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ABSTRACT

The lottery ticket hypothesis states that a randomly-initialized neural network con-
tains a small subnetwork which, when trained in isolation, can compete with the
performance of the original network. Recent theoretical works proved an even
stronger version: every sufficiently overparameterized (dense) neural network
contains a subnetwork that, even without training, achieves accuracy comparable
to that of the trained large network. These works left as an open problem to extend
the result to convolutional neural networks (CNNs). In this work we provide such
generalization by showing that, with high probability, it is possible to approximate
any CNN by pruning a random CNN whose size is larger by a logarithmic factor.

1 INTRODUCTION

Many impressive successes in machine learning are reached through neural network architectures
with a huge number of trainable parameters. Consequently, substantial research in the field aims
at reducing the size of such networks while maintaining good accuracy; e.g., for deployment in
resource constrained devices (Yang et al., 2017).

A major empirical fact of such endeavour is the contrast between the initial model overparametriza-
tion, which appears necessary for effective training, and the extent to which the size of the resulting
model can be reduced through compression techniques. Among the latter, pruning methods appear
as a mature and efficient way of achieving significant compression, often without incurring any ac-
curacy loss (Blalock et al., 2020). Recently, the aforementioned contrast between the initial and final
number of parameters has been addressed by the lottery ticket hypothesis (Frankle & Carbin, 2019),
or LTH for short, which states that any randomly initialized network contains lottery tickets; that
is, sparse subnetworks that can be trained just once and reach the performance of the fully-trained
original network. This hypothesis was first verified experimentally, leveraging pruning methods to
identify the lottery tickets (Frankle & Carbin, 2019; Lee et al., 2019).

Ramanujan et al. (2020) then proposed a stronger version of the hypothesis, named strong lottery
ticket hypothesis (SLTH) by Pensia et al. (2020): it stipulates that a network with random weights
contains, with high probability, sub-networks that can approximate any given sufficiently-smaller
neural network. In other words, a sufficiently large and randomly initialized network that can be
successfully trained for a task, could instead be suitably pruned to obtain a network that, even with-
out training, achieves good accuracy. Experimental support for this stronger version were reported
by Ramanujan et al. (2020); Zhou et al. (2019); Wang et al. (2020), which find lottery tickets in a
range of architectures, including convolutional neural networks (CNNs). A first rigorous proof of
the SLTH was given by Malach et al. (2020) for the case of dense networks (i.e., consisting of fully
connected layers). Pensia et al. (2020) and Orseau et al. (2020) successively improved this result by
showing that logarithmic over-parametrization is sufficient. Their results are also restricted to dense
networks and they leave as an open problem to extend it to CNNs.
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Our contributions. We extend and complete the proof of the SLTH (and thus, also, of the LTH),
for classical network architectures which can combine convolutional and fully connected layers.
More precisely, we prove that any CNN with given weights can be approximated by pruning a CNN
with random weights (random CNN for short), with the latter being larger than the former by a
logarithmic factor. We also provide basic experiments showing that starting from a random CNN
which is roughly 30 times larger than LeNet5, it is possible to compute in few hours a pruning
mask that allows to approximate the trained convolutional layers of LeNet5 with relative error 10−3,
even when ignoring some hypothesis of our theoretical result. Our theoretical analysis follows the
approach of Malach et al. (2020) and make use of two layers to approximate one. We borrow from
Pensia et al. (2020) the use of random subset sum (RSS) (Lueker, 1998) to approximate a given
weight via the sum of a subset of a sample of random weights, and carefully design instances of
RSS via a combination of two convolutional layers. By controlling the error accumulated by each
layer with Young’s convolution inequality, we establish the following result.

Informal version of Theorem 1. Given ε, δ > 0, any CNN with k parameters and
` layers, and kernels with `1 norm at most 1, can be approximated within error ε
by pruning a random CNN withO(k log( k`

min{ε,δ} )) parameters and 2` layers with
probability at least 1− δ.

This result generalizes those by Pensia et al. (2020), Orseau et al. (2020), and Malach et al. (2020)
as dense layers can be regarded as convolutional layers where kernel and input sizes match.

Roadmap. After discussing related work in the next section, we state our theoretical results along-
side a high-level idea of the proofs. Successively, we report our experimental results. Finally, in
Section 4, we provide detailed proofs of our statements.

1.1 RELATED WORK

Pruning methods are classical neural network compression strategies that date back to the 80’s (Le-
Cun et al., 1989b; Mozer & Smolensky, 1988). We recommend the recent survey Blalock et al.
(2020) for an overview of the current state of research on these techniques.

