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Abstract 

Oral mucosa is continuously exposed to environmental forces and has to be constantly 
renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial 
stem cells necessary for tissue homeostasis. Despite considerable scientific advances in 
stem cell behavior in a number of tissues, fewer studies have been devoted to the stem 
cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on 
identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among 
other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the 
head and neck region, marked by their aggressiveness and invasiveness. Due to their 
highly tumorigenic properties, it has been suggested that CSC may be the critical 
population of cancer cells in the development of OSCC metastasis. This review presents 
a brief overview of epithelium stem cells with implications in oral health, and the clinical 
implications of the CSC concept in OSCC metastatic dissemination.  



 

 

 
Introduction 
Oral mucosa has a remarkable regenerative potential [1]. Several stem cells markers are 
known to be expressed, mainly in the basal layers of oral mucosa. It has been proven 
that the expression of these markers is dysregulated in oral squamous cell carcinomas 
(OSCC), the most common cancer of the oral cavity [2]. There is a need for a better 
characterization of the oral stem cells in particularly of their cell behavior, tissue-specific 
regenerative potential and involvement in carcinogenesis. This review provides an 
overview of stem cells biological implications in oral mucosa with a special emphasis in 
OSCC.  

 
Oral Mucosa 
The epithelium on the inner surface of the lips, floor of the mouth, gingiva, cheeks and 
hard palate is derived from embryonic ectoderm, whereas the epithelium surrounding the 
tongue is derived from both endoderm and ectoderm [3-5]. The oral mucosa can be 
divided into: masticatory (hard palate and gingival), specialized (dorsal surface of the 
tongue) and lining (buccal mucosa, ventral surface of the tongue, soft palate, intra-oral 
surfaces of the lips and alveolar mucosa) [5]. Of the total surface of the oral lining, 
approximately 25% is keratinized resembling that of the epidermis covering the skin in 
regions subject to mechanical forces (masticatory mucosa of the gingiva and hard 
palate), 60% is the non-keratinized lining mucosa in the regions requiring flexibility to 
accommodate chewing, speech or swallowing (floor of the mouth, buccal regions, 
esophagus, etc), with the remaining 15% is the specialized mucosa (dorsum of the 
tongue) which can be represented as a mosaic of keratinized and non-keratinized 
epithelium [6]. Oral epithelium is a stratified squamous epithelium that consists in various 
layers: basal, spinous, granular and corneal layers for the keratinized area; basal, 
spinous, intermediate and superficial layers in the non-keratinized areas. The oral 
epithelium is in direct contact with an underlying, dense connective tissue (lamina 
propria) containing minor salivary glands, structural fibers, blood vessels, fibroblasts 
along with other cell types [6-11]. Its histological structure involves undulations of 
epithelium (rete ridges) protruding downwards into the lamina propria, with 
corresponding upward projections of lamina propria (dermal papillae) and thus provides 
increased surface contact, which prevent separation of the oral epithelium from the 
underlying lamina propria during mastication [12]. 

The squamous epithelium covering the oral mucosa relies on epithelial stem cells 
for tissue renewal [1]. It is unanimously accepted that normal tissue stem cells constitute 
a life-long reservoir of cells with active mechanisms for self-renewal. Cell division in oral 
mucosa epithelial cells takes place mainly in the basal layer which contains the stem 
cells compartment from which the oral mucosa is being regenerated [7]. After dividing, 
the committed cells undergo differentiation that leads to the expression of structural 
keratin proteins as cells move superficially, and eventually fall off the surface. In the oral 
epithelium, it takes 14-24 days for a stem cell to divide and the progeny to traverse 
through the entire thickness of the epithelium (turnover time) [8]. Expression of several 
stem cells markers including, CD44, Bmi1, Sox2, Keratin 14, have been described 
mainly in the basal layer (Fig. 1, Table 1), suggesting that it may contain a reservoir of 
stem cells [5, 9]. However, the mechanism of tissue maintenance and regeneration is 
still largely unknown for these cells. It is interesting to note that no many studies have 
focused on transient amplifying (TA) progenitor cells in the oral cavity and on their 
potential to provide a reservoir for would healing and homeostasis [2, 5, 8, 14]. TA cells 



 

are slightly more differentiated than stem cells yet highly proliferative; they are derived 
from stem cells and continue to divide several times before undergoing terminal 
differentiation/maturation into the functional cells of the tissue; the size of the dividing 
transit population differs dramatically from tissue to tissue, the number of generations 
defining the degree of amplification that the transit population provides for each stem 
cells division seems to be related inversely to the frequency that stem cells will be found 
within the proliferating compartment [2,13].  

Recent findings derived from various solid malignancies models show that 
cancer progenitor cells have the capacity to dedifferentiate and acquire a stem-like 
phenotype in response to either genetic manipulation or environmental cues, via 
implication of various complex molecular circuitries. These findings highlight the need for 
a better understanding of the dynamic, contextually regulated, equilibrium between 
cancer stem cells (CSCs) and cancer progenitor cells as a critical step for the 
development of therapeutic strategies to deplete tumors of their tumor-propagating and 
treatment-resistant cell subpopulations [14-15]. Better characterization of the CSCs and 
progenitor cells will contribute to a better understanding of normal and abnormal 
epithelial growth and tissues regeneration in the oral cavity. 
 
Challenges to the integrity of the oral mucosa 
The mucosal lining of the oral cavity is an environment challenged by a large variety of 
insults, and functions to protect the underlying tissues and organs against mechanical 
and chemical insults, including microorganisms and toxins, or ingested antigens and 
carcinogens [10]. The oral epithelium is constantly replaced with a rapid clearance of 
surface cells, which acts as a protective mechanism against various insults and its 
structure constitutes an effective barrier [10].  

The turnover of the oral mucosa is faster in the lining than in the masticatory 
regions, thus challenges to the integrity of the oral mucosa will affect in particular the 
more rapidly proliferating areas and the lining regions will suffer first [16-18]. The dorsal 
surface of the tongue is composed of many small filiform papillae that have a very 
uniform shape and size, based on early detailed histological investigations and cell 
kinetic studies [19-20]. Each papilla is composed of four columns of cells, two dominant 
(anterior and posterior, also so-called tongue proliferative units, the functional group of 
proliferative basal cells derived from a single stem cell, together with the distally 
arranged functional differentiated cells) and two buttressing columns. The lineage 
characterizing this epithelium is similar to that seen in the dorsal epidermis of the mouse, 
self-replacing asymmetrically dividing stem cells, occurring at a specific position in the 
tissue, and producing a cell lineage that has approximately three generations. The stem 
cells here have a particularly pronounced circadian rhythm [13, 17, 18-21] suggesting an 
involvement of the circadian clock in stem cell equilibrum. Of interest, disrupting this 
clock equilibrium in the skin, through deletion of Bmal1 (also known as Arntl) or Per1/2, 
resulted in a progressive accumulation or depletion of dormant stem cells, respectively 
[22]. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the 
development of squamous tumors. Clinically, the squamous cell carcinoma of the tongue 
is considered one of the most aggressive tumors of the oral cavity. The potential effects 
of circadian disruption in tongue stem cells behavior and tongue cancer development 
remain largely unexplored.  

