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Abstract—In this paper we develop the foundation of a new
theory for decision trees based on new modeling of phenomena
with soft numbers. Soft numbers represent the theory of soft logic
that addresses the need to combine real processes and cognitive
ones in the same framework. At the same time soft logic develops
a new concept of modeling and dealing with uncertainty: the
uncertainty of time and space. It is a language that can talk
in two reference frames, and also suggest a way to combine
them. In the classical probability, in continuous random variables
there is no distinguishing between the probability involving strict
inequality and non-strict inequality. Moreover, a probability in-
volves equality collapse to zero, without distinguishing among the
values that we would like that the random variable will have for
comparison. This work presents Soft Probability, by incorporating
of Soft Numbers into probability theory. Soft Numbers are set
of new numbers that are linear combinations of multiples of
”ones” and multiples of ”zeros”. In this work, we develop a
probability involving equality as a ”soft zero” multiple of a
probability density function (PDF). We also extend this notion
of soft probabilities to the classical definitions of Complements,
Unions, Intersections and Conditional probabilities, and also to
the expectation, variance and entropy of a continuous random
variable, condition being in a union of disjoint intervals and
a discrete set of numbers. This extension provides information
regarding to a continuous random variable being within discrete
set of numbers, such that its probability does not collapse
completely to zero. When we developed the notion of soft entropy,
we found potentially another soft axis, multiples of 0log(0), that
motivates to explore the properties of those new numbers and
applications. We extend the notion of soft entropy into the
definition of Cross Entropy and Kullback–Leibler-Divergence
(KLD), and we found that a soft KLD is a soft number, that
does not have a multiple of 0log(0). Based on a soft KLD, we
defined a soft mutual information, that can be used as a splitting
criteria in decision trees with data set of continuous random
variables, consist of single samples and intervals.

Keywords—Bridge Number, Continuous Random Variable, De-
cision Trees, Information Theory, PDF, Probability, Soft Entropy,
Soft KLD, Soft Logic, Soft Mutual Information, Soft Number,
Soft Probability, Zero Axis, 0log0

I. INTRODUCTION

IN this paper we develop the foundation of a new theory
for decision trees based on new modeling of phenomena

with soft numbers. This calls for major concept change of
probability, which is developed in this paper, so that decision
trees can be modeled. Soft numbers represent the theory of soft
logic that addresses the need to combine real processes and
cognitive ones in the same framework. At the same time soft

logic develops a new concept of modeling and dealing with
uncertainty: the uncertainty of time and space. It is a language
that can talk in two reference frames, and also suggest a way
to combine them.

A. Research Motivation and Direction

Probability theory is used in order to model processes and
phenomenons, involving randomness of the parameters and
variables (See Appendix A for a brief review and notations
regarding to probability theory). A probability a continues
random variable is defined by a Probability Density Function
(PDF). The PDF can be used is to approximate the probability
of the continuous random variable X to be adjacent to x in
the following sense

Pr(x < X ≤ x+∆x) ≈ fX(x)∆x, (1)

where ∆x > 0 is a small value, that defines how much this
probability is accurate. However, continuous random variables
have the following properties:

• No distinguishing between strict inequality and non-strict
in equality e.g., Pr(X ≤ x) = Pr(X < x);

• Equality collapses to zero i.e., Pr(X = x) = 0. Although
any value of x ∈ SX (SX denotes the support of X) is
possible for X , the the probability of X to be equal to
any value of x ∈ SX is (almost surely) zero.

Because of these properties, we lose some information regard-
ing to a continuous random variable to have an exact value. On
one hand, an event ”X = x” might be possible (if x ∈ SX )
but improbable (i.e., with zero probability), which seems to
be a paradox. On the other hand, we can express the zero
probability by of an event ”X = x” by letting ∆x to approach
to zero in (1)

Pr(X = x) = fX(x) · 0. (2)

This equation presents the probability Pr(X = x) as a
multiple of zero with a factor of the PDF fX(x) for all x.
Instead of taking Pr(X = x) to be completely zero, we can
assign to it a zero multiple of fX(x) and compare different
probability values for different observation values x. This
approach can be implemented by using Soft Numbers (see
Appendix B and Klein and Maimon’s papers e.g., [1], [2] and
[3]).

In addition there is an approach to represent a discrete dis-
tribution as a continuous distribution by a linear combination
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of Dirac delta functions δ(x− xi), or by any approximations
of Dirac delta functions e.g., Gaussian functions (also known
as Gaussian mixture model or GMM) or rectangular functions
(based on uniform distribution) etc (see (A.8) for more details).
Our approach it to establish the opposite in some sense, i.e.,
to represent a continuous random variable with a possibility to
have a discrete values with probability that will not collapse
absolutely to zero.

In this work, we introduce the Soft Numbers to give a
probability interpretation of a continuous random variable to
have an exact value, that provides distinguishing between strict
inequality and non-strict in equality in the probability function.

B. Organization of the Work

Section II incorporates Soft Numbers into probability theory
to present the notion of ”Soft Probability”. Section III extends
this notion to conditional probability. Section IV defines a Soft
Expectation, a Variance and a Soft Entropy, where the last
generates potentially another soft axis, multiples of 0 · log 0.
Section V presents an example for application on Decision
Trees based on a Soft Mutual Information as a Splitting
Criteria. Conclusions and suggestion for future research are
shown on sections VI and VII respectively to summarize this
work. For completion, Appendix A provides a brief review of
probability theory, and Appendix B provides a presentation of
Soft Numbers.

II. SOFT PROBABILITY: INCORPORATION OF SOFT
NUMBER INTO PROBABILITY THEORY

In order to incorporate the notion of (B.10) in Appendix B,
we define (A.2) in Appendix A differently for a cumulative
distribution function (CDF) of a continuous random variable

Ps(X ≤ x) = FX(1 · 0̄+̇x), (3)

where Ps(·) is a suggested type of a probability function,
dented as a ”Soft Probability” [instead of a regular prob-
ability notation ”Pr(·)” or P (·)], and FX(·) is the regular
CDF function of the random variable X but it is applied
on a soft number 1 · 0̄+̇x. Our motivation is to generate
an alternative evaluation of the probability at the left hand
side (LHS), so that we can distinguish between Ps(X < x)
and Ps(X ≤ x) for a continuous random variable X [i.e.,
Ps(X < x) ̸= Ps(X ≤ x)]. We will show that the evaluation
of the soft number at the CDF in the right hand side (RHS)
will create this distinction.

The RHS of (3) can be decomposed by (B.10) as follows

FX(1 · 0̄+̇x)
def
= fX(x)0̄+̇FX(x), (4)

The LHS of (3) can be decomposed by separating the event
”X ≤ x” into a disjoint union ”X = x⊎X < x”. In a regular
probability, we have the known identities

Pr(X ≤ x)
”X=x”∩”X<x”=∅

= Pr(X = x)︸ ︷︷ ︸
=0

+Pr(X < x)

= Pr(X < x),

So we do not have a distinction between Pr(X ≤ x) and
Pr(X < x). We distinguish between Ps(X ≤ x) and Ps(X <
x) by the following definition for Ps(X ≤ x)

Ps(X ≤ x)
def
= Ps(X = x) + Ps(X < x), (5)

so that we define the terms on the LHS as follows

Ps(X = x)
def
= fX(x)0̄, (6)

Ps(X < x)
def
= FX(x) ≡ Pr(X < x). (7)

By this setup we achieve a distinguishing between Ps(X ≤ x)
and Ps(X < x), an also we provide an interpretation to
Ps(X = x) be infinitesimally small but not collapse com-
pletely to zero due to the factor 0̄ of the PDF.