As for the lottery ticket hypothesis, Lange (2020) summarizes the progress on the topic until the
results by Malach et al. (2020). In the following we briefly mention works which are not discussed
in Lange (2020). Cosentino et al. (2019) shows that lottery tickets can be adversarially trained,
yielding sparse and robust neural networks. Soelen & Sheppard (2019) shows that lottery tickets are
transferable, in the sense of showing remarkable accuracy for tasks other than the original one for
which they have been found. Sabatelli et al. (2021) further shows that minimal retraining on a new
task allows lottery tickets to often achieve better generalization than models trained ad-hoc for the
task. Yu et al. (2020) empirically supports that the LTH holds also in the context of reinforcement
learning and natural language processing. Diffenderfer & Kailkhura (2021) shows that lottery tickets
are robust to extreme quantization of the weights. Aladago & Torresani (2021) provides a method
to train networks where each initial weight is restricted to few possible random values. An extreme
case of the latter is to share only a single (random) value among all weights, and focus the training
solely on finding the best architecture (Gaier & Ha, 2019).

Our work also relates to recent papers investigating properties of random CNNs, such as Ulyanov
et al. (2020) which observes that random CNNs already seem to capture some natural image statistics
required for tasks such as de-noising and inpainting.

2 THEORETICAL RESULTS

We start by introducing some of our notation. The rest of it follows Goodfellow et al. (2016) with
minor modifications, so we defer a full description to Section 4.1.

Given n ∈ N, we denote the set {1, . . . , n} by [n]. The symbol ∗ represents the convolution oper-
ation, � represents the element-wise (Hadamard) product, and σ represents ReLU activation func-
tion. Finally, the notation ‖·‖1 refers to the sum of the absolute values of each entry in a tensor while
‖·‖max denotes the maximum norm: the maximum among the absolute value of each entry. Those
are akin to vector norms and should not be confused with operator norms.
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We restrict our setting to convolutional neural networks f : [0, 1]D×D×c0 → RD×D×c` of the form

f(X) = K` ∗ σ(K`−1 ∗ · · ·σ(K1 ∗ X)),

where Ki ∈ Rdi×di×ci−1×ci , and the convolutions have no bias and are suitably padded with zeros.
The restrictions on tensor sizes and the exclusion of bias terms1 aim only to ease presentation.

Our initial goal is to approximate a convolution with a single kernel, as depicted in Figure 1, using
convolutions with (pruned) random kernels. We achieve this by the means of the structure presented
in Figure 2, using two convolutions with random tensors.

D

D

c

X

∗

d

d

c

K

=

D

D

K ∗ X

Figure 1: Schematics of the convolution between an input X ∈ RD×D×c and a kernel K ∈ Rd×d×c
resulting in a D ×D matrix.

Lemma 1 asserts that, with high probability, we can prune this structure to approximate the output
of a convolution with any given kernel as long as the amount of random kernels is large enough.
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Figure 2: Schematics of the use of two convolutions to approximate the operation depicted in Fig-
ure 1. The elements of the set U =

{
U(1), . . . ,U(n)} and V are random tensors. Notice that the

intermediate tensor U ∗ X has size D ×D × n and yet final output is a D ×D matrix.

Lemma 1 (Single kernel). Let D, d, c, n ∈ N, and ε, C ∈ R>0, where n ≥ C log d2c
ε , U ∈

Rd×d×c×n, V ∈ R1×1×n×1, and S ∈ {0, 1}d×d×c×n. Let us further assume that the entries of
U and V are i.i.d. random variables following a Unif([−1, 1]) distribution, and define

g(X) = V ∗ σ(U ∗ X) and gS(X) = V ∗ σ((U� S) ∗ X)

thus yielding a random CNN g : [0, 1]D×D×c → RD×D×1 and its pruned version gS w.r.t. the
mask S.

Then, we can choose constant C independently from other parameters so that, with probability at
least 1− ε, for all K ∈ [−1, 1]d×d×c×1 with ‖K‖1 ≤ 1, there exists a pruning mask S such that

sup
X∈[0,1]D×D×c

∥∥K ∗ X− gS(X)
∥∥
max

< ε.

Proof idea. We leverage the absence of negative entries in the input and an initial pruning of U to
bypass the ReLU non-linearity. This allows us to virtually replace the operations in g by a single

1If biases are present, the structures used in the proofs also puts them in a RSS configuration. Thus the
results can be readily adapted by replacing the d2i terms by d2i + 1.
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convolution with a random kernel obtained by combining U and V. Each entry of this resulting
kernel is the sum of n random variables, where we can choose to include/exclude each term in the
sum by choosing to keep/prune the relevant weights. We finish the proof by applying Theorem 2 to
conclude that n variables suffice to approximate all entries, simultaneously, with enough precision
to ensure the thesis.

We now extend Lemma 1 to an entire layer. As before, a detailed proof is provided in Section 4.3.
Lemma 2 (Convolutional Layer). Let D, d, c0, c1, n ∈ N, and ε, C ∈ R>0, where n ≥
C c1 log

d2c0c1
ε , U ∈ Rd×d×c0×n, V ∈ R1×1×n×c1 , S ∈ {0, 1}d×d×c0×n and T ∈ {0, 1}1×1×n×c1 .