Despite continuous challenges imposed on the oral mucosa, normal human oral 
epithelial cells undergo constant cell division leading to regeneration of tissue, provided 
that the cells retain their ability to limit their replicative life span through cellular 
senescence, induce cell cycle arrest upon DNA damaged and repair the damaged DNA 
before resuming the cell cycle. It is known that DNA is most vulnerable during mitosis 



 

and that mitotic activity can be affected by a number of factors, such as stress and 
inflammation, as well as circadian clock disruption [10, 17]. Preliminary findings from our 
laboratories have identified a strong expression of clock genes in areas rich in stem cells 
(basal layer) in oral tissues (unpublished observations). Furthermore, we also have been 
able to detect expression of clock genes and CD44 in the basal layer of oral mucosa 
surrounding the tooth root and salivary glands (Fig. 1; [23]). Of interest, expression of 
both stem cells markers and clock genes are found altered in oral squamous cell 
carcinomas [24], suggesting an implication of the circadian clock in stem cells behavior 
in carcinogenesis. Moreover, the expression of growth factors such as the Epithelial 
Growth Factor (EGF) may play a role in the oral epithelium differentiation and in CSC 
self-renewal in tumors originated in the head and neck area, particularly in the head and 
neck squamous cell carcinomas (HNSCC). EGF promotes acquisition of stem cell-like 
properties, increased cell proliferation and decreased sensitivity to cisplatin treatment in 
HNSCC [25]. 

CSCs and normal stem cells share similarities [8]. Normal adult stem cells have 
the ability to repopulate the cells that constitute the organ from which they are isolated 
and the capacity to propagate themselves; both processes are tightly regulated. Cancer 
stem cells reflect some of these same properties and are by definition able to sustain 
proliferation; however, the CSCs are not subject to the same genetic constraints to 
which normal stem cells are bound. The deregulation of pathways that control the self-
renewal of normal stem cells (e.g. Wnt, Notch, Hedgehog, etc) leads to tumorigenesis in 
rodent models and also plays an important role in human carcinogenesis including 
HNSCC [2, 26-31]. Being long-lived, both CSCs and stem cells of normal tissues can be 
the targets of environmental carcinogens leading to the accumulation of consecutive 
genetic changes although several protective mechanisms have evolved to ensure the 
genetic integrity of the stem cell compartment in any given tissue [32]. Evolution of DNA 
methylation has allowed cells to respond to environmental cues in a flexible, yet stable 
manner, by properly regulating the response at the molecular level. However, 
dysregulation of DNA methylation can lead to hyper- or hypo-methylation of the 
promoters of critical genes, contributing to various diseases including HNSCC. Several 
reports have identified hypermethylation or hypomethylation in the promoters of key 
genes involved in oral, head and neck cancer [33-36], and have also demonstrated 
unequivocally that the vast majority of human HNSCC tumors contain multiple mutations 
[37-38]. It has been shown that variability in DNA methylation exists within subtypes of 
HNSCC, and is influenced by environmental factors such as diet [39-40]. 
 
 
Oral squamous cell carcinoma (OSCC) 
OSCC is the most prevalent and aggressive epithelial tumor of the head and neck region 
with the poorest outcome; in the United States alone approximately 100 new cases are 
daily diagnosed, while one person dies from oral cancer every hour of every day [41-44]  
(oralcancerfoundation.com). Worldwide, the problem is far greater with new cases 
annually exceeding 640,000 (oralcancerfoundation.com). Traditionally a men’s illness, 
affecting six men for every woman, over the past 10 years that ratio has alarmingly 
become 2:1 also affecting younger patients [45]. Development of oral cancer proceeds 
through discrete molecular genetic changes that are acquired from the loss of genomic 
integrity after continued exposure to environmental risk factors. Predisposing risk factors 
such as tobacco use and alcohol consumption have a greater than multiplicative effect 
and account for the majority of the squamous cell carcinomas developed in the head and 
neck area [46]. However, these established risk factors do not account for about 40% of 
oral cavity cases. It has been suggested that yet unknown genetic, occupational, viral or 



 

nutritional factors could influence risk particularly in this younger patients group [47]. A 
growing body of evidence implicates human oral bacteria (over 700 bacterial species 
inhabit the oral cavity) in the etiology of oral cancers and epidemiological studies 
consistently report increased risks of these cancers in patients with periodontal disease 
or tooth loss; furthermore oral bacteria may activate alcohol and smoking-related 
carcinogens locally or systematically through chronic inflammation [48]. Human 
Papillomavirus (HPV) has recently emerged as the primary etiologic factor particularly 
for tumors developed in the tongue and oropharynx that are also associated with 
younger age at diagnosis [49-50]. Consequently, unique pathologic profiles have 
emerged that are consistent with the changing incidence of HNSCC [51-52]. Patients 
with HPV(+) head and neck cancer have a distinct risk profile, associated with a less 
remarkable history of tobacco and alcohol use [53-54], a more beneficial micronutrient 
profile [55], improved cellular immunity [56] and improved survival compared to those 
with HPV(-) tumors [57-58]. Notably, a significant subset (20-30%) of HPV(+) tumors 
fails to respond, recur locally, or spread distantly. Studies conducted at the University of 
Michigan have made significant contributions to the understanding of the impact of HPV 
infection on the pathobiology of HNSCC and response to therapy [58-60]. However, the 
mechanisms involved in these processes are not fully understood, and given the 
evolving epidemiology there is a growing controversy over the optimal strategy for 
oropharynx cancer treatment [59-60].  

OSCC continues to be a disfiguring and deadly disease, which displays a wide 
range of metastatic behavior that cannot be predicted by tumor size, standard histology, 
or even individual gene or protein expression/activity [61, 62]. Despite advances in 
treatment, the survival of patients with advanced OSCC has not improved significantly 
over the last 30 years and remains one of the lowest among the major cancer types [42]. 
Metastatic tumor behavior is a critical factor in patient survival being responsible for 
more than 90% of cancer associated mortality in these patients; if distant disease, the 5-
year survival rate is three times less than those with nodal metastases, while survival of 
patients with nodal metastases is half that of similar stage patients without metastases 
[61, 63]. Younger (<40 years) patients with oral cancer have higher rate of distant failure 
[64, 65]). Therapeutic options for metastatic OSCC are limited and unsuccessful [66, 67]. 
Accurate prediction of metastasis in OSCC would have an immediate clinical impact 
through avoidance of unnecessary treatment of patients at low risk with appropriate 
direction of resources toward aggressive treatment of patients at high risk of having 
metastatic disease. 

