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Refinement and derivation of statistical resolution

limits for circular or rectilinear correlated sources

in CES data models
Habti Abeida and Jean-Pierre Delmas

Abstract

This paper analyzes the deterministic (DCRB) and the stochastic (SCRB) Cramér-Rao bound on direction-

of-arrival (DOA) estimation for two equi-powered correlated complex circular or rectilinear sources affected

by complex circular white noise in different complex elliptically symmetric (CES) data models. Beginning by

decomposing these CRBs, into factors depending on signal and noise parameters, and on geometric parameters of

the array, some new interpretable closed-form expressions are derived in particular scenarios. These expressions

provide useful insight into the behavior of these CRB’s dependence on the correlation factor. Approximate

closed-form expressions of these CRBs for small DOA separation are also derived. These results lead to new

formulas for statistical resolution limit (SRL) based on the Smith criterion at which an unbiased DOA estimation

algorithm can resolve two closely-spaced circular or rectilinear sources. These SCRB-derived formulas are much

less optimistic than those which have so far been deduced only from the DCRB under the assumption of known

sources.
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Deterministic Cramér-Rao bound, Stochastic Cramér-Rao bound, Semiparametric Cramér-Rao bound,
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I. INTRODUCTION

The ability to resolve two closely-spaced narrowband far-field sources in terms of parameters of interest is

an important performance measure of sensor arrays in localizing remote targets. The SRL is an important tool

used to quantify estimator performance, which can be defined according to various criteria. There are in the

literature four main different approaches to characterize SRL (see e.g., [1, Sec. VI]) The first one is based on

the mean null spectrum relating to a specific high-resolution algorithm. (see e.g., [2]–[5]). The second approach

rests on hypothesis test using the generalized likelihood ratio test [6], [7], on Rao’s test [8] or on Bayesian

approach [9]. The third approach is based on the information theory and, more precisely, either on Stein’s

lemma which relates the false alarm probability resulting from the Neyman-Pearson decision criterion to the

relative entropy between two hypothesis [10], on Chernoff upper bound [11], or on the mutual information

between DOA, scattering properties and the received signal [12]. The last approach capitalizes on the CRB

where two criteria were proposed. One is the Lee criterion [13] for which the SRL is defined by the DOA

separation that is equal to half of the maximum value of the two square roots of the CRB of the DOA’s. This

criterion was derived form the DCRB in [13] and then extended from the SCRB in [14]. The other criterion

was proposed in the seminal paper by Smith [15] where the SRL is defined by the DOA separation which

is equal to the square root of the CRB of the DOA separation. This criterion has the advantage over Lee’s

criterion of taking into account the coupling between the interest parameters, and another advantage is that it

is closely related to the detection theory approach, as shown in [7], and furthermore, it can be generalized to

multiple parameters [16]. Based on the SCRB, this criterion provides the best-case resolution bound for any

unbiased algorithm.

The SRL based on the Smith criterion was used in numerous research papers (see e.g., [16]–[25]). We

note, however, that all these works (except [17] dedicated to discrete sources and [21] focused on a unifying

methodology without given closed-form expressions of the SRL) are based on the DCRB associated with the

conditional signal source model. Furthermore, the role of the correlation of the signal sources has not been

precisely determined in these contributions, except in [20] which assumes that the signal sources are known.

This DCRB has the advantage of being easily derived and making it possible to obtain explicit simple closed-

form expressions of the SRL and thus allows to reveal enlightening properties pertinent related to SRL behavior.

However, it is well known that the DCRB is not always a tight lower bound on the variance of an unbiased

estimator and cannot be attained by the maximum likelihood (ML) estimate. In particular, it was shown in [26]

that the difference between the SCRB and the DCRB is very significant for closely spaced sources when the

number of sensors is small. Therefore this DCRB would tend to give optimistic values of the SRL and thus

makes necessary the derivation and the analysis of the SRL based on the SCRB. Moreover, all these studies
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were carried out within the framework of Gaussian distributions. To take into account the effect of impulsive

noise encountered in radar clutter [27] [28], made-man noise and interference in indoor and outdoor mobile

communications channels [29] [30], the CES distribution has been preferred over the Gaussian distribution in

many DOA finding and beamforming processing (see e.g., [31]–[33]) for modeling noise alone or observations.

This paper gives simplified closed-form expressions of the DCRB and SCRB on DOA estimation for two

closely-spaced equi-powered narrowband far-field uncorrelated or correlated (including coherent) circular or

rectilinear sources affected by complex circular white noise within the framework of CES distributions.

The main aim of this paper is twofold. First, it derives a new simplified expression of the SCRB on DOA

estimation for two equi-powered correlated complex circular or rectilinear sources affected by complex circular

white noise in different CES data models. Such an expression had hitherto been considered uninteresting because

it was too complex to analyze. But thanks to our choice of the reference of the phase at the centroid of centro-

symmetric arrays, we were able to obtain interpretable closed-form expressions. Rectilinear sources (also called

maximally improper or strict-sense noncircular) are frequent in radiocommunications. For example, binary-

phase-shift-keying and offset-quadrature-phase-shift-keying after post-rotation are rectilinear. These expressions

of SCRB are analyzed and compared to the DCRB w.r.t. array geometric factors, heavy-tailed non-Gaussian

noise and observations, and signal sources’ correlation coefficients. In particular, they point out the strong effect

of the correlation phase, until now only observed by numerical calculations in [34]. Secondly, our paper derives

closed-form expressions of the SRL based on the DCRB and SCRB w.r.t. relevant parameters for these different

models. This allows us to compare the SRLs between the various models and CRBs.

The paper is organized as follows. Section II describes the deterministic and stochastic data model where

the sources are either arbitrary, circular or rectilinear within the framework of CES distributions. Section III

gives a review of the DCRB and SCRB as well as the semiparametric DCRB and SCRB (denoted respectively

as SDCRB and SSCRB). Section IV focuses on the case of two equi-powered sources, where some new

interpretable exact closed-form expressions are derived in particular scenarios with particular attention given

to the impact of the correlation phase and correlation magnitude on DCRB and SCRB. This section also

derives approximate closed-form expressions of DCRB and SCRB for small DOA separations. Section V gives

interpretable closed-form expressions of SRLs deduced from the DCRB and SCRB for known, arbitrary, circular

and rectilinear sources. Then, comments to explain how different parameters impact the SRL and how the SRL

derived from the SCRB are less optimistic than those that have so far been deduced only from the DCRB, are

discussed. Numerical illustrations of the different SRLs are given in Section VI, with particular attention paid

to the phase and magnitude of the correlation of the sources. Finally, the paper is concluded in Section VII.

The notations used throughout this paper are the following. Vectors and matrices are denoted by bold-faced

lowercase and uppercase letters, respectively. ∗ and H represent the conjugate and the conjugate transpose
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operators, respectively. Re(.) and Im(.) denote the real and imaginary part, respectively, whereas � represents

the element by element matrix product. J is the unit antidiagonal matrix and =d means has the same distribution

as.

II. DATA MODEL

Consider two narrowband far-field uncorrelated or correlated (including coherent) signals impinging on an

arbitrary array of N sensors. The baseband received signal at the time instant t is modeled as

yt = Axt + nt, t = 1, . . . , T, (1)

where (yt)
T
t=1 are independent. A = [a1, a2] is the steering matrix where each vector ak = a(θk) is

parameterized by the real scalar parameter θk with ‖ak‖2 = N . It is assumed for any θ1 6= θ2, A has a full

column rank. xt
def
= (xt,1, xt,2)T and nt are zero mean mutually uncorrelated and respectively model signals

transmitted by sources and additive measurement noise which is assumed circular and spatially uncorrelated with

E(ntn
H
t ) = σ2

nI. Two different types of data models are currently used for the distribution of (xt,nt) where

nt is circular Gaussian distributed [26]. We consider here extensions of these models within the framework of

CES distributions.

A. Deterministic CES data model

In the conditional or deterministic model, the signal sources sequence (xt)t=1,..,T are conditioned from

an independent zero-mean process (as it was explained in [26]), either of arbitrary circularity with Rx,T
def
=

1
T

∑T
t=1 xtx

H
t such that limT→∞Rx,T = Rx,∞, or rectlinear, i.e. satisfying the condition

xt,k = rt,ke
iφk , k = 1, 2 where rt,k are real-valued with ∆φ

def
= φ1 − φ2 ∈ [0, π], (2)

with Rr,T
def
= 1

T

∑T
t=1 rtr

T
t where rt

def
= (rt,1, rt,2)T such that limT→∞Rr,T = Rr,∞. The phases φk associated

with different propagation delays are assumed fixed, but unknown during the array observation. In this model

(xt)t=1,..,T or (rt)t=1,..,T and (φ1, φ2) are unknown deterministic parameters. Noise nt is assumed in this model

circular CES (C-CES) distributed.

