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OUTPUT ERROR MISO SYSTEM IDENTIFICATION

USING FRACTIONAL MODELS

Abir Mayoufi1,2, Stéphane Victor1, Manel Chetoui2, Rachid
Malti1, Mohamed Aoun2

Abstract
This paper deals with system identification for continuous-time multiple-
input single-output (MISO) fractional differentiation models. An output
error optimization algorithm is proposed for estimating all parameters,
namely the coefficients and the differentiation orders. Given the high num-
ber of parameters to be estimated, the output error method can converge
to a local minimum. Therefore, an initialization procedure is proposed to
help the convergence to the optimum by using three variants of the al-
gorithm. Moreover, a new definition of structured-commensurability (or
S-commensurability) has been introduced to cope with the differentiation
order estimation. First, a global S-commensurate order is estimated for
all subsystems. Then, local S-commensurate orders are estimated (one
for each subsystem). Finally the S-commensurability constraint being re-
leased, all differentiation orders are further adjusted. Estimating a global
S-commensurate order greatly reduces the number of parameters and helps
initializing the second variant, where local S-commensurate orders are es-
timated which, in turn, are used as a good initial hit for the last variant.
It is known that such an initialization procedure progressively increases
the number of parameters and provides good efficiency of the optimization
algorithm. Monte Carlo simulation analysis are provided to evaluate the
performances of this algorithm.

MSC classifications: 93B30, 26A33, 90C31, 49M15, 90C53, 35R11,
34A08, 37B35

Key Words and Phrases: system identification, continuous-time, output
error, multiple-inputs and single-output, MISO system, order optimization,
fractional order model.

1. Introduction

Fractional systems are widely used in many applicative fields for mode-
ling diffusive phenomena since the 1950s: thermal engineering [23], elec-
trochemistry [15, 40], biological [19, 38], electrical coil modeling [1], path
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planning through flatness principles [36, 37] path planning with fractional
potential fields [28, 6] etc. Thanks to its global characterization, the frac-
tional (or non-integer) differentiation operator is well-suited for modeling
diffusion processes as opposed to the classic integer derivatives.

From a set of input and output data, a mathematical model can be
obtained to describe the input/output behavior of a dynamical system by
using system identification. First works on system identification were ini-
tially developed in discrete time (DT) ([12, 42, 18, 31, 39]), such as the
output error (OE) method [4, 30, 29]. As dynamical systems are generally
described by differential equations, system identification has been later ex-
pressed in continuous time (CT) in the preceding years [10], [43], [25], [11].

System identification with fractional order models has been widely
studied: subspace method for pseudo-state-space identification [33], multi-
variable non commensurate fractional systems [20], fractional order model
(FOM) with time delays [22], errors-in-variables context [5], modulating
functions [41, 3], inversion mechanism of functional extrema model via the
differential evolution algorithms ([8]), using block pulse functions [32], mea-
surement noise compensation based on polynomial modulating function
[9], recursive identification method for fractional time-delay systems using
a DT model [14], FOM identification using enhanced response sensitivity
approach [17], fractional order estimation of subdiffusion equations [2].

In equation error methods [7], the estimated output is obtained from a
prediction model which depends linearly on the system parameters and the
delayed observations of the input and the output signals. On the contrary,
the output error method is based on minimizing a criterion defined by the
quadratic output error, namely the error signal between the true system
output and the estimated one, by assuming that both systems are excited
with the same input. Consequently, the estimated output is nonlinear in
its parameters. A gradient based algorithm is used to minimize the cri-
terion. Many fractional system identification problems have already been
solved by using the output error method [24, 35, 27, 16]. All these papers
concern fractional single-input single-output (SISO) system identification
and no work deals with the fractional multiple-input single output (MISO)
case. Also, estimating all the parameters of a fractional system turns out
to estimate both coefficients and differentiation orders. Estimating the
differentiation orders is tricky as the model order changes and the opti-
mization problem is nonlinear when minimizing the output error criterion.
The estimation is even more delicate when working with fractional MISO
systems as the total number of parameters grows high. Hence, the main
contribution of the paper is to propose an original method for initializing
the gradient based algorithm by considering first a global S-commensurate
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order, then local S-commensurate orders, and finally by releasing the S-
commensurability constraint.

