N

N
N

HAL

open science

Human-Centered Clustering for Time Series Data

Donato Tiano, Angela Bonifati, Raymond Ng

» To cite this version:

Donato Tiano, Angela Bonifati, Raymond Ng. Human-Centered Clustering for Time Series Data. 3rd
Workshop on Data Science with Human in the Loop @ KDD 2021, Aug 2021, Singapore (virtual),

Singapore. hal-03548284

HAL Id: hal-03548284
https://hal.science/hal-03548284
Submitted on 30 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03548284
https://hal.archives-ouvertes.fr

Human-Centered Clustering for Time Series Data

Tiano Donato
donato.tiano@univ-lyon1.fr
Lyon 1 University

ABSTRACT

Clustering is a fundamental step of several data science pipelines
leading to compute groups of objects with high similarity. In this
paper, we focus on the problem of clustering time series and we
show how we can make this process human-centered. In particular,
by relying on FeatTS, a feature-based semi-supervised framework,
we show how parameters can be tuned by the users in an intuitive
fashion. The considered parameters are: (1) the learning threshold
leading to choose how much labeled data are needed as input; (2)
the cutting threshold leading to prune time series whose distance
is below this threshold; (3) the number of clusters desired as out-
put leading to create different clusters than the number of classes
reflected by the labeled data. In particular, while the first two pa-
rameters allow to tune the amount of the supervision and tweak the
number of significant features, the third parameter leads to show-
case the robustness of the clustering process with respect to the
number of clusters provided as input. Finally, the significance of the
entire multi-step clustering pipeline is empirically demonstrated
through a handful of ablation tests.

ACM Reference Format:

Tiano Donato, Angela Bonifati, and Raymond Ng. 2021. Human-Centered
Clustering for Time Series Data. In DaSH@KDD’21, August 15-16, 2021,
Virtual Conference.. ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION

Clustering time series is a crucial task in data-intensive pipelines.
Nowadays, several algorithms exist, ranging from unsupervised to
semi-supervised [1, 5]. User interaction also varies from one algo-
rithm to another. For instance, active semi-supervised algorithms
[11] ask the user if two time series are equal throughout the entire
process of cluster creation. Seeded kMeans [2] is a semi-supervised
clustering by seeding that asks the user to provide in input the
labels of a portion of the dataset, used for creating the final cluster.
In this case, the user provides an input at the beginning of the pro-
cess and not along the entire procedure. On the other hand, other
approaches [6] are completely unsupervised. Therefore, the user
cannot participate in the process of cluster creation at all.

Prior work has shown the utility of exploiting features in semi-
supervised clustering for variable-length time series [9, 10]. In this
paper, we leverage this work [9, 10] by describing, probing and
assessing the human-centric aspects of the clustering pipeline by

Angela Bonifati
angela.bonifati@univ-lyon1.fr
Lyon 1 University

Raymond Ng
rng@cs.ubc.ca
University of British Columbia

allowing the user to exploit a novel feature-based viewpoint of the
process. We show how to tune the entire algorithmic pipeline of
the algorithm, called FeatTS, a human-centered semi-supervised
clustering method that leverages features extracted from the raw
time series to create clusters that reflect, as much as possible, the
user’s requirements.

This approach differs from existing methods in the literature as
it employs the features of the time series while existing methods
focus on the similarity of the time series themselves [12]. This
approach is superior to other semi-supervised approaches (such as
Seeded K-Means [2]) and unsupervised ones (such as K-Shape [6]),
as shown in [10].

The novelty of FeatTS consists in automatically selecting the
most appropriate statistical features based on the dataset and the
user’s requirements provided as input. In fact, not all the features
have the same quality and choosing a subset of high-quality features
for each dataset is beneficial for the clustering step.

This characteristic of FeatTS turns out to be fruitful in several
real-life data science and data analytics pipelines. Indeed, the fea-
tures of time series are interpretable by humans, thus leading to a
more transparent and human-centric clustering process. To the best
of our knowledge, FeatTSs is the first feature-based semi-supervised
clustering framework with these key properties.

