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The complement system is an efficient plasma immune surveillance system that controls tissue injury
and infection. Although the liver constitutes the primary circulating complement protein synthesis site,
extrahepatic synthesis is known to optimize local tissue inflammatory reaction. Because dentinepulp
regeneration is known to be regulated locally, we investigated activation of the local complement
system within the dental pulp and its role in initiating the regeneration process. Membrane attack
complex (C5b-9) formation and Gram’s staining revealed that complement activation is correlated with
the presence of Gram-positive bacteria in carious human teeth. RT-PCR analysis demonstrated that
cultured human pulp fibroblasts stimulated with lipoteichoic acid produce all the proteins required for
efficient complement activation. This was demonstrated in vitro by C5b-9 formation and C5a active
fragment production in the absence of plasma proteins. Finally, the dynamic migration assays per-
formed in m-Slide chemotaxis chambers and use of a C5aR-specific antagonist (W54011) demonstrated
that the activation of complement proteins synthesized by pulp fibroblasts and the subsequent release
of C5a specifically induced pulp progenitor cell recruitment. Our study reveals human pulp fibroblasts as
the first nonimmune cell type capable of synthesizing all complement proteins. These fibroblasts cells
contribute significantly to tissue regeneration by recruiting pulp progenitors via complement activa-
tion, which suggests to a potential therapeutic strategy of targeting pulp fibroblasts in dentinepulp
regeneration. (Am J Pathol 2014, -: 1e11; http://dx.doi.org/10.1016/j.ajpath.2014.04.003)
Supported Q2by Aix-Marseille University, CNRS, and the European So-
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The complement system is as a rapid and efficient plasma
immune surveillance system to control tissue injury and
infection that regulates the inflammatory process, clearance
of necrotic and apoptotic cells, and tissue regeneration.1e3

The complement system is quickly activated by three prin-
cipal enzymatic cascades, the classical, lectin, and alterna-
tive pathways, which converge into a terminal pathway that
leads to deposition of the membrane attack complex
(MAC)/C5b-9 on cell and pathogen surfaces.3,4 The liver is
the primary site for synthesis of circulating complement
proteins (except for C1q, C7, and factor D).5,6 However, a
wide range of soluble proteins of the complement system
seem to be secreted from a variety of organs, tissues, and cells,
either constitutively or as a response to various stimuli.7 This
extrahepatic synthesis, which generates a basal and local pool
of complement molecules, represents a significant contribu-
tion to local tissue inflammatory reaction.7 Complement
activation can be induced by bacterial infection, the presence
of apoptotic and necrotic cells, or biomaterial-modified
surfaces.8e11 All of these events are well represented during
dental pulp injuries and tooth restorative procedures.

Dentin is a hard tissue secreted by postmitotic cells called
odontoblasts. During the carious process, this hard tissue,
which protects the underlying pulp, is subject to demineral-
ization by acids produced by multiple pathogens (predomi-
nantly Gram-positive bacteria).12 Under moderate carious
lesions affecting the dentin, the secretory activity of the
odontoblasts is stimulated to locally elaborate a protective
layer of reactionary dentin facing the carious site. By contrast,
deep cavity preparation during restorative procedures and
deep carious injuries lead to odontoblast disintegration.13,14

Under these conditions, pulp progenitor cells are activated
and migrate to the injury site, where they regenerate a pro-
tective layer of reparative dentin. This migration is critical in
initiating dentinepulp regeneration.15,16
124
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Several lines of evidence suggest that dentinepulp
regeneration in the case of carious injuries is regulated
locally, by dentin extracellular matrix molecules or by
growth factors such as transforming growth factor b1 (TGF-
b1) or basic fibroblast growth factor (FGF-2) liberated after
an acid dissolution of the carious dentin.14,17,18 This can
also be the result of release of these growth factors from pulp
fibroblasts and endothelial cells in the case of traumatic in-
juries or after interaction of pulp cells with biomaterials.19e22

Recently, it has been demonstrated that carious injury, which
is the most common human pathology, activates the com-
plement system.23 This activation seems to be implicated
in the process of dentinepulp regeneration. Recombinant
complement C5a fragment induces the recruitment of human
pulp progenitor STRO-1þ cells, which express the C5a re-
ceptor.23 These data were the basis of our hypothesis that
pulp complement activation may be regulated locally within
the dental pulp.

We investigated the role of the complement system in the
interaction between pulp progenitor and nonprogenitor cells
during the regenerative process, which occurs under carious
injuries affecting odontoblast survival. Our results show, for
the first time, that when pulp fibroblasts are subjected to
Gram-positive bacteria motif they are able to produce all
complement components required for efficient complement
activation. The activation of complement proteins from pulp
fibroblasts and subsequent C5a fragment release in the
absence of plasma proteins induces pulp progenitor cell
recruitment, which is critical in initiating the regenerative
processes after dentinepulp injury.