In the next subsection, we provide two examples of im-
plementations on PDFs, Gaussian distribution and uniform
distribution, in order to demonstrate the effect of soft numbers
(and more precisely, soft zeros) on PDFs.

A. Examples

1) Gaussian distribution: Let X be a Gaussian random
variable parameterized by a mean µ and a variance σ2 [denoted
X ∼ N(µ, σ2)]. The PDF of X is well known as

fX(x;µ, σ2) =
1√
2πσ2

e−
1

2σ2 (x−µ)2 . (8)

The maximum of the PDF, maxx fX(x;µ, σ2) = 1√
2πσ2

,
occurs at x = µ. We would like to have a high probability as
X is closer to µ e.g., Ps(X = µ) > Ps(X = x),∀x ̸= µ. By
(6) and we have the following definition a soft probability in
the Gaussian case

Ps(X = x;µ, σ2) =
1√
2πσ2

e−
1

2σ2 (x−µ)2 · 0̄, (9)

which presents an absolute low probability of X to have an
exact value x but relative high probability when X is closer
to µ.

2) Uniform distribution: Let X be Uniformly distributed at
the interval (a, b) [denoted X ∼ U(a, b)]. The PDF of X is
well known as

fX(x; a, b) =
1

b− a
1x∈(a,b), (10)

where 1A is the indication function, indicates ’1’ if ’A’ is true
and ’0’ if ’A’ is false. Similarly to previous example (but with
maximal PDF to be trivially 1

b−a ) we have the following soft
probability in the uniform case

Ps(X = x; a, b) =
1

b− a
· 1x∈(a,b) · 0̄, (11)

which implies the following property:

∀x, y ∈ R, x ∈ (a, b) ∧ y /∈ (a, b)

⇒ Ps(X = x) =
1

b− a
· 0̄ > Ps(X = y) = 0 · 0̄.

(12)
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This property emphasises the probability to X to have any
value within (a, b) is absolutely small, but still relative greater
than the probability to have any value outside of which is
almost surely impossible).

B. Observations

In soft numbers development, we may consider to distinct
between two options to define an absolute value of a soft num-
ber: Option 1 is by the definition in (B.10) with |x|′ = sign(x),
ignoring the fact that this derivative is not continuous, so that

|a0̄+̇x| = α0̄ · sign(x)+̇|x|. (13)

Option 2 is to define a soft conjugate of α0̄+̇x to be (−α)0̄+̇x
such that

|α0̄+̇x| =
√
(α0̄+̇x)((−α)0̄+̇x)

=
√
−(α0̄)2 + x2

=
√
−0 + x2

=
√
x2

= |x|.

(14)

If we use Option 2, then we can have the following properties
for a soft probability on a continuous random variable:

1) Ps(X ≤ x) ̸= Ps(X < x)
but |Ps(X ≤ x)| = |Ps(X < x)| > |Ps(X = x)| = 0;

2) fX(x) > fX(y) ⇒ Ps(X = x) > Ps(X = y)
but |Ps(X = x)| = |Ps(X = y)| = 0;

3) fX(x) > fY (y) ⇒ Ps(X = x) > Ps(Y = y)
but |Ps(X = x)| = |Ps(Y = y)| = 0;

4) |Ps(X ≤ x)| = Ps(X < x) = Pr(X < x) =
Pr(X ≤ x).

By taking absolute values of the soft probability term, we
return to the classic probability results for continuous random
variable e.g., not distinguishing between strict inequality and
non-strict inequality, and equality collapse to zero.

In the next section, we extend the notion of ”Soft Probabil-
ity” into the events’ complements, unions and intersections ,
and into conditional probability.

III. COMPLEMENTS, UNION, INTERSECTION AND
CONDITIONAL SOFT PROBABILITY

In the following section we extend the notion of ”Soft Prob-
ability” into the events’ complements, unions and intersec-
tions, and into conditional probability. In the First Subsection
we show the results for complements, unions and intersections
corresponding to event with zero probability in the classical
probability sense. In the second subsection we show the results
for a conditional of soft probability, referring to Kolmogorov
definition and Bayes theorem.

A. Complements, Unions and Intersections

Recall that a probability of Ac, a complement of the event
A, is given by

Pr(Ac) = 1− Pr(A). (15)

A Soft probability of a complement is defined similarly as
follows

Ps(Ac) = 1− Ps(A). (16)

Therefore, we have the following probability complement for
a continuous random variable X:

Ps(X ̸= x) = 1− Ps(X = x)

= [−fX(x)]0̄+̇1.
(17)

This equation distinguishes among different values of x for the
event X ̸= x to be with almost surely with probability 1 due
the the soft zero term [−fX(x)]0̄. This equation is analogous
to the event X ̸= x to have zero probability almost surely,
correct by the soft zero term [−fX(x)]0̄.

In order to analyse unions and intersections, we need to
consider two cases: unions and intersections among singletons
events X = x,X = y etc; unions and intersections between a
singleton event X = x and a range event e.g. a ≤ X ≤ b.

For all x ̸= y we have that the events X = x and X = y
are disjoint, and the for a union we have

Ps(X = x ∪X = y) = Ps(X = x) + Ps(X = y)

= [fX(x) + fX(y)]0̄.
(18)

For an intersection we have

Ps(X = x ∩X = y) = 1x=yfX(x)0̄, (19)

where the indicator 1x=y is zero in the case that x ̸= y.
More generally, we have the following soft probabilities for
the following set {xi}ni=1 with distinct values:

Ps

(
n⋃

i=1

X = xi

)
=

n∑
i=1

Ps(X = xi) =

[
n∑

i=1

fX(xi)

]
0̄,

(20)
and

Ps

(
n⋂

i=1

X = xi

)
= 1

∀i,j∈{1,2,...,n}
xi=xj

fX(xi)0̄. (21)

In order to analyse unions and intersections, between a
singleton event X = x and a range event e.g. a ≤ X ≤ b, we
need to distinguish among x’s values that are either between
a and b or not. Moreover we need to distinguish between the
strict inequality case a < X < b and the non-strict inequality
a ≤ X ≤ b. For simplicity, assume a < b and without loss of
generality (WLOG) assume x ̸= a and x ̸= b.

For the strict inequality case a < X < b we have the union

Ps(X = x∪a < X < b) = 1x/∈(a,b)fX(x)0̄+̇[FX(b)−FX(a)],
(22)

and for the intersection

Ps(X = x ∩ a < X < b) = 1x∈(a,b)fX(x)0̄. (23)

This union is a soft number when x is not in the interval (a, b)
and a real number when it does. This intersection is a soft zero
when x is in (a, b) and an absolute zero when it doesn’t.
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For the non-strict inequality case a ≤ X ≤ b we have the
union

Ps(X = x ∪ a ≤ X ≤ b) =

[1x/∈[a,b]fX(x) + fX(a) + fX(b)]0̄+̇[FX(b)− FX(a)],
(24)

and for the intersection

Ps(X = x ∩ a ≤ X ≤ b) = [1x∈[a,b]fX(x)]0̄. (25)

the two terms fX(a) + fX(b) in (24) are added to the soft
zero part, due to (20).