FeatTS allows to select the most appropriate statistical features
based on a parameter called ‘Learning Threshold’. This parameter
allows to tune the amount of supervising for obtaining the features.

Once the features are selected, FeatTS computes the global rela-
tionships between the time series based on their statistical features.
It uses graph networks to obtain such an encoding. Indeed, FeatTS
converts each time series into nodes and creates weighted edges
between such nodes. Each edge represents the distance between
the connected nodes, i.e. the difference between the values of two
different time series using the selected feature. FeatTS prunes the
graphs based on a parameter called ‘Cutting Threshold’. This pa-
rameter allows to choose how many edges should be kept between
the nodes. Therefore, the Cutting Threshold allows to tune the simi-
larity between the time series in the final cluster. Once obtained the
pruned graphs, FeatTS applies a Community Detection algorithm
in order to obtain the global relationship between time series.

In the final step, FeatTS permits to choose the number of final
clusters to obtain. Indeed, by tuning the parameter called ‘Number
of Clusters’, the user can obtain a different number of clusters
from the classes provided in the supervised dataset. Therefore,
FeatTS will holistically merge the results of the communities in a
Co-Occurrence matrix, on which a clustering algorithm (K-Medoid)
is applied. Further details about the method can be found in[10].

In the next sections, we show how FeatTS interacts with the user
for creating clusters corresponding to the user’s needs via the three
fundamental parameters explained in Section 3. Moreover, we show
the impact of the parameters on the creation of the cluster and their

DaSH@KDD °21, August 15-16, 2021, Virtual Event.

flexible tuning. In Section 4, we describe the experimental setup
on real-life data science workflows and on benchmarking datasets.
Section 5 presents the importance of each step of the FeatTS pipeline
by means of a handful of ablation tests. Indeed, we show the results
obtained by FeatTS when some steps of the pipeline are replaced
with an alternative step. We show how the quality of the obtained
clusters deteriorates, thus proving the effectiveness of the clustering
pipeline. Finally, Section 6 concludes the work and pinpoints future
directions of investigation.

& &
\rLeaming Threshold Kr Cutting Threhsold

3) Creation of Graphs
‘ and Application of | —|
C y Detection

1) Extraction and
—| Selection

2) PFA Feature

TS1,0,TS
(TS0~ TSm] Selection

of n Features

K(Number of Cluster
4) Create the 5) Compute Clustering
Co Oceurrence Matrix on Matrix

Figure 1: The algorithmic pipeline of FeatTS.

Quality Evaluation
and Comparison

2 RELATED WORK

Semi-supervised learning is a combination of supervised and unsu-
pervised learning. It uses limited information provided by the user
and a large amount of unknown data in order to train a model. A
subcategory of semi-supervised clustering is Constrained Cluster-
ing, which relies on a user to create two kinds of constraints, i.e.
Must Link and Cannot Link. The Must Link connection between
two data points means that the data points (or time series at large)
should be clustered together. Cannot links do the opposite, thus
leading to separate data points.

There exist various methods to create these constraints which
can be divided in two main categories: Active Learning and Clus-
tering by Seeding. The Active Learning [13] algorithms allow users
to interact during the entire process of creation of the cluster for
modifying the various clusters found by the algorithm.

On the other hand, the Clustering by Seeding algorithms ask
the user to provide in input the labels of some data of the entire
dataset. CobrasTS [11] is one of the most used Active Learning
algorithms. This algorithm allows to create connections between
the time series in the dataset asking the user if two time series that
belong to two overlapping clusters are similar or not. The choice
of the user leads to the creation of linking constraints between
the two time series. Therefore, in this algorithm the user has the
opportunity to personalize the cluster only via the tuning of the
time series similarity.

Seeded KMeans[2] belongs to the Clustering by Seeding methods.
The latter asks the user to provide as input the number of clusters
and to indicate a subset of the data that should be clustered together.
Therefore, in this case the user is not enabled to intervene in the
middle of the computation, and only acts at the very beginning.
Indeed, he provides information about how he wants to build the
final clustering and the algorithm leverages this input for providing
an output cluster that reflects the initial subset provided.