Let us further assume that the entries of U and V are i.i.d. random variables following a
Unif([−1, 1]) distribution, and define

g(X) = V ∗ σ(U ∗ X) and gT,S(X) = (V� T) ∗ σ((U� S) ∗ X)

thus yielding a random CNN g : [0, 1]D×D×c0 → RD×D×c1 and its pruned version gT,S(X) w.r.t.
the masks S and T.

Then, we can choose constant C independently from other parameters so that, with probability at
least 1− ε, for all K ∈ [−1, 1]d×d×c0×c1 with ‖K‖1 ≤ 1, there exist masks S and T such that

sup
X∈[0,1]D×D×c0

‖K ∗ X− gT,S(X)‖max < ε.

Proof Idea. The lemma follows by applying Lemma 1 to each kernel independently, so that all of
them are approximated by a factor at most ε

c1
; the latter approximation allows to apply the union

bound so that the desired approximation holds simultaneously for all c1 output kernels with proba-
bility at least 1− ε.

We are now ready to extend the previous approximation result from a single layer to the entire
network, thus proving our main result. A detailed proof is given in Appendix B.
Theorem 1 (Convolutional Network). Let D, d, c0, c1, ` ∈ N, and ε, C ∈ R>0. For each
i ∈ [`], let L2i−1 and L2i be tensors with size di × di × ci−1 × (Cci log

ci−1cid
2
i `

min{ε,δ} ) and 1 × 1 ×
(Cci log

ci−1d
2
i ci`

min{ε,δ} )×ci, respectively. Furthermore, for each i ∈ [2`], let Si ∈ {0, 1}size(Li). Finally,

let us assume that the entries of L1, ...,L2` are i.i.d. random variables following a Unif([−1, 1])
distribution, and define

g(X) = L2` ∗ σ(L2`−1 ∗ · · ·σ(L1 ∗ X)) and

gS1,...,S2`(X) = (L2` � S2`) ∗ σ[(L2`−1 � S2`−1) ∗ · · ·σ[(L1 � S1) ∗ X]]

thus yielding a random 2`-layer CNN g : [0, 1]D×D×c0 → RD×D×c1 and its pruned version
gS1,...,S2`(X) w.r.t. masks S1, ...,S2`.

Let F be the class of functions from [0, 1]D×D×c0 to RD×D×c` such that, for each f ∈ F

f(X) = K` ∗ σ(K`−1 ∗ · · ·σ(K1 ∗ X)),

where, for each i ∈ [`], Ki ∈ [−1, 1]di×di×ci−1×ci and ‖Ki‖1 ≤ 1.

Then, we can choose constant C independently from other parameters so that, with probability at
least 1− δ, the following holds for every f ∈ F:

inf
∀i∈[2`],Si∈{0,1}size(Li)

sup
X∈[0,1]D×D×c0

∥∥∥f(X)− gS1,...,S2`(X)
∥∥∥
max

< ε.

Proof Idea. The proof leverages Lemma 2 in an analogous way to how the latter relied on Lemma
1; namely, we apply Lemma 2 by requiring an approximation factor that guarantees, with sufficient
probability, that a suitable approximation is reached across all layers simultaneously. The latter
requirement is responsible for the ` factor which appears in the logarithms of the dimensions of each
random tensor Li.
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2.1 DISCUSSION ON THEOREM 1

Size analysis. For each layer, we emulate a 4-D kernel K with size di×di×ci−1×ci with two 4-D
kernels U and V with size di×di×ci−1×n and 1×1×n×ci respectively with n = Cci log

ci−1cid
2
i `

min{ε,δ} .
Under the technical assumption ci = O(d2i ci−1) for i ∈ [`], the size of V is within a constant factor
of that of U, and the whole random network we prune has sizeO(k log k`

min{ε,δ} ), where k is the size
of the network we want to approximate. Note that this technical assumption is met for all classical
convolutional networks used for image processing with a reasonably small constant in the big O
notation. We come back on this assumption below.

Limitations. The properties of convolutional layers require stronger hypotheses in Theorem 1
when compared with the results for dense layers Malach et al. (2020) or Pensia et al. (2020). First,
we require non-negative inputs for all layers, however, since the output of the ReLU function is
never negative, this restriction is only relevant for the input of the first layer. The mentioned works
avoid this restriction by exploiting the identity a = σ(a) − σ(−a) to deal separately with the
positive and negative entries. The fact that each entry of the output of a convolution is affected by
potentially multiple input entries prevents us from employing a similar strategy. Nonetheless, we
remark that, while this is a relevant theoretical indication of the challenges imposed by the operation
of convolution, in practice the inclusion of biases suffices to easily convert any CNN with a domain
including negative values into an equivalent CNN that takes only non-negative inputs. Finally, the
possibly multidimensional entries of convolutions also motivates the restriction on the norm of the
target weight tensors in terms of the 1-norm.