Materials and Methods

Materials

Cell culture materials and reagents were from PAA Labo-
ratories (Les Mureaux, France). Primary antibodies and C5a
were from R&D Systems (R&D Systems, Lille, France;
Minneapolis, MN) or from Abcam (Paris, France; Cam-
bridge, UK). Secondary antibodies were from (Life Tech-
nologies, Saint-Aubin, France; Carlsbad, CA). Chemicals
were from Carlo Erba Reagents (Val-de-Reuil, France).

Collection of Molar Teeth

Human immature third molars freshly extracted for ortho-
dontic reasons and carious teeth were obtained in compli-
ance with French legislation (including informed consent
and institutional review board approval of the protocol
used). Teeth were fixed and routinely processed as described
previously.16

Immunohistochemistry

Before tooth sections were stained, antigen retrieval was
performed at 98�C for 30 minutes in 1 mmol/L Trise0.1
mmol/L EDTAe0.5% Tween, and nonspecific binding sites
were blocked with 0.25% caseinePBS for 15 minutes at
room temperature. Tooth sections from intact and carious
teeth were incubated for 1 hour at room temperature with 50
mg/mL rabbit anti-human C5b-9 IgG or control IgG, and then
were incubated for 30 minutes with Alexa Fluor 488 goat
anti-rabbit (2 mg/mL) and DAPI counterstain (1 mg/mL).
Intact and carious tooth sections were stained using a

tissue Gram stain kit (Sigma-Aldrich, St. Louis, MO) ac-
cording to the manufacturer’s instructions.

Primary Pulp Cell Cultures

Human pulp cells were prepared from immature third molars
at the 2/3 root formation stage by the explant outgrowth
method.24 The teeth were obtained from at least three
different donors for each experiment (four molars per donor).

Magnetic Cell Sorting

Pulp progenitor cells were directly sorted from primary pulp
cell cultures at passages 1 to 5 with mouse anti-human
STRO-1 IgM with immune magnetic beads according to the
manufacturer’s protocol (Dynal Biotech, Oslo, Norway).

RT-PCR

Total RNAs were isolated cells using a PureLink RNA mini
kit (Life Technologies, Oslo, Norway). RNA samples (2 mg)
were reverse-transcribed using a reverse transcription AMV
system (Promega, Madison, WI). Primer sequences are lis-
ted in Table 1. PCR conditions were 95�C for 5 minutes,
(30 cycles of 95�C for 30 seconds, 55�C for 30 seconds, and
72�C for 45 seconds) �30, and a final step of 72�C for 12
minutes. PCR products were separated onto 1% agarose gels.
GAPDH gene expression was used as an internal control.

C5a Quantification

Human pulp cells were grown in 12-well plates. At sub-
confluency, cells were washed three times with PBS and
then incubated in 500 mL serum-free medium per well with
or without lipoteichoic acid (LTA) at 1 mg/mL. After 20
minutes, 1 hour, and 24 hours, the supernatants were har-
vested and C5a concentrations were immediately determined
by enzyme-linked immunosorbent assay (ELISA) according
to the manufacturer’s instructions (DuoSet ELISA develop-
ment system; R&D Systems).

Determination of Cell Viability

Human pulp cells were seeded into 96-well plates at 3 � 104

cells/well and were incubated overnight to allow cell
attachment and recovery. After PBS washing, cells were
incubated with 100 mL minimal essential medium serum-
free with or without 1 mg/mL LTA and with or without
248
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Table 1 Primers Used for Complement Component Gene
Expression by RT-PCR

