneracy which are the leading contributions of this article. The ccPCA
initialization appears as a first stepping stone towards more grounded DR methods based on
the probabilistic model presented in this article.

5 Conclusion and Perspectives

In this work we shed a new light on most popular DR methods by showing that they can be
unified within a common probabilistic model in the form of latent Markov Random Fields
Graphs coupled by a cross entropy. The definition of such a model constitutes a major step
towards the understanding of common dimension reduction methods, in particular their
structure preservation properties as discussed in this article.
Our work o�ers many perspectives, among which the possibility to enrich the probabilistic
model with more suited graph priors. Currently considered priors are simply the ones that
are conjugate to the MRFs thus they are mostly designed to yield a tractable coupling
objective. However they may not be optimal and could be modified to capture targeted
features, e.g. communities, in the input data, and give adapted representations in the latent
space. The graph coupling approach could also be extended to more general latent structures
governing the joint distribution of observations. Finally, the probabilistic model could be
leveraged to tackle hyper-parameter calibration, especially kernel bandwidths that have a
great influence on the quality of the representations and are currently tuned using heuristics
with unclear motivations.
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