Generalizations. For the sake of simplicity, we state and prove Theorem 1 in a restricted setting.
It is worth remarking a series of generalizations that can be obtained at the mere cost of making
the proofs more technically involved. We defer a more complete treatment of such extensions to a
journal version of this work. First, the proof could consider also other parameters, such as stride,
padding, average pooling and other operations that can be seen as convolutions. Moreover, we could
consider more general convolutions, not necessarily 2-D, operating on tensors of any sufficiently
large dimension. In particular, it is not necessary to assume that V has size 1×1×n×ci in the above
analysis. Using a 5-D tensor with size d× d× ci−1× (n/ci)× c1 for U, an appropriate convolution
U∗X would result in aD×D×(n/ci)×ci tensor, and we could use a 1×1×(n/ci)×ci tensor for V
without the need for the mask T by performing in parallel ci appropriate convolutions. Note that the
size of V is then smaller than the size of U. The technical assumption used in the above size analysis
is thus not necessary to guarantee that logarithmic over-parametrization is sufficient. Finally, observe
that that our results generalize to any probability distribution for the weights that contains a b-scaled
Unif([−a, a]) for some constant a > 0 (in the sense of Definition 2 in Appendix C), where the
parameters a and b only impact the constants in the theorem.

3 EXPERIMENTS

As networks with higher parameter count tend to be more robust to noise, we stick to the small CNN
architecture used by Pensia et al. (2020), namely LeNet5 (LeCun et al., 1989a). We conduct our
experiments by first training a LeNet5 with ReLU activations to 98.99% test accuracy on MNIST
dataset (Lecun et al., 1998) and, to avoid well-known limitations of the MNIST dataset (in particular
its large number of zero entries), we also trained it on the Fashion-MNIST dataset (Xiao et al., 2017)
to 89.12% test accuracy. We adopted Kaiming Uniform (He et al., 2015) for weight initialization,
a batch size of 64 and trained for 50 epochs using ADAM optimizer (Kingma & Ba, 2015) with
learning rate of 0.001, exponential decay of 0.9 and momentum estimate of 0.999, the default values
in Flux.jl (Innes et al., 2018) machine learning library.

Once the network is trained we change its weights for a random subset sum approximation of them.
More precisely, for each weight w we sample x from Unif([−1, 1]n) and use Gurobi optimization
software (Gurobi Optimization, LLC, 2021) to solve the mixed-integer program

min
a1,...,an

∣∣∣w − n∑
i=1

ai · xi
∣∣∣ s.t. ai ∈ {0, 1} ∀i ∈ [n],
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where n is the sample size. Solving this subset sum problem with n = 30 for the 2572 parameters
in the convolutional layers of LetNet takes around 1 hour on 32 cores of a Intel® Xeon® Gold 6240
CPU @ 2.60GHz.
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Figure 3: Relative error of random subset sum approximation of the convolution weights of a LeNet5
trained on MNIST (left) and on Fashion-MNIST (right). The error is given in logarithmic scale as
the maximum distance between a weight and its approximation for different sample sizes.

Figure 3 shows the accuracy of the approximation for different sample sizes. We start to obtain good
approximations (error smaller than 10−2) from sample sizes around 15-20. Also, when comparing
to the weights obtained for MNIST and for Fashion-MNIST, we have better approximations for the
smaller sample sizes for MNIST. We believe this is due to the fact that the training on Fashion-
MNIST resulted in filters with larger weights (up to a factor 2, roughly), since a larger sample size
is necessary to approximate a larger interval of values (see Theorem 2).

The high precision in the approximation of most weights leads to negligible change in the accuracy
of the network. For this reason, we focus on studying the error at the output of the convolutional
section of LeNet5, right before the flattening. Also, at this point the activation tensor has dimension
7× 7× 16 as opposed to the vector of size 10 at the end of LeNet5.
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Figure 4: Maximum relative output error for the convolutional portion of LeNet5 trained on MNIST
(left) and Fashion-MNIST (right) for different sample sizes. The maximum is computed over all
images in the dataset.

Figure 4 shows the maximum relative error for all approximated outputs compared to original ones.
The relative error of the output for an input image is computed as the maximum activation error
divided by the maximum original activation (both maxima are taken over all 7× 7× 16 activations).
Once again, MNIST leads to better precision for the smaller sample sizes. This can be explained by
the fact that weights are better approximated in that range with MNIST as seen in Figure 3. In both
cases, we get a relative error close to 10−3 with sample size 20, and even better with larger sample
sizes. Within the settings of Theorem 1, this corresponds to expanding the convolutional portion of
the network by a factor of, roughly, 30 if we take into account kernel sizes and number of channels.
Note that this high precision is achieved even though the trained weights do not satisfy the norm
restrictions of Theorem 1. Indeed, as we do not use any explicit regularization, the 1-norms of the
kernels obtained are quite high (from 50 to 15000 roughly for both datasets).
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4 TECHNICAL ANALYSIS

4.1 NOTATION AND CONVENTIONS

We employ the notation from Goodfellow et al. (2016) with minor adjustments. For self-
containment, we detail below not only our adaptations but all the relevant notation inherited from
the textbook.