The paper is organized as follows. Beginning with the problem formu-
lation in Section 2, Section 3 presents the OE algorithm extended to MISO
systems for the parameter vector estimation. Then an example illustrates
the efficiency of the proposed algorithm with the three variants in Section
4. Finally, a conclusion is drawn in Section 5.

2. Problem formulation

2.1. Fractional calculus. The differentiation to an arbitrary order ν ∈
R+ of a function f(t), in the sense of Grünwald-Letnikov, is defined by:

pνf(t) = lim
l→0

1

lν

b tlc∑
h=0

(−1)h
(
ν
h

)
f(t− hl) (2.1)

where b.c is the floor operator and

(
ν
h

)
is the Newton’s binomial gener-

alized to fractional orders as follows:(
ν
h

)
=

Γ(ν + 1)

Γ(h+ 1)Γ(ν − h+ 1)
=
ν(ν − 1)...(ν − h+ 1)

h!
.

Consequently, the fractional derivative of a function has a global charac-
terization as the whole past of the function is required.

For ν = 1, all binomials

(
ν
h

)
= 0 when h − ν ∈ N, thus leading

equation (2.1) to the classic definition of integer order derivative:

pf(t) = lim
l→0

f(t)− f(t− l)
l

. (2.2)

For numerical evaluation of the ν-th fractional derivative, parameter l
in (2.1) is replaced by a sampling period T and the limit is dropped:

pνf(t) =
1

T ν

b tT c∑
h=0

(−1)h
(
ν
h

)
f(t− Th) +O(T ). (2.3)

So defined, as stated in [23, section 7.4], the error term O(T ) is propor-
tional to the sampling period. Therefore, to make the approximation error
negligible, the sampling period must be sufficiently small.

Note that a too small sampling time may also provide numerical problems such as
stability in digital implementations. In this case, discrete rational approximations may
be used.
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The Laplace transform of the ν-th derivative of a causal function f
(f(t) = 0∀t ≤ 0), is given by [23, section 2.8.4]:

L {pνx(t)} = sνX(s), (2.4)

s denoting the Laplace variable. This result is in accordance with the classic
rational case when ν is an integer.

2.2. MISO fractional order system. A MISO fractional order system
(FOS) such as represented in Fig.1, can be described as the following:

S :


yk(t) = Gk(p)uk(t)

y(t) =
K∑
k=1

yk(t)

y∗(th) = y(th) + e(th)

(2.5)

where K ∈ N∗ represents the number of inputs, and consequently the num-
ber of subsystems. The vector u(t) = [u1(t), . . . , uK(t)] contains the uncor-
related input signals and p denotes the differential operator p = d

dt . The
input-output data (u(t), y(t)) are collected at regular samples and assumed
large enough to guarantee convergence of the estimated parameters to the
true ones. The quasi-stationary input signals {uk(t), 0 ≤ t ≤ tfinal, k =
1, . . . , K} applied to the MISO system are assumed persistently exciting
and give rise to the output signal {y(t), 0 ≤ t ≤ tfinal}. The output mea-
surement y(t) is assumed corrupted by a discrete-time white noise e(th)
and Gk is the fractional operator that relates the input signal uk(t) to its
noise-free output yk(t):

Gk(p) =
Bk(p)

Ak(p)
=

Mk∑
j=0

bj,kp
βj,k

1 +
Nk∑
i=1

ai,kp
αi,k

(2.6)

where (ai,k, bj,k) ∈ R2, for all i, j and k and the differentiation orders
(αi,k, βj,k) are ordered positive real numbers for identifiability purpose:{

0 < α1,k < α2,k < ... < αNk,k
0 < β0,k < β1,k < ... < βMk,k

∀k = 1, . . . , K.