Tiano Donato, Angela Bonifati, and Raymond Ng

Among the unsupervised clustering algorithms, kShape[6] is
certainly the most recent one. It computes the most representative
time series in a given cluster and adds each new time series to one
of these clusters based on the distance between time series. Being
unsupervised, it requires no user input and interaction.

In this paper, we leverage prior work on feature-based time series
clustering. In that prior work [9, 10], however, the tuning aspects
of the clustering pipeline showing the user intervention by means
of suitable parameters as well the significance of each step of the
pipeline and its experimental assessment was not addressed, as we
thoroughly do in this work.

3 HUMAN-CENTERED PARAMETERS

In this section, we discuss the human-in-the-loop aspects of FeatTS,
by focusing on the parameters that can be changed along the
pipeline as shown in Figure 1. With FeatTS the user has more
opportunities to influence the clustering process by setting a num-
ber of parameters within the scope of a flexible pipeline. Moreover,
as shown in the [9], the user can decide to tune the parameters at
the end of each step and visualize the output to appreciate their
effect on the system.

3.1 Learning Threshold

The personalization of the features based on the user needs is the
first problem faced by FeatTS.

Indeed, with a high amount of supervision, the algorithm in-
creases the relevance of the features that best correspond to the
labels provided as input. Higher amounts of supervision lead to ob-
tain as a result clusters that are more similar to the labels provided
on input, thus with a higher quality in terms of obtaining results.

By opposite, whenever using a small or zero amount of supervis-
ing, the algorithm will favor the features based on their variance.
In this case, the obtained clusters are less aligned with the input
labels, but they can be better coupled with the raw data (i.e. the
original time series).

A parameter called ‘Learning Threshold” will help the user to
choose the right amount of supervision. The solution proposed for
this problem represents the first two steps of Figure 1.

The first step is the extraction of the features from the time
series that represent their peculiar characteristics, such as Mean,
Median, Number of Peaks, etc. This process of extraction of the
features can excerpt numerous characteristics of the time series
but most of them lack the necessary quality. Therefore, the feature
selection becomes pivotal in this stage. In particular, we compute
the relevance of the extracted features using the feature values
corresponding to the labeled portion of the time series.

The Benjamini-Yekutieli is a supervised procedure that allows
us to identify the relevance of the features, based on the labels
associated with the time series. In this procedure, FeatTS provides
as input the supervised subset of labels extracted via the Learning
Threshold parameter.

The output of Benjamini-Yekutieli procedure is a list of features
ranked by their p-values. The p-value is an important metric that
allows us to quantify the significance of each feature.

Indirectly, this procedure also affects step 2 of the pipeline. In-
deed, through the computation of the significance computed by the

Human-Centered Clustering for Time Series Data

|

\
ﬁ ‘»’“’.‘1 jing \
‘,,’4” i i J\

TS; TS,

(a) Edge-weighted graph with distances as weights.
28 Vi| Ve | 14
@ @ Vs | Vg 21
Vi | Va| 28

14 21 T T
Vo | V3 | 42

Vi | Vs | 49

® ® Ll

(b) The graph for a single feature after the cutting thresh-
old

featy featy

(c) Application of Community Detection algorithm for
each feature.

Dataset TS5; TS TS3 TSy
TS 1 1-wig 0 1wy
TS, 1-wo 1 0 % © W4
TS3 0 0 1 1wy
TSy | 3-war | §-was | §-was 1

(d) Co-Occurrence Matrix

Figure 2: Illustration of the steps.

procedure, FeatTS adopts an algorithm of feature selection called
PFA (Principal Features Analysis) that permits to compute a precise
number of features with an acceptable relevance.

PFA is a variation of Principal Component Analysis (PCA). The
key difference is that PFA preserves the original values of the fea-
tures and thus the distance between them. Thus, we can leverage
the concept of explaining variance, representing the ratio between
the variance of one single feature and the sum of variances of all
individual features, in order to obtain the exact number of features
to be adopted in the process.