B. Stochastic Gaussian data model

In the unconditional or stochastic model, both xt and nt are usually assumed Gaussian distributed and

independent of each other. xt is here either circular or strictly non-circular (also called rectilinear). In the

circular case, the distribution of yt is characterized by the covariance given by

Ry
def
= E(yty

H
t ) = ARxA

H + σ2
nI, (3)
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where

Rx
def
= E(xtx

H
t ) =

 σ2
x1

ρσx1
σx2

ρ∗σx1
σx2

σ2
x2

 with ρ = |ρ|eiφ ∈ C and |ρ| ≤ 1. (4)

In the rectilinear case, the sources xt,k, k = 1, 2, satisfy the constraint (2). In this case, the distribution of yt

is characterized by the covariance of the extended observation ỹt
def
= [yTt ,y

H
t ]T given by

Rỹ
def
= E(ỹtỹ

H
t ) = ÃRrÃ

H + σ2
nI, (5)

where Ã
def
= [ã1, ã2] with ãk

def
= [aTk e

iφk ,aHk e
−iφk ]T and Rr

def
= E(rtr

T
t ) given by

Rr =

 σ2
x1

ρ′σx1
σx2

ρ′σx1
σx2

σ2
x2

 with ρ′ ∈ [−1,+1]. (6)

Thus, Rx in (4) is written in the following form:

Rx =

 σ2
x1

ρ′ei∆φσx1
σx2

ρ′σx1
σx2

e−i∆φ σ2
x2

 . (7)

Consequently, for rectilinear sources, the phase separation ∆φ associated with the sign of ρ′ corresponds to

the phase φ of the correlation of the sources if ρ′ 6= 0.

C. Stochastic CES data model

To take into account the effect of heavy tailed impulse noise, the CES distribution has been preferred over

the Gaussian distribution to model the observations yt in many DOA finding and beamforming processing

(see e.g., [31]–[33]). In this case the distributions of xt and nt are not specified, but only their second-order

statistics are imposed. More specifically, in the case of circular to the second-order [resp., rectilinear] sources

xt, the associated (yt)t=1,...,T are assumed independent zero-mean C-CES [resp., noncircular CES (NC-CES)]

identically distributed. The p.d.f. of yt is

p(yt) = cN,g|Ry|−1g(yHt R−1
y yt), [resp., cN,g|Rỹ|−1/2g

(
1

2
ỹHt R−1

ỹ ỹt

)
], (8)

where Ry and Rỹ are the structured covariance in (3) and extended covariance in (5), respectively. The density

generator g(.): R+ 7→ R+ satisfies δN,g
def
=
∫∞

0 tN−1g(t)dt < ∞ to ensure the integrability of p(yt) and cN,g

is a normalizing constant given by cN,g
def
= 2(sNδN,g)

−1 where sN
def
= 2πN/Γ(N) is the surface area of the

unit complex N -sphere. We note that the so-called scale ambiguity usually present in the p.d.f. of yt with

the scatter and pseudo-scatter matrices, is here removed thanks to the constraint on g: δN+1,g/δN,g = N [33]

which ensures that the scatter matrices are equal to the covariance matrices.

January 24, 2022 DRAFT



6

The r.v. yt admits the following stochastic representation [35]:

yt =d

√
QtR1/2

y ut, circular source case (9)

yt =d

√
Qt[I,0]R

1/2
ỹ ũt, rectilinear source case (10)

where ũt
def
= (uTt ,u

H
t )T . Qt and ut are independent, ut is uniformly distributed on the unit complex N -sphere

and Qt has the p.d.f.

p(Qt) = δ−1
N,gQ

N−1
t g(Qt), (11)

with E(Qt) = N . Note that this CES distribution model includes the standard Gaussian model, for which

g(x) = e−x, cN,g = π−N and Qt is 1/2χ2
2N distributed in the circular and rectilinear source cases.

III. REVIEW OF DETERMINISTIC AND STOCHASTIC CRAMÉR-RAO BOUNDS DERIVATION

We consider here the general framework of K deterministic or circular stochastic [resp., rectilinear] sources,

where the range of the steering matrix A [resp., Ã] characterizes the DOA1. To derive the DCRB and SCRB

for DOA estimation, we have to carefully specify all the unknown parameters associated with the distribution

of yt.

In the deterministic model where the density generator g(.) of the C-CES distributed noise is known, yt in

(1) is parameterized by the parameter α = (θ1, .., θK ,ρ
T , σ2

n)T where ρ
def
= ((ReT (xt), Im

T (xt))t=1,..,T )T

(with K < N ) in arbitrary circularity case and ρ
def
= (φ1, .., φK , (rt,1..., rt,K)t=1,..,T )T (with K <

2N ) in rectilinear case. For both stochastic Gaussian and stochastic CES data model where the density

generator g(.) is known, yt in (1) is parameterized by the parameter α = (θ1, .., θK ,ρ
T , σ2

n)T where

ρ
def
= ([Rx]i,i,Re([Rx]i,j), Im([Rx]i,j))

T , 1 ≤ i < j ≤ K (with K < N ) in circular case and

ρ
def
= (φ1, .., φK , [Rr]i,j)

T , 1 ≤ i ≤ j ≤ K (with K < 2N ) in rectilinear case. Under these parametrizations, the

components of the Fisher Information matrix (FIM) associated with DOA parameters and nuisance parameters

can be computed. Simple general closed-form expressions of these components called Slepian-Bangs formula

were given for the real Gaussian distribution in [37] and [38], then extended to the circular and noncircular

complex Gaussian distribution in [39] and [40], respectively. This formula has been extended to the C-CES

distribution in [41] and [42], and then in [43] to the NC-CES distribution. In contrast, if the density generator

g(.) of the C-CES distribution of the noise in the deterministic model or of the C-CES ot NC-CES distribution

of the data yt in the stochastic model, is unknown, an additional infinite dimensional nuisance parameter must

1This excludes the SCRB derived under the prior knowledge of uncorrelated sources applied to sparse linear arrays with K > N
[36].
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be considered. To handle this parameterization, a semiparametric FIM associated with the finite dimensional

parameter was derived in [44].

In the deterministic model with circular Gaussian noise, with no prior knowledge is introduced on the

sources, the DCRB for DOA was first derived in [45] by picking the DOA-block of the inverse of the FIM.

Then for rectilinear sources, a closed-form expression of this DCRB was given in [46] and [47] and then in [48]

under more general rectilinear models. Noting that the parameter σ2
n is decoupled from the other parameters

in the FIM of the C-CES distributions where the density generator g(.) is known, and that the expectation

terms of this FIM is proportional to those of the Gaussian noise case, the DCRB for DOA is directly derived.

Furthermore, when the density generator g(.) is unknown, σ2
n is also decoupled from the other parameters in the

semiparametric FIM from [49, rel. (46)] and the expectation term of this semiparametric FIM is proportional

to the expectation term of the FIM associated with circular Gaussian distributed data with the coefficient of

proportionality ξ1 = E[φ2(Qt)Qt]
N where φ(x)

def
= − 1

g(x)
dg(x)
dx . Comparing these DCRB and SDCRB, we get the

following theorem:

Theorem 1: The DCRB and SDCRB for DOA estimation in the general scenario of K sources are given by

the following expressions:

DCRB(θ) = SDCRB(θ) =
1

T

σ2
n

2ξ1

{
Re
(

(DH
θ Π⊥ADθ)�RT

x,T

)}−1
, (12)

DCRBRec(θ) = SDCRBRec(θ)

=
1

T

σ2
n

ξ1

{(
(D̃H

θ Π⊥
Ã

D̃θ)�Rr,T

)
−
(
(D̃H

θ Π⊥
Ã

D̃φ)�Rr,T

)(
(D̃H

φ Π⊥
Ã

D̃φ)�Rr,T

)−1(
(D̃H

φ Π⊥
Ã

D̃θ)�Rr,T

)}−1

(13)

for sources of arbitrary circularity and rectilinear sources, respectively, where Dθ
def
= [d1, ..,dK ], D̃θ

def
=

[d̃1, .., d̃K ], D̃φ
def
= [d̃φ1

, .., d̃φK
] with dk

def
= ∂ak

∂θk
, d̃k

def
= ∂ãk

∂θk
, d̃φk

def
= ∂ãk

∂φk
, Π⊥A [resp. Π⊥

Ã
] denote the

orthogonal projector on the columns of A [resp. Ã]. Note that if the signal sources xt,k or rt,k are known, the

DCRB are more simply derived from the associated FIM. They are also given by (12) and (13) where Π⊥A and

Π⊥
Ã

is replaced by the identity matrix.