Primer Sequence

C1q-1 50-CAGGGATAAAAGGAGAGAAAGG-30

C1q-2 50-TGGCGTGGTAGGTGAAGTAGTA-30

C1r-1 50-GATCTATGCCAACGGGAAGA-30

C1r-2 50-CATTCTTCCAAATGCCCTGT-30

C1s-1 50-AAGAGCGTTTTACGGGGTTT-30

C1s-2 50-AATCTCCCCAATCAGTGCAG-30

C2-1 50-CCTTGAATGGGAGCAAACTGAAC-30

C2-2 50-GATTGATGTGAAAGTCTCGTGGC-30

C3-1 50-GCTGCTCCTGCTACTAACCCA-30

C3-2 50-AAAGGCAGTTCCCTCCACTTT-30

C4-1 50-TGCGGATCCAGCAGTTTCGG-30

C4-2 50-TGGCGGTTGTTCAGCTGCAG-30

FB-1 50-GTGTGACCACCACTCCATGG-30

FB-2 50-CCATCCTCAGCATCGACTCC-30

MASP1-1 50-GCTGGAGGCTCTCATACAGG-30

MASP1-2 50-ACGTCCCATCCTTCAGACAC-30

MASP2-1 50-GCTCCGACTACTCCAACGAG-30

MASP2-2 50-GGCTGATGCTGTAAGTGCAA-30

FD-1 50-CGACCACGACCTCCTGCTGCTACA-30

FD-2 50-GCTCGGGACTTTGTTGCTTGGGTG-30

C5-1 50-AGTGTGTGGAAGGGTGGAAG-30

C5-2 50-GTTCTCTCGGGCTTCAACAG-30

C6-1 50-TGGGGTCTTGAAAGGACAAG-30

C6-2 50-GAGTTGGTTTCCACCCTTGA-30

C7-1 50-AAAATGCCCTACGAATGTGG-30

C7-2 50-AAACCCTTCTTCCTCGCACT-30

C8-1 50-CGGTATACAATGGGGAATGG-30

C8-2 50-GCAGTCTGCACCTTTGTGAA-30

C8-1 50-CAAAGAGGCCATGGAGAGAG-30

C8-2 50-TGCTTCATGTTCTGCCTCAC-30

C8-1 50-CCAGAGTTTCGCTGTCCTGT-30

C8-2 50-CCTCACCTCCTCACTTCGTC-30

C9-1 50-CAACTGGGCCTCTTCCATAA-30

C9-2 50-CACAGGCAATTCCCTCAAAT-30

MBL-1 50-ATGGTGATACTAGCCTGGCT-30

MBL-2 50-ATCCATGATACCCAGGAAGGC-30

GAPDH-1 50-GAAGGTGAAGTTCGGAGTC-30

GAPDH-2 50-GAAGATGGTGATGGGATTTC-30
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6 mg/mL soluble CD59, an inhibitor of MAC/C5b-9 for-
mation. After incubation for 2 hours, the supernatants were
removed, and 50 mg MTT (Sigma-Aldrich) was added to
each well and incubated for 2 hours at 37�C and 5% CO2.
Supernatants were removed, and 100 mL DMSO 100% was
added to each well. For each well, absorbance at 550 nm
was recorded with a microplate reader (S960; Metertech,
Taipei, Taiwan). Results were expressed as the percent
absorbance of each experimental well versus the well con-
taining untreated cells. Three wells per experimental con-
dition were measured in three independent experiments.
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C5aR Activation Assay

Human pulp cells were carefully washed with PBS, and 105

cells were incubated for 20 minutes in serum-free minimal
essential medium, with or without 1 mg/mL LTA. The su-
pernatants were then harvested and immediately added to
human pulp progenitor cells (1 mL of supernatant per 04

progenitor cells), Qfor 5 minutes. Finally, C5aR phosphory-
lation in human pulp progenitor cells was evaluated by
fluorescence microscopy and flow cytometry, as described
below for C5aR-p(Ser 334).

Immunofluorescence Staining

For detection by fluorescence microscopy, pulp progenitor
cells and pulp cells were grown in eight-well glass culture
chambers to 70% confluency. For detection by flow
cytometry, 106 pulp progenitor cells or pulp cells were
washed in PBS, trypsinized, and resuspended in 1 mL of
PBS. For both fluorescence microscopy and flow cytometry,
cells were rinsed with PBS and fixed with 4% para-
formaldehyde during 15 minutes at 4�C. Then nonspecific
binding sites were blocked with 1% bovine serum albumin
for 1 hour, or for intracellular antigen detection, cells were
simultaneously permeabilized and saturated with 1% bovine
serum albumine0.3 mol/L glycine in 0.1% PBSeTween Qfor
1 hour. Cells were incubated for 1 hour with 50 mg/mL pri-
mary antibody against C5b-9, 5 mg/mL STRO-1, 2 mg/mL
C5aR-p(Ser334), 2 mg/mL fibroblast surface protein (FSP),
2.5 mg/mL CD44, 2.5 mg/mL CD90, 2.5 mg/mL CD105,
CD146 (2.5 mg/mL), and 2.5 mg/mL CD166 or the respective
isotypes. After washing, the cells were incubated 45 minutes
with 2 mg/mL of the respective secondary antibody conju-
gated with Alexa Fluor 488 or Alexa Fluor 594 and with 1
mg/mL DAPI counterstain for fluorescence microscopy.