Approximately two thirds of oral cancers occur in the oral cavity (lip, tongue, floor 
of mouth, palate, gingival, alveolar and buccal mucosa), while the remainder occurs in 
the oropharynx [61]. Evidence indicates infection of oral epithelial stem cells by high-risk 
types of human papillomavirus (HPV); clinical observations shown early lymphatic 
metastasis in HPV-related HNSCC [68, 69]. The microenvironment is increasingly 
recognized as relevant in the process of metastasis as it is the immunity [70-72]. Studies 
indicated that OSCC is associated with alterations in the immune system [73-77] and 
that CSC may be immunologically silent or at least compromised in OSCC [79].  
 
Clinical relevance of cancer stem cells in oral tumorigenesis 
The identification of cancer stem cells (CSC) has created a new area of research with 
promising applications in the prognosis and therapeutics of human cancer [69, 78-91]. 
Accumulating evidence indicates that the CSCs also play a role in the pathogenesis and 
progression of carcinomas developed in the oral cavity.  

To date, two models of tumor heterogeneity are unanimously accepted: the 
hierarchical model that assumes that CSCs represents a biologically distinct subset 



 

within the total malignant cell population in contrast with the stochastic model that 
assumes that every cell within a tumor has the same potential to act as a CSC [7]. Work 
by Prince et al. in 2007 was the first to identify CSC in head and neck squamous cell 
carcinomas (HNSCC) based on their CD44 expression; these cells possessed the 
qualities of self-renewal, tumorigenesis and the ability to recapitulate a heterogeneous 
tumor [92]. Additional studies at the University of Michigan have identified various CSC 
markers in HNSCC (e.g. ALDH, CD44, Bmi-1; [93-96]. Other markers also have been 
proposed (e.g. CD133, Oct-4, Nanog, Sox2, CD24, Snail, Twist, etc, most of them in 
combination with CD44 or ALDH; [2, 5, 8, 69, 90, 97-102]). Currently, CD44 and ALDH 
are the most common markers used to identify CSC in HNSCC.  

CD44 is a cell-surface glycoprotein involved in cell-cell interactions, cell 
migration, and adhesion with multiple isoforms (splice variants) known to be associated 
with cell transformation and tumor dissemination [103-106]; Clinically, overexpression of 
CD44 was associated with poor prognoses and decreased 5-year survival in HNSCC 
patients [107-110], although its clinical relevance seems dependent on the anatomical 
site where the cancer originates [106, 111-114]. The aldehyde dehydrogenase (ALDH) 
family of cytosolic enzymes catalyses the oxidation of aliphatic and aromatic aldehydes 
to carboxylic acids and ALDH1 is a family member that has a role in the conversion of 
retinol to retinoic acid, which is important for proliferation, differentiation and survival. 
ALDH1 activity seems to be responsible for the resistance of progenitor cells to 
chemotherapeutic agents [80, 90, 93, 115, 116]. Our group has shown that expression of 
ALDH and CD44 discriminates a highly tumorigenic cell subpopulation that can 
reconstitute the HNSCC heterogeneity; we performed ex vivo clonogenicity (“spheres-
forming”) assays to measure the frequency with which these prospectively isolated cells 
form colonies (“orospheres”) when placed at clonal density in non-adherent conditions 
[117]. More recently, we reported sialyl Lewis X as a marker that associates with the 
metastatic abilities of CSC in OSCC [95]. We are currently investigating other putative 
markers to better characterize oral epithelial stem cells and their metastatic abilities in 
OSCC, particularly markers that we previously found associated with tumor progression 
and dissemination in OSCC: Aurora B [118], Survivin [119], beta-catenin [120] that are 
expressed in the basal layer and invasive front (Figs. 1-2). Survivin is a promising 
candidate for targeted anti-cancer therapy as its expression associates with poor clinical 
outcome, aggressive clinic-pathologic features, and resistance to radiation and 
chemotherapy in OSCC among other HNSCCs [83, 121-123].  

 
Implications of oral cancer stem cells in metastasis 
Better purification of the stem-like cell population in oral carcinomas is necessary to 
clarify what metastatic characteristics are indeed unique to these cells. Such evidence 
would allow clinicians to exploit this particular set of attributes to target cancer stem cells 
that keep a tumor growing and allow it to spread. Our group has designed in vitro and in 
vivo models of metastasis to study the behavior of this unique tumor cell subpopulation 
in HNSCC. Our data showed that CSC possesses a greater capacity for tumor growth, 
increased mobility and invasive characteristics [85, 117]. Our data also has confirmed 
the greater metastatic potential of CSC compared to non-CSC, suggesting that CSC 
may be responsible for the development of metastasis in HNSCC [117]. Clinically, CSC 
enrichment is linked to treatment failure, tumor recurrence and metastasis in head and 
neck carcinomas [67, 124]. There is growing evidence that CSCs behavior is 
orchestrated in vivo in tissue-specific, “niche” microenvironments. Characterization of the 
microenvironment surrounding CSC suggest the existence of a perivascular niche that 
supports stem cells maintenance and resistance to anoikis, suggesting that targeting the 



 

crosstalk between CSCs and other cells of their supportive niche may provide effective 
way to abrogate the tumorigenic function of these cells [72, 125]. 

The mechanism underlying the invasion of carcinoma cells leading to tumor 
dissemination involves the epithelial-mesenchymal transition (EMT) of cells with high 
tumorigenic potential [126, 127]. It is also known that EMT endows epithelial cells with 
invasive and stem cell properties [128]. Normal stem cells and CSC may share a 
mesenchymal phenotype that enhances their ability to preserve stemness, to regain 
migratory properties, and to respond to different stimuli during the expansion and 
differentiation [69]. Cancer stem cells seem to localize at the invasive fronts of the 
HNSCC in close proximity with the blood vessels [129]. Of interest, emerging evidence 
including our findings reveal that the CSC cell populations in carcinomas originated in 
the oral cavity may be heterogeneous including various CSC subpopulations with distinct 
phenotypic and functional states: larger-size CSC with mesenchymal features and 
migratory abilities versus proliferative CSCs that retain epithelial characteristics (Fig. 2). 
Furthermore, in our spheres culture model, which is highly enriched in metastatic stem 
cells [95], we have observed that the majority of the cells are also highly enriched in 
epithelial markers, suggesting the existence of a predominant epithelial stem cells 
population (unpublished observations). It has been suggested that because the EMT-
associated growth arrest, a re-differentiation into epithelial cells (so called Mesenchymal-
Epithelial Transition, MET) may be necessary for the metastatic colonization [69, 130]. 
This evidence is suggestive of a new mechanism allowing metastatic colonization by 
uncoupling stemness from EMT and growth arrest, in favor of a parallel maintenance of 
stemness, proliferation phenotype and epithelial characteristics. However, it remains 
unclear how CSCs carry out the metastatic process in these carcinomas and how 
metastatic behavior of OSCC is modulated by CSC phenotypic characteristics.  
 