In the stochastic circular Gaussian model, the SCRB for DOA was first derived, indirectly, as the asymptotic

covariance matrix of the maximum likelihood estimator [26], then directly by picking the DOA block of the

inverse of the FIM [50]. Following this approach, the SCRB for DOA was derived in the stochastic rectilinear

Gaussian model [51] and then extended to the stochastic C-CES data model where the density generator g(.) is

known in [43] to C-CES and NC-CES distributions. Similarly, using the semiparametric FIM [44], the SSCRB

on the DOA only was given in [49, rel. (62)] for C-CES distributions and extended to NC-CES distributions

in [35]. Comparing these SCRB given in [43] and SSCRB, we get the following theorem:
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Theorem 2: The SCRB and SSCRB for DOA estimation in the general scenario of correlated or uncorrelated

(including coherent) K sources are given for both conventional Gaussian and robust distribution models by the

following common expressions:

SCRBCir(θ) = SSCRBCir(θ) =
1

T

σ2
n

2ξ2

{
Re
(

(DH
θ Π⊥ADθ)�HT

)}−1
, (14)

SCRBRec(θ) = SSCRBRec(θ)

=
1

T

σ2
n

ξ2

{(
(D̃H

θ Π⊥
Ã

D̃θ)�H̃
)
−
(

(D̃H
θ Π⊥

Ã
D̃φ)�H̃

)(
(D̃H

φ Π⊥
Ã

D̃φ)�H̃
)−1(

(D̃H
φ Π⊥

Ã
D̃θ)�H̃

)}−1

(15)

for circular and rectilinear sources, respectively, where Dθ, D̃θ, D̃φ, Π⊥A and Π⊥
Ã

are defined in Theorem 1,

H
def
= RxA

HR−1
y ARx, H̃

def
= RrÃ

HR−1
ỹ ÃRr, and where ξ2

def
= E[φ2(Qt)Q2

t ]
N(N+1) .

We note that in the standard Gaussian model, φ(x) = 1 gives ξ1 = E(χ2
2N )
N = 1 and ξ2 = E[(χ2

2N )2]
4N(N+1) = 1

and thus the DCRB and SDCRB given for arbitrary C-CES distributions of the noise, and the SCRB and

SSCRB given for arbitrary C-CES or NC-CES distributions of the observation are scaled expressions of the

associated CRB given in the conventional Gaussian model. Furthermore, we notice that ξ1 ≥ 1, while ξ2 ≤ 1

(sub-Gaussian case) or ξ2 ≥ 1 (super-Gaussian case) [43].

Note also that from this theorem, the DCRB and SCRB derived under the full knowledge of g, and the SDCRB

and SSCRB that assume g as infinite-dimensional nuisance parameter are equal. But we cannot conclude that

knowing or not knowing g can lead to the same DOA performance. When g is known, the ML estimate of

the DOA is asymptotically (w.r.t. the number of snapshots T ) efficient, and therefore, its covariance reaches

the CRB for the stochastic model. But when g is unknown, some estimates have been proposed in [32] by

exploiting the MUSIC algorithm together with the Tyler’s or Hubert’s M estimate of the covariance with better

performance than for the conventional MUSIC algorithm. But none of these estimators is efficient w.r.t. the

SSCRB. Finding such an estimator appears to be an open problem to the best of our knowledge.

IV. DCRB AND SCRB FOR TWO EQUI-POWERED SOURCES

This subsection derives exact closed-form expressions of the DCRB and SCRB given for two equi-powered

sources deduced from (12), (13), (14) and (15) in particular scenarios and analyzes the significant role played

by the magnitude and the phase of the correlation. It gives also approximate closed-form expressions of this

SCRB for small DOA separation. Unfortunately, without special conditions on arrays, the expressions of these

different CRB’s are too complicated (see (71)-(80) in Appendix A) to provide useful insights into the behavior

of the CRB’s dependence on the different parameters. To simplify these expressions, we impose the assumption

that the steering vectors a1 and a2 are defined up to a multiplicative phase depending on the DOAs and the
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origin of the coordinate system. Consequently, without loss of generality, we can suppose that β def
= aH1 a2 is

real-valued. But as this condition is not yet sufficient to obtain simple expressions, it is reinforced by supposing

that the array is centro-symmetric, i.e., satisfying a∗k = Jak
2

This latter condition ensures not only that β is real-valued, but that it is also the case for the geometric terms

α1,2, η′k and η′′2 defined below, which allows us to obtain simplified expressions of SCRBs.

We obtain from (12) the following closed-form expressions:

DCRB(θk, θk) =
1

2Tξ1

1

r

α3−k
(α1α2 − α2

1,2|ρ|2 cos2 φ)
, k = 1, 2 (16)

DCRB(θ1, θ2) = − 1

2Tξ1

1

r

α1,2|ρ| cosφ

(α1α2 − α2
1,2|ρ|2 cos2 φ)

, (17)

where αk
def
= dHk Π⊥Adk and α1,2

def
= dH1 Π⊥Ad2, r def

= σ2
x/σ

2
n with σ2

x
def
= 1

T

∑T
t=1 |xt,1|2 = 1

T

∑T
t=1 |xt,2|2 and

ρ
def
= 1

σ2
x

1
T

∑T
t=1 xt,1x

∗
t,2. We see from (16) that the DCRB of the DOA is an increasing function of the real

part of the correlation. This DCRB reaches its minimum for uncorrelated sources or for φ = π/2 mod π for

which

DCRB(θk, θk) =
1

2Tξ1

1

r

1

αk
, k = 1, 2. (18)

This expression is similar to that of a single source k where αk is replaced by dHk Π⊥ak
dk = ‖dk‖2 (for centro-

symmetric arrays). It also follows that the minimum bound (18) remains greater than that for a single source.

We see from (17) that the DOA are decoupled in the DCRB if and only if the real part of the correlation is zero.

It is also clear that the DCRB is inversely proportional to SNR. We note that (16) and (17) are not given in [13]

which focused on approximate DCRB expressions for closely-spaced sources impinging on a ULA array. We

also point out that (16) and (17) are also valid in the context of known signal sources where Π⊥A is replaced

by the identity matrix in the definition of αk and α1,2. These expressions have also been derived in [20] for

the linear array in a more complicated form due to the choice of the first sensor as the origin of the phases.

A. Exact closed-form expressions of the DCRB and SCRB in particular scenarios

In contrast to (12), the application of (13), (14) and (15) for two equi-powered sources gives intricate expres-

sions of SCRBCir(θk, θk) and SCRBCir(θ1, θ2) [resp., DCRBRec(θk, θk), DCRBRec(θ1, θ2), SCRBRec(θk, θk),

SCRBRec(θ1, θ2)], k = 1, 2 in which geometric terms through (β, αk and α1,2) and signal terms through (r

and ρ), [resp., geometric and phase terms (β̃ = ãH1 ã2, α̃k = d̃Hk Π⊥
Ã

d̃k and α̃1,2 = d̃H1 Π⊥
Ã

d̃2) and signal

2For example, uniform linear arrays, uniform circular arrays with an even number of sensors, regular hexagonal shaped arrays, cross-
based centro-symmetric arrays, square-based centro-symmetric array, for which the array centroid is chosen as the reference of the
phases are centro-symmetric arrays [52].
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terms (r, ρ′)] are mixed (see Appendix A). However, in the particular scenarios of orthogonal steering vectors,

uncorrelated sources or coherent sources, closed-form interpretable expressions are available.

From (13), only the following scenarios make it possible to obtain such expressions:

• Case ρ′ = 0 (uncorrelated sources)

In this case, the two DOAs are decoupled in the DCRB with expressions given by

DCRBRec(θk, θk) =
1

2Tξ1

1

r

1

ηk − Nη
′2
k

N2−β2 cos2(∆φ)
, k = 1, 2, (19)

DCRBRec(θ1, θ2) = 0, (20)

where ηk = dHk dk and η′k = dHk a3−k, k = 1, 2.

