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Closed-Form Receiver for Multi-Hop MIMO Relay
Systems with Tensor Space-Time Coding

Danilo S. Rocha, Gérard Favier and C. Alexandre R. Fernandes

Abstract—A multi-hop multi input multi output (MIMO) relay
system with tensor coding at the source and relays is proposed
in this paper. The tensor of signals received at destination
satisfies a new tensor model, called high-order nested Tucker
decomposition (HONTD), which generalizes an existing tensor
decomposition. Exploiting this HONTD model allows to derive
a closed-form semi-blind receiver for jointly estimating the
information symbols and the individual channels. Identifiability
conditions and ambiguity relations are derived. Monte Carlo
simulation results are provided to evaluate the performance of the
proposed receiver in terms of channels and symbols estimation,
and the impact of the number of relays is illustrated.

Index Terms—Closed-form receiver, multi-hop MIMO system,
nested Tucker decomposition, tensor coding, tensor models.

I. INTRODUCTION

DURING the last decade, tensor models have been exten-
sively used for designing MIMO point-to-point wireless

communication systems as well as cooperative networks [1].
The main motivation for using tensor-based approaches is
related to their natural capability to model multimodal signals,
with useful uniqueness properties under mild conditions. In
wireless communications, tensor tools are very useful for
designing tensor coding and semi-blind receivers [2]-[15].

In MIMO relaying systems, the effectiveness of exploiting
available diversities depends on the accuracy of channel state
information (CSI) of each hop. Some works propose tensor-
based supervised channel estimation, with the drawback to be
bandwidth consuming [4]-[7], whereas others present semi-
blind receivers for channels and symbols estimation [8]-[12],
[15]. In the context of multi-hop relaying systems using tensor
approaches, one can mention the works [7], [8], [12]-[15].

In this paper, we propose a new tensor model for a multi-hop
MIMO relaying system composed of K relays operating with
tensor space-time coding (TSTC) [2] and the amplify-and-
forward (AF) protocol. This system can be viewed as a gen-
eralization of recently proposed systems [9]-[12], [15] to the
multi-hop case using tensor coding, leading to the description
of a high-order tensor model in a compact way. The present
paper extends previous works in different ways, either by using
a more general relay coding, by extending these works to the
multihop case and/or by using a different estimation algorithm.
Assuming a third-order TSTC at the source and the relays, we
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show that the signals received at destination satisfy a new high-
order nested Tucker decomposition (HONTD). This model
results from the contraction of several Tucker models in a train
format, generalizing the nested Tucker decomposition (NTD)
introduced in [10] to a (K + 3)-th order tensor, for K ≥ 2.

Considering the tensor codings known at the destination, we
derive a generic closed-form semi-blind receiver based on a
recurrent algorithm that takes into account least squares (LS)
estimates of Kronecker products (KP), denoted by LSKP, for
jointly estimating the symbols and the individual channels.
The LSKP receiver exploits matrix unfoldings of coding
tensors under the form of unitary matrices, avoiding noise
enhancement and yielding better performance when compared
to random coding. Monte Carlo simulations are provided to
illustrate the performance of the receiver, showing the great
performance of the proposed multi-hop receiver. The main
original contributions of the present work can be summarized
as follows: (i) presentation of a new tensor model, called
HONTD, which generalizes the existing NTD [10]; (ii) presen-
tation of a new multi-hop MIMO relaying system with TSTC
at all the nodes, generalizing recently proposed systems [9]-
[12], [15]; (iii) proposition of a closed-form recurrent semi-
blind receiver for the considered system model.