Recall the relation between a union and an intersection of
two events A,B, according to De Morgan’s Law, we have

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B). (26)

It can be shown that the soft probabilities in (22)-(25) hold
for De Morgan’s Law (26). For example A = {X = x}, B =
{a ≤ X ≤ b} and x /∈ [a, b], we have

Ps(X = x ∪ a ≤ X ≤ b) =

Ps(X = x) + Pr(a ≤ X ≤ b)− Pr(X = x ∩ a ≤ X ≤ b).
(27)

The LHS is

[fX(x) + fX(a) + fX(b)]0̄+̇[FX(b)− FX(a)]

and the RHS is

fX(x)0̄ +
[
{fX(a) + fX(b)} 0̄+̇{FX(b)− FX(a)}

]
− 0,

so that we obtain the LHS to be equal to the RHS, and thus
we have a ”Soft De Morgan’s Law”

Ps(A ∪B) = Ps(A) + Ps(B)− Ps(A ∩B). (28)

In the next subsection, we show the results for a conditional
of soft probability, referring to Kolmogorov definition and
Bayes theorem.

B. Conditional Probability

Recall Kolmogorov definition for conditional probability

Pr(A|B) =
Pr(A ∩B)

Pr(B)
, (29)

and for Bayes theorem

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
, (30)

We define a ”Soft Conditional Probability” similarly, e.g.,
for x, y ∈ SX , let A = {X = x}, B = {X = y}, and at the
LHS of Kolmogorov definition (29) we have

Ps(X = x ∩X = y)

Ps(X = y)
=
1x=yfX(x)0̄

fX(y)0̄
=
1x=y · 0̄
1 · 0̄

. (31)

With a definition of 1·0̄
1·0̄ = 1 and 0·0̄

1·0̄ = 0, the conditional
soft probability is given by

Ps(X = x|X = y) = 1x=y. (32)

In this case we have a trivial equality with optional real values
0 or 1. For comparison with Bayes theorem (30)

Ps(X = y|X = x)Ps(X = x)

Ps(X = y)
=
1y=xfX(x)0̄

fX(y)0̄
= 1x=y.

(33)
Now we consider x, y ∈ SX , let A = {X = x}, B =
{a ≤ X ≤ b}, with x, a, b ∈ SX such that a < b ,x ̸= a
and x ̸= b. At the LHS of Kolmogorov definition (29) we
have

Ps(X = x ∩ a ≤ X ≤ b)

Ps(a ≤ X ≤ b)
=

1x∈[a,b]fX(x)0̄

[fX(a) + fX(b)]0̄+̇[FX(b)− FX(a)]
.

(34)

When applying Bayes theorem (30), we have

Ps(a ≤ X ≤ b|X = x)Ps(X = x)

Ps(a ≤ X ≤ b)
=

[Ps(a ≤ x ≤ b|X = x)]fX(x)0̄

[fX(a) + fX(b)]0̄+̇[FX(b)− FX(a)]
,

(35)

where Ps(a ≤ x ≤ b|X = x) = Ps(a ≤ x ≤ b) = 1x∈[a,b].
Both Kolmogorov theorem form and Bayes theorem form are
equal, and therefore

Ps(X = x|a ≤ X ≤ b) =
1x∈[a,b]fX(x)0̄

[fX(a) + fX(b)]0̄+̇[FX(b)− FX(a)]
.

(36)
We can simplify the RHS by the property

A0̄

B+̇C0̄
=

A0̄

B+̇C0̄
· B+̇(−C)0̄

B+̇(−C)0̄
=

AB0̄

B2
=

A0̄

B
,

and we have the following conditional soft probability with a
given non-strict inequality condition:

Ps(X = x|a ≤ X ≤ b) =
1x∈[a,b]fX(x)0̄

FX(b)− FX(a)
, (37)

and for a given strict inequality condition, we have.

Ps(X = x|a < X < b) =
1x∈(a,b)fX(x)0̄

FX(b)− FX(a)
. (38)

The meaning of these last two equation is that we have a
soft zero when the observation x makes sense (i.e. between
a and b), and it is an absolute zero if x makes no sense (i.e.
not between a and b), due to the indicator in the numerator. In
addition, division by the denominator FX(b)−FX(a) ∈ (0, 1)
makes higher probability than the unconditional probability,
which make sense since we have an additional information
regarding to the random variable X to be between a and b. In
the next subsection, we extend the notion of soft probability for
2 continuous random variables, based on a Soft De Morgan’s
Law (28).
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C. Extension of Soft Probability for 2 Dimensions

Suppose that X and Y are two continuous random variables.
By the regular De Morgan’s Law (26), we can decompose the
regular probability object Pr(X ≤ x, Y ≤ y) into a sum of
the following probabilities

Pr(X ≤ x, Y ≤ y) =
0︷ ︸︸ ︷

[Pr(X < x, Y = y) + Pr(X = x, Y < y) + Pr(X = x, Y = y)]

+ Pr(X < x, Y < y),
(39)

such that each of the first three terms in the bracket collapses to
zero in the classical probability. We define the soft probability
object Ps(X ≤ x, Y ≤ y) in 2 random variables based on a
Soft De Morgan’s Law (28) as follows

Ps(X ≤ x, Y ≤ y) =

[Ps(X < x, Y = y) + Ps(X = x, Y < y) + Ps(X = x, Y = y)]

+ Ps(X < x, Y < y).
(40)

In this case, we define the first three terms in the bracket as the
following soft zero objects in terms of the CDF FX,Y (x, y)
and the PDF fX,Y (x, y):

Ps(X < x, Y = y) =
∂FX,Y (x, y)

∂y
· 0̄, (41)

Ps(X = x, Y < y) =
∂FX,Y (x, y)

∂x
· 0̄, (42)

Ps(X = x, Y = y) =
∂FX,Y (x, y)

∂x∂y
· 0̄ = fX,Y (x, y) · 0̄. (43)

the last term is a regular probability along the 1-axis i.e.,

Ps(X < x, Y < y) = Pr(X < x, Y < y) = FX,Y (x, y),
(44)

so that Ps(X ≤ x, Y ≤ y) equals to the following soft number

Ps(X ≤ x, Y ≤ y) =[
∂FX,Y (x, y)

∂x
+

∂FX,Y (x, y)

∂y
+ fX,Y (x, y)

]
· 0̄

+̇FX,Y (x, y).

(45)

Now, we want to construct the soft probability objects
Ps(X ≤ x, Y < y) and Ps(X ≤ x, Y = y) [by symmetry, we
can construct Ps(X < x, Y ≤ y) and Ps(X = x, Y ≤ y)
accordingly]. Based on a Soft De Morgan’s Law (28), we
construct the soft probability Ps(X ≤ x, Y < y) similarly
as follows:

Ps(X ≤ x, Y < y) =
∂FX,Y (x, y)

∂x
· 0̄+̇FX,Y (x, y). (46)

Therefore, we can distinguish among the soft probabilities:
Ps(X ≤ x, Y ≤ y), Ps(X < x, Y < y), Ps(X ≤ x, Y < y)
and Ps(X < x, Y ≤ y). Similarly, we have

Ps(X ≤ x, Y = y) =

[
∂FX,Y (x, y)

∂y
+ fX,Y (x, y)

]
· 0̄, (47)

that is a soft zero. In the next section, we define soft expec-
tation, soft variance and soft entropy.

