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A Differential game control problem with state constraints

Nidhal GAMMOUDI∗and Hasnaa ZIDANI †

Abstract

We study the Hamilton-Jacobi (HJ) approach for a two-person zero-sum differential game with state
constraints and where controls of the two players are coupled within the dynamics, the state constraints
and the cost functions. It is known for such problems that the value function may be discontinuous
and its characterization by means of an HJ equation requires some controllability assumptions involving
the dynamics and the set of state constraints. In this work, we characterize this value function through
an auxiliary differential game free of state constraints. Furthermore, we establish a link between the
optimal strategies of the constrained problem and those of the auxiliary problem and we present a
general approach allowing to construct approximated optimal feedbacks to the constrained differential
game for both players. Finally, an aircraft landing problem in the presence of wind disturbances is given
as an illustrative numerical example.

2010 MS-Class.ification Primary: 49N70, 49L20; Secondary: 49N90.

Key words: State constraints, differential games, nonanticipative strategies, trajectory reconstruction,
windshear problem

(Communicated by the associate editor name)

1 Introduction

Two-person zero-sum differential games provide convenient framework for analyzing real conflict situations
between two players where the gain of one player corresponds certainly to the loss of the other player. The
most classical example is the Target Problem where the dynamic is controlled by both players, one player
wants the dynamical system to reach, in finite time, a given set called the target while his opponent tries to
avoid this target forever (see [13, 12, 14]). Another classical example is the Pursuit-Evasion game for which
each player controls only half of the system’s coordinates and the cost is the capture time which is the first
time when the first player’s coordinates become close enough to those of his opponent (see [15, 5]).

Differential games can be studied in different contexts depending on the information advantage accorded
to the two players which defines two values of the game. The most popular class of information advantage
is the one of nonanticipative strategies where one of the two players knows, at each instant, the past and
present choices of his opponent without having any idea about his future actions, see [17, 16]. Another class
of game strategies is called positional strategies where at each instant and before taking any decision, both
players know the position of the system, see [4, Chapter VIII].

In the present work, we consider a two-person zero-sum differential game subject to state constraints
where the first player is allowed to use nonanticipative strategies which are mappings from the set of controls
of the second player, B, to the actions set of the first player, A (the precise definitions of A, B and the set
of nonanticipative strategies, Γ, will be given in section 2).

For a given finite time horizon T > 0, consider the dynamical system{
ẏ(s) = f(s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T ],

y(t) = x,
(1)
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where α[·] ∈ Γ is the nonanticipative strategy of the first player, b(·) ∈ B is the action of the second player,
and f :[t, T ] × Rd × A × B is a continuous function (more precise definitions and assumptions are given in
section 2).

The absolutely continuous solution of (1) is denoted by y
α[b],b
t,x and will be referred as the trajectory

corresponding to (α[b](·), b(·)) ∈ A× B.

For a given set of state constraints, K, a trajectory ya,bt,x(·), corresponding to a couple of actions (a(·), b(·)) ∈
A× B, is admissible if ya,bt,x(s) ∈ K, ∀s ∈ [t, T ].

We are interested in the following differential game with maximum running cost:

v(t, x) := inf
α[·]∈Γ

π(t, x;α) (2)

where π is defined by:

π(t, x;α) :=

 sup
b(·)∈B

{(
max
s∈[t,T ]

φ(s, y
α[b],b
t,x (s))

)∨
ψ(y

α[b],b
t,x (T ))

}
, if y

α[b],b
t,x (·) is admissible ∀b(·) ∈ B,

+∞, else,

where the cost functions φ: [t, T ] × Rd × A × B → R and ψ : Rd → R are continuous (see section 2 for
precise assumptions). This problem formulation can model the situation where the first player, representing
the controller, uses his advantage of information to counteract to unknown disturbances, representing the
second player of the game, which can affect the system and the cost functions, see section 5. For such
situations, the traditional approach is to represent disturbances via a statistical model and to optimize the
expected value of the cost [24] and the references therein. However, this approach may not be effective
against some catastrophic cases and it is not always possible to have a good statistical model. Therefore this
situation can be modeled by a two-person zero-sum differential game where the first player (the controller)
minimizes the cost in the case of the worst behavior of his opponent (unknown disturbances). We can also
imagine another game example where the second player objective is to maximize the cost π or to violate
state constraints.

Without considering state constraints, K ≡ Rd, this differential game was studied in [27] with a maximum
bounded cost function and in [25] with a Lipschitz continuous infimum cost. It was also studied in the case
of a single controller in [23] by characterizing the value function epigraph via a viability kernel.

In the presence of state constraints, K 6= Rd, some difficulties appear. The value function v becomes
lower semi continuous and its characterization as unique solution of an HJ equation requires some additional
assumptions involving the dynamics f and K. In the case of one controller problems, the most popular
assumption, which is the inward pointing condition, was introduced in [28]. This condition imposes, at each
point of the boundary of K, the existence of a control value that lets the dynamics points in the interior of
K. Equivalent assumptions in the case of a two-players problem can be found in [15, 6, 7]. Unfortunately,
such assumptions cannot be satisfied for several control problems, which complicates the characterization of
the value function as solution of an HJ equation.

In this work, we do not assume any controllability assumptions on the dynamics or on the set of state
constraints. In addition to that, controls of the two players are allowed to be coupled within the dynamics,
the state constraints and the cost functions. Moreover, we consider weak assumptions on f , φ and ψ
(locally Lipschitz continuous and not essentially bounded). We extend the result of [1] to the case of a
two-person games in order to characterize v through a locally Lipschitz continuous value function of an
auxiliary differential game, unique solution of an HJ equation with obstacle term. In particular, in [1], the
link between the constrained problem and the auxiliary was established under a convexity assumption on
the dynamics f . Here, we study this link in a more general setting even when f is not convex. Without the
convexity of the dynamics and without controllability assumption, the set of trajectories is not closed and
the value function is not even lower semi-continuous.

Another contribution of this paper concerns trajectory reconstruction for the constrained differential
game based on the knowledge of an approximation to its associated auxiliary value function. In particular,
we prove that an optimal strategy of the first player for the auxiliary differential game, starting from a specific
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initial position, is also optimal for the constrained differential game. In addition to that, we exploit some
ideas from [2, 26] about trajectory reconstruction in the case of dynamical systems with a single controller
in order to present here a general approach allowing to construct approximated optimal feebacks to the
constrained differential game for both players by use of the auxiliary differential game value function. More
precisely, we present a general reconstruction procedure corresponding to an arbitrary case for which choices
of the second player are not essentially optimal and a specific reconstruction procedure where the second
player takes optimal decisions representing the worst case for the first player. Convergence results of the
trajectories sequences reconstructed by both procedures are also provided and discussed in this paper.

As an illustrative example, we study an aircraft landing problem in the presence of windshear. Indeed,
the best strategy to avoid a failed landing, that can occurs because of quick changes of the wind velocity,
is to steer the aircraft to the maximal altitude that can be reached, during an interval of time, in order to
prevent a crash on the ground. In [20, 21], a Chebyshev-type optimal control problem was proposed and an
approximate solution is provided. The Hamilton-Jacobi-Bellman approach was applied in [2] to solve this
problem after supposing the knowledge of the wind velocity fields. In [9], the aircraft landing problem was
formulated as a nonlinear differential game with state constraints and a semi-Lagrangian scheme was applied
to compute an approximation of the value function.

In this paper, we propose a 5D differential game model with maximum running cost, where wind distur-
bances are considered as a second player and the first player tries, by use of nonanticipative strategies, to
counteract to dangerous scenarios that can happen because of wind disturbances.

The paper is organized as follows. Section 2 introduces the constrained differential game with maximum
running cost and formulates its associated auxiliary problem. Section 3 shows how the auxiliary problem
introduced can be used to overcome the difficulties coming from the states constraints. Section 4 presents
some results concerning reconstruction of optimal trajectories for the auxiliary problem and for the original
constrained problem. The aircraft landing problem in presence of windshear is presented in section 5 as an
illustrative numerical example.

Notation In this paper we adopt the convention that inf ∅ = +∞ and sup∅ = −∞.
For any a,b ∈ R, the notation a

∨
b (resp. a

∧
b) stands for max(a, b) (resp. min(a, b)). The Euclidean

norm (inner product), on Rd (d ≥ 1), is denoted by ‖ · ‖ (〈·, ·〉) while B denotes the unit ball of Rd.
For any subset Y of Rd,

◦
Y and ∂Y denote, respectively, the interior and boundary of Y . Besides, d(·, Y )

and dY (·) denote the distance and the signed distance function to Y respectively. Recall that the signed
distance dY (·) is defined as follows:

dY (x) :=

{
−d(x, ∂Y ) if x ∈ Y,
d(x, ∂Y ) else.

To shorten some notations, s.t., l.s.c. and w.r.t. stand for ”such that”, ”lower semi continuous” and
”with respect to”.

2 Problem formulation

2.1 Settings of the constrained differential game

Consider a two-person zero-sum differential game with finite time horizon T > 0. Actions of the first and
the second players are measurable functions from [0, T ] and taking values respectively in A, a compact set
of Rp (p ≥ 1), and B, a compact set of Rq (q ≥ 1). The set of admissible controls of the second player B is
defined as follows:

B := {b(·) : [t, T ]→ B,measurable}.

The set of admissible controls of the first player A can be defined in a similar way to B.
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In this paper, the first player is assumed to use nonanticipative strategies. Following the formulation of
Elliott and Kalton [16], the set of this type of strategies for the first player, denoted by Γ, can be defined by:

Γ :=
{
α[·] : B → A, s.t. ∀b(·), b′(·) ∈ B, and ∀τ ∈ [0, T ],(

b(s) = b′(s) a.e. s ∈ [0, τ ]
)
⇒
(
α[b](s) = α[b′](s) a.e. s ∈ [0, τ ]

)}
.