Notation: scalars, column vectors, matrices and tensors
of order higher than two are denoted by lower-case, bold-
face lower-case, boldface upper-case, and calligraphic let-
ters (a, a, A and A, respectively). AT and A† denote
the transpose and the Moore-Penrose pseudo-inverse of A.
The Kronecker product is denoted by ⊗. Given a N -
th order tensor X ∈ CI1×···×IN , the third-order tensor
XJ1···JN−2×JN−1×JN

is a contracted form of X obtained
by combining N − 2 modes, where {J1, · · · , JN} is any
permutation of {I1, · · · , IN}. The matrix XJ1···JN−1×JN

is
a tall unfolding of X whose the entries are xj1,··· ,jN =[
XJ1···JN−1×JN

]
(j1−1)J2···JN−1+···+(jN−2−1)JN−1+jN−1,jN

.
The mode-n product of X with U∈ CPn×In , denoted by

A = X ×n U ∈ CI1×···×In−1×Pn×In+1×···×IN , is given by

ai1,··· ,in−1,pn,in+1,··· ,iN =

In∑
in=1

xi1,··· ,in,··· ,iNupn,in . (1)

Let Y ∈ CJ1×···×JM be a tensor such that the dimension of
its first mode is equal to the dimension of the last mode of
X (IN = J1). The contraction of X with Y , denoted by B =
X×NY ∈ CI1×···×IN−1×J2×···×JM , is given by [16]

bi1,··· ,iN−1,j2,··· ,jM =

IN∑
iN=1

xi1,··· ,iN yiN ,j2,··· ,jM . (2)

II. SYSTEM MODEL

Let us consider the multi-hop MIMO relaying system
illustrated in Fig. 1, composed of a source (S), K relays



JOURNAL OF COMMUNICATION AND INFORMATION SYSTEMS, VOL. 34, NO.1, 2019. 51

S Rk D

1
2

1
2

1
2

𝑀0
𝑡 𝑀𝐾+1

𝑟𝑀𝑘
𝑡

1
2

𝑀𝑘
𝑟

𝐇(0) 𝐇(𝐾)𝐇(𝑘−1)

𝟎 𝒌 𝑲 + 𝟏

⋯ ⋯
𝐇(𝑘)

Fig. 1. Multi-hop MIMO relay system.

(R1, ..., RK) and a destination (D) node. The numbers of
transmit and receive antennas at node k are denoted by M t

k and
Mr

k , respectively, with k ∈ {0, ...,K+ 1}. The nodes indexed
by 0 and K + 1 correspond to the source and the destination,
respectively. The transmission consists of K + 1 steps via
K relays. The source and the relays encode the signals to
be transmitted by means of a TSTC, and the relays operate
in half-duplex mode, using the AF protocol, i.e., retransmit-
ting the received signals without decoding. Synchronization
is assumed at the symbol level and the channels undergo
frequency-flat fading, H(k) ∈ CMr

k+1×M
t
k being the channel

matrix between the nodes k and k + 1, for k = 0, ...,K.
The symbol matrix encoded by the source is denoted by

S ∈ CN×R, R being the number of data streams transmitted
during each symbol period and N being the number of data
symbols per data stream. The coding tensor C(0) ∈ CMt

0×P0×R

gives the coded signals Y(0) = C(0)×3S ∈ CMt
0×P0×N , where

P0 is the time spreading length of TSTC. After transmission
through the channel H(0), R1 receives a signal tensor that
satisfies the following third-order Tucker model

X̃ (1) = X (1) +N (1) = Y(0) ×1 H(0) +N (1)

= C(0) ×1 H(0) ×3 S +N (1) ∈ CMr
1×P0×N , (3)

where N (1) is the additive white Gaussian noise (AWGN)
tensor at the relay R1.