• Case ρ′ = ±1 (coherent sources):

DCRBRec(θk, θk)=
1

2Tξ1

1

r

β2 −N2

(β2 −N2)ηk +Nη
′2
k −

(βη
′
1η
′
2−(β2−N2)η′′2 )2 cos2 ∆φ

(β2−N2)η3−k+Nη
′2
3−k

, k = 1, 2, (21)

DCRBRec(θ1, θ2)=
1

2Tξ1

1

r

(β2−N2)(βη
′

1η
′

2−(β2−N2)η′′2) cos ∆φ

((β2−N2)η1+Nη
′2
1 )((β2−N2)η2+Nη

′2
2 )−(βη

′

1η
′

2−(β2−N2)η′′2)2 cos2∆φ
,(22)

where η′′2 = dH1 d2.

• Case β = 0 (orthogonal steering vectors):

DCRBRec(θk, θk) =
1

2Tξ1

1

r

1

ηk − ρ′2η
′2
k sin2 ∆φ
N −

(
η
′2
k

N −
Nρ′2η

′′2
2

Nη3−k−η′23−k(ρ′2+(1−ρ′2) cos2 ∆φ)

)
cos2∆φ

(23)

DCRBRec(θ1, θ2) = − Nρ′η′′2 cos ∆φ

Nη2 − η
′2
2 (ρ′2 + (1− ρ′2) cos2 ∆φ)

DCRBRec(θk, θk). (24)

Note that (19), (21) and (23) are functions of ∆φ, symmetric w.r.t. π/2 and decreasing from its maximum

for ∆φ = 0 mod π to its minimum for ∆φ = π/2.

From (71) and (72) derived from (14), interpretable closed-form expressions of SCRBCir(θk, θk) and

SCRBCir(θ1, θ2) are only possible in the following scenarios:

• Case ρ = 0:

SCRBCir(θk, θk) =
1

2Tξ2

α3−k(N + r(N2 − β2))((1 +Nr)2 − r2β2)

r2(α1α2(N + r(N2 − β2))2)− α2
1,2β

2
, k = 1, 2, (25)

SCRBCir(θ1, θ2) = − 1

2Tξ2

α1,2β((1 +Nr)2 − r2β2)

r2(α1α2(N + r(N2 − β2))2 − α2
1,2β

2)
. (26)

We note that (25) is an increasing function of β2, which is minimum [resp., maximum] for β = 0

(orthogonal steering vectors) [resp., β = N (collinear steering vectors)].
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• Case |ρ| = 1:

SCRBCir(θk, θk) =
1

4Tξ2

α3−k(1 + 2r(N + β cos(φ)))

r2(N + β cos(φ))(α1α2 − α2
1,2 cos(φ)2)

, k = 1, 2, (27)

SCRBCir(θ1, θ2) = − 1

4Tξ2

α1,2 cos(φ)(1 + 2r(N + β cos(φ)))

r2(N + β cos(φ))(α1α2 − α2
1,2 cos(φ)2))

. (28)

We note that for not too far DOA (such that β > 0), SCRBCir(θk, θk) is maximum in φ for φ = π. But

its minimum is approached for φ = π/2 mod π only for high SNR r.

• Case β = 0:

SCRBCir(θk, θk)=
1

2Tξ2

α3−k(1 + |ρ|2 +Nr(1− |ρ|2))(1 +Nr(2 +Nr(1− |ρ|2)))

Nr2(α1α2(1+|ρ|2+Nr(1−|ρ|2))2−α2
1,2|ρ|2(−2+Nr(|ρ|2−1))2 cos2φ)

, k=1,2,(29)

SCRBCir(θ1, θ2)=− 1

2Tξ2

α1,2|ρ| cos(φ)(2 +Nr(|ρ|2 − 1))(1 +Nr(2 +Nr(|ρ|2 − 1)))

Nr2(α1α2(1+|ρ|2+Nr(1−|ρ|2))2−α2
1,2|ρ|2(−2+Nr(|ρ|2−1))2 cos2φ)

. (30)

It is clearly that SCRBCir(θk, θk) are functions of φ, symmetric w.r.t. π/2 and decreasing from its maximum

for φ = 0 mod π to its minimum for φ = π/2, but it is not easy to assess the dependence in |ρ|, although

we observe that SCRBCir(θk, θk) are numerically increasing with |ρ| for the ULA and UCA.

It is easy to deduce from these particular expressions the following interpretable closed-form expressions in

more specific cases:

• Case ρ = 0 and β = 0:

SCRBCir(θk, θk) =
1

2Tξ2

1

αk

1

r

(
1 +

1

Nr

)
, k = 1, 2, (31)

SCRBCir(θ1, θ2) = 0. (32)

So the DOAs are decoupled in the SCRB and this SCRB is similar to those a single source k, which has

also the expression (31) where αk is replaced by dHk Π⊥ak
dk. So the SCRB for two sources is larger than

for a single source and these SCRB are equal i.i.f. dHk a3−k = 0.

• Case |ρ| = 1 and β = 0:

SCRBCir(θk, θk) =
1

2Tξ2

α3−k
(α1α2 − α2

1,2 cos2 φ)

1

r

(
1 +

1

2Nr

)
, k = 1, 2, (33)

SCRBCir(θ1, θ2) = − 1

2Tξ2

α1,2 cos2 φ

(α1α2 − α2
1,2 cos2 φ)

1

r

(
1 +

1

2Nr

)
. (34)

So the DOAs are coupled in the SCRB and this SCRB is generally larger than for correlated sources,

except for very low SNR r.

Unlike the circular case, interpretable closed-form expressions of SCRBRec(θk, θk) and SCRBRec(θ1, θ2) can

be only found in more specific scenarios for which (15) gives:
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• Case ρ′ = 0 and β = 0:

SCRBRec(θk, θk) =
1

2Tξ2

1

ηk − η
′2
k

N cos2 ∆φ

1

r

(
1 +

1

2Nr

)
, k = 1, 2, (35)

SCRBRec(θ1, θ2) = 0. (36)

The DOAs are therefore decoupled in the SCRB and the SCRB of θk is similar to those of a single source

k derived in [51, (19)], which also has the expression (35) by replacing ηk− η
′2
k

N cos2(∆φ) by ηk (because

dHk Π⊥ak
dk = ηk using dHk ak = 0 for centro-symmetric arrays). Thus, the SCRB for two sources is larger

than for a single source and these SCRB are equal iif η
′

k = 0 or ∆φ = π
2 .

• Case ρ′ = ±1 and β = 0:

SCRBRec(θk, θk) =
1

2Tξ2

1

ηk − η
′2
k

N + Nη
′′2
2 cos2 ∆φ

η
′2
3−k−Nη3−k

1

r

(
1 +

1

4Nr

)
k = 1, 2, (37)

SCRBRec(θ1, θ2) = − 1

2Tξ2

N2η
′′

2 cos(∆φ)

(η
′2
1 −Nη1)(η

′2
2 −Nη2)−N2η

′′2
2 cos2 ∆φ

1

r

(
1 +

1

4Nr

)
. (38)

The DOAs are therefore coupled in the SCRB and this SCRB is greater than for uncorrelated sources (see

(35).

It is clear that SCRBRec(θk, θk) in (35) and (37) are functions of ∆φ, symmetric w.r.t. π/2 and decreasing

from its maximum for ∆φ = 0 mod π to its minimum for ∆φ = π/2.

Finally, note that some properties of SCRB and DCRB proved for particular values of the parameters β,

|ρ|, ρ′, cosφ and cos ∆φ are also confirmed for arbitrary values of these parameters. For example, extensive

numerical experiments with ULA and UCA confirm that for rectilinear signal sources, the different DCRB are

functions of ∆φ, symmetric w.r.t. π/2 and decreasing from its maximum for ∆φ = 0 mod π to its minimum

for ∆φ = π/2.