Let be strictly proper operators Gk(p) with αNk,k > βMk,k, ∀k. Also,
Bk and Ak are coprime polynomials, and all the transfer functions Gk are
asymptotically stable [21, 26].
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Figure 1. Fractional MISO system structure

Definition 2.1 (S-commensurability). A SISO system G1, for a given
model structure (2.6), characterized by the number of terms M1 and N1,
has a structured commensurate (or S-commensurate) order ν = α1,1, if all
its differentiation orders are successive integer multiples of ν:

G1(p) =

M1∑
j=0

bj,1p
jν

1 +
N1∑
i=1

ai,1piν
. (2.7)

For example, the following transfer function:

G1(s) =
1

1 + 1.5s1.2 + 0.5s2.8

is commensurate of order 0.4 according to [21], namely:

G1(s) =
1

1 + 1.5s3×0.4 + 0.5s6×0.4
.

According to the new definition 2.1 of S-commensurability, G1 is not S-
commensurate, because the differentiation orders are not successive integer
multiples of α1,1 = 1.2.

Note that the number of terms in the numerator and the denominator
M1 and N1 do not change from (2.6) to (2.7).

Definition 2.2 (Local S-commensurability). A MISO system, for a
given model structure (2.6), has local S-commensurate orders νk if each

In the classic case ([21]), the definition of a commensurate system is independent
of the model structure and may generate very high number of parameters when the
commensurate order is very low. The S-commensurability definition is linked to a model
structure and therefore fixes the number of parameters to a prescribed value.
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subsystem Gk has its own S-commensurate order (see Definition 2.1)

νk = α1,k for k = 1, . . . , K.

Therefore, each transfer function can be rewritten as:

Gk(p) =

Mk∑
j=0

bj,kp
jνk

1 +
Nk∑
i=1

ai,kpiνk

. (2.8)

Definition 2.3 (Global S-commensurability). A MISO system, for a
given model structure (2.6), has a global S-commensurate order ν if all its
subsystems have the same S-commensurate order according to Definition
2.1 :

ν = α1,1 = α1,2 = · · · = α1,K ,

Therefore, each transfer function can be rewritten as:

Gk(p) =

Mk∑
j=0

bj,kp
jν

1 +
Nk∑
i=1

ai,kpiν
. (2.9)

Again, note that the numerator and denominator orders Mk and Nk do
not change from (2.6) to (2.9).

For a S-commensurate FOS, the most used stability theorem is the one
proposed by [21] extended to commensurate orders between 0 and 2.

Theorem 2.1. Stability theorem
LetG1 be a SISO S-commensurate transfer function and ν its S-commensurate

order. G1(s) = Qν(s)
Pν(s)

is stable in the bounded input bounded output sense if

and only if:

0 < ν < 2 (2.10)

and

∀sk ∈ C, Pν(sk) = 0 such as | arg(sk)| > ν
π

2
. (2.11)

2

If all subsystems are stable then the MISO fractional system is stable
too.
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2.3. Problem formulation. The aim is to estimate all the parameters of
fractional MISO model S described by equation (2.5) by using H samples of
input/output data {u1(th), ..., uK(th), y∗(th)}Hh=1. Note that in conformity
with section 2.2, t1 = 0 and tH = tfinal.

The parameter vector θ of the MISO system (2.5) is defined as

θ =

[
ρ
µ

]
(2.12)

• where ρ has all the coefficients

ρ =
[
ρ1, . . . , ρK

]T
(2.13)

with

ρk = [b0,k, b1,k, . . . , bMk,k, a1,k, . . . , aNk,k]

for k = 1, . . . ,K; hence, ρ has a total number of coefficients of∑K
k=1(Nk +Mk + 1)

• and where µ has all the differentiation orders, that can be defined
according to the following cases.

Case 1: if a global S-commensurate order ν is sought, then the differ-
entiation order vector is reduced to

µ = ν; (2.14)

Case 2: if local S-commensurate orders νk are sought, then µ is ex-
tended to K parameters

µ =
[
ν1, . . . , νK

]T
; (2.15)

Case 3: if the MISO model is non commensurate, then µ gathers all
the differentiation orders

µ =
[
µ1, . . . , µK

]T
(2.16)

with

µk =
[
β0,k, β1,k, . . . , βMk,k, α1,k, . . . , αNk,k

]
for k = 1, ...,K; hence, µ has a total number of differentiation
orders of

∑K
k=1(Nk +Mk + 1).