Therapeutic relevance of stem cells research 
Primitive stem cells capable of self-renewing proliferation and single or multiple cell 
lineage progeny generation have been identified in several human epithelial tissues. 
Although the biological characterization of various non-hematopoietic stem cells is still in 
its early stages in the laboratory, therapeutic experience with hematopoietic stem cells 
suggests that other stem cell types will likely have successful clinical applications. Better 
understanding of pluripotentiality, control of cellular differentiation and of epigenetic 
programming is critical to major future clinical applications. On the other hand, 
characterizing CSC subpopulations in oral, head and neck cancer will lead to a better 
understanding of cancer recurrence, metastasis, resistance to treatment, and should 
pave the way for more effective therapies for these types of cancer. In addition, the 
evaluation of the frequency of CSC, their molecular profiling and proliferative state, in a 
given tumor may be of prognostic value for the overall survival, response to therapy, risk 
of recurrence and metastasis. An overview of to date known anti-cancer therapies 
including those targeting CSC is presented in the Table 2. Current studies are 
conducted at the University of Michigan towards developing an autologous CSC-based 
therapeutic vaccine for clinical use in an adjuvant setting [131]. There are hopes that the 
near future will bring novel diagnostic and therapeutic approaches that will result in 
significant improvement of OSCC management and patient outcome. 
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Figure Legends  
Figure 1. Markers of epithelial stem cells during normal development and in 
relation with poor clinical outcome in patients with OSCC.  
Representative photomicrographs of primary human oral carcinomas immune-stained for 
markers that are associated with poor clinical outcome in patients with oral carcinomas: 
Aurora B (a-d, h), Survivin (e, i), beta-catenin (j-k), EGFR (l-m), Ki67 (f-g) and CD44 (n-
p). a, Aurora B expression in mitotically active cells in the basal layer of severe oral 
dysplasia; note the limits with basal membrane outlined by star. b-c, increased and 
aberrant mitoses overexpressing Aurora B, in aggressive OSCC at invasive front; b1-c1, 
metaphases; b2, early anaphase; c2, late anaphase; b3-c3, late anaphase-cytokinesis; 
b4-c4, anomalous cytokineses. Aurora B overexpression is coupled with survivin up-
regulation in the invasion fronts of OSCC giving raise to aberrant mitoses (d, Aurora B; 
e, survivin). High proliferative index of aggressive and invasive cells with perivascular (f) 
and perineural (g) localization positive for Ki-67, is coupled with Aurora B (h) and 
Survivin (i) over-expression. Beta-catenin expression in the invasive front (j) and a 
metastatic embolus (k) of OSCC. EGFR expression in the invasive cells front (l-m). 
CD44 expression in the basal layer of normal human oral mucosa (n), salivary gland (o) 
and dental root epithelia (p). All the samples were obtained with the signed informed 
consent of patients under approved protocols by the Ethical Committees of the 
Universities of Foggia and Marseille. 
 
Figure 2. Putative cancer stem cells markers in oral carcinomas. 
Representative photomicrographs (magnification 20x) of human derived oral squamous 
cell carcinomas cells immune-stained for CD44 (A), Lgr5 (B), CD15 (C), beta-catenin 
(D), Bmi-1 (E) and Ki67 (F). Larger size mesenchymal-like CSC co-exist with normal 
size CSC that retain the epithelial characteristics (yellow arrow). DAPI (blue) identified 
nuclei.  
 
Table 1. Markers for cancer stem cells (CSC) in head and neck squamous cell 
carcinomas (HNSCC). 
 
CSC subpopulations of cells in HNCSS have been identified by the expression of 
specific markers (single or in combination) complemented by in vivo tumorigenic 
assay performed in immune-deficient mice and “sphere-forming” assays in vitro [92-
117, 216-225].  
 

Table 2. Anti-cancer therapies targeting the cancer cells and cancer stem cells. 
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Highlights   

• Oral epithelium contains a reservoir of stem cells 
• Stem cell markers have been localized mainly in the basal layer 
• Cancer stem cells have been localized in head and neck tumors 
• Cancer stem cells play a key role in oral cancer dissemination and metastasis 
• Targeting oral cancer stem cells may improve disease outcome 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure Captions 

Fig. 1 Markers of epithelial stem cells during normal development and in relation with 

poor clinical outcome in patients with OSCC. Representative photomicrographs of 

primary human oral carcinomas immune-stained for markers that are associated with 

poor clinical outcome in patients with oral carcinomas: Aurora B (a-d, h), Survivin (e, 

i), beta-catenin (j-k), EGFR (l-m), Ki67 (f-g) and CD44 (n-p). a, Aurora B expression in 

mitotically active cells in the basal layer of severe oral dysplasia; note the limits with 

basal membrane outlined by star. b-c, increased and aberrant mitoses overexpressing 

Aurora B, in aggressive OSCC at invasive front; b1-c1, metaphases; b2, early anaphase; 

c2, late anaphase; b3-c3, late anaphase-cytokinesis; b4-c4, anomalous cytokineses. 

Aurora B overexpression is coupled with survivin up-regulation in the invasion fronts of 

OSCC giving raise to aberrant mitoses (d, Aurora B; e, survivin). High proliferative 

index of aggressive and invasive cells with perivascular (f) and perineural (g) 

localization positive for Ki-67, is coupled with Aurora B (h) and Survivin (i) over-

expression. Beta-catenin expression in the invasive front (j) and a metastatic embolus 

(k) of OSCC. EGFR expression in the invasive cells front (l-m). CD44 expression in the 

basal layer of normal human oral mucosa (n), salivary gland (o) and dental root 

epithelia (p). All the samples were obtained with the signed informed consent of 

patients under approved protocols by the Ethical Committees of the Universities of 

Foggia and Marseille. 

Fig. 2 Putative cancer stem cells markers in oral carcinomas. Representative 

photomicrographs (magnification 20x) of human derived oral squamous cell carcinomas 

cells immune-stained for CD44 (A), Lgr5 (B), CD15 (C), beta-catenin (D), Bmi-1 (E) 

and Ki67 (F). Larger size mesenchymal-like CSC co-exist with normal size CSC that 

retain the epithelial characteristics (yellow arrow). DAPI (blue) identified nuclei. 