B. Approximate closed-form expressions of the DCRB and SCRB for small DOA separation

We examine here the DCRB (12) and (13) when the signal sources are known or unknown and the SCRB

(14) and (15) when the DOA separation δθ def
= θ1 − θ2 is small, by expressing the DOA-separation-dependent-

coefficients in terms of Taylor series about δθ = 0 and identifying the dominant term of the different CRB as

δθ → 0. For simplicity3, we restrict our analysis to the ULA with the following steering vectors

ak = (e−i(N−1)θk/2, e−i(N−3)θk/2, . . . , ei(N−3)θk/2, ei(N−1)θk/2), (39)

3For example, the analysis for the UCA is much more complicated because the different CRB are not functions only of the DOA
separation, but also on the mid DOA. In other words, the UCA which is isotropic for a single source is no longer isotropic for two
sources.
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where θk = π sinαk, with αk are the DOAs relative to the normal of array broadside and where the coordinate

system has its origin at the centroid of the array. With the aid of symbolic algebra and calculus tools, the

following asymptotic expressions of the DCRB are respectively obtained4:

DCRBKn(θk, θk) =
1

Tξ1

1

r

6

N(N2 − 1)(1− |ρ|2 cos2 φ)
+O((δθ)2), (40)

DCRBKn(θ1, θ2) = − 1

Tξ1

1

r

6|ρ| cos(φ)

N(N2 − 1)(1− |ρ|2 cos2 φ)
+O((δθ)2), (41)

DCRBKn
Rec(θk, θk) =

1

Tξ1

1

r

6

N(N2 − 1)(1− ρ′2 cos2 ∆φ)
+O((δθ)2), (42)

DCRBKn
Rec(θ1, θ2) = − 1

Tξ1

1

r

6ρ′ cos(∆φ)

N(N2 − 1)(1− ρ′2 cos2 ∆φ)
+O((δθ)2), (43)

when the signal sources are known,

DCRBUnk(θk, θk) =
1

Tξ1

1

r

360

N(N2 − 4)(N2 − 1)(1− |ρ|2 cos2(φ))(δθ)2
+O(1), (44)

DCRBUnk(θ1, θ2) =
1

Tξ1

1

r

360|ρ| cos(φ)

N(N2 − 4)(N2 − 1)(1− |ρ|2 cos2(φ))(δθ)2
+O(1), (45)

DCRBUnk
Rec (θk, θk) =

1

Tξ1

1

r

6

N(N2 − 1)(1− ρ′2) sin2 ∆φ
+O((δθ)2), for ∆φ 6= 0 (46)

DCRBUnk
Rec (θ1, θ2) =

1

Tξ1

1

r

6ρ′ cos(∆φ)

N(N2 − 1)(1− ρ′2) sin2 ∆φ
+O((δθ)2), for ∆φ 6= 0 (47)

DCRBUnk
Rec (θk, θk) =

1

Tξ1

1

r

360

N(N2 − 1)(N2 − 4)(1− ρ′2)(δθ)2
+O(1), for ∆φ = 0 (48)

DCRBUnk
Rec (θ1, θ2) =

1

Tξ1

1

r

360ρ′

N(N2 − 4)(N2 − 1)(1− ρ′2)(δθ)2
+O(1), for ∆φ = 0 (49)

when the source signals are unknown.

Using the same tools, the following asymptotic SCRB for circular sources are obtained:

SCRBCir(θk, θk)=
1

Tξ2

90(1 + 2Nr(1 + |ρ| cosφ))(1 + |ρ|2 + 2|ρ| cos(φ))

r2|ρ|2N2(N2 − 1)(N2 − 4)(1 + |ρ| cos(φ))2 sin2 φ

1

(δθ)2
+O(1), (50)

SCRBCir(θ1, θ2)=
1

Tξ2

90(1 + 2Nr(1 + |ρ| cosφ))(1− |ρ|2 + 2|ρ| cosφ(1 + |ρ| cosφ))

r2|ρ|2N2(N2 − 1)(N2 − 4)(1 + |ρ| cosφ)2 sin2(φ)

1

(δθ)2
+O(1),(51)

for φ 6= 0 mod π and

SCRBCir(θk, θk) =
b1

(δθ)4
+

b2
(δθ)2

+O(1) (52)

SCRBCir(θ1, θ2) =
b1

(δθ)4
+

b3
(δθ)2

+O(1) (53)

4The exponents Kn and Unk denote respectively known and unknown
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for φ = 0 mod π. As for the SCRB for rectilinear sources, we get:

SCRBRec(θk, θk) =
1

Tξ2

3((ρ′ + cos(∆φ))2 + 2Nr(ρ′2 − 1) sin2(∆φ))

r2N2(N2 − 1)(ρ′2 − 1)2 sin4(∆φ)
+O((δθ)2), (54)

SCRBRec(θ1, θ2) =
1

Tξ2

3 cos∆φ((1+ρ′2)cos ∆φ+2ρ′(1−Nr(ρ′2−1) sin2∆φ))

r2N2(N2 − 1)(ρ′2 − 1)2 sin4 ∆φ
+O((δθ)2), (55)

for ∆φ 6= 0 and

SCRBRec(θk, θk) =
a1

(δθ)4
+

a2

(δθ)2
+O(1) (56)

SCRBRec(θ1, θ2) =
a1

(δθ)4
+

a3

(δθ)2
+O(1) (57)

for ∆φ = 0.

Although the dominant terms in (52)-(57) are b1/(δθ)
4 and a1/(δθ)

4, the terms bk/(δθ)2 and ak/(δθ)
2,

k = 2, 3, are needed to derive the SRL in Section V because the dominant terms are eliminated in (61). In

fact, only the following differences are useful.

SCRBCir(θk, θk)− SCRBCir(θ1, θ2) =
1

Tξ2

180(1 + 2Nr(1 + |ρ|))
r2N2((N2 − 1)(N2 − 4))(1 + |ρ|)2(δθ)2

+O(1) (58)

SCRBRec(θk, θk)− SCRBRec(θ1, θ2) =
1

Tξ2

90(1 + 4Nr(1 + ρ′))

r2N2((N2 − 1)(N2 − 4))(1 + ρ′)2(δθ)2
+O(1). (59)

We see that the DCRB for known arbitrary (40), (41) or rectilinear (42), (43) sources tend to non-zero finite

values when the DOA separation tends to zero. This is also the case for the DCRB for unknown rectilinear

sources (46), (47) and the SCRB for rectilinear sources (54), (55) when ∆φ 6= 0. This property of the SCRB

for rectilinear sources has been observed numerically in [40] and was later confirmed by the behavior of the

non-circular MUSIC algorithm in [53].

V. CRB-BASED STATISTICAL RESOLUTION LIMITS

A. Derivation of different SRL

In [15], the SRL proposed by Smith was defined as the source separation that equals its own CRB, providing

an algorithm-independent resolution bound and was illustrated by the DCRB in the context of two damped

exponentials of identical unknown amplitudes. In the context of DOA estimation, the SRL is the DOA separation

δθ = θ1 − θ2 solution of the implicit equation:

δθ =
√

CRB(δθ), (60)
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where CRB(δθ) denotes the CRB on the DOA separation θ1−θ2. Because Var(θ̂1− θ̂2) = Var(θ̂1)+Var(θ̂2)−

2Cov(θ̂1, θ̂2), CRB(δθ) can be deduced form the matrix CRB(θ) by:

CRB(δθ) = CRB(θ1, θ1) + CRB(θ2, θ2)− 2CRB(θ1, θ2), (61)

for which CRB(θ1, θ1) = CRB(θ2, θ2) for two equal-powered source signals impinging on a ULA, and where

the CRB is either the DCRB or the SCRB. Although definition (60) essentially makes sense because the CRB

indicates the DOA estimation accuracy, it is not supported by rigorous statistical arguments. Some authors have

introduced a scalar factor λ between δθ and
√

CRB(δθ) (e.g., λ = 0.25 in [54], λ = 4 in [55]). But using a

generalized likelihood ratio test approach, [7] gave a statistical basis to (60) by defining the SRL instead by

the solution of the following implicit equation:

δθ = λ
√

CRB(δθ), (62)

where λ is analytically determined by the preassigned constraints on the probability of false alarm and detection.

As λ is of the order of unity for the usual values of these probabilities, we will retain here definition (60).