We identify the type of the objects with the font used for their symbols. This applies to scalars
(e.g. x), to vectors (e.g. x) and its entries (e.g. xi), to tensors (e.g. X) and its entries (e.g. Xi,j,k),
and to sets (e.g. X). We denote slices of tensors by indexing it with colons. For example, the
expression X:,:,i represents a 2-D slice of a 3-D tensor. Finally, we refer to the axis of a 4-D tensors
as rows, columns, channels, and kernels (a.k.a. filters), in this order.2

This work considers explicitly only 2-dimensional convolutions with multiple channels, multiple
kernels and enough zero-padding to preserve the output size. However, as we discuss in Section 2.1,
our results can be generalized in many ways.
Definition 1 (Convolution). Given tensors K ∈ Rd×d×c and X ∈ RD×D×c, the 2-dimensional
discrete convolution between K and X is the D ×D matrix with entries given by

(K ∗ X)i,j =
∑

i′,j′∈[d],k∈[c]

Ki′,j′,k · Xi−i′+1,j−j′+1,k for i, j ∈ [D].

where X is suitably zero-padded. Similarly, if K ∈ Rd×d×c0×c1 is a 4-dimensional tensor, we define
K ∗ X as the D ×D × c1 tensor with entries

(K ∗ X)i,j,` =
∑

i′,j′∈[d],k∈[c]

Ki′,j′,k,` · Xi−i′+1,j−j′+1,k for i, j ∈ [D], ` ∈ [c1].

Notice that the output of a convolution with a 4-D kernel can also be can be expressed in terms of
the 3-D case using tensor slices. For instance, the equality above can be rephrased as

(K ∗ X):,:,` = K:,:,:,` ∗ X for ` ∈ [c1].

4.2 SINGLE KERNEL APPROXIMATION (PROOF OF LEMMA 1)

Our first goal is to bypass the non-linearity so we can combine the two convolutions in g(X) =
V ∗ σ(U ∗ X) into a single one. Given that the activation function under consideration is the ReLU,
it suffices to ensure that its input has no negative entry. Hence, we prune all negative entries of U,
obtaining the tensor U+ = max{0,U}, where the maximum is applied entry-wise. Since, by hy-
pothesis, the entries of the input X are non-negative, it follows that the entries of the tensor U+ ∗ X
are also non-negative. Therefore,

V ∗ σ(U+ ∗ X) = V ∗ (U+ ∗ X). (1)

We now look at the first convolution on the right side of Equation 1. By Definition (1), we have

[V ∗ (U+ ∗ X)]r,s,1 =

n∑
t=1

V1,1,t,1 · (U+ ∗ X)r,s,t

=

n∑
t=1

V1,1,t,1 ·
( ∑
i,j∈[d],k∈[c]

U+
i,j,k,t · Xr−i+1,s−j+1,k

)

=

n∑
t=1

∑
i,j∈[d],k∈[c]

(
V1,1,t,1 · U+

i,j,k,t

)
· Xr−i+1,s−j+1,k

=
∑

i,j∈[d],k∈[c]

(
n∑
t=1

V1,1,t,1 · U+
i,j,k,t

)
· Xr−i+1,s−j+1,k.

2Goodfellow et al. (2016) uses a different ordering.
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The equation above shows that performing V ∗ (U+ ∗X) is equivalent to performing a single convo-
lution between X and a tensor L ∈ Rd×d×c×1 whose coordinates are given by

Li,j,k,1 =

n∑
t=1

V1,1,t,1 · U+
i,j,k,t. (2)

This reveals a RSS configuration where we can choose to include/exclude each value V1,1,t,1 ·U+
i,j,k,t

in the sum by choosing to keep/prune U+
i,j,k,t. Since Equation 1 continues to hold after further

pruning U+, we finish our proof by doing exactly that: we leverage Theorem 2 to ensure that, with
high probability, we can solve this RSS problem for each entry of L to approximate the respective
entry of K.

To see that we can apply Theorem 2 in this setting, for ε′ > 0, i, j ∈ [d], and k ∈ [c], denote
by Ei,j,k,ε′ the event{

∀z ∈ [−1, 1], ∃S ⊆ [n] :
∣∣∣z −∑

t∈S
V1,1,t,1 · U+

i,j,k,t

∣∣∣ < ε′
}
.