 
 
 
 
 
 
 
 



 

 
Table 1 Markers for cancer stem cells (CSC) in head and neck squamous cell carcinomas 
(HNSCC). 
CD44 Also known as phagocytic glycoprotein-1 (Pgp-1) and the 

receptor for hyaluronate. It is a cell surface glycoprotein 
involved in cell adhesion, cell proliferation, migration, and 
angiogenesis that exist as a large number of different isoforms 
resulting from alternative RNA splicing. CD44 also acts as a 
ligand for E-selectin. Measured by fluoresce activated cell 
sorting (FACS) can also be reported as CD44high (the 10 to 
15% of cells with the highest CD44 expression) and CD44low 
(the 10 to 15% with the lowest or no expression). 

Aldehyde 
dehydrogenase 
(ALDH) 

ALDH gene superfamily encodes detoxifying enzymes; its 
activity is known to enrich cells with increased stem like 
properties in solid malignancies including HNSCC. Measured 
by FACS after staining of live cells with a non-immunologic 
enzymatic ALDEFLUOR kit. 

EpCAM (ESA) Epithelial cell adhesion glycosylated membrane protein 
involved in Wnt signaling and a cancer stem cell surface CD 
antigen (CD326) that can be measured by FACS. In HNSCC, 
two biologically distinct phenotypes of CSC have been reported 
based on ESA/CD44 expression: CD44(high)ESA(high) that 
are proliferative with epithelial characteristics (so called non–
EMT CSC) versus CD44(high)ESA(low) that are migratory with 
mesenchymal traits (non-EMT CSC). EMT: epithelial-
mesenchymal transition. 

Side population 
(SP) 

Defines cells able to efflux fluorescent DNA dye such as 
Hoechst 33342 and DyeCycle Violet; its phenotype depends on 
the concentration of ATP-binding cassette (ABC) transporters 
superfamily efflux pumps in the plasma membrane. In HNSCC, 
SP cells express high levels of Bmi-1, CD44, Oct-4 and are 
high in metastatic and aggressive HNSCC. 

CD133 
(protaminin-1) 

A 120 kDa glycoprotein with five transmembrane domains and 
two large extracellular loops with a role (through association 
with Src kinase) in the regulation of tumor initiating properties 
and the transition from an epithelial to a mesenchymal 
phenotype of head and neck carcinoma cells. In OSCC 
CD133+ stem-like cells possess higher clonogenicity, 
invasiveness and tumorigenesis as compared with CD133-; 
CD44+ cancer stem-like cells expressed higher CD133 levels 
than CD44- cells in HNSCC. 



 

Bmi-1 A polycomb protein and proto-oncogenic chromatin regulator 
known to promote stem cells self-renewal by negatively 
regulating the expression of Ink4a and Arf tumor suppressors. 
In HNSCC Bmi-1 is highly enriched in CD133+ cells, induces 
the proliferation of these cells, and prevents apoptosis.  

Oct-4, Nanog 
and Sox2  

Transcription factors that play essential roles in the 
maintenance of pluripotency and self-renewal of embryonic 
stem cells. In human adult oral mucosa, stem cells were 
detected in the lamina propria based on their Oct4, Sox2 and 
Nanog expression. Triple positive Nanog/Oct-4/CD133 
expression predicted worst survival in HNSCC patients. The 
usefulness of these factors for the sorting of CSC by FACS 
followed by culture and implantation in animals is hindered by 
the fact that they are not expressed in the cell membrane. 

CD117 (c-kit, 
receptor of 
stem cell 
factor, SCF)  

A transmembrane tyrosine-kinase receptor that is part of the 
platelet-derived growth-factor/colony stimulator factor 1 
receptor subfamily involved in cell survival, differentiation, 
adhesion and chemotaxis. The co-expression of c-kit and SCF 
was observed in various solid tumors; this ligand/receptor 
system may have autocrine and paracrine effects on the 
regulation of tumor behavior (tumor growth and dissemination) 
in HNSCC. 

CD24  A cell adhesion molecule commonly used as a CSC marker 
with CD44 in breast cancer, or with CD44 /ESA in pancreatic 
cancer. In HNSCC, CD24+/CD44+ cells possessed stemness 
characteristics of self-renewal and differentiation, showed 
higher in vitro invasiveness and made higher number of 
colonies in collagen gels and were more chemo-resistant 
compared to CD24-/CD44+ cells. In addition, CD24+/CD44+ 
HNSCC cells showed a tendency to generate larger tumors in 
nude mice than CD24-/CD44+ cell population. 

CSC subpopulations of cells in HNCSS have been identified by the expression of specific 
markers (single or in combination) complemented by in vivo tumorigenic assay 
performed in immune-deficient mice and “sphere-forming” assays in vitro [91–116,215–
224]. 
 
 
 
 
 
 



 

 
 
Table 2 Anti-cancer therapies targeting the cancer cells and cancer stem cells. 
  Targets/Mechan

isms 
Drugs Type 

of 
study 

Results Referen
ces 

A Pump targeting drugs 
  1.ATPbinding 

cassette (ABC) 
multidrug efflux 
pump 
(transporters) 
inhibitors: P
glycoprotein 
(PGP) inhibitors 

1st generation PGP 
inhibitors (calcium 
channel blockers: 
(e.g. verapamil), 
cyclosporine, 
tamoxifen 

In vivo 
and in 
vitro 

Enhanced the 
therapeutic 
effect of 
chemotherapeu
tic drugs 
(Vincristine, 
Adriamycin) 
circumventing 
tumor 
chemoresistanc
e (leukemia); 
direct effects on 
cancer stem 
cells in head 
and neck 
cancers  

[131–
133] 

2nd generation: 
valspodar (psc‐833, 
a cyclosporine 
analog) 

Clinical 
trial 

Ability to 
modulate 
multidrug 
resistance 
(MDR) caused 
by expression 
of MDR1 gene, 
which encodes 
for the P‐gp 
multidrug 
transporter, 
and is a 
determinant of 
both intrinsic 
and acquired 
drug resistance 
in many human 

[132,134
–140] 



 

cancers; 
decrease the 
clearance of 
several 
anticancer 
drugs. Usage in 
combination 
with anticancer 
cocktails 
showed limited 
benefits in 
patients with 
acute myeloid 
leukemia (AML) 
and metastatic 
cancer: non‐
small cell lung, 
gastro‐
intestinal, 
ovarian, 
mesothelioma, 
metastatic and 
recurrent head 
and neck 