Figure 1 shows that the Learning Threshold parameter has an im-
pact on step 1 and step 2 of the pipeline. In particular, the Benjamini-
Yekutieli procedure is going to leverage the labels provided by the
user during the supervised phase in order to provide the importance

DaSH@KDD °21, August 15-16, 2021, Virtual Event.

of each feature. Subsequently, the PFA leverages the importance of
the features in order to select the subset of features.

3.2 Cutting Threshold

The primary goal of any cluster algorithm is to detect the similarity
between the input data points. At this stage, we want to leave to
the users the possibility of playing with the quality of the similarity
by using a parameter that allows them to increase or decrease the
similarity between the various time series.

In order to solve this problem, we chose to extract and evalu-
ate the global relationships between the time series. This solution
allows us to transpose the problem to another domain, i.e. to the
graphical domain.

Therefore, for each feature chosen by PFA, we create a different
edge-weighted graph network where the nodes represent the time
series of the initial dataset. The nodes are connected via weighted
edges, where the weights represent the distances computed by
subtracting the absolute values of the feature of two connected
time series. After computing all these distances, we create a fully
connected graph network for each feature as shown in Figure 2a.

These graphs will be used to extract the global relationships
between the time series. However, in order to obtain the level of
similarity desired by the user, we will need to eliminate some arcs
between the nodes.

This task will be done using the ‘Cutting Threshold’ parameter
and the solution proposed for this problem represents the third step
of Figure 1. The value of this parameter indicates the percentage of
lower distances to be kept for each feature encoded as a graph.

Therefore, if the user wants to obtain small clusters formed by
time series with a high similarity, they have to delete several arcs
within the graphs. Hence, they have to choose a low value of the
cutting threshold. On the other hand, if the aim is to obtain large
clusters at the expense of similarity, in this case the user should keep
as many arcs as possible. For this reason, a high cutting threshold
is preferred. As an example, in Figure 2b we decide to keep the 50%
of the edges for the fi.

Once the edges are pruned, FeatTS extracts the actual global
relationships through a process called Community Detection. It
creates communities of vertices in the graphs based on the edges
for each feature extracted from PFA, as shown in Figure 2c.

3.3 Number of Clusters

In classical semi-supervised clustering algorithms, the number of
clusters is directly extracted using the classes provided as input
by the user. This solution is limited since the user who might be
interested in finding a different number of clusters from those in
the supervised dataset cannot really obtain those through the clus-
tering step. We show that the third parameter allows to obtain this
behavior. Therefore, with the third parameter, it will be possible to
choose the number of final clusters that the user wants to visualize.

The importance of this parameter is twofold. The first meaning
is the possibility of finding undefined classes in the supervised
dataset, providing additional information about the input dataset
and further insights, as we will be showing in the experiments in
Section 4. Moreover, this parameter combines all the communities
of the global relations into a precise number of clusters. Indeed,

DaSH@KDD °21, August 15-16, 2021, Virtual Event.

the number of communities detected may be different in each fea-
ture. Therefore, by defining a precise number of clusters, it favors
the relationships obtained from a feature that has a number of
communities equal to the number of clusters.

Thus, the next step of the pipeline needs to organize all the
communities detected in a single data structure. The underlying
intuition is that if two time series are similar, they will be similar
for the majority of their discriminating features. We employ a Co-
Occurrence matrix to put this into practice. The matrix consists
of recording for each pair of time series how many times they are
grouped within the same community. Intuitively, the more times
they are placed within the same community, the more similar the
time series are. Thus, we create a matrix in which the rows and
columns contain all the time series of the dataset and each cell in
the matrix corresponds to the similarity between time series in row
and column. The similarity between the time series shall leverage
the quality of each feature. The goal is to prioritize the features
for which the number of communities is sufficiently close to the
number of clusters requested by the user. Hence, the similarity
between two time series will be stronger in the feature with the
same number of communities requested by the user. Indeed, as
shown in Figure 2d, we have computed the Co-Occurrence Matrix
on the communities detected in Figure 2c. The similarity between
two equal time series is always 1, while the similarity between the
other time series is computed dividing the number of times that
the two time series are in the same communities by the number
of features. These values are multiplied by a weight that depends
on the number of clusters that the user has chosen. Notice that the
communities extracted from the graphs are not overlapping. For
that reason, the Co-Occurrence Matrix is fully asymmetrical.