For a choice (α[·], b(·)) ∈ Γ× B of the two players, consider the following dynamical system{
ẏ(s) = f(s, y(s), α[b](s), b(s)), a.e. s ∈ [t, T ],

y(t) = x,
(3)

where x ∈ Rd. The corresponding absolutely continuous solution is denoted by y
α[b],b
t,x (·).

Furthermore, the following hypothesis will be considered throughout this paper:

(H1) The dynamics f : [0, T ]×Rd×Rp×Rq 7→ Rd is continuous and for any R > 0, there exists
Lf (R) > 0, such that for every (a, b) ∈ A×B, s ∈ [0, T ] and y1, y2 ∈ Rd verifying |y1|, |y2| ≤ R :

|f(s, y1, a, b)− f(s, y2, a, b)| ≤ Lf (R)|y1 − y2|.

Moreover, there exists cf > 0, s.t. ∀ y ∈ Rd,

max{|f(s, y, a, b)|, s ∈ [0, T ], (a, b) ∈ A×B} ≤ cf (1 + |y|).

(H2) The running cost function φ : [0, T ] × Rd 7→ R is locally Lipschitz continuous, i.e. for any
R > 0 there exists Lφ(R) > 0 s.t. for any s ∈ [0, T ] and y1, y2 ∈ Rd, |y1|,|y2| ≤ R :

|φ(s, y1)− φ(s, y2)| ≤ Lφ(R)|y1 − y2|.

Moreover, there exists cφ such that ∀y ∈ Rd, max{|φ(s, y)|, s ∈ [0, T ]} ≤ cφ(1 + |y|).

(H3) The final cost function ψ : Rd 7→ R is locally Lipschitz continuous, i.e. for any R > 0 there
exists Lψ(R) > 0 s.t. for any y1, y2 ∈ Rd, |y1|,|y2| ≤ R :

|ψ(y1)− ψ(y2)| ≤ Lψ(R)|y1 − y2|.

There exists also cψ > 0 such that ∀y ∈ Rd, |ψ(y)| ≤ cψ(1 + |y|).

Let K be a non-empty closed subset of Rd representing the set of state constraints.
A trajectory ya,bt,x(·), associated to a couple of actions of the two players (a(·), b(·)) ∈ A×B, is said to be

admissible if it remains in K at any time instant.
We are interested in the following state-constrained differential game with maximum running cost:

v(t, x) := inf
α[·]∈Γ

π(t, x;α) (4)

where

π(t, x;α) :=

 sup
b(·)∈B

{(
max
s∈[t,T ]

φ(s, y
α[b],b
t,x (s))

)∨
ψ(y

α[b],b
t,x (T ))

}
, if y

α[b],b
t,x (·) is admissible ∀b(·) ∈ B,

+∞, else.
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Problem (4) describes the case when the first player is exploiting his information advantage and trying to
find nonanticipative strategies that guarantee admissibility of trajectories against any choice of the second
player and minimize the cost π.

One can imagine another situation where the players’ actions are separated w.r.t. the dynamics and
every player chooses his control in the aim of satisfying his own state constraints, see [6].

In general, for such state-constrained optimal control problems (K 6= Rd), the value function v is not
essentially continuous and may require further controllability assumptions to characterize it as the unique
viscosity solution of an HJ equation. An idea about such assumptions in the case of a two-person differential
game can be found in [15, 6, 7].

As mentioned earlier, we do not impose any controllability assumptions in this work. Following [1], we
introduce an auxiliary control problem free of state constraints with a more regular value function allowing
us to characterize v.

2.2 An auxiliary control problem

First consider the augmented dynamics f̂ defined for s ∈ [0, T ], x̂ := (x, z) ∈ Rd × R and (a, b) ∈ A×B by:

f̂(s, x̂, a, b) =

(
f(s, x, a, b)

0

)
(5)

Denote by ŷ
α[b],b
t,x,z (·), for (α[·], b(·)) ∈ Γ× B, the solution of the following augmented differential system:{

˙̂y(s) = f̂(s, ŷ(s), α[b](s), b(s)), a.e. s ∈ [t, T ],

ŷ(t) = (x, z) ∈ Rd × R.
(6)

Since the last component of the augmented dynamics f̂ is equal to zero, ŷ
α[b],b
t,x,z (·) can be expressed also

as ŷ
α[b],b
t,x,z (·) :=

(
y
α[b],b
t,x (·), z

)
, where y

α[b],b
t,x (·) is the solution of (3).

Moreover, the set of constraints K is closed. Henceforth, it can be characterized as follows:

∀y ∈ Rd, dK(y) ≤ 0⇔ y ∈ K, (7)

where dK(·) is the signed distance to K which is Lipschitz continuous. Therefore an admissible trajectory

y
α[b],b
t,x (·), corresponding to a couple of controls (α[b](·), b(·)) ∈ A × B can be characterized by means of the

signed distance: [
y
α[b],b
t,x (s) ∈ K,∀s ∈ [t, T ]

]
⇔ max

s∈[t,T ]
dK(y

α[b],b
t,x (s)) ≤ 0.

The value function of the auxiliary problem, w, can be defined, for t ∈ [0, T ] and (x, z) ∈ Rd × R, by :

w(t, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(s, y
α[b],b
t,x (s), z)

)∨
ψ̂(y

α[b],b
t,x (T ), z)

}
(8)

where for (x, z) ∈ Rd × R and s ∈ [0, T ], the functions φ̂ and ψ̂ are given by:

φ̂(s, x, z) := (φ(s, x)− z)
∨
dK(x) and ψ̂(x, z) := ψ(x)− z.

Remark 2.1 When the constrained problem (4) is of type Bolza, the auxiliary problem can be formulated

by modifying the augmented dynamics and the functions φ̂ and ψ̂. In this case, the objective function J is
given by:

J(t, x, a, b) :=

∫ T

t

`(s, ya,bt,x(s), a(s), b(s)) + ψ(ya,bt,x(T ))
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for (t, x) ∈ [0, T ] × Rd and (a(·), b(·)) ∈ A × B and where ` and ψ are respectively the distributed and the
final cost functions.

For x̂ = (x, z) ∈ Rd × R, consider the augmented dynamics f̂ :

f̂(s, x̂, a, b) :=

(
f(s, x, a, b)
−`(s, x, a, b)

)
,

and the cost functions φ̂ and ψ̂:

φ̂(s, x̂) := dK(x) and ψ̂(x̂) = ψ(x)− z.

Let ŷ
α[b],b
t,x̂ (·) be the unique continuous solution of the following differential system, associated to (α[b](·), b(·)) ∈

A× B: {
˙̂y(s) = f̂(s, ŷ(s), α[b](s), b(s)), a.e. in [t, T ],

ŷ(t) = x̂ := (x, z) ∈ Rd × R.

Therefore, the corresponding auxiliary problem is defined by:

w(t, x̂) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(s, ŷ
α[b],b
t,x̂ (s))

)∨
ψ̂(ŷ

α[b],b
t,x̂ (T ))

}
for t ∈ [0, T ] and x̂ ∈ Rd × R.

The above formulation still valid even for a problem of type Mayer (` ≡ 0). On the other hand, all the
results that will be seen in the following sections still true also for a state constrained problem of type Bolza
or Mayer.

3 Properties of the value functions v and w

This section is devoted to some properties of the auxiliary value function, w, and to show how it can be used
to characterize v, the value function of the constrained problem (4).

The following proposition gives some results concerning the regularity of w and its characterization
through Hamilton Jacobi equations.

Proposition 3.1 Assume that hypothesis (H1), (H2) and (H3) hold, then:
(i) w verifies a dynamic programming principle. For any h ∈ [0, T − t],

w(t, x, z) = inf
α[·]∈Γ

sup
b(·)∈B

{
w(t+ h, y

α[b],b
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(s, y

α[b],b
t,x (s), z)

)}
. (9)

(ii) The value function w is locally Lipschitz continuous on [0, T ]× Rd × R.
(iii) w is the unique viscosity solution of the following HJ equation:{

min
(
−∂tw(t, x, z) +H(t, x,Dxw(t, x, z)), w(t, x, z)− φ̂(t, x, z)

)
= 0, in [0, T [×Rd × R,

w(T, x, z) = φ̂(T, x, z)
∨
ψ̂(x, z), in Rd × R,

(10)

where ∂t stands for the time derivative, Dx stands for the derivative w.r.t x and the hamiltonian H is given
by:

H(t, x, p) := min
b∈B

max
a∈A
− 〈f(t, x, a, b), p〉, (11)

for (t, x, p) ∈ [0, T ]× Rd × Rd.
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Proof. First, the dynamic programming principle (9) is a classical result that can be found for instance
in [4, Chapter VIII]. Moreover, since the auxiliary problem is free of state constraints, one can show that w
is locally Lipschitz continuous by the same arguments used in [1]. Finally, it remains to prove that w is the
unique viscosity solution of (10).

Let ξ be a function of class C1 and (t, x, z) be a local minimum for w− ξ such that w(t, x, z) = ξ(t, x, z).
Assume that there exists δ > 0 such that

−∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)) = −δ < 0.

In this case, there exists b0 ∈ B such that, for any a ∈ A,

−∂tξ(t, x, z)− 〈f(t, x, a, b0), Dxξ(t, x, z)〉 ≤ −δ.

Now let fix h > 0 small enough and α[·] ∈ Γ. For any time instant s ∈ [t, T ], we have that α[b0](s) ∈ A.
Hence, from the last inequality, we get:

−∂tξ(t, x, z)− 〈f(t, x, α[b0](s), b0), Dxξ(t, x, z)〉 ≤ −δ, for any s ∈ [t, t+ h].