3rd generation: 
Zosuquidar 
(LY335979) 

Clinical 
trial 

Reverses P‐
glycoprotein‐
mediated multi‐
drug (MDR) 
resistance; 
Combined 
usage with 
Docetaxel to 
treat metastatic 
or locally 
recurrent 
carcinoma that 
have failed 
standard 
chemotherapy 



 

(breast cancer) 
or resistant 
malignancies 
(melanoma, 
ovary, lung, 
breast, sarcoma, 
head and neck 
cancer) 

4th generation: 
Natural products: 
curcumin, 
flavonoids: 
kaempferol, 
genistein, silymarin, 
quercetin etc 

In vitro MDR reversal; 
blocking of 
multiple 
pathways by 
which cancer 
cells can 
survive (breast 
cancer, head 
and neck 
cancer)  

2. Nanoparticle 
drug delivery 

γ‐secretase 
inhibitor‐ 
mesoporous silica 
nanoparticles (GSI‐
MSNPs)  

In vivo 
and in 
vitro 

Targeted 
inhibition of 
Notch signaling 
in cancer stem 
cells  

[141] 

B Targeting stemness 
  1. Targeting CSCs dormancy/quiescence 

1.1. stimulate 
the cells to enter 
division cycle 
and to become 
sensitive to 
chemotherapies 

Interferon (INF) α In vivo 
and 
Clinical 
trial 

Stimulate 
dormant cells to 
proliferate, 
used in 
combination 
with imatinib to 
treat chronic 
myelogenous 
leukemia 
(CML); inhibits 
tumor growth 
and metastasis, 
reduce 
intratumoral 

[142–
150]  



 

microvessel 
density, 
increased cell 
apoptosis and 
induced 
prolonged 
survival in head 
and neck 
cancer; enhance 
response to 
standard 
therapies and 
successful 
immunostimula
tion in patients 
with head and 
neck cancer  

Granulocyte colony‐
stimulating factor 
(G‐CSF) 

Clinical 
trial 

Stimulate 
dormant cells to 
proliferate, 
used in 
combination 
with tyrosine 
kinase inhibitor 
(imatinib) to 
treat AML, CML; 
dendritic cells 
differentiation 
in head and 
neck cancer; 
administration 
of an oncolytic 
herpes simplex 
type‐1 virus 
encoding 
human G‐CSF in 
combination 
with standard 
therapies 



 

improve loco‐
regional control 
and survival in 
patients with 
head and neck; 
however, 
subcutaneous 
administration 
of G‐CSF 
concurrently 
with radiation 
did not improve 
the quality of 
life as reported 
by patients with 
head and neck 
cancer 

AMD3100 
(plexixafor, a 
stromal cell‐derived 
factor SDF‐
1/CXCL12‐CXCR4 
inhibitor) 

Clinical 
trial; in 
vivo 
and in 
vitro 

Mobilize stem 
cell in 
combination 
with G‐CSF to 
treat non‐
Hodgkin's 
lymphoma and 
multiple 
myeloma; 
potent anti‐
metastatic 
effect in head 
and neck cancer  

1.2. epigenetic 
therapy 
targeting 
chromatin 
acetylation and 
DNA replication 

Histone deacetylase 
inhibitors (HDACi: 
suberoylanilide 
hydroxamic acid); 
valproic acid 

Clinical 
trial 

a/ able to kill 
the cells in 
dormancy, 
eradicate the 
residual tumor 
by inducing 
apoptosis in 
nonproliferatin
g cancer cell 

[145] 



 

lines. Clinical 
trial in CML 

In Vivo 
and in 
vitro 

b/ able to 
induce 
replication‐
associated DNA 
damage without 
detectable 
alteration in cell 
cycle 
progression and 
unrelated to 
apoptosis; 
prevent 
aggressiveness 
of CSCs (colon 
cancer and 
breast cancer); 
induce 
apoptosis and 
cell cycle arrest, 
and alter the 
cancer stem cell 
phenotype in 
head and neck 
cancer; 
synergistic 
effects with 
standard 
chemotherapies 
in head and 
neck cancer; in 
combination 
with 
ribonuclease 
reductase 
inhibitor block 
efficiently 
tumor growth, 

[146–
153] 



 

induce tumor‐
cell apoptosis 
and induce 
EGFR 
downregulation 
in head and 
neck cancer 

1.3. 
differentiation 
therapy 

Vitamin A derivative 
(retinoids and their 
naturally 
metabolized and 
synthetic products 
e.g. all‐trans retinoic 
acid, 13‐cis‐retinoic 
acid, bexarotene) 

Clinical 
trial 

Successful 
treatment of 
various 
subtypes of 
leukemia 
harboring 
chromosomal 
translocations; 
limited success 
in the 
prevention and 
treatment of 
solid tumors 
may relate to 
the frequent 
epigenetic 
silencing of 
retinoic acid 
receptor beta 
(RARbeta); 
Limited effect 
to prevent 
progression and 
recurrence of 
head and neck 
(oral, 
pharyngeal) 
cancer 

[154,155
] 

2. Targeting selfrenewal and proliferation signaling pathways 
2.1. Wnt 
(Wingless type) 
pathway 

anti‐Wnt antibody; 
anti‐Wnt receptors: 
Frizzled antibody 

In vitro 
and in 
vivo 

The WNT 
receptor 
Frizzled (FZD)7 

[156–
160] 



 

(OMP‐18R5); LRP6 
antibody (anti Wnt‐
1 and Wnt‐3) 

is essential for 
maintenance of 
the pluripotent 
state in human 
embryonic stem 
cells; Decrease 
viability and 
proliferation of 
cancer cells; 
decrease 
growth and 
tumorigenicity 
of human 
tumors 
(hepatocellular 
carcinoma, 
breast, 
pancreatic, 
lung, colon, 
etc); exhibits 
synergistic 
activity with 
standard‐of‐
care 
chemotherapeu
tic agents; 
induced 
extended delay 
in the re‐
growth of 
tumors 
following 
treatment with 
high‐dose 
chemotherapy 

Wnt protein 
inhibitors (VS‐507) 

In vivo Decrease 
population of 
breast cancer 
stem cell, 

[162] 



 

reduce cancer 
grown and 
metastasis 

anti‐nuclear 
complexes; new 
compound 

In vitro Significantly 
attenuates the 
Wnt/beta‐
catenin 
signaling at 
both 
transcriptomic 
and proteomic 
levels; Induce 
apoptosis, and 
reduces 
transcription 
and expression 
of nuclear 
components; 
head and neck 
(nasopharyngea
l) cancer 

[163] 

(trinuclear 
ruthenium complex 
[RuIII3(TSA‐
H)2(TSA)4][NEt4] 
with the non‐toxic 
2‐thiosalicylic acid 
(TSA‐H2) ligand) 