IV. SOFT EXPECTATION, VARIANCE AND ENTROPY

In this section, we define soft expectation, soft variance and
soft entropy. First, we focus on expectation and variance’s
definitions, recalling their original and known definition and
then generalizing then to soft numbers. Second, we do this
original definition’s recall and soft numbers’ generalization to
the entropy.

A. Soft Expectation and Variance

Recall for the definition of the Expectation of a random
variable X with support SX

E(X) =

∫
SX

xdFx(x) = µX , (48)

where E(·) is the expectation operator defined by the Lebesgue
integral above, and we denote its result by µX (sometime
we call it mean). For a continuous random variable the
Expectation is defined by

E(X) =

∫
SX

xfX(x)dx, (49)

and for a discrete random variable

E(X) =
∑
x∈SX

xPr(X = x). (50)

The Variance of a random variable is the expectation of the
square error from its mean, that is

Var(X) = E[(X−µ)2] =

∫
SX

(x−µX)2dFx(x) = σ2
X , (51)

Var(X) =

∫
SX

(x−µX)2fX(x)dx, for continuous case, (52)

Var(X) =
∑
x∈SX

(x− µX)2Pr(X = x), for discrete case.

(53)
Suppose that X is a continuous random variable and

{xi}ni=1 and {(aj , bj)}mj=1 are set of numbers and set of
disjoint intervals in the support SX . Assume also that {xi}ni=1

and {(aj , bj)}mj=1 are disjoint. WLOG we consider open
intervals, otherwise we can exclude the end point aj , bj
from the interval (aj , bj) and include then into the set of
numbers {xi}ni=1. Under the above assumption we define a
soft expectation of X as the expectation of X conditioned by
being within the union of {xi}ni=1 and {(aj , bj)}mj=1, i.e.,

Es(X|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1)

=

n∑
i=1

xiPs(X = xi)+̇

m∑
j=1

∫ bj

aj

xfX(x)dx

=

n∑
i=1

xifX(xi) · 0̄+̇
m∑
j=1

∫ bj

aj

xfX(x)dx

= νX 0̄+̇κX ,

(54)
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where Es(·) is a new notation for a Soft Expectation operator.
Here we use the concept of a Conditional Expectation, how-
ever instead of calculating an expectation of a random variable
given another random variable (see e.g., [4]), the condition
is given on the same variable but being within some set of
single point and intervals. Recall that X is a random variable
with a real value, and also all the single point {xi}ni=1 and
all the intervals {(aj , bj)}mj=1 are real. However, due to the
soft probability terms Ps(X = xi) the result of the LHS of
(54) is a soft number. For simplicity we denote the real part
of the soft expectation by κX , and the soft part by νX . With
this definition, the soft part νX adds some new information
regarding to the mean of the continuous random variable X
given being within discrete points {xi}ni=1. This value had
been collapsed to zero without this soft expectation definition.

We can define a soft expectation of a function g(X), that
maps from the real numbers to the real or soft numbers as
follows

Es(g(X)|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1)

=
n∑

i=1

g(xi)Ps(X = xi)+̇
m∑
j=1

∫ bj

aj

g(x)fX(x)dx

=
n∑

i=1

g(xi)fX(xi) · 0̄+̇
m∑
j=1

∫ bj

aj

g(x)fX(x)dx

(55)

With this concept, we define the soft variance (denoted by
Vs), related to X conditionally being within union of {xi}ni=1

and {(aj , bj)}mj=1. Using the nullity of 0̄ (Axiom 3) and
differentiation property (B.10), we have

Vs(X|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1) =

Es((X − (νX 0̄+̇κX)2)|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1)
n∑

i=1

[νX 0̄+̇(κX − xi)]
2fX(xi) · 0̄

+̇
m∑
j=1

∫ bj

aj

[νx0̄+̇(κX − x)]2fX(x)dx = n∑
i=1

(κX − xi)
2fX(xi) + 2νX

m∑
j=1

∫ bj

aj

(κX − x)fX(x)dx

 0̄

+̇
m∑
j=1

∫ bj

aj

(κX − x)2fX(x)dx.

(56)

We would like to simplify last equation, especially the soft
part. Denote

γ2
1X =

n∑
i=1

(κX − xi)
2fX(xi) ≥ 0,

γ2X =

m∑
j=1

∫ bj

aj

(κX − x)fX(x)dx

and

λ2
X =

m∑
j=1

∫ bj

aj

(κX − x)2fX(x)dx ≥ 0.

By the linearity of the integral, we can simplify s2X as follows:

γ2X = κX

m∑
j=1

∫ bj

aj

fX(x)dx−
m∑
j=1

∫ bj

aj

xfX(x)dx

= κX

m∑
j=1

[FX(bj)− FX(aj)]− κX

= −κX

1− m∑
j=1

[FX(bj)− FX(aj)]


Observe that 1 −

∑m
j=1[FX(bj) − FX(aj) > 0. Now we can

simplify the definition for soft variance in (56) as follows

Vs(X|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1) =

[
n∑

i=1

(κX − xi)
2fX(xi)

− 2νXκX

1−
m∑
j=1

[FX(bj)− FX(aj)]


]
0̄

+̇
m∑
j=1

∫ bj

aj

(κX − x)2fX(x)dx

= [γ2
1X − 2νXγ2X ]0̄+̇λ2

X

= γX 0̄+̇λ2
X .

(57)

The real part λ2
X is non-negative (equals zero iif x ≡ κX ,∀x ∈

(aj , bj), j = 1, 2...,m e.g., X is deterministic), which makes
sense in terms of the original definition for variance. However,
in the soft part γX = γ2

1X − 2νXγ2X we some interesting
phenomena: On one hand, we have a non-negative term γ2

1X
(equals zero iif xi ≡ κX ,∀i = 1, 2...n). On the other hand the
sign of the term −2νXγ2X in the linear combination of sX
depends on the sign of νX and the sign of γ2X (that depends
on the sign of κX ), so that potentially the soft part may have a
negative sign. Eventually, the soft part adds more information
regarding to the variance of the random variable. Applications
of soft variance’s with negative soft max is required to be
checked. In the next subsection, we continue to define a soft
entropy, inspired by the notions in this subsections.