By continuity of ξ, f and Dxξ, we obtain, for any s ∈ [t, t+ h]:

−∂tξ(s, yα[b0],b0
t,x (s), z)− 〈f(s, y

α[b0],b0
t,x (s), α[b0](s), b0), Dxξ(s, y

α[b0],b0
t,x (s), z)〉 ≤ −δ

2
,

henceforth∫ t+h

t

(
− ∂tξ(s, yα[b0],b0

t,x (s), z)− 〈f(s, y
α[b0],b0
t,x (s), α[b0](s), b0), Dxξ(s, y

α[b0],b0
t,x (s), z)〉

)
ds ≤ −δh

2
,

which implies that

ξ(t, x, z)− ξ(t+ h, y
α[b0],b0
t,x (t+ h), z) ≤ −δh

2
.

On the other hand, we have

(w − ξ)(t+ h, y
α[b0],b0
t,x (t+ h), z) ≥ (w − ξ)(t, x, z).

From the two above inequalities, we deduce that

δh

2
+ w(t, x, z) ≤ w(t+ h, y

α[b0],b0
t,x (t+ h), z) ≤ w(t+ h, y

α[b0],b0
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(s, y

α[b0],b0
t,x (s), z)

)
.

Therefore we get

δh

2
+ w(t, x, z) ≤ sup

b(·)∈B

{
w(t+ h, y

α[b],b
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(s, y

α[b],b
t,x (s), z)

)}
.

Since the last inequality holds for any α[·] ∈ Γ, we deduce that

δh

2
+ w(t, x, z) ≤ inf

α[·]∈Γ
sup
b(·)∈B

{
w(t+ h, y

α[b],b
t,x (t+ h), z)

∨(
max

s∈[t,t+h]
φ̂(s, y

α[b],b
t,x (s), z)

)}
= w(t, x, z),

which is impossible. We conclude that

−∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)) ≥ 0.

On the other hand, φ̂(t, x, z) ≤ max
s∈[t,T ]

φ̂(s, y
α[b],b
t,x (s), z) ≤ w(t, x, z) = ξ(t, x, z).
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As a conclusion, min
(
− ∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)), (ξ − φ̂)(t, x, z)

)
≥ 0, which means that w is a

super-solution of (10).
Now, we will show that w is a sub-solution of (10). Let ξ be a function of class C1 such that w − ξ has

a maximum at (t, x, z) and w(t, x, z) = ξ(t, x, z).

If ξ(t, x, z) = w(t, x, z) ≤ φ̂(t, x, z), then ξ satisfies:

min
(
− ∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)), (ξ − φ̂)(t, x, z)

)
≤ 0.

which means that w is a sub-solution of (10).

If not, we get w(t, x, z) > φ̂(t, x, z). Henceforth, there exists τ > 0, such that for any admissible trajectory

y
α[b],b
t,x (·), we have w(s, y

α[b],b
t,x (s), z) > φ̂(s, y

α[b],b
t,x (s), z), for any s ∈ [t, t + τ ]. In this case and by using the

dynamic programming principle (9) verified by w between t and t+ h, for any 0 < h ≤ τ , we get

w(t, x, z) = inf
α[·]∈Γ

sup
b(·)∈B

w(t+ h, y
α[b],b
t,x (s), z)

From [4, Chapter VIII], we get the following inequality:

−∂tξ(t, x, z) +H(t, x,Dxξ(t, x, z)) ≤ 0,

which ends the proof.
Uniqueness of w as a viscosity solution of (10) comes from the comparison result given in Appendix of

[1] and which remains true for this class of Hamilton-Jacobi equations. �

After its characterization, w can be exploited to get information on the value function of the constrained
problem v and this is the aim of the following theorem.

Theorem 3.2 Assume that hypothesis (H1), (H2) and (H3) hold. The value function v can be estimated
by means of w through the following relation :

inf{z ∈ R|w(t, x, z) ≤ 0} ≤ v(t, x) ≤ inf{z ∈ R|w(t, x, z) < 0}, (12)

for any (t, x) ∈ [0, T ]×K.

Proof. Let (t, x) ∈ [0, T ]×K. First, we will assume that v(t, x) < +∞ and prove the following inequality:
inf{z ∈ R | w(t, x, z) ≤ 0} ≤ v(t, x) (the inequality is obvious if v(t, x) = +∞).

Let z ∈ R be such that v(t, x) < z. By definition of v, there exists a nonanticipative strategy α0[·] ∈ Γ

s.t. for any b(·) ∈ B, the trajectory y
α0[b],b
t,x (·) remains in K and π(t, x;α0) ≤ z. notice that if v(t, x) = +∞

then it is obvious that the following inequality holds:
Therefore for any b(·) ∈ B we get

max
s∈[t,T ]

dK(y
α0[b],b
t,x (s)) ≤ 0 and sup

b(·)∈B

{(
max
s∈[t,T ]

φ(s, y
α0[b],b
t,x (s))

)∨
ψ(y

α0[b],b
t,x (T ))

}
≤ z.

From the two above inequalities, we deduce that

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(s, y
α0[b],b
t,x (s), z)

)∨
ψ̂(y

α0[b],b
t,x (T ), z)

}
≤ 0.

We conclude that w(t, x, z) ≤ 0 whenever z > v(t, x). By continuity of w w.r.t. z, we deduce that

∀z ∈ R, z ≥ v(t, x) =⇒ w(t, x, z) ≤ 0. (13)

In particular, we have w(t, x, v(t, x)) ≤ 0. Henceforth

inf{z ∈ R|w(t, x, z) ≤ 0} ≤ v(t, x).
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Now let z ∈ R such that w(t, x, z) < 0. Let δ̄ := −w(t, x, z) > 0. From the definition of w and the
infimum property, there exists ᾱ[·] ∈ Γ verifying:

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(s, y
ᾱ[b],b
t,x (s), z)

)∨
ψ̂(y

ᾱ[b],b
t,x (T ), z)

}
≤ w(t, x, z) + δ̄ = 0.

Therefore for any b(·) ∈ B the trajectory y
ᾱ[b],b
t,x (·) is admissible and

sup
b(·)∈B

{(
max
s∈[t,T ]

φ(s, y
ᾱ[b],b
t,x (s))

)∨
ψ(y

ᾱ[b],b
t,x (T ))

}
≤ z,

which means that π(t, x; ᾱ) ≤ z. By definition of v, we deduce that v(t, x) ≤ z for every z ∈ R such that
w(t, x, z) < 0. This proves that

v(t, x) ≤ inf{z ∈ R|w(t, x, z) < 0}.

�

Remark 3.3 For any (t, x) ∈ [0, T ] × K, if inf{z ∈ R|w(t, x, z) ≤ 0} = +∞, thereby v(t, x) = +∞ which
means that there is no strategies of the first player that guarantee admissibility of trajectories for any action
of the second player. However if inf{z ∈ R|w(t, x, z) ≤ 0} ∈ R, the infimum is reached by some z ∈ R.
Furthermore, if inf{z ∈ R|w(t, x, z) < 0} ∈ R one can prove that:

inf{z ∈ R|w(t, x, z) ≤ 0} = v(t, x) = inf{z ∈ R|w(t, x, z) < 0}.

On the other hand it may occur that inf{z ∈ R|w(t, x, z) ≤ 0} <∞ and inf{z ∈ R|w(t, x, z) < 0} = +∞
and in this case we have no information on v(t, x).

Remark 3.4 In [1], it was shown that when some convexity assumption is verified by f , a precise connection
is established between v and w. Theorem 3.2 gives a more general result on the link between those two value
functions without assuming any additional assumption.

When some convexity assumption is verified by f , we can prove a more precise connection. For this,
assume that:

(H4) The dynamics f is affine in the first control input a1 and A is a convex set of Rp.

The aim of the following Theorem is to characterize the value of the constrained problem v through
the auxiliary value function w. In addition to that, it establishes a link between optimal strategies of the
auxiliary and the constrained problems.

Theorem 3.5 Assume that assumptions (H1), (H2), (H3) and (H4) hold and let (t, x) ∈ [0, T ]×K.
(i) Suppose that w(t, x, z) ≤ 0 for some z ∈ R, then there exists α∗[·] ∈ Γ s.t. for any b(·) ∈ B, the

trajectory y
α∗[b],b
t,x (·) is admissible and(

max
s∈[t,T ]

φ(s, y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T )) ≤ z.

(ii) The exact value of v can be obtained by the following relation:

v(t, x) = inf{z ∈ R|w(t, x, z) ≤ 0}. (14)

(iii) If v(t, x) < ∞, then any optimal strategy for the auxiliary problem (8) on [t, T ] associated to
(x, v(t, x)) is optimal for the constrained problem (4) on [t, T ] associated with the initial position x.

1f is of the form f(t, x, a, b) := f0(t, x, b) + f1(t, x, b)a.
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Proof.
Assertion (i) states that, for every (t, x, z) ∈ [0, T ] × K × R, the auxiliary control problem admits an

optimal strategy α∗[·]. This claim holds when assumption (H4) is satisfied, and it can be proved by adapting
arguments from [12, 13, 14, 18]. For the sake of completeness, a sketch of the proof of (i) is given in Appendix
A.

Now we will prove (ii). From Theorem 3.2, we already know that

inf{z ∈ R|w(t, x, z) ≤ 0} ≤ v(t, x).

On the other hand, let z ∈ R s.t. w(t, x, z) ≤ 0. From assertion (i), there exists α∗[·] ∈ Γ s.t. for any

b(·) ∈ B, the trajectory y
α∗[b],b
t,x (·) is admissible and(

max
s∈[t,T ]

φ(s, y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T )) ≤ z.

which means that π(t, x;α∗) ≤ z. By definition of v, we conclude that v(t, x) ≤ z, for any z ∈ R verifying
w(t, x, z) ≤ 0. Henceforth,

v(t, x) ≤ inf{z ∈ R|w(t, x, z) ≤ 0}.