Thus, if the users want a high number of clusters, they will favor
the features with a high number of communities. The resulting clus-
ters will be composed of a restricted number of time series, but with
a high similarity. Viceversa, a small number of clusters requested
will favor the features with a small number of communities. In this
case, the resulting clusters will be composed by a high number of
time series but with a low similarity.

With the Co-Occurrence matrix computed, we can quantify the
similarity between two time series. In order to prepare the creation
of the time series clusters, we need to calculate the distances be-
tween the rows of the Co-Occurrence Matrix in order to apply the
standard K-Medoid [7] algorithm to extract clusters of time series
that have the smallest distance among them.

4 EXPERIMENTAL STUDY

In this section, we have shown the impact of the tuning of the
three parameters on the clustering pipeline. We use real-life time
series courtesy of the Personalized Medicine Department at the
European Hospital George Pompidou in Paris. These time series
contain signals from patients suffering from kidney diseases. A
global assessment of renal function is often ascertained by estimat-
ing the rate of filtration, called the glomerular filtration rate (GFR).
GFR estimates how much blood passes through the glomeruli each
minute. Thus, it is very important to understand when a patient
needs medical treatment before the GFR reaches its lowest value.
The usage of the real-time series supports the understanding
of the importance of the humans in the entire machine learning

Tiano Donato, Angela Bonifati, and Raymond Ng

process. Moreover, the possibility to interact with the algorithm, via
the tuning of some parameters, could help the humans understand
the underlying process and its results.

We have tested also the system robustness to the various param-
eters also for other benchmarking datasets adopting the UCR Time
Series Archive[4]. All the experiments have been executed on a
Server running Linux with 64GB of RAM, Intel Xeon CPU Skylake,
IBRS @ 2.6GHz.

4.1 Probing the Learning Threshold

In this section, we will evaluate how FeatTS behaves when the
Learning Threshold changes. In this experiment, we consider the
quality of the resulting clusters by comparing the original labels
of the dataset with those obtained from the final clusters. In order
to have a measure for the quality of the clusters, we use a metric
called Adjusted Mutual Information (AMI) [8].

Therefore, the purpose of this experiment is to evaluate how the
quality of the resulting clusters increases as the learning threshold
increases as well. This operation will be repeated for each value of
the threshold. In our case, we decided to increase the threshold by
10% starting from 10% up to 90%.

In addition, in this experiment we set the Cutting Threshold
to 80% and we set the number of clusters equal to those required
within the supervised dataset.

Therefore, by modifying the amount of supervision and then
consequently increasing the Learning Threshold, we show how the
quality of the clustering process can be improved. Indeed, as shown
in Figure 6, the quality of the resulting clusters increases where the
Learning Threshold increases. However, this increase stops when
we choose to use only 40% of the labels. This happens because from
50% onwards, the features chosen by PFA are equal, therefore the
results obtained by FeatTS are the same. As shown also in the exper-
iments in Figure 7 on other datasets, even at low threshold values,
the same features can be selected as at high threshold values. This
is often due to a small number of features that can actually be used.
For space reasons, we omit the other results on UCR benchmarking
datasets and make them available at an external link .

4.2 Probing the Cutting Threshold

In this section, we evaluate how the similarity of the time series
within community detection varies based on the value of the Cut-
ting Threshold provided by the user. Based on the explanation in
Section 3.2, the similarity between time series should decrease as
the percentage of the Cutting Threshold increase.