m-Slide 3D Chamber Chemotaxis Assays

Pulp progenitor cell migration was analyzed by live cell
tracking in m-Slide chemotaxis three-dimensional (3D)
chambers (IBIDI-Biovalley, Marne-la-Vallée, France; Mar-
tinsried, Germany). Two reservoirs (R1 and R2) are sepa-
rated by a thin central connecting slit (Figure 1A). The
architecture and dimensions of this chamber generate a
linear and stable concentration gradient by diffusing the
chemotactic factor within the connecting slit over at least 48
hours.25 The manufacturer’s instructions were slightly
modified and adapted to our migration protocol. For pro-
genitor cells, 2.5 � 106 cells/mL were seeded into 1:16
Matrigel/minimal essential medium (BD Biosciences, Bed-
ford, UK; San Jose, CA) within the connecting slit, with or
without 10 nmol/L W54011, a specific C5aR antagonist. For
pulp cells, 3� 107 cells/mL Qwere seeded into both reservoirs
(R1 and R2) in minimal essential medium with or without
1 mg/mL LTA (Figure 1B).

Human progenitor cell migration was monitored under a
light microscope (Carl Zeiss Microscopy, Jena, Germany)
(Figure 1C); images were captured every 15 minutes over 48
hours. Migrations of 30 to 50 progenitor cells by experiment
were tracked manually using the manual tracking plug-in of
372
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Figure 1 m-Slide 3D chemotaxis assays. A: Reservoirs R1 and R2
communicate with a central thin connecting slit. B: 3D chamber cross
section. Human pulp cells were seeded in R1 and R2 with or without LTA,
and human progenitor pulp cells were seeded into the connecting slit with
or without the C5aR-specific antagonist W54011. C: Direct view of the
observation area of the chamber. Migration of progenitor cells in the
central slit toward the fibroblasts plated in the lateral reservoirs was
monitored for 48 hours. The differential filling of R1 and R2 generates a
linear and stable concentration gradient inside the connecting slit. Scale
bar Z 500 mm. CS, connecting slit.
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ImageJ software (NIH, Bethesda, MD), and data were
analyzed with the IBIDI chemotaxis and migration tool.

For pulp progenitor cell migration investigation within
the connecting slit, cell trajectories were extrapolated to
(x;y) Z 0 at time 0 hours, and two values were established
for each experiment: the displacement of center of mass
(COM) and the forward migration index (FMI). These two
parameters have been described previously.25 In brief, for
each experiment, the COM corresponds to the spatial
average of all cell positions (x and y coordinates). The
displacement of COM was calculated as the difference be-
tween initial and final COM values. The FMI was calculated
in x and y directions as the final endpoint migration divided
by the total migration distance. In our experiments, FMIx
should be higher than FMIy if progenitor cells migrate along
a gradient.
Statistical Analysis

All experiments were repeated at least three times, and
statistical significance (P < 0.05) was determined using the
Student’s t-test to compare the different treatments and their
respective controls. Data are expressed as means � SD.

Results

Complement Activation in Vivo Is Correlated With the
Presence of Gram-Positive Bacteria

Although no bacteria were detected in intact human tooth
sections (Figure 2A), significant numbers of Gram-positive
bacteria were detected in carious tooth sections (Figure 2B).
These were observed in dentin tubules, reparative dentin
(Figure 2C), and in the underlying pulp tissue (Figure 2D).
MAC immunofluorescence staining was used to localize
complement activation on the same teeth. Although no
complement activation was detected in intact human teeth
(Figure 2E), intense labeling was observed at the injured site
of carious teeth (Figure 2F). At higher magnification, the
presence of MAC in dentin tubules (Figure 2G) and in pulp
tissue (Figure 2H) was observed. Thus, complement acti-
vation in human carious teeth is correlated with the presence
of Gram-positive bacteria in the dentin and pulp.

Human Pulp Fibroblasts Stimulated with Lipoteichoic
Acid Express All Components Required for Complement
Activation

To examine the effect of Gram-positive bacteria on protein
complement expression, human pulp cells were cultured
without serum for 1 hour, in the presence or absence of 1
mg/mL LTA. In cells were not treated with LTA, neither C3
nor C6 (two essential components to complement system
activation) were detected by RT-PCR analysis (Figure 3A).
However, in pulp cells incubated with LTA for 1 hour, all
components required for complement activation were
expressed, including C3 and C6 components (Figure 3A).
FSP staining analysis by immunofluorescence micro-

scopy (Figure 3, BeD) and flow cytometry (Figure 3E)
showed that all pulp cells used in these experiments by the
explant outgrowth method were fibroblasts (Figure 3F), and
hereafter these cells are designated as pulp fibroblasts.
These results demonstrated that, under LTA stimulation,
human pulp fibroblasts express all complement components.