We derive here explicit closed-form expressions for SRLs by solving (60), whose solutions are only possible

in the form of approximate solutions for two closely-spaced sources resulting from the different asymptotic

expressions (40)-(59). Using ∆θ
def
= Nδθ/2

√
35, these approximate solutions are given from the derived DCRB

for known (40) (41) and unknown (44) (45) arbitrary sources, respectively, by

(∆θ)Kn
D ≈

(
1

Tξ1

N

r(N2 − 1)(1− |ρ| cosφ)

)1/2

, (63)

(∆θ)Unk
D ≈

(
1

Tξ1

5N3

r(N2 − 1)(N2 − 4)(1 + |ρ| cosφ)

)1/4

, (64)

and for known (42) (43) and unknown (46)-(49) rectilinear sources, respectively, by:

(∆θ)Kn
D,Rec ≈

(
1

Tξ1

N

r(N2 − 1)(1− ρ′ cos ∆φ)

)1/2

, (65)

(∆θ)Unk
D,Rec ≈

(
1

Tξ1

N(1− ρ′ cos ∆φ)

r(N2 − 1)(1− ρ′2) sin2 ∆φ

)1/2

, for ∆φ 6= 0 (66)

(∆θ)Unk
D,Rec ≈

(
1

Tξ1

5N3

r(N2 − 1)(N2 − 4)(1 + ρ′)

)1/4

, for ∆φ = 0. (67)

As a comparison, (∆θ)Kn
D given in [20, rel. (26)] has complicated and uninterpretable expressions while (63) is

an interpretable closed-form expression obtained thanks to the choice of the origin of the phases in the middle

5This normalization has been introduced in [4] and then taken up by [56], so we also use it in order to simplify comparisons with
the literature.
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of the ULA.

The approximate SRL solution of (60) are given from the derived SCRB for circular sources (50)-(53) by

(∆θ)S,Cir ≈
(

1

2Tξ2

5N2(1 + 2Nr(1 + |ρ| cosφ))

r2(N2 − 1)(N2 − 4)(1 + |ρ| cosφ)2

)1/4

, (68)

for all φ, and for rectilinear sources (54)-(57), by:

(∆θ)S,Rec ≈
(

1

2Tξ2

(1 + ρ′2 + 2Nr(1− ρ′2)(1− ρ′ cos ∆φ))

r2(N2 − 1)(1− ρ′2)2 sin2 ∆φ

)1/2

, for ∆φ 6= 0, (69)

(∆θ)S,Rec ≈
(

1

4Tξ2

5N2(1 + 4Nr(ρ′ + 1))

r2(N2 − 1)(N2 − 4)(ρ′ + 1)2

)1/4

, for ∆φ = 0, (70)

B. General comments

This section sheds light on the influence of various parameters involved in the SRLs expressions (63)-(70)

such as the number T of snapshots, the number N of sensors and signal and noise parameters (r, ξ1, ξ2, ρ, φ,

ρ′, ∆φ). It also compares SRLs deduced from SCRBs to those deduced from DCRBs.

1) Impact of parameters r, N and T on SRLs: The SNR r impacts the DCRB-derived SRL in a manner

similar as the number of snapshots T . As for the SCRB-derived SRL, its impact is more complex to analyze.

But it is similar for a large SNR and on the other hand, for a weak SNR and N , r2 impacts the SRL in a

manner similar to T .

Moreover for large values of N , the number of sensors N impacts all the SRLs in a similar way to T because

for the DCRB-derived SLRs N
N2−1 ≈

1
N and N3

(N2−1)(N2−4) ≈
1
N in (63)-(66) and (67), respectively, and for

the SCRB-derived SLRs N2(1+2Nr(1+|ρ| cosφ))
2r(N2−1)(N2−4) ≈ 1+|ρ| cosφ

N , (1+ρ′2+2Nr(1−ρ′2)(1−ρ′ cos ∆φ))
r(N2−1) ≈ 2(1−ρ′2)(1−ρ′ cos ∆φ)

N

and N2(1+4Nr(ρ′+1))
r(N2−1)(N2−4) ≈

4(ρ′+1)
N in (68), (69), and (70), respectively.

Now, the dependence of the SRL on T and therefore on r and N depends largely on the data assumptions of

the model, for which we have two types of dependencies. For the deterministic model with arbitrary unknown

sources and the stochastic model with circular sources, the SRLs are proportional to the inverse of the fourth

root of T . This behavior is similar for deterministic unknown and stochastic rectilinear sources with ∆φ = 0.

In contrast, for deterministic unknown rectilinear and stochastic rectilinear sources with ∆φ 6= 0, the SRLs are

proportional to the inverse of the square root of T , which can give a much lower SRL. This behavior is similar

when the sources are known (arbitrary or rectilinear).

2) Impact of parameters ξ1 and ξ2 on SRLs: The non-Gaussianity of noise in the deterministic data model and

of observations in the stochastic data model impacts the SRLs through the coefficients ξ1 and ξ2, respectively.

These coefficients influence the SRL in an equivalent way to the numbers of samples Tξ1 and Tξ2, respectively.
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While ξ1 is always greater than or equal to one, ξ2 can be greater or less than one [43]. This proves that

the Gaussian distributed observations (i.e., ξ2 = 1) does not lead to the largest SRL based on the SCRB.

As examples, we prove in the Appendix that the expressions of ξ1 and ξ2 for the normalized complex

Student’s t−distribution of degree of freedom ν > 2, are given by ξ1 = ν/2
(ν/2)−1

(ν/2)+N
(ν/2)+N+1 > 1 and

ξ2 = (ν/2)+N
(ν/2)+N+1 < 1, and for the normalized generalized Gaussian distribution with exponent s > 0, are

given by ξ1 =
Γ(2+N−1

s
)Γ(N+1

s
)

(Γ(1+N

s
))2

> 1 and ξ2 = N+s
N+1 where ξ2 < 1 [resp., ξ2 > 1] if 0 < s < 1 [resp., s > 1].

Finally, note that the complex angular elliptical (CAE) distribution which is obtained by normalizing any

centered C-CES distribution [33] is an interesting case because the ML estimate of its scatter matrix is the

Tyler’s M -estimator [57]. Based on the Fisher information analysis [42, eq. (20)], we deduce that the SCRB

for the CAE distribution, which is independent of the C-CES generating function g(.), is given by (14) with

ξ2 = N
N+1 , despite this distribution is not a C-CES distribution. This result is consistent with the invariance

and the efficiency of the ML estimator, which allows us to directly deduce ξ2 = ξ2,Tyler = N
N+1 from the

asymptotic distribution of the Tyler’s M -estimator. Note further that for the CAE distribution the SCRB for

DOA is equal to the asymptotic minimum variance bound (AMVB) [58] based on the Tyler’s M statistics. It

follows from the C-CES distribution-free property of the asymptotic distribution of the Tyler’s M estimator,

that for arbitrary second-order C-CES distributed observations yt, the AMVB for DOA based on the Tyler’s M

statistics is equal to the SCRB given by (14) where ξ2 = N
N+1 . As a result, all the analysis of the SCRB-derived

SRL apply to AMVB-derived SRL based on the Tyler’s M statistics.

3) Impact of parameters ρ, φ, ρ′ and ∆φ on SRLs: The different SRLs are functions of the magnitude of

the correlation of sources, but also of the phase and this dependence depends on the considered SRL. Thus,

SRLs for known arbitrary sources (63) and known rectilinear sources (65) are respectively increasing functions

of |ρ| cosφ and ρ′ cos ∆φ, which is unbounded for ρ and ρ′ei∆φ approaching one, respectively.

In contrast, the SRL (64) deduced from the DCRB for arbitrary unknown sources and the SRL (68) deduced

from the SCRB for circular sources with large SNR are both decreasing functions of |ρ| cosφ. Note that, for

|ρ| 6= 1, the DCRB-derived SRL (64) and the SCRB-derived SRL (68) are both minimal for φ = 0, and are

maximum for φ = π. On the other hand, for |ρ| = 1, these SRLs are minimal for φ = 0 and go to infinity for

φ = π.

It can also be seen that the DCRB-derived SRL (66) (67) and SCRB-derived SRL (69) (70) for rectilinear

sources depend strongly on the correlation phase. A non-zero correlation phase greatly improves the SRL due

to the proportionality of SRL in (.)1/2 instead of (.)1/4 for zero-phase. Note that the DCRB-derived SRL

(66) and the SCRB-derived SRL (69) are respectively minimum for ∆φ = tan−1(

√
2(ρ′2+

√
1−ρ′2−1)

1−
√

1−ρ′2
) and

∆φ = tan−1[(
2Nrρ′(1−ρ′2)

2Nr(1−ρ′2)+ρ′2+1−
√

4N2r2(1−ρ′2)
3
+4Nr(1−ρ′4)+(ρ′2+1)

2
)2 − 1]1/2. These values become equal for
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a high SNR and are equal to π/2 for uncorrelated sources (ρ′ = 0). These SRLs are both maximum for ∆φ = 0.