Each relay Rk re-encodes the received signals by means
of the coding tensor C(k) ∈ CMt

k×Pk×Mr
k , for k = 1, ...,K,

resulting in the coded signals Y(k) = C(k)×3X̃
(k) ∈

CMt
k×Pk×···×P0×N to be transmitted. After transmission via

channel H(k), the signals received at the node k + 1 form a
(k + 3)-th order tensor given by

X̃ (k+1) = Y(k) ×1 H(k) +N (k+1) (4)
= T (k)×3X̃

(k) +N (k+1) ∈ CMr
k+1×Pk×···×P0×N ,

where N (k+1) is the AWGN tensor at the node k+1 and T (k)

is defined as a Tucker-(1, 3) decomposition

T (k) = C(k) ×1 H(k) ∈ CMr
k+1×Pk×Mr

k . (5)

From the recurrent relation (4), we deduce

X̃ (k+1) = X (k+1) + N̄ (k+1), (6)
X (k+1) = T (k)×3X

(k), (7)

N̄ (k+1) = N (k+1) + T (k)×3N̄
(k). (8)

The noiseless received signals tensor X (k+1) can be written
in the following Tucker train format

X (k+1) = T (k)×3T
(k−1)×3 · · · ×3T

(1)×3X
(1), (9)

X (1) being defined in (3). This tensor model generalizes the
NTD [10] to the order (K + 3), where K ≥ 1 is the number
of relays, yielding the new HONTD model.

𝒞(0) 𝐒𝒞(𝐾−1) 𝐇(0)𝒞(𝐾) 𝐇(𝐾−1)𝐇(𝐾) ⋯

𝒯(𝐾−1)𝒯(𝐾) 𝒳(1)×3 ×3 ×3⋯

×1 ×1 ×1 ×3×3 ×3 ×3

Fig. 2. High-order nested Tucker decomposition of a tensor of order K +3.

Fig. 2 represents a block-diagram of the HONTD-based
system which can be viewed as a nesting of Tucker-(2, 3)
models (C(k),H(k),H(k−1)), where two successive models
(for k and k + 1) share the factor matrix H(k). At the top
level of Fig. 2, the HONTD is represented as the contraction
of the Tucker-(1, 3) models T (k) defined in (5), via ×3 tensor
products, illustrating (9).

III. LSKP RECEIVER

In this section, we propose a closed-form semi-blind re-
ceiver to estimate the symbol and channel matrices of the
multi-hop MIMO relay system presented in Section II. The
coding tensors C(k) used by the source and the relays are
assumed known at destination. In the sequel, for the sake of
simplicity, the equations are derived in the noiseless case.

By combining the last k+1 modes of X (k+1), given in (7),
and using the definition (5), we obtain a contracted form of
X (k+1) that satisfies the following Tucker-(2, 3) model

X (k+1)
Mr

k+1×Pk×Pk−1···P0N
= T (k) ×3 X

(k)
Pk−1···P0N×Mr

k
(10)

= C(k) ×1 H(k) ×3 X
(k)
Pk−1···P0N×Mr

k
,

where X
(k)
Pk−1···P0N×Mr

k
is a tall matrix unfolding of X (k). A

tall mode-2 unfolding of (10) is given by

X
(k+1)
Mr

k+1Pk−1···P0N×Pk
=
(
H(k)⊗X

(k)
Pk−1···P0N×Mr

k

)
C

(k)

Mt
kM

r
k×Pk

.

(11)
Let us define the KP Ω(k) = H(k) ⊗ X

(k)
Pk−1···P0N×Mr

k
∈

CMr
k+1Pk−1···P0N×Mt

kM
r
k , for k = 1, ...,K, such that we derive

the LS estimate of Ω(k) as

Ω̂(k) = X
(k+1)
Mr

k+1Pk−1···P0N×Pk

(
C

(k)

Mt
kM

r
k×Pk

)†
. (12)

The main idea of the proposed receiver is to estimate re-
cursively the channel matrix H(k) and the matrix unfolding
X

(k)
Pk−1···P0N×Mr

k
, from k = K to k = 1, by using the LS

estimate (12) of Ω(k) and applying a singular-value decompo-
sition (SVD)-based low-rank approximation algorithm [17].