All the proposed system identification algorithms are meant to be inde-
pendent from time-domain simulation algorithms. Nonetheless, FOS should
be correctly simulated with negligible simulation errors so that the param-
eter estimation is consistent.
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3. Output Error method for CT fractional MISO models

The true model structure being assumed known, the parameter vector
θ is estimated using a nonlinear optimization method, based on Levenberg-
Marquardt algorithm.

The estimation problem is formulated as a minimization problem of the
`2-norm:

J(θ̂) =
1

2

∥∥∥ε(t, θ̂)∥∥∥
2
, (3.1)

where the output error ε(t, θ̂) is defined by:

ε(t, θ̂) = y∗(t)− ŷ(t) (3.2)

and the estimated output ŷ(t) is defined by:

ŷ(t) =

K∑
k=1

ŷk(t) (3.3)

with ŷk(t) = Ĝk(p)uk(t) and Ĝk(p) denote the estimated model.
The algorithm being iterative, therefore the parameter vector θ in (2.12)

is denoted by θiter. The OE algorithm for fractional MISO system is de-
scribed in Algorithm 1.

After convergence, the parametric covariance matrix can be computed
from the approximated Hessian H , namely:

H =
∂ε

∂θ

T ∂ε

∂θ
(3.8)

where ∂ε
∂θ is the error sensitivity function given by:

∂ε

∂θ
=

∂ε

∂[ρTµT ]T
. (3.9)

The coefficient error sensitivity is given by:

∂ε

∂ρ
=

[
∂ε

∂ρ1
, . . . ,

∂ε

∂ρK

]
, (3.10)

where

∂ε

∂ρk
= −∂ŷk

∂ρk
= −

[
∂ŷk
∂b0,k

, ...,
∂ŷk

∂bMk,k
,
∂ŷuk
∂a1,k

, ...,
∂ŷuk
∂aNk,k

]
(3.11)
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Algorithm 1: MISO OE algorithm

Step 1: Initialization
iter = 0
Initialize the parameter vector θ0 =

[
ρ0, µ0

]T
Compute the cost function J(θ0) from (3.1)

Step 2: Iterative Levenberg-Marquardt algorithm
do

i. iter = iter + 1
ii. Parameter estimation

Compute the parameter vector θ̂iter as

θ̂iter+1 = θ̂iter −
{

[H + ξI]−1
∂J

∂θ̂

}∣∣∣∣
θ̂iter

, (3.4)

with 

∂J

∂θ̂
=

H∑
h=1

∂ε(th)

∂θ̂

T

ε(th) : gradient

H ≈
H∑
h=1

∂ε(th)

∂θ̂

T ∂ε(th)

∂θ̂
: pseudo-Hessian

ξ : Marquardt parameter

(3.5)

while

∣∣∣∣ θ̂iter` −θ̂iter−1
`

θ̂iter−1
`

∣∣∣∣ > ε

where θ̂iter` corresponds to the `-th element of the vector

θ̂iter at iteration iter.
Step3: Covariance matrix estimation

Compute the parametric covariance matrix:

P̂ = σ2optH
−1 (3.6)

where H denotes the approximated Hessian defined in (3.8) and
σ̂2 is the variance of the empirical estimation of the noise, ê(t),
given by:

ê(t) = y∗(t)−
K∑
k=1

yiterk (t) (3.7)

with yiterk (t) being calculated at the last iteration.

for k = 1, ...,K. The output sensitivity functions
∂ŷk
∂bj,k

and
∂ŷk
∂ai,k

are given

by:

∂ŷk
∂bj,k

=
pβ̂j

1 +
Nk∑
i=1

âi,kpα̂i

uk(t), ∀j = 0, ...,Mk (3.12)
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and

∂ŷk
∂ai,k

= −

Mk∑
j=0

b̂j,kp
β̂j+α̂i

(
1 +

Nk∑
i=1

âi,kpα̂i

)2uk(t), ∀i = 1, ..., Nk. (3.13)

The differentiation order error sensitivity functions are defined accord-
ing to µ:

Case 1: If µ is defined as a global S-commensurate order ν for all subsystems
as in (2.14), then

∂ε

∂µ
=
∂ε

∂ν
= −

K∑
k=1

∂ŷk
∂ν

(3.14)

where the output sensitivity function is given, for k = 1, . . . , K, by:

∂ŷk
∂ν

=

Mk∑
j=0

jb̂j,kp
jν +

Mk∑
j=0

Nk∑
i=1

(j − i)b̂j,kâi,kp(i+j)ν


× ln(p)(
1 +

Nk∑
i=1

âi,kpiν

)2uk(t). (3.15)

Case 2: If µ is defined as the vector of local S-commensurate orders νk, as
in (2.15), then

∂ε

∂µ
=

[
∂ε

∂ν1
, . . . ,

∂ε

∂νK

]
=

[
−∂ŷ1
∂ν1

, . . . ,−∂ŷK
∂νK

]
(3.16)

where the output sensitivity functions are obtained by replacing ν
by νk in (3.15), for k = 1, . . . ,K.

Case 3: If µ is the vector of all the differentiation orders, as in (2.16), then

∂ε

∂µ
=

[
∂ε

∂µ1
, . . . ,

∂ε

∂µK

]
, (3.17)

with

∂ε

∂µk
=

[
−∂ŷk
β0,k

, ...,− ∂ŷk
∂βMk,k

,− ∂ŷk
∂α1,k

, ...,− ∂ŷk
∂αNk,k

]
(3.18)
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where the output sensitivity functions are given for k = 1, . . . ,K:

∂ŷk
∂βj,k

= ln(p)
b̂j,kp

β̂j,k

1 +
Nk∑
i=1

âi,kp
α̂i,k

uk(t) (3.19)

for j = 0, ...,Mk and

∂ŷk
∂α`,k

= − ln(p)â`,kp
α̂`,k

Mk∑
j=0

b̂j,kp
β̂j,k

(
1 +

Nk∑
i=1

âi,kp
α̂i,k

)2uk(t), (3.20)

for ` = 1, ..., Nk.

In the output sensitivity functions (3.15), (3.19) and (3.20), the term
ln(p) cannot be simulated in practive, therefore a numerical computation
is used to calculate these sensitivity functions.

4. Simulation example

To illustrate the performances of the proposed OE method for MISO
FOS as described in Algorithm 1, a numerical example is presented in this
section.

Note that in real implementation, unknown initial conditions can in-
troduce a transient of the simulated model, thus leading to bias on the
estimation. Therefore, a history-function-based initialization [13] or alter-
natively, an infinite-dimensional state-space representation [34] can be used
to better initialize fractional systems, so that the parameter estimation gets
more consistent.

System identification, and particularly for fractional systems, is usually
undertaken only around null initial conditions or around a working point.
Therefore, the identified model is valid only for small variations around the
considered working point.

To avoid local minima first, a global S-commensurate order is estimated
for all subsystems which is used as an initial hit for the second variant
where local S-commensurate orders are estimated, which in turn is used as
an initial hit for the last variant to estimate all differentiation orders.
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The following MISO system is used to generate data:

S′ :


G1(s) =

1

1 + 1.5s1.2 + 0.5s2.8

G2(s) =
0.5

1 + 1.5s1.1 + 0.4s2.5

G3(s) =
1.5

1 + 1.5s0.7 + 0.6s1.6
.

(4.1)

0 50 100 150 200 250 300

-1

0

1

0 50 100 150 200 250 300

-1

0

1

0 50 100 150 200 250 300

-4

-2

0

2

4
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-1

0

1

u
1

u
2

u
3

y
∗

Time (s)

Figure 2. Input/output data used for the identification of
system (4.1)

Three uncorrelated pseudo random binary sequences, ui for i = 1, 2, 3
with amplitudes set between −1 and 1, are applied to the MISO system
(4.1). The sampling time is set to T = 0.2s. The noise-free output y(t),
stemming from the sum of the three outputs, is corrupted by an additive
zero mean Gaussian white noise with a noise to signal ratio (NSR) set to
−15dB (see Fig. 2 with K = 3).