We now use the RSS result, Lueker (1998, Corollary 3.3) (Theorem 2 in Appendix C), to show that
there exists constants a, b such that

E

(
max

z∈[−n/32,n/32]
min
S⊆[n]

∣∣∣z −∑
t∈S

V1,1,t,1 · U+
i,j,k,t

∣∣∣) ≤ ae−bn.
It is not hard to show that, since (V1,1,t,1)1≤t≤n and (U+

i,j,k,t)1≤t≤n are i.i.d. Unif([−1, 1])
random variables, then the value of the density of (V1,1,t,1 · U+

i,j,k,t)1≤t≤n is at least log 2
2

on [−1/2, 1/2], and it thus contains a log 2
2 -scaled Unif([−1/2, 1/2]) (see Lemma 3 in Ap-

pendix C for details). In particular, setting X = V1,1,t,1 · U+
i,j,k,t, we have that µ− =

E(1X≤0X) ≤ − log 2
8 < −1/16 and µ+ = E(1X>0X) ≥ log 2

8 > 1/16. We can thus ap-
ply Theorem 2 with ξ = 1/32: there exist constants a, b > 0 such that the expected value
of the [−n/32, n/32]-subset-sum gap for (V1,1,t,1 · U+

i,j,k,t)1≤t≤n is at most ae−bn, that is

E
(
maxz∈[−n/32,n/32] minS⊆[n]

∣∣∣z −∑t∈S V1,1,t,1 · U+
i,j,k,t

∣∣∣) ≤ ae−bn.

Assuming n ≥ 32, Markov’s inequality yields P(Ei,j,k,ε′) ≤ ae−bn

ε′ . Setting ε′ = ε
d2c and C =

2
b +

log a
b , and supposing w.l.o.g. ε′ < e−1, the condition n ≥ C log 1

ε′ implies bn ≥ 2 log ε′+log a

and ae−bn

ε′ < ε′, and we get

P
(
Ei,j,k, ε

d2c

)
≥ 1− ε

d2c
.

Now define the simultaneous event Eε′ =
⋂
i,j,k Ei,j,k,ε′ . By a union bound over the inequality

above for i, j ∈ [d], k ∈ [c], we have

P
(
E ε

d2c

)
≥ 1− ε.

Finally, conditioning on E ε
d2c

, it holds that

sup
K∈[0,1]d×d×1×1

inf
S∈{0,1}d×d×1×n

sup
X∈[0,1]D×D×1

∥∥K ∗ X− V ∗ σ[(U� S) ∗ X]
∥∥
max

(a)
= sup

K
inf
S

sup
X

∥∥K ∗ X− V ∗ (U+ � S) ∗ X
∥∥
max

(b)
= sup

K
inf
S

sup
X

∥∥[K− V ∗ (U+ � S)] ∗ X
∥∥
max

(c)

≤ sup
K

inf
S

sup
X

(∥∥K− V ∗ (U+ � S)
∥∥
1
· ‖X‖max

)
(d)

≤ sup
K

inf
S

∥∥K− V ∗ (U+ � S)
∥∥
1

8
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(e)

≤ d2c · sup
K

inf
S

∥∥K− V ∗ (U+ � S)
∥∥
max

(f)

≤ d2c
ε

d2c
= ε,

where (a) follows from Equation 1, (b) from the distributivity of the convolution operation, (c) from
Proposition 1, (d) from the fact that X ∈ [0, 1]D×D×1, (e) from the inequality ‖x‖1 ≤ m‖x‖max

for x ∈ Rm, and (f) from the definition of E ε
cd2

.

4.3 CONVOLUTIONAL LAYER APPROXIMATION (PROOF OF LEMMA 2)

The general goal of this argument is to choose binary masks T and S so that (V�T)∗σ[(U�S)∗X]
is a sufficiently close approximation of K ∗ X.

For ` ∈ [c1] let K(`) be K’s `-th kernel. That is,

K(`) = K:,:,:,`.

Notice that K ∗ X is the concatenation along the third dimension of each K(`) ∗ X, i.e., for ` ∈ [c1],
we have (K ∗ X):,:,` = K(`) ∗ X.

We fix T a priori to be the block diagonal matrix B with entries given by B1,1,t,` = 1(`−1)n′<t≤`n′

for t ∈ [n], ` ∈ [c1], where n′ = n/c1. In the rest of the proof, we show how to choose S, based on
U and V, in order to approximate the kernels K(`).

We perform the approximation of each K(`) using different sections of the tensors. To this end, for
` ∈ [c1], let

U` = U:,:,:,(`−1)n′<t≤`n′ , S` = S:,:,:,(`−1)n′<t≤`n′ , and V` = V:,:,(`−1)n′<t≤`n′,:.

As we did in the proof of Lemma 1, we perform an initial pruning on U by restricting S to the space
of masks that prune all of its negative entries. This allows us to ignore the ReLU activation and
conclude that

((V� B) ∗ σ[(U� S) ∗ X])r,s,`

=
∑

(`−1)n′<t≤`n′
V1,1,t,`

∑
i,j∈[d],k∈[c]

(U� S)i,j,k,t · Xr−i+1,s−j+1,k

=
(

V` ∗ [(U` � S`) ∗ X]
)
r,s

=
(

V` ∗ σ[(U` � S`) ∗ X]
)
r,s
.

For ` ∈ [c1] and ε′ > 0, denote by E`,ε′ the event{
sup

K(`)∈[−1,1]d×d×c0×1

inf
S`∈{0,1}d×d×c0×n′

sup
X∈[0,1]D×D×c0

∥∥∥K(`) ∗X−V` ∗σ[(U`�S`)∗X]
∥∥∥
max

< ε′
}
.