It remains to prove assertion (iii). For this reason, let α∗[·] ∈ Γ be an optimal strategy to the auxiliary
problem (8) on [t, T ] associated to the initial point (x, z), where z := v(t, x), which means that

w(t, x, z) = sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(s, y
α∗[b],b
t,x (s), z)

)∨
ψ̂(y

α∗[b],b
t,x (T ), z)

}
.

Since z = v(t, x), statement (13) concludes that w(t, x, z) ≤ 0 and thus

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(s, y
α∗[b],b
t,x (s), z)

)∨
ψ̂(y

α∗[b],b
t,x (T ), z)

}
≤ 0.

Therefore, for any b(·) ∈ B, the trajectory y
α∗[b],b
t,x (·) is admissible and

sup
b(·)∈B

{(
max
s∈[t,T ]

φ(s, y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T ))

}
≤ v(t, x).

In other words, π(t, x;α∗) ≤ v(t, x) = inf
α[·]∈Γ

π(t, x;α). We conclude that α∗[·] is an optimal strategy for

the constrained problem (4) associated to the initial state x. �

Comments: Reduction of the computational domain
Since problem (8) is without state constraints, the auxiliary value function w is defined on [0, T ]×Rd×R.

Nevertheless, for computational issues, we should restrict the domain of interest of w to a neighbourhood
of K × R. Therefore, we will follow a technique developed in [2, Section 3.2] for which the auxiliary value
function w will keep a constant value outside a neighbourhood of K × R. Let µ > 0 be a fixed parameter
and Kµ be a neighbourhood of K defined by Kµ := K + µBRd .

The idea consists in introducing a truncation of dK, φ̂ and ψ̂ to obtain a new control problem free of
state constraints with value function wµ taking constant value outside Kµ.

First consider the Lipschitz continuous function dµK := dK
∧
µ which verifies for any y ∈ Rd:

dµK(y) ≤ 0⇔ y ∈ K, dµK(y) ≤ µ, and dµK(y) = µ⇔ y /∈
◦
Kµ.

Furthermore, we consider a truncation of φ̂ and ψ̂ as follows:

φ̂µ := φ̂
∧
µ and ψ̂µ := ψ̂

∧
µ. (15)
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Finally, we define the specific auxiliary value function wµ, for (t, x, z) ∈ [0, T ]× Rd × R as:

wµ(t, x, z) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂µ(s, y
α[b],b
t,x (s), z)

)∨
ψ̂µ(y

α[b],b
t,x (T ), z)

}
, (16)

which verifies the following relation

wµ(t, x, z) = w(t, x, z)
∧
µ.

Since, we are interested in the region {z|w(t, x, z) ≤ 0}, for (t, x) ∈ [0, T ] × K, which coincides with
{z|wµ(t, x, z) ≤ 0} for any µ > 0, it does not matter which auxiliary value function we use (w or wµ).
Therefore, for the sequel we will confound w and wµ, for µ > 0, denoted simply by w.

The question now is how to characterize wµ and this is the aim of the following proposition.

Proposition 3.6 wµ is the unique viscosity solution of the following HJ equation:
min

(
−∂twµ +H(t, x,∇xwµ), wµ(t, x, z)− φ̂µ(t, x, z)

)
= 0, in [0, T [×

◦
Kµ × R,

wµ(T, x, z) = φ̂µ(T, x, z)
∨
ψ̂µ(x, z), in

◦
Kµ × R,

wµ(t, x, z) = µ, for all t ∈ [0, T ], x /∈
◦
Kµ and z ∈ R.

(17)

The proof of Proposition 3.6 can be done as in [2, Theorem 3.5].
On the other hand, suppose that cost functions φ and ψ are bounded (they take values on some interval

[m,M ]). Thus, to establish estimations for the value function v or to find its exact value, it is enough to
consider the auxiliary variable z in [m,M ].

4 Reconstruction of trajectories based on the value function

4.1 Introduction

Consider a differential game free of state constraints with maximum running and final cost functions. We
present in this section a reconstruction procedure based on the knowledge of an approximation of this
differential game value function. We propose to discretize in time the continuous problem and to reconstruct
approximated optimal feedbacks.

For a given finite time horizon T > 0, consider the differential system:{
ζ̇(s) = F (s, ζ(s), a(s), b(s)), a.e. in [t, T ],

ζ(t) = χ,
(18)

where χ ∈ Rm, m ≥ 1, and (a(·), b(·)) ∈ A×B are the actions of the first and the second player respectively.
The value function of the differential game studied in this section is defined by:

u(t, χ) := inf
α[·]∈Γ

sup
b(·)∈B

{(
max
s∈[t,T ]

Φ(s, ζ
α[b],b
t,χ (s))

)∨
Ψ(ζ

α[b],b
t,χ (T ))

}
, (19)

where Φ and Ψ are the maximum running and final cost functions respectively. We impose the following
hypothesis:

(H5) Suppose that F , Φ and Ψ satisfy respectively hypothesis (H1), (H2) and (H3).

Under hypothesis (H5) and from section 2, u is the unique solution of the following HJ equation with
obstacle term:{

min (−∂tu(t, χ) +H(t, χ,Dχu(t, χ)), u(t, χ)− Φ(t, χ)) = 0, in [0, T [×Rm,
u(T, χ) = Φ(T, χ)

∨
Ψ(χ), in Rm,

(20)
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where the hamiltonian H is given by:

H(t, χ, p) := min
b∈B

max
a∈A
− 〈F (t, χ, a, b), p〉,

for (t, χ, p) ∈ [0, T ]× Rm × Rm.
We denote by J the global cost in (19):

J(t, χ, a, b) :=
(

max
s∈[t,T ]

Φ(s, ζ
α[b],b
t,χ (s))

)∨
Ψ(ζ

α[b],b
t,χ (T )), (21)

for (t, χ) ∈ [0, T ]× Rm and (a(·), b(·)) ∈ A× B.
Recall that the aim of this section is to approximate optimal feedbacks of the differential game (19). To

this end, we will discretize in time and synthesize from the discrete differential game an approximation of
the optimal strategy of the first player and the optimal control of the second player.

For simplicity, consider a uniform time partition of [0, T ] with a step time h = T
N , N ∈ N∗ : s0 = 0,

s1 = h,..., sk = kh,..., sN = Nh = T .
The dynamical system (18) can be approximated through the following Euler forward scheme:

ζk = χ

ζk+1 = χ+ (sk+1 − t)F (t, ζk, ak,bk)

ζi+1 = ζi + hF (si, ζi, ai,bi), i = k + 1, ..., N − 1.

(22)

for t ∈ [sk, sk+1[, s.t. 0 ≤ k ≤ N − 1, χ ∈ Rm, (ai) ∈ AN−k and (bk) ∈ BN−k.
More precise approximations of (18) can be considered by using higher order Runge-Kutta schemes.
Finally, even for the discrete game, we attribute to the first player an advantage of information. This

advantage of information can be modeled by discrete nonanticipative strategies. Indeed, at each step time
si and before choosing his action ai ∈ A, the first player knows the choice of his opponent bi ∈ B. Following
the formulation presented in [4, Chapter VIII], the set of discrete nonanticipative strategies of the first
player Γh can be define as:

Γh :=
{
αh[·] : BN → AN , s.t. ∀(bi), (b′i) ∈ BN , and ∀ k ∈ N, k ≤ N − 1,(

bj = b′j for any j ≤ k
)
⇒
(
αh[b]j = αh[b′]j for any j ≤ k

)}
.

Subsection 4.2 deals with the case of trajectory reconstruction by use of a general class of approximation
functions uh while in subsection 4.3, we show a convergence result when the approximation uh verifies a
specific criterion.

4.2 A general reconstruction procedure

In this section, we consider an approximation uh of u. This approximation could be a numerical solution
obtained by solving a discretized scheme of the Hamilton Jacobi equation (20) verified by u.

Let Eh denote the uniform error estimate between u and uh given by Eh := ||uh − u||.

(H6) Suppose that the error estimate Eh satisfies: Eh = o(h).

Notice that several numerical schemes for solving HJ equation (20) have been studied in the literature.
Under monotonicity, stability and consistency assumptions, the error estimates Eh is of order O(

√
∆T ) where

∆t is the time step size of the scheme, see [8]. Therefore, to satisfy assumption (H6), it suffices to consider,
for example, a convergent numerical scheme of (20) with ∆t = h3.

The reconstruction procedure presented in Algorithm 1 corresponds to the case where choices of the
second player are not optimal and take arbitrary values in B. The first player will observe his opponent

12



Algorithm 1: Arbitrary case

Require: χ ∈ Rm.
1: Initialise ζ0 = χ.
2: for i = 0 · · ·N − 1 do
3: An arbitrary choice of the second player bi ∈ B.
4: The optimal reaction of the first player, a∗i ∈ A, s.t.

α∗h[b]i := a∗i ∈ argmin
a∈A

{
uh(si+1, ζi + hF (si, ζi, a,bi))

∨
Φ(si, ζi)

}
.

5: The new state position: ζi+1 = ζi + hF (si, ζi, a
∗
i ,bi).

6: end for

choice and will choose his optimal reaction. This algorithm is given for a particular reconstruction from an
initial time t = 0 and an initial position χ ∈ Rm.