In order to prove this statement, we extract all the communities
from the features chosen by PFA. Subsequently, we compute all the
distances between the time series that belong to each community
by leveraging DTW [3]. These distances will then be combined into
an average for each community. This computation is shown in the
Formula 1 where M, represents the average of all the time series
TS that belong to a single community Cy.

zl'f’;'o DTW(TS;,TS;)

|Ck |- |C—1]
2

M, =V TS;,TS; € Cy,

Uhttps://cutt.ly/UmyE10Y

https://cutt.ly/UmyE10Y

Human-Centered Clustering for Time Series Data

3) Creation of Graphs
and Applicati

1) Extraction and
Selection
of n Features

[TS1...TSm]

ion of [TS1...TSm] —|
etection

1) Dynamic Time Warping

Commui

2) Random Features
Selection

3) Creation of Graphs

Community Detection

and Application of -‘

L

Quality Evaluation L

and Comparison

4) Create the
Co Occurrence Matrix

5) Compute Clustering
on Matrix

4) Create the
Co Occurrence Matrix

— o

—F

Compute Clustering
on Matrix

Figure 3: DTW Pipeline

AMI

0.5

Learning Threshold Values

Figure 6: AMI for each Learning Threshold.

L
AMI

AMI
°
T

AMI
AMI

}—

Figure 4: Random Features Pipeline

Quality Evaluation
and Comparison

DaSH@KDD °21, August 15-16, 2021, Virtual Event.

[TS1,0TSm] ——|

1) Extraction and
Selection

of n Features

2) PFA Feature
Selection

s

Quality Evaluation
and Comparison

Figure 5: kMeans Ablation Pipeline

8b, we can see that the drop of the similarity is about 7%. In order
to compute the similarity, we have applied the formula 3. Indeed,
assuming that TS; and TS; are two time series that belong to the
dataset, we have normalized the average distances of each threshold
My, with the maximum distance found between two time series

Myp,

Sth =

max(DTW (TS, TS;))

®)

We report in Figure 9 some results for UCR datasets that are
compatible with those obtained with the GFR dataset and show a
similar trend. For space reasons, other results are omitted and can
be found at the following link 2 .

Threshold

(a) Average

tances

Average
Distances

2449
3060
3966
4366
4354
4625
4648
4661
4662

Dis-

Similarity

Cutting Threshold Values

(b) Similarity

Figure 8: Similarity and distances within the Communities.

Learning Threshold Values

Learning Threshold Values

(c) Coffee AMI (d) UMD AMI
Figure 7: AMI on UCR Datasets.

The obtained average of the single community will be combined
again into the average of the other communities for the features
chosen by PFA.

Therefore, assuming that C is the set of all the communities found
for all the features, we compute the final average as in formula 2.
This final average called M;j, corresponds to the distance average
of the chosen threshold.

Ly M
IC|

In this experiment, we set a percentage of Learning Threshold
of 20% and we set the number of clusters equal to those required
within the supervised dataset.

Table 8a shows that the average of the distances between the time
series belonging to each community on the GFR Dataset increases
as the Cutting Threshold increases. The increasing of the threshold
corresponds to the decreasing of the similarity. Indeed, in Figure

My, =VCr € C, @)

Distances

Distances

4,000

3,000

2,000

1,000

Cutting Threshold Values

(a) Plaid Distances

Cutting Threshold Values

(c) Meat Distances

Distances

Distances

40

(

b) Coffee Distances

Cutting Threshold Values

L
70

60
Cutting Threshold Values

(d) UMD Distances

Figure 9: Distances within the Communities.

Zhttps://cutt.ly/YmyE6PL

https://cutt.ly/YmyE6PL

DaSH@KDD °21, August 15-16, 2021, Virtual Event.

M
;i (A }M

. N "l / il
» H\W‘ Mu” ‘\WN Lo \ \f/ N}\ /
W 1\ L

(a) Acute Dialysis (b) Chronic Dialysis
Figure 10: Time series of the GFR signal for patients treated
for Acute and Chronic Dialysis.

4.3 Probing the Numbers of Clusters

In this experiment, we show the importance of deciding upon the
number of clusters to be extracted despite a different number of
labels provided as input. The GFR dataset shows two classes called
Kidney Failure and Not Kidney Failure. With the help of a domain
expert, we have increased the number of classes to analyse the
behaviour of FeatTS with classes different from those given as
input. After interacting with the expert, we obtained out of the
Kidney Failure class two other classes, namely Chronic Dialysis
and Acute Dialysis.