In order to avoid error propagation effects, the symbol
matrix S is directly estimated using the tensor of signals
received at destination, as detailed below. From (9), we have
X (K+1) = A×3X

(1), where A is an auxiliary tensor given by

A = T (K)×3 · · · ×3T
(1) ∈ CMr

K+1×PK×···×P1×Mr
1 . (13)

By combining the first K+ 1 modes of A, the tensor X (K+1)

can be rewritten as

X (K+1)
Mr

K+1PK ···P1×P0×N = X (1) ×1 AMr
K+1PK ···P1×Mr

1
. (14)
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By replacing (3) into (14), we get the following Tucker model

X (K+1)
Mr

K+1PK ···P1×P0×N = C(0) ×1 B×3 S, (15)

where B = AMr
K+1PK ···P1×Mr

1
H(0) ∈ CMr

K+1PK ···P1×Mt
0 . By

considering a tall mode-2 unfolding of (15), we obtain

X
(K+1)
Mr

K+1PK ···P1N×P0
= (B⊗ S) C

(0)

Mt
0R×P0

. (16)

The LS estimate of Ω(0) = B⊗ S, is given by

Ω̂(0) = X
(K+1)
Mr

K+1PK ···P1N×P0

(
C

(0)

Mt
0R×P0

)†
. (17)

Once Ω̂(0) estimated using the signals received at destina-
tion, the SVD-based low-rank approximation algorithm allows
us to estimate the Kronecker factors B and S directly from
the signals received at destination using (17). The LS estimate
of the channel matrix H(0) is then given by

Ĥ(0) =
(
ÂMr

K+1PK ···P1×Mr
1

)†
B̂, (18)

where ÂMr
K+1PK ···P1×Mr

1
is obtained using (13), with the

channel matrices replaced by their estimates Ĥ(k), for k =
1, ...,K, obtained in previous steps of the algorithm.

Identifiability conditions and ambiguity relations

The parameter identifiability is linked to the uniqueness of
the LS estimates (12) and (17), which require the unfoldings
C

(k)

Mt
kM

r
k×Pk

and C
(0)

Mt
0R×P0

to be full row rank for uniqueness
of their right inverse. That leads to the necessary identifiability
conditions Pk ≥M t

kM
r
k and P0 ≥M t

0R. Regarding (18), the
unfolding ÂMr

K+1PK ···P1×Mr
1

must be left-invertible, which
leads to the condition Mr

K+1PK · · ·P1 ≥Mr
1 .

Moreover, the factors of a KP can only be estimated
up to scalar ambiguities, as shown in [17]. As the steps
of the proposed receiver perform the factorization of the
KP matrix Ω(k), the estimated factors have the ambiguities
Ĥ(k) = δH(k)H(k) and Ŝ = δS S, for k = 0, ...,K. By
comparison, the receiver of [12], based on the estimation of
the factors of Khatri-Rao products, needs the knowledge of
one row of each factor matrix.

The scaling ambiguity of Ŝ can be removed by assuming
the a priori knowledge of one pilot symbol (s1,1). Concerning
the scaling ambiguity of Ĥ(k), in order to plot the simula-
tion results, we assumed that one coefficient (h(k)1,1) of each
channel Ĥ(k) is known at destination. This assumption has
already been adopted in other works [4], [7], [9]-[12], [15]
in the context of relaying systems. In practice, such a priori
information could be obtained by a simple LS estimation using
a pilot-symbol generated by the relays [9]. If the use of a pilot-
symbol isn’t possible, the channel matrices Ĥ(k) are estimated
up to a scalar constant. However, this ambiguity would not
affect the symbol estimation neither the design of precoding
schemes with channel state information (CSI). The ambiguities
are then cancelled as follows Ŝ ← (δS)−1 Ŝ and Ĥ(k) ←
(δH(k))−1 Ĥ(k), with δS = ŝ1,1/s1,1 and δH(k) = ĥ

(k)
1,1/h

(k)
1,1 .