For χ ∈ Rm, let (a∗k), (bk), (ζk) be the sequences generated by Algorithm 1 and we define the following
piecewise constant controls (α∗h[bh](·), bh(·)) ∈ A × B, such that α∗h[bh](s) := a∗k and bh(s) := bk for s ∈
[sk, sk+1[ and an approximate trajectory ζh(·) solution of:{

ζ̇h(s) = F (s, ζh(s), α∗h[bh](s), bh(s)), a.e. in [0, T ],

ζh(0) = χ,
(23)

Theorem 4.1 Assume that hypothesis (H5) and (H6) hold and that assumption (H4) is verified for F and
A. For χ ∈ Rm, the trajectory ζh(·), defined in (23), verifies:

lim sup
h→0+

{(
max
s∈[t,T ]

Φ(s, ζh(s))
)∨

Ψ(ζh(T ))
}
≤ u(0, χ). (24)

Proof. Let χ ∈ Rm, and let (ζk), (a∗k) and (bk) be the sequences of trajectory and players’ actions
generated by Algorithm 1.

Since F is locally Lipschitz continuous, there exists R > 0 such that for any h > 0 and any 0 ≤ k ≤ N ,
we have ‖ζk‖ ≤ R. We can choose the constant R large enough such that any trajectory starting from any
initial position ζk will remain in BR, the ball of Rd centred at 0 and with radius R. Let MR > 0 be a
constant verifying:

‖F (s, ζ, a, b)‖ ≤MR,∀s ∈ [0, T ],∀ζ ∈ BR,∀(a, b) ∈ A×B.

Step 1. We establish that there exists εh > 0, s.t. lim
h→0

εh = 0, and

uh(s0, χ) ≥ uh(s1, ζ1)
∨

Φ(s0, χ)− hεh − 2Eh. (25)

By the dynamic programming principle verified by u, between s0 = 0 and s1 = h, we get

u(s0, χ) = inf
α[·]∈Γ

sup
b(·)∈B

{
u(s1, ζ

α[b],b
s0,χ (s1))

∨(
max

s∈[s0,s1]
Φ(s, ζα[b],b

s0,χ (s))
)}
,

which implies that

u(s0, χ) ≥ inf
α[·]∈Γ

sup
b(·)∈B

{
u(s1, ζ

α[b],b
s0,χ (s1))

∨
Φ(s0, χ)

}
.

For ε > 0, we pick an ε-optimal strategy, αε[·] ∈ Γ, and the above inequality becomes:

u(s0, χ) ≥ −ε+ sup
b(·)∈B

{
u(s1, ζ

αε[b],b
s0,χ (s1))

∨
Φ(s0, χ)

}
.
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Let b0(·) ∈ B be a constant control such that b0(·) ≡ b0 ∈ B (b0 generated by Algorithm 1). The above
inequality becomes:

u(s0, χ) ≥ −ε+ u(s1, ζ
αε[b0],b0
s0,χ (s1))

∨
Φ(s0, χ). (26)

We set aε(·) := αε[b0](·) ∈ A. On the other hand, since the set F (s0, χ,A, b0) is convex (assumption
(H4)), there exists a0 ∈ A such that:

ζ0 +

∫ s1

s0

F (s0, χ, a
ε(s), b0)ds = χ+ hF (s0, χ, a0, b0)

Consider now the trajectory ζa
ε,b0
s0,χ (·). We have ‖ζaε,b0s0,χ (s)− χ‖ ≤MRh, for s ∈ [s0, s1], and

‖ζa
ε,b0
s0,χ (s1)− (χ+ hF (s0, χ, a, b0))‖ ≤

∫ s1

s0

‖F (s, ζa
ε,b0
s0,χ (s), aε(s), b0)− F (s0, χ, a

ε(s), b0)‖ds.

From the Lipschitz continuity of F there exists δ(h) ≥ 0, the modulus of continuity of F , defined as:

δ(h) := max
{
‖F (s, ζ, a, b)− F (s′, ζ, a, b)‖, for ζ ∈ BR, (a, b) ∈ A×B and s, s′ ∈ [0, T ] with |s− s′| ≤ h

}
.

Combining the last inequality with the definition of δ(h) above gives:

‖ζa
ε,b0
s0,χ (s1)− (χ+ hF (s0, χ, a0, b0))‖ ≤ hδ(h) +

∫ s1

s0

LF (R)‖ζa
ε,b0
s0,χ (s)− χ‖ds ≤ hδ(h) + LF (R)MRh

2.

From the Lipschitz continuity of u and the above inequality, we get:

u(s1, ζ
′)− hLu(R)(δ(h) + LF (R)MRh) ≤ u(s1, ζ

aε,b0
s0,χ (s1)), (27)

where ζ ′ := χ + hF (s0, χ, a0, b0) and Lu(R) is the Lipschitz constant of u. We set εh := Lu(R)(δ(h) +
LF (R)MRh).

Notice that for any x, y, z ∈ R with z ≥ 0, we have

(x− z)
∨
y ≥ x

∨
y − z.

Therefore from (26) and (27), we deduce:

u(s0, χ) ≥ −ε− hεh + u(s1, ζ
′)
∨

Φ(s0, χ).

Now, by using the fact that ||uh − u|| = Eh we obtain:

uh(s0, χ) ≥ −ε− hεh − 2Eh + uh(s1, ζ
′)
∨

Φ(s0, χ).

From Algorithm 1 and since a∗0 minimizes a 7→ uh(s1, χ+ hF (s0, χ, a, b0)) ∨ Φ(s0, χ), we obtain:

uh(s1, ζ1)
∨

Φ(s0, χ) ≤ uh(s1, ζ
′)
∨

Φ(s0, χ),

where ζ1 is defined in Algorithm 1. Therefore

uh(s0, χ) ≥ −ε− hεh − 2Eh + uh(s1, ζ1)
∨

Φ(s0, χ).

which implies (25) because ε is chosen arbitrary.
This result can be generalized with the same arguments for all k = 0, ..., N − 1:

uh(sk, ζk) ≥ uh(sk+1, ζk+1)
∨

Φ(sk, ζk)− hεh − 2Eh, (28)
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where ζk is defined in Algorithm 1, for any k = 0, ..., N .
Step 2. From (28), and by using the fact that (x− z)

∨
y ≥ x

∨
y − z for any x, y, z ∈ R s.t. z ≥ 0, we

get by induction:

uh(s0, χ) ≥
(
uh(sN , ζN )

∨
Φ(s0, χ)

∨
· · ·
∨

Φ(sN−1, ζN−1)
)
−Nhεh − 2NEh. (29)

Recall that Eh is the uniform error between u and uh. Therefore, we deduce from (29):

uh(s0, χ) ≥ (u(sN , ζN )− Eh)
∨(

max
0≤k≤N−1

Φ(sk, ζk)
)
−Nhεh − 2NEh.

Since sN = T = Nh and u(T, ζN ) = Φ(T, ζN )
∨

Ψ(ζN ), the last inequality becomes:

uh(s0, χ) ≥
(

max
0≤k≤N

Φ(sk, ζk)
)∨

Ψ(ζN )− Tεh − (
2T

h
+ 1)Eh,

By hypothesis (H6), we conclude that:

u(0, χ) ≥ lim sup
h→0+

(
max

0≤k≤N
Φ(sk, ζk)

)∨
Ψ(ζN ). (30)

Step 3. In this step, we will establish an estimation between (ζk), the trajectory generated by Algorithm
1 and ζh(·), solution of (23). We claim that for any k = 0, ..., N − 1, we have:

max
s∈[sk,sk+1]

‖ζh(s)− ζk‖ ≤ O(h) and ‖ζh(T )− ζN‖ ≤ O(h). (31)

We start by proving the claim by induction. For s ∈ [s0, s1], we have:

‖ζh(s)− χ‖ ≤
∫ s

s0

‖F (θ, ζh(θ), a∗0,b0)‖dθ ≤MR(s− s0) ≤MRh = O(h),

which gives the result for k = 0, i.e. max
s∈[s0,s1]

‖ζh(s)− χ‖ ≤ O(h).

Suppose that (31) is verified for 0 ≤ k ≤ N − 2, and let’s prove it for k + 1. For s ∈ [sk+1, sk+2]:

‖ζh(s)− ζk+1‖ = ‖ζh(sk+1) +

∫ s

sk+1

F (θ, ζh(θ), a∗k+1,bk+1)dθ − hF (sk, ζk, a
∗
k,bk)− ζk‖

≤ 2MRh+ ‖ζh(sk+1)− ζk‖

Using the induction’s hypothesis for ‖ζh(sk+1)− ζk‖ concludes the proof. On the other hand, we have:

‖ζh(T )− ζN‖ ≤ ‖ζh(T )− ζN−1‖+ h‖F (sN−1, ζN−1, a
∗
N−1,bN−1)‖ ≤MRh+O(h) = O(h).

Step 4. For any k = 0 · · ·N − 1 and s ∈ [sk, sk+1], we have:

‖ζh(s)− ζh(sk)‖ ≤
∫ s

sk

‖F (θ, ζh(θ), a∗k,bk)‖dθ ≤MRh,

which gives:
max

s∈[sk,sk+1]
‖ζh(s)− ζh(sk)‖ ≤MRh. (32)

On the other hand, we have:

| max
0≤k≤N−1

Φ(sk, ζk)− max
s∈[0,T ]

Φ(s, ζh(s))| = | max
0≤k≤N−1

Φ(sk, ζk)− max
0≤k≤N−1

(
max

s∈[sk,sk+1]
Φ(s, ζh(s))

)
|
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≤ | max
0≤k≤N−1

Φ(sk, ζk)− max
0≤k≤N−1

Φ(sk, ζh(sk))|+ | max
0≤k≤N−1

Φ(sk, ζh(sk))− max
0≤k≤N−1

(
max

s∈[sk,sk+1]
Φ(s, ζh(s))

)
|

≤ max
0≤k≤N−1

|Φ(sk, ζk)− Φ(sk, ζh(sk))|+ max
0≤k≤N−1

|Φ(sk, ζh(sk))− max
s∈[sk,sk+1]

Φ(s, ζh(s))|

≤ max
0≤k≤N−1

LΦ(R)‖ζk − ζh(sk)‖+ max
0≤k≤N−1

LΦ(R) max
s∈[sk,sk+1]

‖ζh(sk)− ζh(s)‖,

where LΦ(R) is the Lipschitz constant of Φ. From (31) and (32), we conclude that:

| max
0≤k≤N−1

Φ(sk, ζk)− max
s∈[0,T ]

Φ(s, ζh(s))| ≤ O(h).