B. Soft Entropy

Recall for the definition of the Entropy of a discrete random
variable X with support SX and a point mass function (PMF)
pX (see e.g., [5]) is defined by

H(X) = −E(log pX(X)) = −
∑
x∈SX

pX(x) log pX(x). (58)

For a continuous case (usually referred as differential entropy)
for a continuous random variable X ∼ fX

H(X) = −E(log fX(X)) = −
∫
SX

fX(x) log fX(x)dx,

(59)
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where (in both definitions) the base of the logarithm operator
can be chosen to be appropriate positive real number e.g. 2,
e, 10 etc. depends on the application. In this work, we do
not emphasize a specific base, but we consider like previously
a continuous random variable X conditioned by being within
the union of {xi}ni=1 and {(aj , bj)}mj=1. With these definitions,
we have the following definition for a soft entropy Hs(·):

Hs(X|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1)

=
n∑

i=1

−Ps(X = xi) log(Ps(X = xi))

+̇
m∑
j=1

∫ bj

aj

−fX(x) log(fX(x))dx

=
n∑

i=1

[−fX(xi) · 0̄][log(fX(xi) · 0̄)]

+̇
m∑
j=1

∫ bj

aj

−fX(x) log(fX(x))dx

=

[
n∑

i=1

−fX(xi))

]
· [0̄ log(0̄)]

+̇

[
n∑

i=1

−fX(xi) log(fX(xi))

]
· 0̄

+̇

m∑
j=1

∫ bj

aj

−fX(x) log(fX(x))dx

=h1 · [0̄ log(0̄)]+̇h2 · 0̄+̇h3 · 1,

(60)

where

h2 · 0̄+̇h3 ·1 = −Es(log(fX(X)|X ∈ {xi}ni=1∪{(aj , bj)}mj=1)

by (55) with g(x) = log(fX(x)) and h1 =
∑n

i=1 −fX(xi)).
The soft entropy of X is a linear combination of the objects of
0̄, 0̄ log(0̄) and 1. The question is how to evaluate the object
0̄ log(0̄). One option would be an absolute zero i.e., 0̄ log(0̄)=0

Observation:

lim
x→0+

xx = 1 ⇒ lim
x→0+

x log(x) = 0

ex =
∞∑

n=0

xn

n!
=

x0

0!
+

x1

1!
+

x2

2!
+

x3

3!
+ ...

1 = e0 =
∞∑

n=0

0n

n!
=

00

0!
+(

01

1!
+
02

2!
+...) =

00

0!
+(0) =

00

1
= 00.

Another option would be defined it as a new type of a ”soft
zero” object e.g., a new axis that is a continuum of multiples of
¯̄0 = 0̄ log(0̄), with nullity rule ¯̄02 = 0. With the second option,
we have additional information on the Entropy of X , not only
via the 0̄-axis but also via a new potential axis, ¯̄0 = 0̄ log(0̄).

Similarly, we define the soft cross entropy, by evaluation of
the soft expectation of log(f̂X(X)) for some ”guested” PDF
(e.g. we assume incorrectly that X ∼ f̂X ), based on the notion

of the cross entropy H(fX , f̂X) = −E(log(f̂X(X)) we are
familiar with from Information Theory,by the following

Hs(fX , f̂X |X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1)

=
n∑

i=1

−Ps(X = xi) log(P̂s(X = xi))

+̇
m∑
j=1

∫ bj

aj

−fX(x) log(f̂X(x))dx

=
n∑

i=1

[−fX(xi) · 0̄][log(fX(xi) · 0̄)]

+̇
m∑
j=1

∫ bj

aj

−fX(x) log(f̂X(x))dx

=

[
n∑

i=1

−fX(xi))

]
· [0̄ log(0̄)]

+̇

[
n∑

i=1

−fX(xi) log(f̂X(xi))

]
· 0̄

+̇
m∑
j=1

∫ bj

aj

−fX(x) log(f̂X(x))dx

=ĥ1 · [0̄ log(0̄)]+̇ĥ2 · 0̄+̇ĥ3 · 1,

(61)

where

ĥ2 · 0̄+̇ĥ3 ·1 = −Es(log(f̂X(X)|X ∈ {xi}ni=1∪{(aj , bj)}mj=1)

by (55) with g(x) = log(ĥX(x)), ĥ1 =
∑n

i=1 −fX(xi)) and
P̂s(X = x) = f̂X(X) · 0̄ denotes the ”guess” for the soft
probability Ps(X = x) = fX(X) · 0̄. We can notice that
the term which multiplies the object 0̄ log(0̄) does not depend
on the guested PDF f̂X . Moreover, this object is identical
to the coefficient of 0̄ log(0̄) in the soft entropy definition
(60) (i.e., ĥ1 = h1 =

∑n
i=1 −fX(xi)). The Kullback–Leibler

Divergence (KLD, see [8] and [9]) is defined by D(fX ||f̂X) =

H(fX , f̂X)−H(X) = E(log fX(X)

f̂X(X)
). By subtracting (60) from

(61), we define the soft KLD Ds(·) by the following

Ds(fX ||f̂X |X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1)

=

[
n∑

i=1

fX(xi) log
fX(xi)

f̂X(xi)

]
· 0̄

+̇
m∑
j=1

∫ bj

aj

fX(x) log
fX(x)

f̂X(x)
dx

=Es

(
log

fX(X)

f̂X(X)
|X ∈ {xi}ni=1 ∪ {(aj , bj)}mj=1

)
(62)

that has no multiple of 0̄ log(0̄) term. We can see easily that
that the multiple of ¯̄0 = 0̄ log(0̄) term is canceled out via
subtracting (60) from (61). Another explanation for it is by
observing that expectation of log fX(X)

f̂X(X)
consists of terms with
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the form log Ps(X=xi)

P̂s(X=xi)
. It is convenient to the perform the

following cancellation of 0̄ object:

log
Ps(X = xi)

P̂s(X = xi)
= log

fX(xi) · 0̄
f̂X(xi) · 0̄

= log
fX(xi)

f̂X(xi)
,

so that the multiple of 0̄ log(0̄) term vanishes.
In the next section, we define a soft Mutual Information, as

a splitting criteria for decision trees.

V. DECISION TREES BASED ON SOFT MUTUAL
INFORMATION

Decision trees (e.g. Id3, C4.5, J48 etc.) are simple yet
successful techniques for predicting and explaining the rela-
tionship between some measurements about an item and its
target value (see e.g., [6] and [7]). In most decision trees
inducers, discrete splitting functions (also known as Splitting
Criteria) are univariate, i.e. an internal node is split according
to the value of a single attribute. Consequently, the inducer
searches for the best attribute upon which to perform the split.
A Splitting Criteria of a random variable X (represents the
features) and a random variable Y (represents the labels) has
the following structure:

SplittingCriteria(Y ;X) = C(Y )− C(Y |X), (63)

where C(·) is an expectation of some cost function. In the
case when the cost function is the entropy [i.e. C(·) = H(·)],
we refer the splitting criteria as an Information Gain, that is
a Mutual Information between X and Y , denoted by

I(Y ;X) = H(Y )−H(Y |X)

= H(Y ) + H(X)−H(Y,X),
(64)

which also can be written as a KLD between the joint PDF
fX,Y and the PDF product fXfY i.e.,

I(Y ;X) = D(fX,Y ||fXfY ). (65)

In this section we present the mutual information, an exam-
ple of a splitting criteria, as a soft number,based on a joint PDF
(and its related marginal PDFs) of two random continuous
variable, but with a data set consist of single values and
interval. From here the decision algorithm is clear. Suppose
that X and Y are continuous random variables, such that X
is within the union of {xi}ni=1 and {(aj , bj)}mj=1, and Y is
within the union of {yi}Ni=1 and {(Aj , Bj)}Mj=1 (recall that
the singles point e.g. {xi}ni=1 and the intervals {(aj , bj)}mj=1

are disjoint). for simplicity denote the following sets:

X = {xi}ni=1 ∪ {(ai, bi)}mi=1

Y = {yj}Nj=1 ∪ {(Aj , Bj)}Mj=1.
(66)

Using (43), (62), (65) and (66), we can define a soft Mutual
Information Is(·) by the following equation after re-indexing

Is(Y ;X|Y ∈ Y, X ∈ X ) =

Ds(fX,Y ||fXfY |Y ∈ Y, X ∈ X ) = N∑
j=1

n∑
i=1

fX,Y (xi, yj) log

(
fX,Y (xi, yj)

fX(xi)fY (yj)

) · 0̄

+̇
M∑
j=1

m∑
i=1

∫ Bj

Aj

∫ bi

ai

fX,Y (x, y) log

(
fX,Y (x, y)

fX(x)fY (y)

)
dxdy,

(67)

So we have an example for a splitting criteria as a soft number,
that can be used in decision trees algorithms in a case of data
set consist of singles values and interval.