Phytochemicals: 
Resveratrol 

In vitro 
and in 
vivo 

Inhibition β-
catenin/TCF- 
mediated 
transcriptional 
activity; effects 
are dose-
dependent; 
reversal of 
epithelial-
mesenchymal 
transition 
(EMT); 
inhibition of 
cancer cell 
invasiveness: 
colorectal, 
melanoma, 
breast cancer; 
decrease cancer 

[164–
168] 



 

stem cells (CSC) 
survival by 
blocking the 
lipogenic gene 
expression in 
CSC; impedes 
the stemness, 
EMT and 
metabolic 
reprogramming 
of cancer stem 
cells via p53 
activation in 
head and neck 
(nasopharyngea
l) cancer 

Phytochemicals: 
selenium, green tea 
(Epigallo Catechin 
Gallate, EGCG), 
vitamin D  

In vitro Various 
mechanisms of 
inhibiting 
various 
signaling 
pathways 
(including Wnt) 
and targeting 
cancer stem 
cells; ability to 
cause growth 
arrest and cell 
death 
selectively in 
cancer cells; 
inhibit post‐
initiation 
cancer 
development, 
including self‐
renewal of 
cancer stem 
cells and 

[169,170
] 



 

epithelial‐
mesenchymal 
transition 
(various solid 
tumors: 
ovarian, breast, 
colon cancer, 
pancreas etc) 

small‐molecule 
drugs that 
antagonize 
Wnt/beta‐catenin 
signaling pathway: 
ICG‐001, PKF118‐
310 

In vivo 
and in 
vitro 

Alter both 
proliferation 
and 
differentiation; 
loss of self‐
renewal 
capacity, 
decrease 
chemoresistanc
e, down‐
regulation of 
survivin 
expression 
levels; reduce 
tumor growth 
and overcome 
tumor relapse; 
chromatic 
remodeling; 
eradicate 
tumor‐initiating 
cells (breast 
cancer; acute 
lymphoblastic 
leukemia; head 
and neck 
cancer) 

[171–
173] 

small‐molecule 
drugs that inhibit 
ligand‐induced 
Wnt/β‐catenin 

In vitro, 
in vivo, 
clinical 
trial 

decrease cell 
and tumor 
growth; 
decrease 

[174–
177]  



 

signaling: Porcupine 
inhibitor LGK974 
(secretion of Wnt 
protein requires 
Porcupine, a 
membrane bound O‐
acyltransferase 
dedicated to Wnt 
posttranslational 
acylation) 

expression of 
Wnt target 
genes (Axin 2) 
(pancreatic 
adenocarcinom
a, breast, and 
head and neck 
cancer) 

2.2. Shh pathway  Hedgehog pathway 
inhibitor: IPI‐926 
(saridegib); 
compounds and 
derivatives from 
natural products 

Clinical 
trial 

Eliminate 
tumors and 
delays regrowth 
(head and neck 
squamous 
carcinomas) 

[178,179
] 

2.3. Notch 
pathway 

γ secretase 
inhibitors (GSI; the 
GSIs synthesized to 
date are divided into 
three classes: 
peptide isosteres, 
azepines, and 
sulfonamides) 

Clinical 
trial in 
vitro 

Effectively 
block Notch 
activity by 
preventing its 
cleavage at the 
cell surface; 
prevent 
metastasis and 
recurrence 
(breast cancer); 
prevent cell 
proliferation 
and tumor 
necrosis factor 
(TNF‐α)‐
dependent 
invasion of 
head and neck 
(oral) cancer 
cells; inhibits 
cell 
proliferation by 
inducing cell 

[180–
182] 



 

cycle arrest and 
apoptosis, 
inhibits the AKT 
and MEK 
signaling and 
enhance radio‐
sensitivity in 
head and neck 
(nasopharyngea
l) cancer 

Phytochemicals (e.g. 
Resveratrol); 
natural products 
(e.g. curcumin, 
psoralidin) 

In vitro Reduce cell 
proliferation 
and induces 
apoptosis (T‐
cell acute 
lymphoblastic 
leukaemia, 
breast and head 
and neck 
(esophageal) 
cancer; induces 
growth arrest 
and EMT 
inhibition in 
cancer stem 
cells (breast 
cancer); down‐
regulate Notch 
activating 
gamma 
secretase 
complex 
proteins (e.g. 
presenilin) and 
specific 
microRNAs 
(miRNA‐21 and 
‐34a), and 
upregulates 

[183–
185] 



 

tumor 
suppressor (let‐
7a miRNA) in 
head and neck 
(esophageal) 
cancer 

2.4. Aldehyde 
dehydrogenase 
(ALDH) 

ALDH inhibitors: 
AMPAL and its 
analogs, Benomyl, 
Chloral, 
Chlorpropamide 
analogs, Citral, 
Coprine, Cyanamide, 
Daidzin, Disulfiram, 
diethylaminobenzal
dehyde (DEAB) 

In vitro An increasing 
body of 
evidence 
suggests 
relationships 
among the 
expression of 
ALDH enzymes, 
and their 
cooperation 
with ABC 
transporters in 
the 
development of 
drug resistance 
in various 
cancers, and 
their underlying 
mechanisms are 
being explored. 
Various 
mechanisms of 
inhibiting ALDH 
isoforms and 
ALDH activity; 
Reduce or 
completely 
reverse 
chemotherapy 
and radiation 
resistance of 
cancer stem 
cells; abolish 

[186–
189] 



 

cancer stem 
cells characters 
(breast cancer, 
hepatoma) 

ALDH 1A1‐targeted 
siRNAs 

In vivo 
and in 
vitro 

Sensitize 
taxane‐ and 
platinum‐
resistant cell 
lines to 
chemotherapy; 
significantly 
reduce tumor 
growth; 
targeting cancer 
stem cells 
(ovarian 
cancer). 
Knockdown of 
ALDH1A1 and 
ALDH3A1 by 
siRNA 
decreases 
clonogenicity 
and motility, 
and increases 
sensitivity to 4‐
hydroperoxy‐
cyclophosphami
de in non‐small 
cell lung cancer 
cell lines  

[189,190
] 

          
C Epithelial mesenchymal transition (EMT)targeting drugs 
   

1.Targeting 
signaling 
pathways (Wnt, 
Shh, Notch) 

See part B2.       