Finally, using the fact that ‖ζh(T )− ζN‖ ≤ O(h), we get:

|
(

max
0≤k≤N−1

Φ(sk, ζk)
)∨

Ψ(ζN )−
(

max
s∈[0,T ]

Φ(s, ζh(s))
)∨

Ψ(ζh(T ))| ≤ O(h) (33)

By combining the estimates (30) and (33), we obtain:

u(0, χ) ≥ lim sup
h→0+

{(
max
s∈[0,T ]

Φ(s, ζh(s))
)∨

Ψ(ζh(T ))
}
.

�

4.3 Reconstruction of robust optimal trajectories (worst case)

In this section, we consider a reconstruction algorithm for the worst case. We adapt some arguments
introduced in [4, Chapter VIII] to our case with finite time horizon and maximum running cost. We
consider a specific approximation uh of the value function u which verifies a discrete dynamic programming
principle. Then, we prove the existence of an optimal strategy for the first player and an optimal control
for the second player obtained from uh. Henceforth, we deduce an approximation of optimal feedbacks for
problem (19).

First, we start by defining the specific approximation uh of the value function u on [0, T ]×Rm. We keep
the uniform time partition of [0, T ]. Let Jh be an approximation of the global cost J defined by:

Jh(t, χ, (ai), (bi)) = Φ(t, χ)
∨(

max
i=k+1...N

Φ(si, ζi)
)∨

Ψ(ζN ).

for t ∈ [sk, sk+1[, χ ∈ Rm and ((ai), (bi)) ∈ AN−k ×BN−k.
Therefore, we consider the following approximation of the value function u:

uh(t, χ) = inf
αh[·]∈Γh

sup
(bi)∈BN−k

Jh(t, χ, αh[b],b) (34)

for t ∈ [sk, sk+1[ and χ ∈ Rm.
Now, we present the following algorithm corresponding to a reconstruction procedure based on the value

function uh in the worst case where the second player takes optimal decisions which corresponds to the worst
situation for the first player. This algorithm is presented in a general form for some initial time t ∈ [0, T [
from an initial position χ ∈ Rm. Let k ≤ N − 1 such that t ∈ [sk, sk+1[.

The following Proposition presents some results verified by the approximated value function uh, the
reconstructed trajectory (ζ∗k), the discrete strategy α∗h[·] ∈ Γh and control (b∗i ) ∈ BN−k generated by
Algorithm 2:
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Algorithm 2: Worst case

Require: t ∈ [sk, sk+1[, k ≤ N − 1 and χ ∈ Rm.
1: Initialise ζ∗k = χ.
2: for i = k · · ·N − 1 do
3: if i = k then
4: The optimal choice of the second player, b∗k ∈ B, s.t.

b∗k ∈ argmax
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(t, χ)

}
.

5: The optimal reaction of the first player, a∗i ∈ A, s.t.

α∗h[b∗]k := a∗k ∈ argmin
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b∗k))

∨
Φ(t, χ)

}
.

6: The new state position: ζ∗k+1 = χ+ (sk+1 − t)F (t, χ, a∗k,b
∗
k).

7: else
8: b∗i ∈ argmax

b∈B
min
a∈A

{
uh(si+1, ζ

∗
i + hF (si, ζ

∗
i , a, b))

∨
Φ(si, ζ

∗
i )
}

.

9: α∗h[b∗]i := a∗i ∈ argmin
a∈A

{
uh(si+1, ζ

∗
i + hF (si, ζ

∗
i , a,b

∗
i ))
∨

Φ(si, ζ
∗
i )
}

.

10: ζ∗i+1 = ζ∗i + hF (si, ζ
∗
i , a
∗
i ,b
∗
i ).

11: end if
12: end for

Proposition 4.2 Assume that hypothesis (H5) holds. For t ∈ [sk, sk+1[⊂ [0, T [ and χ ∈ Rm, we have:
(i) uh verifies the following discrete dynamic programming principle:

uh(t, χ) = max
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(t, χ)

}
(35)

(ii) Furthermore, Jh(t, χ, α∗h[b],b) ≤ uh(t, χ), for any (bi) ∈ BN−k. The equality holds when (bi) =
(b∗i ). In this case

(
α∗h[·], (b∗i )

)
represents a Nash equilibrium for (34) 2, in the terminology of the theory of

noncooperative games.
(iii) Finally, uh converges to u, when h→ 0, over compact subsets of [0, T ]× Rm.

Proof. [Proof of Proposition 4.2] The results of this Proposition have been established in [4, Chapter
VIII] for unconstrained Bolza problem with infinite time horizon. The proof can be adapted to the case of
finite time-horizon problem with maximum running cost. We give here a very succinct sketch of the proof.

The dynamic programming principle is a classical result. From (i) and Algorithm 2, we obtain:

uh(t, χ) = max
b∈B

min
a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (t, χ, a, b))

∨
Φ(χ)

}
= min

a∈A

{
uh(sk+1, χ+ (sk+1 − t)F (s, χ, a, b∗k))

∨
Φ(χ)

}
= uh(sk+1, ζ

∗
k+1)

∨
Φ(χ).

By the same argument, we get for any i ≥ k + 1:

uh(si, ζ
∗
i ) = uh(si+1, ζ

∗
i+1)

∨
Φ(ζ∗i ).

From the above equalities, we conclude:

uh(t, χ) = Φ(χ)
∨(

max
i=k+1,...,N

Φ(ζ∗i )
)∨

Ψ(ζ∗N ) = Jh(t, χ, α∗h[b∗],b∗).

2This means that every player cannot improve his guaranteed outcome, given by uh(t, χ), by any unilateral deviation from
his optimal choice (α∗

h[·] and (b∗
i ) for the first and the second player respectively.)

17



In a similar way, one can prove that for any (bi)i ∈ BN−k:

Jh(t, χ, α∗h[b],b) ≤ uh(t, χ).

This concludes claim (ii). To prove statement (iii), we first consider the weak limits

u(t, χ) := lim sup
(s,y)→(t,χ),h→0+

uh(s, y) u(t, χ) := lim inf
(s,y)→(t,χ),h→0+

uh(s, y).

By viscosity arguments, we can prove that u is a subsolution and u is a supersolution of the HJ equation
(20). The conclusion comes from the comparison principle [1, Appendix] which gives u ≤ u ≤ u, and the
inequality u ≤ u is obvious. �

Theorem 4.3 Assume that (H5) is satisfied and assume that uh is given by (34). Let t ∈ [0, T ] and ξ ∈ Rd,
there exist (α̃∗h[·], b∗h(·)) ∈ Γ× B verifying

lim
h→0+

J(t, χ, α̃∗h[b∗h], b∗h) = u(t, χ).

Proof. We define Bh, a subset of B, by:

Bh :=
{
b(·) ∈ B, s.t. b(s) = b(kh), ∀s ∈ [kh, (k + 1)h[, for k = 0, ..., N − 1

}
,

and let Ah be the subset of A defined in a similar way to Bh. Now, let’s define (α̃∗h[·], b∗h(·)) ∈ Γ× B by:

b∗h(s) := b∗bs/hc and α̃∗h[b](s) := α∗h[b̂]bs/hc

where α∗h[·] ∈ Γh and (b∗i )i ∈ BN−k are generated by Algorithm 2 and (b̂i)i ∈ BN−k is defined by b̂i := b(ih),
for i = k, ..., N−1, for any b(·) ∈ B. Notice that b∗h(·) ∈ Bh and α̃∗h[b](·) ∈ Ah, for any b(·) ∈ B. Furthermore,

for any (a(·), b(·)) ∈ Ah × Bh, we define ((âi)i, (b̂i)i) ∈ AN−k ×BN−k by:

âi = a(ih) and b̂i = b(ih) for i = k, ..., N − 1.

By exploiting the Lipschitz continuity of F , Φ and Ψ, and by following the same arguments used in Step 3
& 4 from the proof of Theorem 4.3, we get:

|J(t, χ, a, b)− Jh(t, χ, â, b̂)| ≤ O(h). (36)

This claim implies that
|J(t, χ, α̃∗h[b∗h], b∗h)− Jh(t, χ, α∗h[b∗],b∗)| ≤ O(h). (37)

Then, from (ii) and (iii) of Proposition 4.2 we have:

Jh(t, χ, α∗h[b∗],b∗) = uh(t, χ) and lim
h→0+

uh(t, χ) = u(t, χ).

Finally, combining the two above equalities with inequality (37) gives the desired result. Now, it remains to
justify the claim (36). �

Theorem 4.3 shows the convergence of the trajectory reconstruction procedure of Algorithm 2. However,
this result requires the approximation uh of u to satisfy a dynamic programming principle. If this requirement
is not satisfied, then the statement of Theorem 4.3 is no longer valid.
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5 Application to the aircraft landing problem

5.1 Introduction

Aircraft accidents can happen because of quick changes of the wind velocity at low altitudes which present
a real danger. For this reason, it is important to look for the best flying configurations to avoid a failed
landing. It consists in steering the aircraft to the maximum altitude that can be reached, during an interval
of time, in order to prevent a crash on the ground.

In papers [21, 20], a Chebyshev-type optimal control problem was proposed and an approximate solution
of the problem is computed in order to deduce an approximate feedback control.

In paper [2], it was supposed that the wind velocity fields are known and a precise model for these fields
is provided in Appendix A of [2]. The Hamilton-Jacobi-Bellman approach was used to characterize and
compute the value function of the control problem.