The definition for a soft Mutual Information in (67) is
symmetric in X and Y [due to I(X;Y ) = I(Y ;X) in the
regular sense]. We can present (67) in a less symmetric form,
using the Bayes Law identity fX,Y = fY |XfX , so that we
have

Is(Y ;X|Y ∈ Y, X ∈ X ) = N∑
j=1

n∑
i=1

fY |X(yj |xi)fX(xi) log

(
fY |X(yj |xi)

fY (yj)

) · 0̄

+̇
M∑
j=1

m∑
i=1

∫ Bj

Aj

∫ bi

ai

fY |X(y|x)fX(x) log

(
fY |X(y|x)
fY (y)

)
dxdy.

(68)

This representation is applicable e.g., for emphasizing X as
an input and Y as an output to some channel. An example is
shown in the next subsection for a Gaussian case.

A. Gaussian Distribution Example

Consider the jointly Gaussian distributed variables X and
Y as follows:

X ∼ N(0, 1), fX(x) =
1√
2π

e−
1
2x

2

Y ∼ N(0, 2), fY (y) =
1√
2π · 2

e−
1

2·2y
2

(Y |X = x) ∼ N(x, 1), fY |X(y|x) = 1√
2π

e−
1
2 (y−x)2

(69)

Remark 1: The above setup can be obtained by adding an
uncorrelated Gaussian noise W ∼ N(0, 1) to the Gaussian
input X such that X ⊥⊥ W and we have Y = X + W . A
sketch of the proof is shown below

E(Y ) = E(X) + E(W )

= 0 + 0

= 0,

Var(Y )
X⊥⊥W
= Var(X) + Var(W )

= 1 + 1

= 2,
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E(Y |X = x) = E(X|X = x) + E(W | = x)
X⊥⊥W
= x+ 0

= x,

Var(Y |X = x) = Var(Y − x|X = x)

= Var(W |X = x)
X⊥⊥W
= 1.

We used Gaussian distributions in this example due to the
properties of jointly Gaussian random variables. We can use
any continuous distributions and to calculate the soft mutual
information accordingly.

Consider a simple case that each set X (input set) Y (output
set) have one open interval and one single point

X = (a, b) ∪ {x0},
Y = (A,B) ∪ {y0},

(70)

so that the soft Mutual information in (68) is given by

Is(Y ;X|Y ∈ Y, X ∈ X ) =[
fY |X(y0|x0)fX(x0) log

(
fY |X(y0|x0)

fY (y0)

)]
· 0̄

+̇

∫ B

A

∫ b

a

fY |X(y|x)fX(x) log

(
fY |X(y|x)
fY (y)

)
dxdy.

(71)

and after plugging the Gaussian PDFs [according to (69)], we
have

Is(Y ;X|Y ∈ Y, X ∈ X ) =[
1

2π
e−

1
2 (y0−x0)

2

e−
1
2x

2
0 log

(√
2e

1
2·2y

2
0e−

1
2 (y0−x0)

2
)]

· 0̄

+̇

∫ B

A

∫ b

a

1

2π
e−

1
2 (y−x)2e−

1
2x

2

log
(√

2e
1

2·2y
2

e−
1
2 (y−x)2

)
dxdy.

(72)

At the following Table I, we obtain some numerical results
for a Soft Mutual Information (denoted by Is(Y ;X) for
simplicity) in our Gaussian Case. We used logarithm with base
e:

Table I
NUMERICAL RESULTS OF A SOFT MUTUAL INFORMATION IN THE

GAUSSIAN CASE

x0 y0 (a, b) (A,B) Is(Y ;X)

0 0 (1,2) (1,2) 0.055159·0̄ +̇ 0.042381
0 1 (1,2) (2,3) 0.0093225·0̄ +̇ 0.037941
1 0 (2,3) (1,3) -0.0089831·0̄ +̇ 0.018353
1 0 (20,30) (10,30) -0.0089831·0̄ +̇ 2.7404E-87

20 30 (2,3) (1,3) 7.4494E-108·0̄ +̇ 0.018353

We can observe that, on one hand, when x0 and y0 are
far away from the mean of X and Y (zero for both in our
case), the contribution of the soft mutual information in its
soft part approaches to zero. On the other hand, when the
intervals (a, b) and (A,B) are away from the mean of X and
Y , the contribution of the soft mutual information in its real

part approaches to zero, so the soft part may have a significant
value for taking a decision in a soft decision tree.

To summarize this example, we consider a case of two
jointly Gaussian variables. We generate a formula for a Soft
Mutual Information in a simple case of when each random
variable’s datum consists of one single point (to generate the
soft part of the Soft Mutual Information) and one interval (to
generate the real part of the Soft Mutual Information). This
example can be generalized by summing the contributions of
the Soft Mutual Information of any set of disjoints singles
points and intervals.

VI. CONCLUSIONS

In the classical probability, in continuous random variables
there is no distinguishing between the probability involving
strict inequality and non-strict inequality. Moreover, a proba-
bility involve equality collapse to zero, without distinguishing
among the values that we would like that the random variable
will have for comparison. Soft numbers assist us to distinguish
between the probability involving strict inequality and non-
strict inequality, and among the values that we would like that
the random variable, by generating soft zeros multiples of the
PDF observations.

In addition, we extended this notion of soft probabilities to
the classical definitions of Complements, Unions, Intersections
and Conditional probabilities under Kolmogorov definition
and Bayes theorem, that makes sense with a probability of
a continuous variable to be equal to an exact value does not
collapse completely to zero.

We also extend the notion of soft probabilities to the
expectation, variance and entropy of a continuous random
variable, condition being in a union of disjoint intervals and
a discrete set of numbers. with this extension, we have some
information regarding to the expectation, variance and entropy
of a continuous random variable being within discrete sent of
numbers, but not collapse completely to zero. In addition we
discover some interesting properties regarding to soft variance
and soft entropy that required to be explored. In soft variance,
the soft part might be a negative number. In the soft entropy,
we have potentially a new zero axis with multiples of 0̄ log(0̄),
or alternatively we may defined 0̄ log(0̄) as an absolute zero.
For the first option (considering new zero axis) it may be
required to define additional bridging notation in order to
bridge between multiples of 0̄ log(0̄) and the multiples of 0 and
1. We extended the notion of soft entropy into the definition
of Cross Entropy and KLD, and we found that a soft KLD
is a soft number, that does not have a multiple of 0 · log 0.
More exploration are required to be done in order to realize the
consequences of this result. Based on a soft KLD, we defined a
soft mutual information, that can be used as a splitting criteria
in decision trees with data set of continuous random variables,
consist of single samples and intervals.