Consider the event Eε/c1 =
⋂
`E`,ε/c1 . Since n′ = n/c1 = C log d2c0

ε/c1
, for each ` ∈ [c1], Lemma 1

ensures that P(E`,ε/c1) ≥ 1− ε/c1, which implies P(Eε/c1) ≥ 1− ε.
Finally, conditioning on Eε/c1 and using the fact that the output channels of a convolutional layer
are calculated independently, we conclude

sup
K∈[−1,1]d×d×c0×c1

inf
S∈{0,1}d×d×c0×n

T∈{0,1}1×1×n×c1

sup
X∈[0,1]D×D×c0

∥∥∥K ∗ X− (V� T) ∗ σ[(U� S) ∗ X]
∥∥∥
max

≤ sup
K∈[−1,1]d×d×c0×c1

inf
S∈{0,1}d×d×c0×n

sup
X∈[0,1]D×D×c0

∥∥∥K ∗ X− (V� B) ∗ σ[(U� S) ∗ X]
∥∥∥
max

= max
`∈[c1]

sup
K(`)∈[−1,1]d×d×c0

inf
S`∈{0,1}d×d×c0×n′

sup
X∈[0,1]D×D×c0

∥∥∥K(`) ∗ X− V` ∗ σ[(U` � S`) ∗ X]
∥∥∥
max

< ε.
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5 REPRODUCIBILITY STATEMENT

We made our best effort to describe in detail all the relevant parameters for Section 3. We also
took care to initialize the random number generator not only for Julia but also for Gurobi, so that
the experiments can be reproduced using the source code available at https://shared03.
opsone-cloud.ch/index.php/s/mWPK8AMRrrdJr8E. The latter also include a BSON
serialized version of our trained models and solutions to RSS instances, that can readily be imported
with Julia.
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Proof. We have

‖K ∗ X‖max ≤ max
i,j∈[D],`∈[c1]

∑
i′,j′∈[d],k∈[c]

∣∣Ki′,j′,k,`Xi−i′+1,j−j′+1,k

∣∣
≤ max

i,j,`

∑
i′,j′,k

∣∣Ki′,j′,k,`∣∣‖X‖max

≤ max
i,j,`

( ∑
i′,j′,k

|Ki′,j′,k,`|
)
‖X‖max

≤ max
i,j,`
‖K‖1‖X‖max = ‖K‖1 · ‖X‖max.

B CNN APPROXIMATION (PROOF OF THEOREM 1)

Since Lemma 2 provide bounds in terms of the output of a layer, the study of the propagation of this
error through the network is mostly independent of the layer type. Hence, the next proof follows the
structure of Pensia et al. (2020, Theorem 1), where our Lemma 2 assumes the role of their Lemma 3,
and where we leverage our Proposition 1 in order to address the problem of bounding the maximum
norm of a convolution.

Proof (of Theorem 1). For the sake of brevity, in the proof we denote the max-norm simply by ‖·‖.
Let Xi be the input of the i-th layer of the network f . Thus,

1. X1 = X,

2. Xi+1 = σ(Ki ∗ Xi) for 1 ≤ i ≤ `− 1 and

3. f(X) = K` ∗ X`.

By applying Lemma 2 to each layer, we choose masks S2i and S2i−1 so that

sup
X

∥∥∥Ki ∗ X− (L2i � S2i) ∗ σ[(L2i−1 � S2i−1) ∗ X]
∥∥∥ < ε

2`
(3)

with probability at least 1− ε
2` .

Since the ReLU function is 1-Lipschitz with respect to the max norm, the above event implies the
following for all i ∈ [`− 1]:

sup
X

∥∥∥σ(Ki ∗ X)− σ[(L2i � S2i) ∗ σ[(L2i−1 � S2i−1) ∗ X]]
∥∥∥ < ε

2`
. (4)

By a union bound, with probability 1 − ε, Equation 3 and Equation 4 hold for all layers simultane-
ously. In the rest of the proof, we implicitly condition on the latter event.

For any fixed function f , let g be the pruned network constructed layer-wise, by pruning with binary
masks which satisfy Equation 3 and Equation 4. Let these pruned tensors be L̃

i
, and let X̃

i
be the

input to the (2i− 1)-th layer of g.

We note that X̃
i

satisfies the the recurrence relation

1. X̃
1
= X,

2. X̃
i+1

= σ(L̃
2i ∗ σ(L̃2i−1 ∗ Xi)) for 1 ≤ i ≤ `− 1.

13
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Because ‖X‖ ≤ 1, Equation 4 implies that ‖X̃i‖ ≤
(
1 + ε

2`

)i−1
. To see this, note that Equation 4

implies, for 1 ≤ i ≤ `− 1, ∥∥∥σ(Ki ∗ X̃
i
)

‖X̃i‖
− X̃

i+1

‖X̃i‖

∥∥∥ ≤ ε

2`
,

thus
‖σ(Ki ∗ X̃

i
)− X̃

i+1‖ ≤ ε

2`
‖X̃i‖.