A more realistic situation can be found in [9] where a nonlinear differential game with integral payoff
functional and state constraints was studied. In particular, the dynamic programming approach was applied
to the problem of an aircraft control during take-off in a windshear. For this case, the first player (the
minimizer, the pilot) uses pure feedback strategies, while the second player (the maximizer, the wind) uses
feedback counter strategies (the wind is permitted to measure the current value of the first player’s control).
To solve the problem, a semi-Lagrangian scheme is applied to compute an approximation of the value
function.

Consider the flight of an aircraft in a vertical plane. Different forces are acting on the center of gravity
of the aircraft. Among those forces one can cite:

• the thrust force FT with a modulus of the form FT (t, v) := β(t)FT (v) where v is the modulus of the
aircraft velocity and β(t) ∈ [0, 1] is the power setting of the engine.

• the lift and drag forces FL and FD with modulus FL and FD depending on v and the angle of attack
α.

• the weight force FP with modulus FP = mg, where m is the aircraft mass and g the gravitational
constant.

Precise expressions of FT , FL and FD can be found in [2, 10, 11].
From the Newton’s law, we deduce the following equations of motion (see [2, 10]):

ẋ(s) = v(s) cos(γ(s)) + wx(s)

ḣ(s) = v(s) sin(γ(s)) + wh(s)

v̇(s) = βFT (v(s))
m cos(α(s) + δ)− FD(v(s),α(s))

m − g sin(γ(s))− ẇx(s) cos(γ(s))− ẇh(s) sin(γ(s))

γ̇(s) = 1
v(s)

βFT (v(s))
m sin(α(s) + δ) + FL(v(s),α(s))

m − g cos(γ(s)) + ẇx(s) sin(γ(s))− ẇh(s) cos(γ(s))

α̇(s) = a(s),

where x is the horizontal distance, h denotes the altitude, γ is the relative path inclination, δ > 0 is a
parameter of the model, wx and wh are respectively the horizontal and the vertical components of the wind
velocity vector, ẇx and ẇh are their derivatives and a represents the control variable.

5.2 5D differential game model

In this paper, we propose a differential game model with maximum running cost in which wind disturbances
are considered as a second player and our aim is to steer the aircraft to the maximum altitude that can be
reached during an interval of time, by means of nonanticipative strategies, in order to prevent a crash on
the ground.
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5.2.1 Model presentation and differential game

Wind disturbances are represented by ẇx and ẇh, the derivatives the horizontal and the vertical components
of the wind velocity vector. To simplify notations, we denote by b(·) = (b1(·), b2(·)) := (ẇx(·), ẇh(·)) taking
values in a compact set B of the form:

B := B1 ×B2 = [b1,min, b1,max]× [b2,min, b2,max].

Now, we consider new state variables represented by a vector of R5:

y(·) = (h(·), v(·), γ(·), wh(·), α(·))>.

The admissible set is of the form:

K = [hmin, hmax]× [vmin, vmax]× [γmin, γmax]× [whmin, whmax]× [αmin, αmax].

In our case, the above 5-D differential system is transformed to:

ḣ(s) = v(s) sin γ(s) + wh(s) (38)

v̇(s) =
βFT (v(s))

m
cos(α(s) + δ)− FD(v(s), α(s))

m
− g sin γ(s)− b1(s) cos γ(s)− b2(s) sin γ(s) (39)

γ̇(s) =
βFT (v(s))

mv(s)
sin(α(s) + δ) +

FL(v(s), α(s))

mv(s)
− g

v(s)
cos(γ(s))b1(s) sin(γ(s))− b2(s)

v(s)
cos(γ(s)) (40)

ẇh(s) = b2(s) (41)

α̇(s) = a(s), (42)

where a(·), the control of the first player, takes values in a compact and convex set A := [−amin, amax].
This differential system can be expressed differently:

ẏ(t) = f(t, y(t), a(t), b(t)) := g0(y(t)) + b1(t)g1(y(t)) + b2(t)g2(y(t)) + a(t)e5

where e5 is the fifth element of the canonical basis of R5 and

g0(y) =


v sin γ

βFT (v)
m cos(α+ δ)− FD

m − g sin γ
1
v

(
βFT (v)
m sin(α+ δ) + FL(v,α)

m − g cos γ
)

0
0

 , g1(y) =


0

− cos γ
1
v sin γ

0
0

 and g2(y) =


0

− sin γ
1
v cos γ

1
0

 .

In order to transform our problem into a minimization problem, the maximum raunning cost function φ
is defined as φ(y) := Hr − h, where h is the aircraft altitude (the first component of the state vector y) and
Hr > 0 is a given reference altitude.

5.2.2 Numerical resolution

To determinate the intervals in which the state variables, the control of the first player and the wind
disturbances take values, we are based on the wind model presented in [2, Appendix A]. Therefore, we
obtain the following constraints on state and controls, presented respectively in Tables 1 and 2:

Remark 5.1 Since φ is bounded, the auxiliary variable z will take values in an interval of the form [zmin, zmax].
In this case, z ∈ [Hr − hmax, Hr − hmin].
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State variable h(ft) v(ft s−1) γ (deg) wh(ft s−1) α (deg)
min 450 160 -7.0 -100.0 0.0
max 1000 260 15.0 50.0 17.2

Table 1: State constraints: domain K.

Control variables a (deg s−1) b1 := ẇx(ft s−2) b2 := ẇh(ft s−2)
min -3.0 0.0 -2.0
max 3.0 7.7 2.0

Table 2: Control constraints: sets A and B.

To obtain an approximation of the auxiliary value function, we use a finite differences scheme for solving
the HJ equation (10). More precisely, we consider an Essentially Non Oscillatory scheme of second order
(ENO2) (see [22]). First, since amax = −amin, we can calculate explicitly the Hamiltonian function H(y, p),
for (y, p) ∈ R5 × R5:

H(y, p) = min
b∈B

max
a∈A
− 〈f(t, y, a, b), p〉

= −〈g0(y), p〉 − max
b1∈B1

b1〈g1(y), p〉 − max
b2∈B2

b2〈g2(y), p〉+ amax|p5|.

Therefore, the following numerical Hamiltonian can be used to solve a discretized form of the HJ equation
verified by the problem value function:

H(y, p−, p+) =

i=4∑
i=1

max
(
− fi(y, bopt), 0

)
p−i + min

(
− fi(y, bopt), 0

)
p+
i + amax max

(
p−5 ,−p

+
5 , 0

)
,

where bopt ∈ argmax
b∈B

〈(b1g1(y) + b2g2(y)) , p〉, for p = p−+p+

2 .

Then, we extend the computational domain in all directions to obtain Kµ := K + µB∞, where B∞ :=
[−1, 1]d and the parameter µ is a small fixed positive value (in this case, µ = 0.05).

Consider also the following mesh steps ∆ := (δt, (δyi)1≤i≤d, δz). For a given multi-index i = (i1, ..., id) ∈
Zd, let yi := ymin,i + iδyi, zj := zmin + jδz, j ∈ Z and tn := nδt for n = 0, ..., N , where N is the integer part
of T/δt. Therefore, we define the grid of Kµ × [zmin, zmax]:

G := {(yi, zj), i ∈ Zd, j ∈ Z, (yi, zj) ∈ Kµ × [zmin, zmax]}

Let denote φ̂i,j := φ̂(yi, zj) and wni,j an approximation of the auxiliary value function w, defined in (8),
at (tn, yi, zj).

Finally, to solve numerically the HJ equation verified by w, we follow the explicit scheme (see [2, 8]):{
wNi,j = φ̂i,j

wni,j = max
(
wn+1
i,j − δtH(yi, D

−wn+1
i,j , D+wn+1

i,j ), φ̂i,j
)
, n ∈ {N − 1, ..., 0}, (yi, zj) ∈ G,

(43)

where the terms D±wni,j are approximated through a second order ENO scheme, see [22], given by the
following expression:

D±k w
n
i,j := ±

wni±ek,j − w
n
i,j

δyk
∓ δyk

2
σ(D2

k,0w
n
i,j , D

2
k,±1w

n
i,j)

with D2
k,εw

n
i,j := (wni+(ε−1)ek,j

+2wni+2εek,j
−wni+(ε+1)ek,j

)/(δyk)2 and σ is defined, for any a, b ∈ R, as follows:

σ(a, b) =


a if ab > 0 and |a| ≤ |b|,
b if ab > 0 and |a| > |b|,
0 if ab ≤ 0.
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Remark 5.2 The numerical Hamiltoanian H is consistent with H, i.e. H(y, p, p) = H(y, p), monotone, i.e.
for k = 1, ..., 5, ∂H

∂p−k
(y, p−, p+) ≥ 0 and ∂H

∂p+k
(y, p−, p+) ≤ 0 and Lipschitz continuous w.r.t. all its arguments.

Furthermore, the time step δt is chosen in order to satisfy the Courant-Friedrich-Levy condition:

δt
( 4∑
i=1

‖fi(y)‖
δyi

+
amax

δy5

)
≤ CFL,

where CFL ≤ 1 is a constant value (In our model, CFL = 0.5). Under those conditions, the approximation
wni,j converges to w, the unique viscosity solution of (10) (see [8]).

To solve the constrained problem (4), we proceed as follows:

1. First, we compute an approximation of the auxiliary value function w by solving (43). Denote this
approximation by W∆.

2. Then, thanks to assertion (ii) of Theorem 3.5, we get an approximation of the value function v at an
initial state y0:

z∆ := min{z ∈ [zmin, zmax]|W∆(0, y0, z) ≤ 0}

3. Finally, we apply our reconstruction procedure (Algorithm 1 or 2) with the approximation W∆, starting
at time t = 0 from (y0, z

∆), to get approximated optimal strategies of the first player for the constrained
problem (4), starting at time t = 0 from the initial state y0 (see assertion (iii) of Theorem 3.5).