VII. SUGGESTIONS FOR FUTURE RESEARCH

We suggest to extend the notion of soft probability covered
in this work by generalizing to the followings: continuous
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random vectors, mixed random variable (that has continuous
and discrete distribution i.e., non piecewise constant CDF but
with discontinuity), random vector with discrete, continuous
and mixed random variables etc.

In addition we suggest to explore the applications of
negative soft part in the soft variances, and to explore the
applications of multiples of 0̄ log(0̄) as an information to
the soft entropy (in addition to the information regarding
to the multiples of multiples of 0̄ in the soft entropy). We
also suggest to explore the soft logic in general and soft
probability in particular in additional topics in information
theory, data mining, machine learning, computability, meta-
verse technology, cyber-physical system (CPS) etc. We also
suggest to involve the views of the theory of consciousness in
the mentioned above scientific and technological topics, with
the concept of the zero axis presents the inner world or virtual
world, and the one axis the real world (see paragraph below
(B.5) for more details). We believe that with soft logic (and
soft probability) we can incorporate the spiritual concept of
consciousness, that present inner/virtual world or the zero axis,
into the scientific and technological topics in the real world or
the one axis.

APPENDIX A
PROBABILITY THEORY BRIEF REVIEW

Probability theory is used in order to model processes and
phenomenons, involving randomness of the parameters and
variables. Usually, when we want to quantify a probability of
an event in these processes or phenomenons, we evaluate the
probability of this event by the range [0,1], e.g., ’0’ means
the event can never (almost surely) occur and 1 means the
event can always (almost surely) occur. For this quantifica-
tion, a probability space is a defined by mathematical triplet
(Ω,F , P ) defined as follows:

• Sample Space Ω: Set of all possible outcomes. An
outcome is the result of a single execution of the model.

• σ-algebra F : Collection of all the events we would like
to consider. An event is a set outcomes.

• Probability Measure P : Function returning an event’s
probability. P maps from the σ-algebra F to the interval
[0,1].

Random variables are used to provide outcomes numerical
values. The mathematical notation for a random variable X
is defined by the following:

X : Ω → SX (A.1)

where SX is a set of real numbers, that the random variable
SX can have. SX is called the support of X . Mainly, we
distinct between two types of Random variables:

• Discrete random variables, that can have finite or count-
able of values; and

• Continuous random variables that can have uncountable
of values.

For both discrete and continuous random variables, a cumu-
lative distribution function (CDF) of a random variable X as
follows:

FX(x) = Pr(X ≤ x), (A.2)

where the right hand side (RHS) asked what is the probability
of a random variable X to be less or equal to some real number
x, and the left hand side (LHS) provides the answer in terms
of x by the function FX : R → [0, 1].

In a case of a discrete random variable, we can address to
the question, what is the probability of a random variable X
to be equal to some real number x, by the point mass function
(PMF), defined as follows:

pX(x) = Pr(X = x). (A.3)

The cumulative property is obtained by the following relation
between the CDF and the PMF in the discrete case

FX(b)− FX(a) =
∑

a<xi≤b

pX(xi) = Pr(a < X ≤ b). (A.4)

In a case of a continuous random variable, a probability
density function (PDF) is defined by:

fX(x) =
dFX(x)

dx
. (A.5)

The function fX : R → R≥0 denotes the PDF of X . The
cumulative property is obtained by the following relation
between the CDF and the PDF in the continuous case

FX(b)− FX(a) =

∫ b

a

fX(x)dx = Pr(a < X ≤ b). (A.6)

The PDF can be used is to approximate the probability of
the continuous random variable X to be adjacent to x in the
following sense

Pr(x < X ≤ x+∆x) ≈ fX(x)∆x, (A.7)

where ∆x > 0 is a small value, that defines how much this
probability is accurate. However, continuous random variables
have the following properties:

• No distinguishing between strict inequality and non-strict
in equality e.g., Pr(X ≤ x) = Pr(X < x);

• Equality collapses to zero i.e., Pr(X = x) = 0. Although
any value of x ∈ SX is possible for X , the the probability
of X to be equal to any value of x ∈ SX is (almost surely)
zero.

Because of these properties, we lose some information regard-
ing to a continuous random variable to have an exact value.

In the literature (e.g., [10], [11] and [12]), there is an
approach to represent a discrete distribution as a continuous
distribution by a linear combination of Dirac delta functions
δ(x− xi), or by any approximations of Dirac delta functions
e.g., Gaussian functions (also known as Gaussian mixture
model or GMM) or rectangular functions (based on uniform
distribution) etc. Suppose X is a discrete random variable with
the probability Pr(X = xi) = pi. Then X can be represented
with a continuous distribution as follows
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fX(x) =
∑
i

piδ(x− xi)

≈
∑
i

pi ·
1√
2πσ2

e−
1

2σ2 (x−xi)
2

, σ2 ≪ 1

≈
∑
i

pi ·
1

2a
1x−xi∈(−a,a), a ≪ 1.

(A.8)

recall that,

δ(x) =

{
0 x ̸= 0

∞ x = 0∫ ∞

−∞
δ(x)dx = 1,

(A.9)

and also 1√
2πσ2

e−
1

2σ2 x2 σ2→0−−−−→ δ(x), 1
2a1x∈(−a,a)

a→0−−−→ δ(x),
i.e., Gaussian distribution and uniformly distribution converge
to Dirac delta function (degenerative distribution) when the
variance of the Gaussian distribution and the length of the
interval in the uniformly distribution approach to zero re-
spectively. Our approach it to establish the opposite in some
sense, i.e., to represent a continuous random variable with a
possibility to have a discrete values with probability that will
not collapse absolutely to zero.

In this work, we introduce the Soft Numbers (see Klein and
Maimon’s papers e.g., [1], [2] and [3]) to give a probability
interpretation of a continuous random variable to have an exact
value, that provides distinguishing between strict inequality
and non-strict in equality in the probability function.

APPENDIX B
PRESENTATION OF SOFT NUMBERS

According to traditional mathematics, the expression 0/0 is
undefined, although in fact the whole set of real numbers could
represent this expression, since a·0 = 0 for all real numbers a.
This observation opens a new area for investigation, which is
a part of what it is called in [1] a “Soft Logic”, that refers to a
new axis, ”a continuum of multiples of zeros”, with distinction
between a positive zero ”+0” and a negative zero ”-0” (see also
[2] and [3]).

A. Soft Number: Definitions and Axioms

A new object 0̄ is symbolized in order to generate of a
continuum of multiples of zeros a0̄ on a ”0̄” axis, where a
is a real number. An object a0̄ denotes ”soft zero”, while
the object 0 = 0 · 0̄ denotes ”absolute zero”. The object
1̄ denotes the real axis (i.e., contains multuples of ”ones”,
b1̄), and parallel to the ”0̄” axis. For simplicity, the symbol
1̄ is omitted during computations.The following axioms and
definitions are developed for soft zeros for all real numbers a
and b:

Axiom 1 (Distinction): a ̸= b ⇒ a0̄ ̸= b0̄.
Definition 1 (Order): a < b ⇒ a0̄ < b0̄.
Axiom 2 (Addition): a0̄ + b0̄ = (a+ b)0̄.
Axiom 3 (Nullity): a0̄ · b0̄ = 0, i.e., soft numbers ”collapse”

to zero under multiplications.