LTA Stimulation of Human Pulp Fibroblasts Leads to
Functional MAC Production

To determine whether the complement proteins expressed by
human pulp fibroblasts after LTA stimulation were functional,
we tested complement activation in terms of MAC formation
under serum-free conditions. Although no MAC formation
was detected on untreated fibroblasts (Figure 4A), intense
496
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Figure 2 Complement system activation is correlated with Gram-positive
bacteria in carious teeth. AeD: Representative images of intact (A) and
carious (BeD) teeth (Gram staining). Although no bacteria were detected in
intact teeth (A), intense purple labeling indicative of the presence of Gram-
positive bacteria was observed in carious teeth (B). These bacteria (arrows)
are clearly visible at higher magnifications in dentin (C) and pulp tissue (D).
EeJ: Representative images of MAC immunostaining in noncarious (E) and
carious (FeH) teeth and their respective controls (I and J). MAC formation
was not observed in intact teeth (E); in carious teeth, intense MAC labeling
indicative of complement system activation was detected (F), which is
clearly visible at higher magnification in dentin tubules (G) and pulp tissue
(H). Scale bars: 500 mm (A, B, E, F, I, J); 20 mm (C, D, G, H).Q13
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labeling was observed on human pulp fibroblasts after 1 hour
of stimulation with LTA (Figure 4, B and F). The binding of
MAC on human pulp fibroblasts after stimulation with LTA
was reflected by a significant staining decrease on coincuba-
tion of the cells with the soluble CD59 used as a MAC for-
mation inhibitor (Figure 4, C andD). This resultwas correlated
with MTT assay performed on human pulp fibroblasts under
the same conditions (Figure 4G). The number of living cells
detected after coincubation of pulp fibroblasts simultaneously
with both CD59 and LTA was significantly higher (P< 0.05)
than that detected after incubationwith LTAonly (Figure 4G).
Complement System Activation from Components
Produced by Human Pulp Fibroblasts after LTA
Stimulation Leads to C5a Generation

Having demonstrated that LTA stimulation induces com-
plement activation from complement components produced
by human pulp fibroblasts, we studied the ability of this
complement activation to generate the C5a active fragment.
Our results obtained by ELISA assay demonstrated that LTA
stimulation of human pulp fibroblast leads to a quick and
significant (P < 0.05) increase of C5a release in the culture
medium after 20 minutes (Figure 5). C5a concentration later
returned to control values; no significant differences were
detected between untreated and LTA-stimulated cells after 1
or 24 hours (Figure 5).

C5a Generated by Human Pulp Fibroblasts after LTA
Stimulation Activates the C5aR of Human Pulp
Progenitor Cells

To study the interaction between pulp progenitor cells and
pulp fibroblasts, the former were isolated from human pulp
cells by STRO-1 magnetic sorting. To ensure a high quality
and purity of the progenitor cells obtained by this method,
we performed immunostaining of six stem-cell markers
(Figure 6). As expected, flow cytometry and fluorescent
microscopy analyses revealed that significant numbers of
cells obtained by STRO-1 magnetic cell sorting (P < 0.05)
expressed STRO-1 (Figure 6, A and B). As demonstrated by
flow cytometry (Figure 6C), cells obtained by STRO-1
magnetic cell sorting also express the stem-cell markers
CD44, CD90, CD105, CD146 and CD166. The coexpression
of these stem-cell markers and STRO-1 by sorted cells was
clearly visible under fluorescence microscopy (Figure 6D).

The efficiency of C5a generated by human pulp fibroblast
after LTA stimulation was tested for its capacity to activate
the C5aR expressed by pulp progenitor cells. C5aR activa-
tion is correlated with phosphorylation of its serine 334.
When these progenitor cells were incubated with untreated
pulp fibroblast culture supernatants, no significant C5aR
phosphorylation was detected (Figure 7A). However, when
pulp progenitor cells were incubated for 2 minutes with
LTA-stimulated pulp fibroblast culture supernatants, sig-
nificant C5aR phosphorylation was observed by fluorescent
microscopy (Figure 7B) and flow cytometry (Figure 7E).

C5a Release by LTA-Stimulated Pulp Fibroblasts
Induces Pulp Progenitor Cell Recruitment