4) Comparisons between SRL deduced from DCRB and SCRB: Comparing the SRL derived from the DCRB

when the sources are unknown arbitrary (64), unknown rectilinear with ∆φ 6= 0 (66) and ∆φ = 0 (67) to that

deduced from the SCRB when the sources are respectively circular (68), rectilinear with ∆φ 6= 0 (69) and

∆φ = 0 (70) in Gaussian data models (i.e., ξ1 = ξ2 = 1), we see that these SRLs each tends to the same limit

when r increases. This property is consistent with the general result [26, R9] proved in the Gaussian framework

that states that the DCRB and SCRB tend to the same limit as all SNRs increase.

As for the SRL (63) deduced from the DCRB with known source signals which is the only expression of

SLR [20] for correlated sources published in the literature, we see that the knowledge of rectilinearity of the

source signals which adds an unknown phase parameter does not modify this SRL (65). Naturally, these SRLs

are more optimistic than the SRLs resulting from the DCRB with arbitrary unknown sources and SCRB for

circular sources, due to the proportionality of SRL in (.)1/2 instead of (.)1/4.

VI. NUMERICAL ILLUSTRATIONS

This section illustrates the dependence of the derived DCRB (and SCRB)-based SRLs expressions (63)-

(70) on various parameters such as the number of sensors, the number of snapshots and the signal and noise

parameters. Throughout this section (except in Figs. 6 and 10), the number of sensors N is fixed at 6 and

that of snapshots T at 500. Note first that our interpretable closed-form expressions (64)-(70) of SRLs only

give approximate solutions of (60). Their relative precisions depend on the different parameters, but from our

different calculations, we can say that they are increasing functions of the different SRLs and that they are

better than 1% as soon as our calculated values of SRL are lower than 0.5rd. This good precision of our

approximations can be explained by the expansions in δ that are even, and truncated to order two or four.

In the first experiment, Figs. 1, 2, 3 and 4 compare the different SRLs (63)-(70) with respect to the SNR under

the assumption of Gaussian noise or observations (i.e., ξ1 = ξ2 = 1). Figs. 1 and 2 clearly show that the SRL

derived under the assumption of known sources, which is the only result published in the literature [20] is very

optimistic with respect to other SCRB (and DCRB)-derived SRLs, especially for a correlation or non-circularity

phase equal to zero. On the other hand, the DCRB-derived SRLs are lower than the associated SCRB-derived

SRLs for both circular and rectilinear unknown sources, similarly to the behavior of the associated CRBs. Note

however that the DCRB (and SCRB)-derived SRLs are very close, except in the case of strongly correlated

rectilinear sources with non-zero phase (see Fig. 2b).

Figs. 3 and 4 clarify this point by plotting the ratios (∆θ)Unk
D /(∆θ)S,circ and (∆θ)Unk

D,rect/(∆θ)S,rect. One can

observe that these ratios deviate all the more than one as the SNR is lower, as it has already been noticed in

[26] when analyzing the relation between DCRBUnk(θk) and SCRBCir(θk). Note also that the magnitude and
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Fig. 1. Comparisons between stochastic SRLs for circular sources (68), rectilinear sources (69), and between deterministic SRLs for
known arbitrary sources (63), unknown arbitrary sources (64), known rectilinear sources (65) and unknown rectilinear sources (66) for
either Gaussian noise or observations (i.e., ξ1 = ξ2 = 1) as function of SNR, with N = 6.
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Fig. 2. Comparisons between stochastic SRLs for circular sources (68), rectilinear sources (69), and between deterministic SRLs for
known arbitrary sources (63), unknown arbitrary sources (64), known rectilinear sources (65) and unknown rectilinear sources (66) for
either Gaussian noise or observations (i.e., ξ1 = ξ2 = 1) as function of SNR, with N = 6 and φ = ∆φ = π/3.

phase of the correlation impact these ratios in different ways for circular or rectilinear source signals. This ratio

is lowest for uncorrelated circular sources (ρ = 0) and for strongly correlated rectilinear sources of correlation

phase not close to zero (ρ′ ≈ 1 and ∆φ 6= 0).

In the second experiment, Figs. 5 and 6 illustrate the impact of the non-Gaussianity of the noise on the DCRB-

derived SRL implied by the influence of the coefficient ξ1 and of the observation on the SCRB-derived SRL
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D /(∆θ)S,circ (i.e., (64)/(68)) for either complex Gaussian noise or observations (i.e., ξ1 = ξ2 = 1) as a

function of SNR with N = 6 and T = 500.
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Fig. 4. Ratio r2 = (∆θ)Unk
D,rect/(∆θ)S,rect (i.e., (66)/(69)) for either complex Gaussian noise or observations (i.e., ξ1 = ξ2 = 1) as a

function of SNR with N = 6 and T = 500.

implied by the influence of the coefficient ξ2. We consider here the normalized complex Student’s t−distribution

of degree of freedom ν > 2 and the normalized complex generalized Gaussian distribution of exponent s > 0,

which each include the Gaussian distribution for ν → ∞ and s = 1, respectively. For these two distributions,

the expressions of ξ1 and ξ2 depend not only on the parameter of the distributions, but also on N that are

calculated in Appendix. One can observe from Figs. 5 and 6 that plot the SRLs as a function of ν or s for

three values of N , that: (i) similar to the well-known result on DCRB in which the Gaussian distribution leads
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complex Student’s t-distributed noise or observations as function of ν > 2 for three values of N with |ρ| = 0.5, φ = π/3, SNR =
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Fig. 6. (a) Deterministic SRL for unknown arbitrary sources (64) and (b) stochastic SRL for circular sources (68) for either complex
normalized generalized Gaussian distributed noise or observations as function of exponent s > 0 for three values of N with |ρ| = 0.5,
φ = π/3, SNR = 10dB and T = 500.

to the largest DCRB (ξ1 ≥ 1), the DCRB-derived SRL is maximum for the Gaussian distribution and takes

very small values in the case of very heavy-tailed distributions (i.e., ν close to 2 and s close to 0); (ii) similar

to the less known result on SCRB in which the Gaussian distribution does not always lead to the largest SCRB

(for the normalized complex Student’s t−distribution ξ2 < 1 and for normalized complex generalized Gaussian

distribution ξ2 < 1 for s < 1 and ξ2 > 1 for s > 1), the SCRB-derived SRL is minimum for ν →∞ (Gaussian
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Fig. 7. Deterministic SRL (66) with unknown rectilinear sources and stochastic SRL with rectilinear sources (69) for either complex
Gaussian noise or observations (i.e., ξ1 = ξ2 = 1) as a function of the noncircularity phase separation ∆φ with N = 6, SNR = 10dB
and T = 500 for positive (a) and negative (b) values of ρ′.
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distribution) and for s→∞ light tail distribution.

In the third experiment, Figs. 7, 8, 9 and 10 illustrate the impact of the correlation (phase and magnitude), the

SNR, the number of snapshots and sensors on the DCRB (and SCRB)-derived SRLs. Figs. 7 and 8, dedicated

to SRLs depending on rectilinear sources for which ρ = ρ′ei∆φ with ρ′ ∈ [−1,+1] and ∆φ ∈ [0, π] and Fig. 9

dedicated to SRLs depending on unknown arbitrary or circular sources for which ρ = |ρ|eiφ with φ ∈ [0, 2π],

present the important role played by the correlation of the sources. It can be observed from Figs. 7 and 8 that
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Fig. 10. Stochastic SRL with circular sources (68) and stochastic SRL with rectilinear sources (69) for complex Gaussian observations
(i.e., ξ2 = 1) as a function of number of sensors N (a) and number of snapshots T (b) with N = 6, |ρ| = ρ′ = 0.5 and φ = ∆φ = π/3.

the SRLs increase with ρ′ but not symmetric in ∆φ and leads to a minimum SRL depending on ρ′, N and

SNR as indicated in paragraph 3 of subsection V-B, and are minimum for ∆φ = π/2 only for ρ′ = 0. Fig. 9

shows that the SRLs increase with |ρ| and it is symmetric with respect to φ = π/2 and are minimum for φ = 0

and maximum for φ = π as depicted in paragraph 3 of subsection V-B. Fig.10 compares the SCRB-derived

SRLs for circular and rectilinear sources for different values of SNRs, number of snapshots and sensors. It
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shows that similar to the well-known behavior of SCRB, the SRL is much smaller for rectilinear sources than

for circular sources when the phase of correlation is not zero.