Patients under chronic dialysis need to go regularly at the hos-
pital for health care. Chronic kidney disease is a kidney disease
in which there is gradual loss of kidney function over a period of
months to years. Acute kidney injury is an abrupt loss of kidney
function that develops within 7 days. Basically, an acute kidney
injury occurs when the kidneys are exposed to something harmful,
or which is considered harmful by the body.

In this experiment, we show the usefulness of FeatTS to help
the medical doctors separate the cases of chronic dialysis from the
acute dialysis while not having these labels available as input. In
Figure 10 we show the two classes discovered by FeatTS.

5 ABLATION TEST

In this section, we present a handful of ablation tests devoted to
showing the importance of each step of the FeatTS pipeline. These
tests were performed on several datasets belonging to the UCR.
DTW versus Features. The idea behind this ablation test is to
show the importance of adopting the distance between the features
instead of using the distance between the raw time series using
Dynamic Time Warping (DTW) [3]. In a nutshell, this corresponds
to removing step 1 and 2 from the pipeline in Figure 1, i.e. the
extraction and the selection of the features using PFA, as shown
in Table 1. The latter shows the results obtained by replacing the
distances between the features with the distance computed by the
DTW directly on the time series. The results are expressed in the
column called DTW.

The obtained results showed that, 14 datasets (out of 15) have
a worse behavior if DTW is adopted. Indeed, only in one dataset
(OliveOil) the usage of DTW outperforms the usage of the features.
On average, we have a difference in terms of AMI of 0.31. This
ablation test confirms the importance of using distances between
features instead of merely using distances between raw data.
P-value versus Random. Table 1 shows the results removing the
ordering of the features based on their relevance, as shown in Figure
4. We repeated this test 5 times and we averaged the results. The

Tiano Donato, Angela Bonifati, and Raymond Ng

column Rand represents the average of the results obtained by
FeatTS using Random Features.

The results in Table 1 show that the performance of the algorithm
drastically deteriorates for the majority of the datasets (13 out of
a total of 15 datasets) if random features are employed. Indeed,
computing the average overall the results obtained by the two
experiments, we have a difference of 0.35 in terms of AMI. Therefore,
the ordering of the features based on their relevance turns out to
be indispensable in order to achieve good results.
kMeans versus FeatTS. The purpose of this ablation test is to
show the importance of capturing the global relationship among
the raw time series samples through graph encoding and of the
subsequent application of the Community Detection algorithm as
in this approach. Therefore, we replace step 3,4 and 5 as in Figure
1 with k-Means, i.e. a classical clustering algorithm in its multidi-
mensional version. Hence, once the features have been extracted
and selected through PFA in step 1 and 2, we apply the k-Means
algorithm to obtain the clustering, as shown in Figure 5.

In Table 1, we show the results obtained capturing the global
relationship among the raw time series samples through graph
encoding and of the subsequent application of the Community
Detection. The column k-Means shows the results obtained by k-
Means among the features selected by each dataset used in this
experiment. We have highlighted in bold the best results obtained
between k-Means and FeatTS for each dataset.

The results show that FeatTS outperforms k-Means in the ma-
jority of the cases. Indeed, there are only four datasets for which
k-Means shows slightly better results, namely UMD, Meat, Cof fee
and OliveOil. On average, the results obtained by FeatTS outper-
forms the results obtained by k-Means of 0,08 in terms of AMI.

This ablation test, therefore, shows the importance of capturing
the global relationships between the various time series in order to
achieve better results in terms of performance.