Human progenitor cell displacements are presented as�LTA
and þLTA trajectories (Figure 8, AeC). When human pulp
fibroblasts of the two lateral reservoirs were not stimulated
with LTA, the pulp progenitor cells movements in the central
connecting slit were random (Figure 8A). However, when
pulpfibroblasts of one of the lateral reservoirs were stimulated
with LTA, pulp progenitor cells moved sharply toward the
620
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Figure 3 Human pulp fibroblasts stimulated
with LTA express all components required for com-
plement system activation. A: RT-PCR product from
unstimulated or LTA-stimulated human pulp cells
for complement components C1q, C1r, C1s, C2, C4,
MBL, MASP1, MASP2, FD, FB, C3, C5, C6, C7, C8a,
C8b, C8g, and C9. GAPDH was used as a house-
keeping control. In unstimulated pulp cells, C3 and
C6 (two components required for complement sys-
tem activation) were not detected. By contrast,
after LTA stimulation, all complement components
were detected, including C3 and C6.BeD:All human
pulp cells obtained by the explant outgrowth
method express FSP. FSP was detected by immuno-
fluorescence on the surface of all human pulp cells
(B), and it is clearly visible at a highermagnification
(C), but no immunostaining was observed in control
condition with an isotype control (D). Nuclei were
counterstained with DAPI (blue). E: Representative
flow cytometry histograms of FSP staining per-
formed on human pulp cells obtained by the explant
outgrowth method. The fluorescence profile of FSP-
positive cells (green) is significantly shifted to the
right of the control (gray). *P< 0.05. nZ 3. Scale
bar Z 50 mm.
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LTA-stimulated fibroblasts (Figure 8B). This migration was
markedly decreased when progenitor cells were coincubated
with the C5aR-specific antagonist W54011 (Figure 8C).

As expected, pulp progenitor cell migration analysis
confirmed these trajectory observations (Figure 8, DeF). No
statistically significant COM displacement in the x or y di-
rection was detected without LTA stimulation of human
pulp fibroblasts (Figure 8D), but a statistically significant
shift of COM (P < 0.05) toward LTA-stimulated fibroblasts
was observed (Figure 8E). This shift was suppressed by
incubation of human pulp progenitor cells with W54011
(Figure 8F). Thus, C5a generated after stimulation of pulp
fibroblasts with LTA induced a specific and significant
migration of human pulp progenitor cells.

Moreover, FMI analysis of pulp progenitor cell migration
revealed that the FMIx toward pulp fibroblasts stimulated
with LTA was significantly higher than the FMIy (P < 0.05)
(Figure 8H), indicating that human pulp progenitor cells
migrate along the C5a gradient.
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Discussion

The main outcome of this work is the demonstration that
pulp fibroblasts produce all components required for effi-
cient complement activation leading both to formation of
the cytolytic MAC formation and to release of the biologi-
cally active C5a fragment. The C5a, released as a result of
fibroblast stimulation by LTA, interacts with C5aR expressed
by pulp progenitor cells and induces their recruitment in a
gradient-dependent manner.23 Our findings demonstrate that
complement system activation is correlated with the presence
of Gram-positive bacteria in carious dentin and pulp tissues,
as revealed by MAC formation and Gram staining on carious
teeth sections in vivo. Complement activation in infected
tissues is recognized as an innate immune defense mecha-
nism due mainly to circulating complement proteins.3 After
induction with pathogen components, complement activation
leads to the formation of MAC on the pathogen surface and
lysis.26,27

In the present study, we demonstrated by RT-PCR that, in
the absence of stimulation, human pulp fibroblasts strongly
express several complement proteins. The detected RNAs,
such as those of C4, C1, or FD, correspond to the compo-
nents responsible for initiating complement activation by
different pathways. This suggests that fibroblasts generate a
pool of proteins directly available to quickly react against
infection, thus optimizing local complement activation.
Interestingly, after stimulation with LTA, which is a
complex component of Gram-positive bacteria cell walls,
human pulp fibroblasts expressed all of the proteins required
for efficient complement activation, including components
744
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Figure 4 LTA stimulation of human pulp fibroblasts leads to production
of functional MAC. AeF: Representative images of MAC immunostaining on
unstimulated (A and C) or LTA-stimulated (B, D, E and F) pulp fibroblasts in
the presence (C and D) or absence (A and B) of soluble CD59, an inhibitor
of MAC formation. Although no MAC was observed on unstimulated pulp
fibroblasts (A and C), intense MAC labeling, corresponding to complement
system activation, was detected on LTA-stimulated pulp fibroblasts (B) and
is clearly visible at a higher magnification (F). The incubation of pulp fi-
broblasts with soluble CD59 drastically inhibited MAC formation on LTA-
stimulated fibroblasts (D). Nuclei were counterstained with DAPI (blue).
G: The viability of LTA-stimulated and unstimulated pulp fibroblasts was
determined by MTT assay. For each experiment, the viability of untreated
pulp fibroblasts was set at 100%. LTA treatment significantly decreased
pulp fibroblast viability (66.9 � 6.6%). This significant difference was
abolished by incubation of pulp fibroblasts with soluble CD59
(95.7 � 10.8%). Scale bar Z 50 mm. *P < 0.05. n Z 3 per group.