 

2. Snail 
inhibitors 

Small molecule 
SNAIL‐inhibitor GN‐
25 

In vitro Transcriptional 
reversal of the 
mesenchyal 
phenotype in 
cancer stem 
cells (breast 
cancer) 

[191] 

3. TGFβ 
inhibitors 

TGFβ receptor 
inhibitors 

In Vivo Inhibit various 
components of 
TGFβ pathway 
(skin and oral 
squamous cell 
Carcinoma) 

[192] 

4. NFkB 
inhibitors 

Phytochemicals: 
Lupeol 

In vivo significant 
synergistic 
cytotoxic effect 
when combined 
with low‐dose 
cisplatin (head 
and neck 
cancer)  

[193] 

Phytochemicals: 
curcumin, 
resveratrol, ursolic 
acid, capsaicin, 
butein (a 
tetrahydroxychalco
ne plant 
polyphenol) 

In vitro Various 
mechanisms to 
inhibit activity 
of IKK, p65 
phosphorylatio
n, p65 
translocation 
and DNA 
binding, or 
direct effect on 
cancer stem 
cells (by 
reducing ALDH 
and reducing 
their spheres‐
forming 
capacity 
through an 

[194,214
] 



 

inhibition of 
NK‐kB signaling 
(multiple 
myeloma, 
prostate, breast, 
head and neck 
cancer)  

5. miRNA 
therapy 

miRNAs: miR200c In vivo Inhibit cancer 
stem cells by 
down‐
regulation of 
BMI1 and ZEB1; 
inhibits lung 
metastasis and 
prolongs 
survival rate 
(head and neck 
carcinoma) 

[195] 

miRNA synergistic 
activators: curcumin

In vitro Alter the 
expression miR‐
203, inhibits 
proliferation 
and increases 
apoptosis 
(bladder 
cancer) 

[196] 

          
D Survival pathways targeting drugs 
  1. targeting 

growth factors  
1.1.1. receptor inhibitors 
anti‐epithelial 
growth factor 
receptor (EGFR) 
monoclonal 
antibodies: 
Cetuximab 

Clinical 
trials 

In combination 
with chemo‐ or 
radiation 
therapy showed 
significant 
improvements 
but didn’t 
reduce their 
toxicity of 
chemo‐

[197] 



 

radiation 
(squamous cell 
carcinoma from 
oropharynx, 
hypopharynx 
and larynx) 

Vascular Endothelia 
Growth Factor 
Receptor (VEGFR) 
inhibitors: 
Bevaxizumab 

Clinical 
trial 

In addition to 
chemo‐
radiation 
showed delay in 
progression of 
the distant 
disease 
(nasopharyngea
l carcinoma) 

[198] 

1.1.2. kinase inhibitors: 
Tyrosine kinase 
inhibitors: Erlotinib; 
Cetiranib (VEGF 
tyrosine kinase 
inhibitor) 

Clinical 
trial 

Usage in 
combination 
with 
bevacizumab 
showed 
significant 
effect in 
treating 
metastatic and 
recurrent 
cancer (head 
and neck 
squamous cell 
carcinoma)  

[199] 

Dual kinase 
inhibitors: Lapatinib 

Clinical 
trial 

Inhibition of 
EGFR and 
EGFR‐2 
tyrosine kinase. 
Lapatinib 
mono‐therapy 
showed non‐
significant 
difference in 

[200] 



 

locally 
advanced 
squamous cell 
carcinoma of 
the head and 
neck 

Triple kinase 
[VEGFR, platelet‐
derived growth 
factor receptor 
(PDGFR), and 
fibroblast growth 
factor receptor 
(FGFR)] inhibitors: 
Nintedanib 

In vitro Monotherapy 
and 
chemotherapy 
combination 
reduced 
proliferation 
and enhanced 
apoptosis; 
antiangiogenic 
effects (lung 
and pancreatic 
cancer) 

[201] 

1.1.3. targeting MEK/ERK (EGFR downstream signaling 
pathway) 
Raf inhibitors: 
sorafenib 

Clinical 
trial 

Single agent 
trials showed 
poor response, 
but well 
tolerated and 
favorable 
progression‐
free survival in 
recurred and 
metastatic 
squamous cell 
carcinoma of 
the head and 
neck 

[202] 

MEK inhibitors: 
Trametinib 
(GSK1120212) 

In vitro, 
in vivo 

Showed 
therapeutic 
potential for 
tumors with 
activating 

[203] 



 

mutations in 
BRAF. Ongoing 
clinical trials in 
head and neck 
cancer  

1.2. Targeting 
PIK3 
(Phosphatidylin
ositol3kinase) 
/Akt (Protein 
Kinase B) 
/mTOR 
(MammalianTar
get Of 
Rapamycin) 
pathways and 
promote PTEN 
(Phosphatase 
and tensin 
homolog) 

AKT inhibitor: 
Perifosine 

Clinical 
trial 

Monotherapy 
showed poor 
response in 
incurable, 
recurrent or 
metastatic head 
and neck cancer 

[204] 

PIK3 inhibitors 
LY294002 
(reversible 
inhibitor), 
wortmannin 
(irreversible 
inhibitor)  

In vivo Inhibit tumor‐
induced 
angiogenesis 
and tumor 
growth (glioma, 
prostate 
cancer); 
preclinical 
evaluation in 
head and neck 
cancer 

[205,206
]  

mTOR inhibitors: 
rapamycin, mTOR 
kinase inhibitors: 
Torin1, Torin 2 

Clinical 
trials 
and 
preclini
cal 

Studies 
targeting 
various solid 
tumors and 
cancer stem 
cells 
(Lymphoma, 
glioma); 
decrease the 
capacity of 
sphere 
formation as 
well as ALDH 
activity, 
suppress the 
stimulation of 

[207,208
] 



 

stem‐like cells 
by 
chemotherapy 
in colorectal 
cancer; 
preclinical 
evaluation in 
head and neck 
cancer 

Dual PIK3/mTOR 
inhibitors: NVP‐
BEZ235  

In vivo 
and in 
vitro 

Usage in 
combination 
with sorafenib 
inhibits tumor 
cell 
proliferation 
and increases 
tumor cell 
apoptosis, to 
overcome drug 
resistance in 
renal cell 
carcinoma; 
Phosphatidylin
ositol‐3‐
phosphate 
kinase, AKT and 
dual PI3K‐
mTOR 
inhibitors 
caused marked 
in vitro 
enhancement of 
cytotoxicity 
induced by 
HDACIs in head 
and neck cancer 

[208–
210] 

1.3. Calcium 
influx inhibitors 

Econazole, 
Ketotifen, 
Carboxyamido‐

 In 
Vitro 

 loss of viability 
and 
clonogenicity of 

 [211–
213] 



 

triazole cancer stem 
cells (breast 
cancer); 
decrease neural 
stem cell 
differentiation; 
inhibition of cell 
proliferation, 
migration and 
chemoinvasion 
(head and neck 
cancer) 
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