By the reverse triangle inequality, the last inequality implies

‖X̃i+1‖ ≤ ε

2`
‖X̃i‖+ ‖σ(Ki ∗ X̃

i
)‖

≤ ε

2`
‖X̃i‖+ ‖Ki ∗ X̃

i‖

≤ ε

2`
‖X̃i‖+ ‖Ki‖1 · ‖X̃

i‖

≤ ε

2`
‖X̃i‖+ ‖X̃i‖

≤
(
1 +

ε

2`

)
‖X̃i‖.

Applying this inequality recursively, we get that ‖X̃i‖ ≤
(
1+ ε

2`

)i−1
for 1 ≤ i ≤ `−1. This allows

us to bound the error between Xi and X̃
i
. For 1 ≤ i ≤ `− 1, we have

‖Xi+1 − X̃
i+1‖ = ‖σ(Ki ∗ Xi)− σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃

i
))‖

≤ ‖σ(Ki ∗ Xi)− σ(Ki ∗ X̃
i
)‖+ ‖σ(Ki ∗ X̃

i
)− σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃

i
))‖

≤ ‖Ki‖1‖Xi − X̃
i‖+ ‖σ(Ki ∗ X̃

i
)− σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃

i
))‖

≤ ‖Xi − X̃
i‖+ ‖σ(Ki ∗ X̃

i
)− σ(L̃2i ∗ σ(L̃2i−1 ∗ X̃

i
))‖

≤ ‖Xi − X̃
i‖+

(
1 +

ε

2`

)i−1 ε
2`
, (5)

where for the last inequality we use Equation 3. Unrolling Equation 5 we get

‖X` − X̃
`‖ ≤

`−1∑
i=1

(
1 +

ε

2`

)i−1 ε
2`
.

Finally, this last inequality leads, with probability at least 1− ε, to

‖f(X)− g(X)‖ = ‖K` ∗ X` − L̃
2` ∗ σ(L̃2`−1 ∗ X̃

`
)‖

≤ ‖K` ∗ X` − K` ∗ X̃
`‖+ ‖K` ∗ X̃

` − L̃
2` ∗ σ(L̃2`−1 ∗ X̃

`
)‖

≤ ‖K`‖1‖X` − X̃
`‖+ ‖K` ∗ X̃

` − L̃
2` ∗ σ(L̃2`−1 ∗ X̃

`
)‖

≤ ‖X` − X̃
`‖+ ‖K` ∗ X̃

` − L̃
2` ∗ σ(L̃2`−1 ∗ X̃

`
)‖

≤ ‖X` − X̃
`‖+

(
1 +

ε

2`

)`−1 ε
2`

≤
(
`−1∑
i=1

(
1 +

ε

2`

)i−1 ε
2`

)
+
(
1 +

ε

2`

)`−1 ε
2`

≤
∑̀
i=1

(
1 +

ε

2`

)i−1 ε
2`

=
(
1 +

ε

2`

)`
− 1

< eε/2 − 1

< ε,

14
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where the last inequality holds because ε < 1.

Replacing ε in this proof with min{ε, δ} concludes the proof of the theorem.

C RANDOM SUBSET-SUM THEOREM

For the sake of completeness, in this section we recall a result by Lueker (1998) together with the
necessary definitions.
Definition 2. Given two positive constants a and b, we say that a distribution with density f contains
a b-scaled Unif([−a, a]) distribution if for each x ∈ [−a, a] it holds f(x) ≥ b. We simply say that
a distribution F contains a uniform distribution if there exist positive constants a and b such that F
contains a b-scaled Unif([−a, a]) distribution.

The following is a weaker version of Corollary 1 in the Appendix of Pensia et al. (2020).
Lemma 3. Let X1 and X2 be two independent random variables following a Unif([−1, 1]) distri-
bution. Then X1 ·X2 contains a log 2

2 -scaled Unif([− 1
2 ,

1
2 ]) distribution.

We say that z is 2η-subsetsum-approximated with S = {X1, ..., Xn} if there exists a subset Iz ⊆ [n]
s.t. |∑i∈Iz Xi − z| ≤ 2η.

Definition 3. The [a, b]-subset-sum gap of S = {X1, ..., Xn} is the smallest value of η such that
each z ∈ [a, b], can be 2η-subsetsum-approximated with S.

Theorem 2 (Corollary 3.3 in Lueker (1998)). Let S = {X1, ..., Xn} be n i.i.d. bounded random
variables and ξ > 0 any constant. Suppose that the distribution of X1 contains a uniform distribu-
tion. Let µ− = E[1X≤0X], µ+ = E[1X≥0X], µabs = E[|X|] = µ+ − µ−. The expected value of
the [(µ− + ξ)n, (µ+ − ξ)n]-subset-sum gap of S is exponentially small w.r.t. n.
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