Figure 5 C5a complement fragment is detected in human pulp fibro-
blast supernatants after 20 minutes of LTA stimulation. Although nonsig-
nificant quantities of C5a were detected in the supernatant of untreated
cells, LTA stimulation of pulp fibroblast for 20 minutes led to a significant
increase of C5a in the supernatant (224.8 � 32.5 pg/mL versus 59.8� 17.7
pg/mL). C5a concentration decreased after longer periods, and no statis-
tically significant difference was found between LTA-stimulated and
unstimulated cells after 1 or 24 hours. *P < 0.05. n Z 3 per group.
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common to the three complement activation pathways, such
as C3 and C6. This suggests a local regulation of comple-
ment activation within the pulp. Indeed, after stimulation
with LTA, MAC formation, which is the ultimate step of
complement system activation, was detected on pulp fibro-
blasts and led to a significant decrease in their viability. This
result is in accord with previous investigations demon-
strating odontoblast and pulp cell death in carious teeth by
apoptosis.28 In the present study, these findings were ob-
tained in vitro only, because of the absence of plasma
complement regulation components in the culture medium.
Adding the soluble CD59 MAC formation inhibitor to the
LTA-stimulated cells significantly reduced MAC formation
on their surface and increased their viability to the level of
unstimulated cells.

Several previous studies have clearly demonstrated that a
variety of nonimmune cells produce some soluble proteins
of the complement system, either constitutively or as a
response to stimuli. However, this extrahepatic synthesis
seems to simply optimize the plasmatic complement system
activation.7 The part of our study performed in vitro was
realized in serum-free conditions, to avoid the presence of
any plasmatic complement component. This part was per-
formed on adherent cells from the explant outgrowth
method.24 Although a mixed population could be obtained
by this method, both immunofluorescence and flow cytom-
etry with antibodies to fibroblast surface protein antigen
showed that the cells used in these experiments were fibro-
blasts. The present study is, to our knowledge, the first to
identify the human pulp fibroblast as a unique nonimmune
cell type able to produce and efficiently activate its own
complement components.

Although the expression of complement proteins was
investigated only in pulp fibroblasts, this does not exclude
their expression in other pulp cell types. The dental pulp is
composed of heterogeneous cell populations that include
fibroblasts, odontoblasts, pericytes, endothelial cells, smooth
muscle cells, progenitor and stem cells, among others.
Fibroblasts, however, represent the major cell population
within the pulp tissue. Although the synthesis of complement
proteins by other pulp cell types was beyond our present
scope, we speculate that such synthesis might further increase
the efficiency of complement activation within the pulp.

Moreover, complement system activation from proteins
expressed by LTA-stimulated pulp fibroblasts is also
translated by the C5a complement fragment release into the
868
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Figure 6 Characterization of STRO-1 sorted cells by flow cytometry and
fluorescence microscopy. A and B: In contrast to the control (A, gray),
almost all human pulp cells sorted with STRO-1 antibody expressed this
mesenchymal stem-cell marker (A, green profile; B, green staining). Nuclei
were counterstained with DAPI (blue). C and D: In contrast to the isotype
control (C, gray), a significant percentage of STRO-1 sorted human pulp
cells (C, red profiles; D, red staining) expressed the stem-cell markers CD44,
CD90, CD105, CD146, and CD166 (P < 0.05). Fluorescence double immu-
nostaining was used to detect coexpression of these markers by STRO-1
sorted cells. Secondary antibodies used to detect STRO-1 were conju-
gated with Alexa Fluor 488 (green); the other stem-cell markers were
detected with Alexa Fluor 594 (red). Nuclei were counterstained with DAPI
(blue). Scale bar Z 50 mm.
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Figure 7 C5a generated by LTA-stimulated pulp fibroblasts activates
human pulp progenitor cell C5aR. AeD: Representative images of activated
C5aR [C5aR-p(Ser334)] immunostaining on human pulp progenitor cells
incubated either with untreated (A) or with LTA-stimulated pulp fibroblast
culture supernatants (B) and their respective isotype controls (C and D).
Although no activation of C5aR was detected on progenitor cells incubated
with supernatants from untreated pulp fibroblast cultures (A), intense la-
beling was observed on progenitor cells after incubation with supernatants
obtained from LTA-stimulated pulp fibroblast cultures (B). Nuclei were
counterstained with DAPI (blue). E: Representative flow cytometry graph of
activated C5aR immunostaning on human pulp progenitor cells incubated
either with supernatants from untreated pulp fibroblast cultures (green
profile) or with supernatants from LTA-stimulated pulp fibroblast cultures
(red profile), and the respective control (gray). Only the fluorescence
profiles of progenitor cells stimulated with supernatants from LTA-
stimulated pulp fibroblast cultures are significantly shifted to the right.
*P < 0.05. n Z 3. Scale bar Z 50 mm.
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culture medium. It has been demonstrated that the active C5a
fragment is highly implicated in tissue regeneration.29e33 In
particular, we have previously demonstrated that recombi-
nant C5a induces the recruitment of dental pulp progenitor
cells, which is an essential step in dentin pulp regeneration.23