Axiom 4 (Bridging): There exists a bridge between a zero
axis, and a real axis and vice versa, denoted by a pair of a
bridge number and its mirror image about the bridge sign.
Bridge numbers of a right type

b1̄ ⊥ a0̄

and bridge numbers of a left type

a0̄ ⊥ b1̄.

Axiom 5 (Non-commutativity): Bridging operator ⊥ does not
commute [3] i.e.,

b1̄ ⊥ a0̄ ̸= a0̄ ⊥ b1̄.

Definition 2 (Soft Number): A soft number is defined as a
set of the of bridge numbers pair of opposite types but with
the same components – the same zero axis number a0̄ and the
same real number b:

a0̄+̇b = {a0̄ ⊥ b; b ⊥ a0̄}

We denote the set of all bridge numbers by BN and all
soft numbers by SN. The coordinate system of Soft Logic is
constructed, as presented in Figure 1. It starts from 0 to 1
horizontally and then it turns 90◦ from 1 to infinity

Figure 1. The Soft coordinate axis

Remark 2: There exists a one-to-one correspondence be-
tween the segment (0, 1] and the segment [1,∞).

Remark 3: All lines that connect x to 1/x (for all non-zero
real x) intersect at a single point.

The statements in Remarks 2 and 3 were demonstrated in
[1]. This “single point” denotes the beginning of the soft logic
coordinate system. We call this point “the absolute zero”. The
distance from absolute zero to +0 is 1. An extension of this
new coordinate system to the negative numbers is implemented
in Figure 2.

Figure 2. Distinction between -0 and +0

In Figure 2 we have, in addition to the absolute zero 0, two
additional zeros. One zero is opposite the number −1, and is
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not identical with the zero opposite to the number +1. Hence,
we suggest denoting these two different ”zeros” as +0̄ and
−0̄.

Figure 3 shows the extended coordinate system for positive
and negative numbers with an additional line presenting the
multiples of zero. The added line is called a zero line or a
zero axis, and the multiples on it are called soft zeros or zero
axis numbers.

Figure 3. The extended soft coordinate system

The coordinate system in Figure 3 allows us to present
all the real numbers and all the soft zeros. We now wish to
construct a coordinate system for representing various Soft
Numbers, which may be described as an infinite strip as shown
in Figure 4. Because of the Soft Number duality, we double
the strip (Figure 4). This allows us to represent both elements
of a Soft Number:

c = x0̄ ⊥ y,

c′ = y ⊥ x0̄,
(B.1)

where x and y are real numbers. Each of the elements c and
c′ is a mirror image of the other about the bridge sign. Note
that we have expanded the coordinate system in Figure 3 to
the one shown in Figure 4.

As the infinite strip, presented (partially) in Figure 4, is
intended for the presentation of Soft Numbers, we call it a
‘Soft Numbers Strip’ or briefly, SNS.

Definition 3 (height and width of a point on an SNS): let C
be any point on the SNS.

• The height of the point C is the vertical distance from
C to the horizontal segment with the absolute zero at its
center. This distance is supplied with a plus sign if C is
above this segment and with a minus sign if C is below
it. The height with a sign is denoted by A.

• The width of the point C is the horizontal distance from
C to the zero line and is denoted by B.

The definitions above provide every point C on the SNS
with two parameters, A ∈ R and B ∈ [0, 1]. The condition
A > 0 is satisfied in the positive part of the SNS, and A < 0
- in its negative part, or correspondingly, above and below the
horizontal segment containing the absolute zero, while on this
segment A = 0. For the second parameter B there is: B = 0

Figure 4. The complete soft coordinate system

on the zero axis, B = 1 on the lines bounding the SNS, and
otherwise 0 < B < 1.

If two points c and c′ on the SNS are symmetric about the
zero axis, they have the same height A and the same width
B, i.e., we can symmetrically represent them by the following
BNs:

c = (1−B)A0̄ ⊥ BA,

c′ = BA ⊥ (1−B)A0̄.
(B.2)

Therefore, to define a presentation of soft numbers x0̄+̇y by
symmetric pairs (SPs) of points on the SNS, we have to define
a correspondence between these numbers and the pairs of real
numbers (A,B) ∈ R× [0, 1] (denoted as SP), so that

x0̄+̇y = {c, c′}
= (1−B)A0̄+̇BA.

(B.3)

Hence, by a coefficients comparison of the real part and the
soft part:

x = (1−B)A

y = BA,
(B.4)
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or equivalently, after solving for the SP, (A,B)

A = x+ y

B =
y

x+ y
.

(B.5)

It can be proven that there is an algebraic isomorphism
between the bridge numbers b0̄ ⊥ a and Dual numbers
developed by Clifford [13] with the form a+bε, where ε2 = 0
but ε ̸= 0. The main difference between ε in Dual numbers
and 0̄ is the realisation and geometrical interpretation of 0̄ as
an extension of the number 0 on a continuous line. This line
can be a model of the inner world, while 1̄ is a model of
the real world. The bridge between them enables us to treat
the concept of consciousness with mathematical tools. Another
difference is the possibility, in Soft logic, of developing a Soft
curve [3].

One of our major topics for investigation in further research
is the connection of soft numbers to Mobius strip. In order to
describe the geometry of Mobius strip with soft numbers,we
suggest to modify the soft coordinate system in Figure 4 by
alternating the sign of left vertical line.

Figure 5. The alternative soft coordinate system

The horizontal line I0 in Figure 5 can represent the con-
nection line where the edges of a straight strip is twisted
and attached together to create a Mobius strip. One of the
suggestion to define a point on the Mobius strip with soft
numbers is that c = (1−B)A0̄ ⊥ BA is located in the front

of this page, while c′ = BA ⊥ (1 − B)A0̄ is located behind
this page. This setup demonstrates locally existence of two
side of Mobius strip. However, it is known that Mobius strip
has globally one side. Moreover, if we start walking vertically
from the point c (A units from I0 and B units from the zero
axis) on the front of this page, we will pass through the point
behind this page but across the point c′ and (−A units from
I0 and B units from the zero axis). When we keep walking on
that point, we will go back to the starting point c′. Because of
this phenomenon, we are motivated to explore the possibility
to represent a soft number with more than two symbols.

In the next subsection, we outline some properties of
mathematical operations and functions over the soft numbers.

B. Mathematical operations and Functions on Soft Numbers

In this section we outline some mathematical operations
over the soft numbers. Suppose a0̄+̇b, c0̄+̇d ∈ SN are given
soft numbers, then the following mathematical operations hold
based on axioms 2 and 3:

• Addition/subtraction:

(a0̄+̇b)± (c0̄+̇d) = (a± c)0̄+̇(b± d); (B.6)

• Multiplication:

(a0̄+̇b) · (c0̄+̇d) = (ad+ bc)0̄+̇bd; (B.7)

• Natural power:

(a0̄+̇b)n = nabn−10̄+̇bn. (B.8)

Based on the above equations, every polynomial PN (x) that
operates on every soft number α0̄+̇x is given by

PN (α0̄+̇x) = αP ′
N (x)0̄+̇PN (x). (B.9)

where P ′
N (x) denotes the derivative of PN (x). This notion is

generalized for analytic functions f(x) so that

f(α0̄+̇x) = αf ′(x)0̄+̇f(x). (B.10)
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