The LSKP receiver is summarized in Algorithm 1. As-
suming M t

k =Mr
k =M =R and Pk = P for k = 1, ...,K,

the computational complexity of the proposed receiver is
O(M3PK [NP +MK−2]).

Algorithm 1 LSKP receiver

Stage 1: estimation of H(k), for k = 1, . . . ,K

1. X̂
(K+1)
Mr

K+1
PK−1···P0N×PK

= X̃
(K+1)
Mr

K+1
PK−1···P0N×PK

.

2. Calculate Ĥ(k) and X̂
(k)
Pk−1···P0N×Mr

k
from Ω̂(k):

for k = K : 1

Ω̂(k) = X̂
(k+1)
Mr

k+1
Pk−1···P0N×Pk

(
C

(k)

Mt
k
Mr

k
×Pk

)†
Apply the low-rank approximation algorithm [12]
X̂

(k)
Mr

k
Pk−2···P0N×Pk−1

← reshape
(
X̂

(k)
Pk−1···P0N×Mr

k

)
end

Stage 2: estimation of H(0) and S

3. Calculate B̂ and Ŝ from Ω̂(0):

Ω̂(0) = X
(K+1)
Mr

K+1
PK ···P1N×P0

(
C

(0)

Mt
0R×P0

)†
Apply the low-rank approximation algorithm [12]

4. Build Â from (13), with T̂ (k) composed by Ĥ(k)

5. Calculate Ĥ(0) using Ĥ(0) =
(
Â

(0)
Mr

K+1
PK ···P1×Mr

1

)†
B̂

6. Eliminate the scaling ambiguities and project
the estimated symbols onto the symbol alphabet.

IV. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the efficiency of the proposed receiver. The results were
averaged over at least 5×104 Monte Carlo runs. The symbol-
error-rate (SER) and channel normalized mean square error
(NMSE) are plotted as function of the transmission power
to noise spectral density ratio (PT /N0). At each run, PT is
fixed and N0 was calculated to provide the desired PT /N0

value. The transmitted symbols are 4-QAM modulated and we
assume flat-fading channels, with independent and identically
distributed complex Gaussian entries. The variance of the
channel coefficients follows an exponential path-loss model
given by σ2

H = 1/d4, where d = D/(K + 1) is the distance
between two relays, and D is the distance between the source
and destination arbitrarily chosen equal to 1. The relays are
uniformly distributed between the source and the destination.

The coding tensors C(k) are normalized in such a way that
all the nodes have the same transmission power and the total
system power (arbitrarily chosen equal to 1) is kept constant,
regardless of the number of relays and antennas [15]. Three
different choices for the coding tensors are considered: i)
tensors with elements of unit magnitude and phase randomly
drawn from a uniform distribution between 0 and 2π; ii)
tensors such that the unfolding C

(0)

Mt
0R×P0

(resp. C
(k)

Mt
kM

r
k×Pk

)
is a truncated discrete Fourier transform (DFT) matrix, i.e.,
composed of the first M t

0R (resp. M t
kM

r
k ) rows of the DFT

matrix of dimension P0 × P0 (resp. Pk × Pk); iii) tensors
such that the unfolding C

(0)

Mt
0R×P0

(resp. C
(k)

Mt
kM

r
k×Pk

) is a
truncated Hadamard matrix, i.e., composed of the first M t

0R
(resp. M t

kM
r
k ) rows of the Hadamard matrix of dimension

P0×P0 (resp. Pk ×Pk). The tensor codings ii) and iii) avoid
the computation of the pseudo-inverses in (12) and (17), and
prevent noise enhancement.