As it is known in system identification, the model structure should be
set as the true system in order to get the less modeling error:

Gk =
b0,k

1 + a1,ks
α1,k + a2,ks

α2,k
, for k = 1, 2, 3. (4.2)

All the parameters are to be estimated, namely the differentiation or-
ders and the coefficients of all the subsystems. As any gradient-based meth-
ods, the initial guess is always tricky as the OE method converges to the
nearest local minimum. Therefore, in order to help the convergence towards
the global minimum, it is recommended to proceed with the proposed three
stage variants.
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Figure 3. All differentiation order estimation versus num-
ber of iterations

The differentiation order evolutions are plotted in Fig. 3: first, a global
S-commensurate order ν (—) is estimated; then local S-commensurate or-
ders are estimated (ν1 for G1 (– –), ν2 for G2(– - ) and ν3 for G3(– *–));
finally, the S-commensurability constraint being released, all differentiation
orders are estimated.

Fig. 4 illustrates the criterion evolution with respect to the three stages,
and confirms that all parameters, as well the differentiation orders as the
coefficients, are correctly estimated with the MISO OE algorithm:

• for the first stage, when a global S-commensurate order is estimated
for all subsystems, the cost function JdB = −3.88dB, so the `2-norm
of the modeling error is around 11.12dB (see criterion J1 in Fig. 4);
• for the second stage when local S-commensurate orders are esti-

mated, the cost function JdB = −7.25dB, so the `2-norm of the
modeling error has decreased to 7.75dB (see criterion J2 in Fig. 4);
• for the last stage, when all differentiation orders are estimated with-

out any constraint, the cost function JdB = −14.98dB, so the `2-
norm of the modeling error is around zero dB (see criterion J3 in
Fig. 4).

A Monte Carlo simulation with 75 runs has been carried out and the
results are provided in table 1. The statistical properties of the algorithm
are remarkable: the mean values are close to the true parameters and the
standard deviations are very low. The proposed MISO OE algorithm for
differentiation order and coefficient estimation is therefore validated in this
example as the estimated parameters have converged to the true ones in a
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Table 1. Monte Carlo simulation with 75 runs for the es-
timation of differentiation orders and coefficients (θ̄ is the
mean and σ̂(θ) the standard deviation of the estimates)

True MISO OE

θ ¯̄θ σ̂θ

b0,1 1 1.0017 0.0115
a1,1 1.5 1.5018 0.0194
a2,1 0.5 0.5023 0.0110
µ1,1 1.2 1.1979 0.0117
µ2,1 2.8 2.7979 0.0162
b0,2 0.5 0.4991 0.0158
a1,2 1.5 1.4994 0.0570
a2,2 0.4 0.4043 0.0475
µ1,2 1.1 1.1013 0.0411
µ2,2 2.5 2.5087 0.0979
b0,3 1.5 1.5032 0.0374
a1,3 1.5 1.4844 0.1022
a2,3 0.6 0.6228 0.1276
µ1,3 0.7 0.6926 0.0490
µ2,3 1.6 1.5932 0.1104
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Figure 4. Cost function versus algorithm iterations

reduced number of iterations (Fig. 4)), and all runs have converged to the
true parameters.
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5. Conclusion

This paper has presented an output-error method for estimating all
the parameters of a fractional MISO system with noisy output. With-
out prior knowledge of the differentiation orders, the proposed MISO OE
algorithm estimates the parameters according to the user’s will: the coef-
ficients with a global S-commensurate order for the whole system, or the
coefficients with local S-commensurate orders (one for each subsystem), or
even the coefficients with all differentiation orders without commensurabil-
ity constraint. In the latter variant, an initialization procedure is proposed,
consisting of estimating a global S-commensurate model first, then local S-
commensurate orders, and finally all differentiation orders. The proposed
algorithms have been validated by Monte Carlo simulation analysis. For fu-
ture works, it would be interesting to help fixing the number of parameters
when the MISO model structure is unknown. Also, extensions to cope with
colored output noise could be investigated by using hybrid Box–Jenkins
MISO models. A further extension of the MISO-oosrivcf algorithm would
be tackle parametric identification with time-delay.
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