Finally, to illustrate that the correlation phase of the sources impacts not only the CRB and thus the SRL,

but also the resolution performance of the ML and MUSIC algorithms, a Monte Carlo simulation is presented

in Fig.11. This figure shows the predicted SRL (∆θ)S,Cir given by (68), the N
√
SCRBCir(δθ)/2

√
3 and

the RMSE (1000 Monte-Carlo runs are performed for each simulation point) of the difference of the DOA

estimates versus ∆θ
def
= Nδθ/2

√
3 for two values of correlation phase φ = 0 and φ = π. We can see from

the two figures: the dependence of the SRL on the correlation phase which moves from 0.032 when φ = 0 to

0.078 when φ = π, and that the RMSE associated with the ML reaches the CRB in the resolvable region and

that the reached region is reduced for φ = 0. It can also be observed that the resolution performance of the

ML estimator outperforms that of the MUSIC algorithm which is strongly affected by the phase correlation.

While in the unresolved region where the two sources are no longer resolved, the ML breaks away from the

CRB as well as the MUSIC algorithm. These results ensure that the SRL can not be achieved in general as

was discussed in [15].
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Fig. 11. The predicted SRL (68), the N
√
SCRBCir(δθ)/2

√
3 and the RMSE (1000 Monte-Carlo runs are performed for each simulation

point) of the difference of the DOA estimates versus ∆θ for the ML estimator and the MUSIC algorithm for complex circular Gaussian
observations (i.e., ξ2 = 1) considering the two cases (a) φ = 0 and (b) φ = π with N = 6, |ρ| = 0.95, T = 500, and SNR= 30dB.

VII. CONCLUSION

Simple exact and asymptotic (for small DOA separation) interpretable closed-form expressions are presented

for the DCRB and SCRB of the DOA for two equi-powered correlated known, arbitrary, circular or rectilinear
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sources in CES data models. The dependence of these bounds on the magnitude and phase of the correlation is

examined, and the values of the phase leading to the larger and smaller bounds are obtained. The asymptotic

expressions of DCRB and SCRB allow us to give interpretable closed-form expressions of the SRL based on

the Smith criterion in different scenarios. Comments to explain how different parameters impact the derived

SRLs among them the phase and magnitude of the correlation of the sources, and how also the SRLs derived

from the SCRBs are much less optimistic than those that have so far been deduced only from the DCRB under

the assumption of known sources are discussed. Finally, numerical illustrations clarify the obtained theoretical

results.

APPENDIX

Derivation of the SCRB for two equipowered sources:

After some algebraic manipulations, one arrives at the following expressions of the diagonal SCRBCir(θk, θk),

k = 1, 2, and the anti-diagonal SCRBCir(θ1, θ2) elements of SCRBCir(θ) for two equal-power circular

correlated sources deduced from (14).

SCRBCir(θk, θk) =
1

2Tξ2

γχk
χ1χ2 − χ2

1,2

, k = 1, 2, (71)

SCRBCir(θ1, θ2) = − 1

2Tξ2

γχ1,2

χ1χ2 − χ2
1,2

. (72)

with χk = α3−kν1, k = 1, 2, and χ1,2 = α1,2ν2 where

ν1 = r(1− |ρ|2)(N2 − β2) + 2β|ρ| cos(φ) +N(1 + |ρ|2), (73)

ν2 = β + r|ρ| cos(φ)(1− |ρ|2)(N2 − β2) + |ρ|(2N cos(φ) + β|ρ| cos(2φ)), (74)

γ = (1− |ρ|2)(N2 − β2) + 2(N + β|ρ| cos(φ))/r + 1/r2, (75)

where αk and α1,2 are the geometric-dependent array coefficients given by αk = dHk Π⊥Adk and α1,2 =

dH1 Π⊥Ad2.

Similarly, the diagonal SCRBRec(θk, θk), k = 1, 2, and the anti-diagonal SCRBRec(θ1, θ2) elements of

SCRBRec(θ) for two equal-power rectilinear sources deduced from (15) can be written as:

SCRBRec(θk, θk) =
1

Tξ2

γc1
c3
, k = 1, 2, (76)

SCRBRec(θ1, θ2) =
1

Tξ2

γc2
c3
, (77)
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with

c1 = ζ5(ζ2
4 + ζ2

7 )− ζ2(ζ2
5 − ζ2

9 )− 2ζ4ζ8ζ9, (78)

c2 = ζ6ζ
2
5 − ζ6ζ

2
9 − ζ3ζ8ζ5 + ζ3ζ4ζ9 + ζ7ζ8ζ9 − ζ7ζ4ζ5, (79)

c3 = ζ5

(
ζ1

(
−ζ2ζ5 + ζ2

8 + ζ2
4

)
+ ζ2

6ζ5

)
+ ζ2

9

(
ζ1ζ2 − ζ2

6

)
− 2ζ1ζ8ζ4ζ9

+ 2ζ7(ζ6ζ8ζ9 − ζ6ζ4ζ5 − ζ2ζ3ζ9 + ζ3ζ8ζ4) + 2ζ6ζ3(ζ4ζ9 − ζ8ζ5) + ζ2
3

(
ζ2ζ5 − ζ2

4

)
+ ζ2

7

(
ζ2ζ5 − ζ2

8

)
(80)

with ζk = α̃kν1, k = 1, 2, 3, 4, 5, and ζk = α̃kν2, k = 6, 7, 8, 9, where ν1, ν2 and γ are given, respectively, by

(73), (73) and (75) after replacing N with 2N , ρ ∈ C with ρ′ ∈ (−1, 1), and β with β̃ def
= ãH1 ã2 = 2β cos(∆φ).

The α̃k are the geometric and phase-dependent array coefficients given by α̃1 = d̃H1 Π⊥
Ã

d̃1, α̃2 = d̃H2 Π⊥
Ã

d̃2,

α̃3 = d̃H1 Π⊥
Ã

d̃φ1
, α̃4 = d̃H2 Π⊥

Ã
d̃φ2

, α̃5 = d̃Hφ1
Π⊥

Ã
d̃φ1

, α̃6 = d̃H1 Π⊥
Ã

d̃2, α̃7 = d̃H1 Π⊥
Ã

d̃φ2
, α̃8 = d̃H2 Π⊥

Ã
d̃φ1

and α̃9 = d̃Hφ1
Π⊥

Ã
d̃φ2

.

Derivation of ξ1
def
= E[φ2(Qt)Qt]

N and ξ2
def
= E[φ2(Qt)Q2

t ]
N(N+1) :

Normalized complex Student’s t−distribution:

Note first that the usual zero mean complex Student’s t−distribution used in [33], [41] of the data yt associated

with the scatter matrix Σ satisfies E(yty
H
t ) = ν

ν−2Σ for a degree of freedom ν > 2. Consequently, we need

to normalize this usual distribution so that its covariance is equal to the scatter matrix. Its density generator

then becomes g(t) =
(

1 + 2t
ν−2

)−(N+ν/2)
and hence φ(t) = (ν/2)+N

(ν/2)+t−1 . The 2nd-order modular variate Qt
then has a scaled F−distribution with 2N and ν degrees of freedom, Qt =d

ν−2
ν NF2N,ν with p.d.f p(t) =

1
((ν/2)−1)NB(N,ν/2) t

N−1
(

1 + 2t
ν−2

)−(N+ν/2)
, t ≥ 0, where B(x, y) is the Beta function. A straightforward

calculation proves that ξ1 = ν/2
(ν/2)−1

(ν/2)+N
(ν/2)+N+1 and ξ2 = (ν/2)+N

(ν/2)+N+1 .

Normalized complex generalized Gaussian distribution:

The general density generator for zero mean complex generalized Gaussian distribution with exponent s > 0

and scale b associated with the scatter matrix Σ is given in [33] by g(t) = e−t
s/b and hence φ(t) = s

b t
s−1. The

2nd-order modular variate Qt =d G
1/s
t where Gt is gamma distributed with shape N/s and scale b. The p.d.f. of

Qt is given by p(t) = s
Γ(N

s
)bN/s t

N−1g(t). Note that b, which controls the scale of the density generator, ensures

that the covariance is equal to the scatter matrix for b =
(
NΓ(N

s
)

Γ(N+1

s
)

)s
. With this value of b, a straightforward

calculation proves that ξ1 =
Γ(2+N−1

s
)Γ(N+1

s
)

(Γ(1+N

s
))2

and ξ2 = N+s
N+1 .

Finally, note that ξ1 depends on the normalization of the CES distributions, unlike ξ2 for which its

normalization does not impact it (see ξ2 given in [41] and [42]).
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