The parameters used in the simulations are indicated above
each figure. Fig. 3 compares the SER versus PT /N0 obtained
with the proposed LSKP receiver, for three different coding
tensors and two relays (K = 2). We also show the SER
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Fig. 3. SER performance comparison for K = 2.

performance of two existing tensor-based receivers. The first
one is a receiver based on a Khatri-Rao factorization (KRF)
algorithm proposed in [12] for a multi-hop relaying system
that uses a simplified Khatri-Rao space-time coding. The
second receiver is a LSKP technique proposed in [18] for
a two-hop multirelay system with TSTC that use orthogonal
relays to provide cooperative diversity. The parameters were
chosen to ensure roughly the same transmission rate for all
the systems. For the proposed system, the transmission rate is
proportional to R/P0(1 + P1 + P1P2), while for the systems
of [12] and [18], it is proportional to M t

0/P0(1 +P1 +P1P2)
and R/P0(P1K + 1), respectively. We also plot the perfor-
mance of the zero-forcing (ZF) receiver, given by: ŜT =[
(B⊗ IP0

) C
(0)

Mt
0P0×R

]†
X̃

(3)
Mr

3P2P1P0×N .

In Fig. 3, the DFT and Hadamard codings with the LSKP
receiver give significant SER improvements, overcoming the
performance obtained with the other receivers. That comes
from the fact that, in (12) and (17), the coding unfolded ma-
trices are unitary, which avoids noise enhancement. It is worth
mentioning that a coding with unitary unfoldings is feasible
for the LSKP receiver, due to the use of only one matrix
unfolding of each coding tensor. This orthogonality property
can not be exploited with the ZF receiver, which explains the
performance degradation of this receiver. From Fig. 3, we
can also conclude that the proposed receiver gives a better
performance than the receiver of [12] due to the use of TSTC,
which exploits spatial transmit diversity at the source and relay
nodes. For large values of N , the computational complexities
of the LSKP, KRF and ZF receivers are respectively given by
O(M3PK+1N), O(M2PK+1N) and O(MPK+1N). This
shows that the proposed algorithm is a little more complex
than the other two techniques. Compared to the performance
of the receiver of [18], the proposed receiver gives better
performances due to the smaller path-loss experienced by the
multi-hop system. We can also see the similar performances
provided by the DFT and Hadamard codings, illustrating the
advantage in exploiting the orthogonality property regardless
of the kind of the used unitary matrix.

Fig. 4 shows the SER versus PT /N0 for different sys-
tem configurations, using the DFT coding. In Fig. 4(a), we
evaluate the impact of an increase of the number of relays,
K ∈ {1, 2, 3, 4}. The multiple time-spreading generated by
the TSTC, along with the smaller path-loss of each hop when
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Fig. 5. NMSE of the individual channel estimates for K = 2.

the number of relays is increased, lead to a performance gain
that corroborates the effectiveness of the multi-hop scenario.
Fig. 4(b) shows the impact of the number R of transmitted
data streams and of the time spreading length P0 at the source.
From this figure, one can conclude that increasing P0, with R
fixed, improves the SER, due to a higher time-diversity at the
source, at the cost of a smaller transmission rate. On the other
hand, increasing R with P0 fixed leads to higher SERs, due
to a larger number of symbols to be estimated. Note that a
same value of R/P0 implies the same transmission rate, with
similar SERs.

Fig. 5 shows the channel NMSE versus PT /N0 for the
individual channels. We compare the NMSE obtained with
the random and DFT codings for the proposed receiver and
the KRF receiver [12]. The results illustrate the advantage of
the system with DFT coding, compared with random coding
and with the system [12], in most of the cases. Moreover, the
results show a channel estimation improvement for the hops
closest to destination. That comes from the recurrent channel
estimation that begins with the last hop and ends with the first
hop.

V. CONCLUSION

In this paper, a closed-form semi-blind receiver has been
proposed for a multi-hop MIMO relaying system that uses
TSTC at the source and the relays, based on a new tensor
model called HONTD. Simulation results have shown that
a tensor coding with a unitary unfolding and an increase of
the number of relays improve significantly the performance.
Perspectives of this work include an extension to non-coherent
MIMO [19] and OFDM multi-relay systems.
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