5.2.3 Numerical test: Reconstruction of optimal trajectories and controls

The numerical simulations presented in this section have been performed by using a c++ code with 20
OPEN-MP parallel threads on a Intel Xeon Gold (3.50GHZ) processor.

The final time horizon is set to T = 8. We consider a grid G which contains 40 × 204 × 5 points. An
approximation W∆ is obtained by solving (43). Then we perform the trajectory reconstruction for some
initial positions by using Algorithms 1 and 2.

In general, the computation of the minimal values a∗i and max-min values b∗i , in Algorithms 1 & 2,
might be numerically very challenging. In our simulation, the dimension of the control space is low, and the
admissible sets of control values A and B have simple forms. The minimal values a∗i in Algorithms 1 & 2,
and max-min values b∗i in Algorithm 2 are approximated by an exhaustive search method with 100 control
inputs in A and 100 input values in B. Notice that while the computation of W∆ requires huge numerical
resources, as it is obtained by solving a PDE in dimension 6, the reconstruction procedure takes less than 1
minute.

Figures 1, 2 and 3 present the results obtained with the following initial points:

y1 = (600, 239.7,−2.249,−26.0, 7.373), y2 = (650, 230,−2.249,−28.0, 7.373)

and
y3 = (800, 200.0,−2.249,−30.0, 7.373).

First, we shall mention that reconstruction of admissible trajectories is not possible for all initial positions.
Indeed, there are some initial points from which we cannot guarantee existence of strategies of the first player
corresponding to admissible trajectories, for any perturbation of the wind. Those initial points correspond
to a positive value of w, for any value taken by the auxiliary variable z, and hence to an infinite value of v,
the value function of the constrained problem (4).

One can get an idea about all initial positions for which there exists at least one strategy of the first
player that corresponds to trajectories satisfying state constraints for any perturbation of the wind. The set
of such initial positions is called the feasible set which can be defined by the negative level of the auxiliary
value function w.
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Figure 1: Trajectories and controls reconstruction as a response to arbitrary disturbances (random distribu-
tion, Algorithm 1, in blue) and to the worst case (Algorithm 2, in red) from y1.

In figures 1 and 2, starting from y1 and y2 respectively, as expected, we observe that altitudes reached
in the worst case (Algorithm 2) are always lower than those obtained in the random case (Algorithm 1).

In the worst case, perturbations aim to decrease as much as possible the altitude h. Therefore, its
objective is to have ḣ ≤ 0. Since ḣ(s) = v(s) sin γ(s)+wh(s), wind perturbations in this case will take values
that decrease wh and v sin(γ). For this reason, we observe that b1(·) = b1,max > 0 a.e. to decrease v along
time. However, b2(·) = b2,min < 0 a.e. to decrease wh since ẇh(s) = b2(s).

In figure 3, starting from y3, we remark that perturbations values in the worst case do not change
compared to the previous initial flight configurations (y1 and y2). Nevertheless, we observe that altitudes
reached in the random case (Algorithm 1) are similar to those obtained in the worst case (at some moments,
there are sensibly lower). This observation can be explained by the high initial altitude for y3 with respect
to y1 and y2 (h0 = 800ft). In other words, when the initial altitude of the aircraft is higher enough, worst
perturbations cannot have the same effect as in previous situations (initial flight configuration with lower
altitude such y1 and y2).

A Proof of the claim (i) in Theorem 3.5

First, let Λ : B → A be a set-valued map defined, for any b(·) ∈ B, by:

Λ(b) :=

{
a(·) ∈ A |

(
max
s∈[t,T ]

φ̂(ya,bt,x(s), z)
)∨

ψ̂(ya,bt,x(T ), z) ≤ 0

}
.

The map Λ(·) is said to be nonanticipative if for any τ ∈ [0, T − t], for any b1(·), b2(·) ∈ B which coincide
almost everywhere on [t, t + τ ] and for any a1(·) ∈ Λ(b1), one can find a2(·) ∈ Λ(b2) which coincides with
a1(·) almost everywhere on [t, t+ τ ] (see [12, 13, 14]).

Now, let (t, x, z) ∈ [0, T ]× Rd × R be such that w(t, x, z) ≤ 0. By definition of w, for any n ∈ N∗, there

23



Figure 2: Trajectories and controls reconstruction as a response to arbitrary disturbances (random distribu-
tion, Algorithm 1, in blue) and to the worst case (Algorithm 2, in red) from y2.

Figure 3: Trajectories and controls reconstruction as a response to arbitrary disturbances (random distribu-
tion, Algorithm 1, in blue) and to the worst case (Algorithm 2, in red) from y3.
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exists αn[·] ∈ Γ such that:

sup
b(·)∈B

{(
max
s∈[t,T ]

φ̂(y
αn[b],b
t,x (s), z)

)∨
ψ̂(y

αn[b],b
t,x (T ), z)

}
≤ 1

n
.

We start by showing that the set-valued map Λ(·) has nonempty values. Indeed, let fix b(·) ∈ B and let yn(·)
be the solution of: {

ẏn(s) = f(s, yn(s), αn[b](s), b(s)), a.e. s ∈ [t, T ],

yn(t) = x.

Therefore, for any n ∈ N∗, yn(·) verifies:(
max
s∈[t,T ]

φ̂(yn(s), z)
)∨

ψ̂(yn(T ), z) ≤ 1

n
.

Now, denote by S[t,T ](x) the set of absolutely continuous solutions of:{
ẏ(s) ∈ f(s, y(s), A, b(s)), a.e. s ∈ [t, T ],

y(t) = x.

Under hypothesis (H1) and (H4), S[t,T ](x) is a compact subset ofW 1,1([0, T ]) for the topology of C([0, T ];Rd)
(this is a consequence of [3, Theorem 0.3.4] and the Convergence theorem [3, Theorem 1.4.1], see also [19,
Proposition 2.1]). Therefore, there exists a subsequence, still denoted (yn(·))n, that converges uniformly to
y∗(·) ∈ S[t,T ](x) solution of: {

ẏ∗(s) ∈ f(s, y∗(s), A, b(s)), a.e. s ∈ [t, T ],

y∗(t) = x.

By the measurable selection theorem from [18], there exists a control of the first player, ab(·) ∈ A, depending

on b(·) ∈ B which is already fixed, verifying y∗(·) = yab,bt,x (·) almost everywhere on [t, T ]. By continuity of φ̂

and ψ̂, we conclude that: (
max
s∈[t,T ]

φ̂(yab,bt,x (s), z)
)∨

ψ̂(yab,bt,x (T ), z) ≤ 0,

which means that ab(·) ∈ Λ(b) and therefore Λ(·) has nonempty values.

Then, we claim that the set-valued map Λ(·) is nonanticipative. To prove this claim, let τ ∈ [0, T − t],
b1(·), b2(·) ∈ B coinciding almost everywhere on [t, t+ τ ] and consider a1(·) ∈ Λ(b1). From the definition of

Λ, the trajectory ya1,b2t,x (·) is admissible (will remain in K on [t, t+ τ ]) and verifies:(
max

s∈[t,t+τ ]
φ(ya1,b2t,x (s))

)∨
ψ(ya1,b2t,x (t+ τ)) ≤ z.

Now, consider a2(·) ∈ A such that a2(·) := a1(·) on [t, t + τ ]. Starting at time t + τ from x′:=ya1,b2t,x (t + τ)
and by exploiting the same arguments already used to show that Λ(·) has nonempty values, there exists

ab2(·) ∈ A s.t. y
ab2 ,b2
t+τ,x′(·) is admissible i.e. will remain in K on [t+ τ, T ] and verifies:(

max
s∈[t+τ,T ]

φ(y
ab2 ,b2
t+τ,x′(s))

)∨
ψ(y

ab2 ,b2
t+τ,x′(T )) ≤ z.

Define the control a2(·) ∈ A by:

a2(·) =

{
a1(·) on [t, t+ τ ],

ab2(·) on [t+ τ, T ]
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which belongs to Λ(b2) and coincides almost everywhere with a1(·) on [t, t+ τ ]. Henceforth we conclude that
Λ(·) is nonanticipative.

Finally, Λ(·) has closed values for the weak topology of L2([0, T ], A). Indeed, let (an(·))n be a sequence of
Λ(b), for a fixed control of the second player b(·) ∈ B, that converges, for the weak topology of L2([0, T ], A),
to some control a(·) ∈ A.

Since for any n ∈ N, an(·) ∈ Λ(b), the trajectory yan,bt,x (·) verifies:(
max
s∈[t,T ]

φ̂(yan,bt,x (s), z)
)∨

ψ̂(yan,bt,x (T ), z) ≤ 0.

Under hypothesis (H1) and (H4), the sequence (yan,bt,x (·))n will converge, for the compact convergence, to

ya,bt,x(·). By continuity of φ̂ and ψ̂, we deduce that:(
max
s∈[t,T ]

φ̂(ya,bt,x(s), z)
)∨

ψ̂(ya,bt,x(T ), z) ≤ 0.

Therefore, a(·) belongs to Λ(b). We conclude that the set-valued map Λ(·) has closed values for the weak
topology of the Hilbert space L2([0, T ], A).

To end this proof, it is enough to use [13, Lemma 4.1] that guarantees the existence of a nonanticipative
selection α∗[·] such that for any b(·) ∈ B, α∗[b](·) ∈ Λ(b). We conclude that there exists α∗[·] ∈ Γ s.t. for

any b(·) ∈ B, the trajectory y
α∗[b],b
t,x (·) is admissible and(

max
s∈[t,T ]

φ(y
α∗[b],b
t,x (s))

)∨
ψ(y

α∗[b],b
t,x (T )) ≤ z.
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