Dataset FeatTS | DTW | Rand | k-Means
ScreenType 0,02 0,01 0 0,01
UMD 03 0,27 0,01 0,42
TwoLeadECG 0,88 0 0,02 0,75
ECG200 0,32 0,08 0,06 0,16

Computers 0,09 0 0 0

Coffee 0,8 0,01 0,12 0,9
GunPoint 0,56 0 0 0,26
Arrowhead 0,28 0,2 0,02 0,24
ITtalyPowerDemand | 0,57 0 0 0,51
Meat 0,42 0 0,16 0,48
OliveOil 0,15 0,32 0,2 0,35
Plaid 0,35 0,01 0,11 0,03
Asphalt Regularity | 0,54 0 0 0,35
Asphalt Obstacles 0,38 0,27 0,02 0,37
Gesture Pebble 0,25 0,02 0 0,16

Table 1: Ablation Test Results.
6 CONCLUSION AND FUTURE WORK

In this article we have used FeatTS to showcase the human-centered
aspects of a clustering pipeline. To this end, three parameters
(namely ‘Learning Threshold’, ‘Cutting Threshold’ and ‘Number
of clusters’) have been introduced in the clustering pipeline and
probed through an extensive analysis.

This work is the first to make the user aware of the choices made
in a clustering step and to make the latter process transparent.
Future work can be devoted to introduce more tuning, by studying
the impact of the selected features on the final results and make
the latter more explainable.

Human-Centered Clustering for Time Series Data DaSH@KDD °21, August 15-16, 2021, Virtual Event.

REFERENCES [7] Hae-Sang Park and Chi-Hyuck Jun. 2009. A simple and fast algorithm for K-
[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time- medoids clustering. Expert systems' with applicatz:ons 36,2 (2099)’ 3336-3341.
series clustering—a decade review. Information Systems 53 (2015), 16-38. (8] Sm}oné Romano, Nguyen Xuan Vinh, James Bailey, and Karin Verspoor. 2016.
[2] Sugato Basu, Arindam Banerjee, and Raymond Mooney. 2002. Semi-supervised AdjusFmg for chance clustering comparison measures. The Journal of Machine
clustering by seeding. In In Proceedings of ICML. Learning Research 17, 1 (2016), 4635-4666.

[3] Donald J. Berndt and James Clifford. 1994. Using Dynamic Time Warping to [9] D'onato Tiano, Angela Bonifati, z{nd Raymond Ng. 2021f FeatTS: Feature-based
Find Patterns in Time Series. In Proceedings of the 3rd International Conference on Time Series Clustering. In Proceedings of the 2021 International Conference on Man-

Knowledge Discovery and Data Mining (Seattle, WA) (AAAIWS’94). AAAI Press, agement of Data (SIGMOD °21). Association for Computing Machinery, 5 pages.

359-370. [10] Donato Tiano, Angela Bonifati, and Raymond Ng. 2021. Feature-driven Time
[4] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Series Clustering. In Proceedings of the 24th International Conference on Extending

Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Datqbase Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021. OpenPro-

Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and ceedings.org, 349-354. B . .

Hexagon-ML. 2018. The UCR Time Series Classification Archive. https://www. [11] Toon Van Craenendonck, Wannes Meert, Sebastijan Dumanci¢, and Hendrik

cs.ucr.edu/~eamonn/time series data 2018/. Blockeel. 2018. Cobras ts: A new approach to semi-supervised clustering of time
[5] T Warren Liao. 2005. Clustering of time series data—a survey. Pattern recognition series. In International Conference on Discovery Science. Springer, 179-193.

[12

Haishuai Wang, Qin Zhang, Jia Wu, Shirui Pan, and Yixin Chen. 2019. Time series
feature learning with labeled and unlabeled data. Pattern Recognition (2019).
Sicheng Xiong, Javad Azimi, and Xiaoli Z Fern. 2013. Active learning of con-
straints for semi-supervised clustering. IEEE Transactions on Knowledge and Data
Engineering 26, 1 (2013), 43-54.

38, 11 (2005), 1857-1874.
[6] John Paparrizos and Luis Gravano. 2016. K-Shape: Efficient and Accurate Clus-
tering of Time Series. SIGMOD Record. (2016). (13

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

	Abstract
	1 Introduction
	2 Related Work
	3 Human-Centered Parameters
	3.1 Learning Threshold
	3.2 Cutting Threshold
	3.3 Number of Clusters

	4 Experimental Study
	4.1 Probing the Learning Threshold
	4.2 Probing the Cutting Threshold
	4.3 Probing the Numbers of Clusters

	5 Ablation Test
	6 Conclusion and Future Work
	References