However, no other study has yet shown the importance of the
extrahepatic production of complement components in tissue
regeneration. To study the effect of pulp fibroblasts on pro-
genitor cell migration, we used a dynamic system with m-
Slide chemotaxis 3D chambers, which allows investigating
interactions between pulp fibroblasts and progenitor cells in a
plasma-free environment. Pulp progenitors were obtained by
STRO-1 magnetic cell sorting. The isolated cells were further
tested for coexpression of STRO-1 mesenchymal stem-cell
marker and for other stem-cell markers (CD44, CD90,
CD105, CD146, CD166) by immunofluorescence and flow
cytometry. This system clearly demonstrated that the C5a
generated by complement system activation from compo-
nents produced directly by LTA stimulation of pulp fibro-
blasts induced the recruitment of human pulp progenitor cells
within the migration chamber in a plasma-free environment.
992
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Figure 8 C5a released by LTA-stimulated pulp fibroblasts induces human pulp progenitor cell recruitment. A: Representative plots of progenitor cell migration
over 48-hourperiod.Nodirectedmigrationwas detected in the absence of LTA stimulation, and the COM (circle) remains in themiddle of the plot.B:Whenfibroblasts
of one of the two reservoirs were stimulated with LTA, the progenitor cells migrated toward the LTA-stimulated fibroblasts; the COM (circle) is shifted toward the x-
axis positivedirection.C: Coincubationof progenitor cellswithW54011 abolished theirmigration toward the LTA-stimulatedfibroblasts, and the COM (circle) returns
to the middle of the plot. DeF: Analysis of the center of mass displacement. D: Graphing the COM x and y means for each dynamic chemotaxis assay revealed no
significantdifferences between COMx and COMy in the absence offibroblast LTA stimulation (COMxZ�0.1� 10.9mm;COMyZ10.2�4.0mm), reflecting randomcell
movements. E:Whenfibroblasts of one of the two reservoirs were stimulatedwith LTA, there was a significant difference between COMx and COMy (COMxZ 36.3� 5.2
mm, COMy Z 10.0� 7.0 mm), indicating a statistically significant displacement of progenitor cells toward LTA stimulation. F: This significant difference between
COMx and COMy was abolished byW54011 (COMxZ 6.9� 5.5 mm; COMyZ�0.0� 1.4 mm).GeI: FMI analysis. G:Histograms representing the FMIx and FMIy means
for each dynamic chemotaxis assay, show no significant differences between FMIx and FMIy in the absence offibroblast LTA stimulation.H:When fibroblasts of one of
the two reservoirs were stimulated with LTA, FMIx was significantly higher than FMIy (FMIxZ 0.13� 0.02 mm; FMIyZ 0.04� 0.03 mm), indicating that progenitor
cell displacement is along a gradient. I: This significant difference between FMIx and FMIy was abolished byW54011, indicating that progenitor cellsmigrate toward a
C5a gradient generated by LTA-stimulated fibroblasts (I). Data are expressed as means � SD (DeI). *P < 0.05. nZ 3.
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This recruitment is mediated by fixation of C5a on progenitor
C5aR, as demonstrated by the phosphorylation of C5aR after
C5a fixation detected by immunofluorescence and flow
cytometry, and by the decrease of this phosphorylation when
progenitor cells were incubated with the C5aR-specific
antagonist W54011. These results suggest that the effi-
ciency of the plasma complement system in progenitor cell
recruitment is locally potentiated by human pulp fibroblasts.

The present study provides further evidence of efficient
interactions between pulp fibroblasts and progenitor cells
during dentinepulp regeneration and provides additional
support to previous investigations of pulp fibroblast
involvement in dentin pulp regeneration. Human pulp fibro-
blasts increase their growth factor secretion after traumatic
injury, leading to a modification of the local microenviron-
ment, which has direct consequences on the local dentine
pulp regeneration.20e22 This regeneration, which occurs after
dentinepulp injuries, is regulated by several signals from two
distinct and local origins. These signals are liberated after an
acid dissolution of the carious dentin,14,17,18 or are released
from pulp fibroblasts and endothelial cells in the case of
traumatic injuries.19,20 Recently, the complement system has
been revealed as an additional source of regeneration sig-
nals.23 Studies performed in our laboratory demonstrated that
the complement system is activated in human teeth by carious
injuries and that recombinant C5a induces recruitment of
dental pulp progenitor cells, which is an essential step of the
dentinepulp regeneration.23 Because all dentinepulp insults
(including carious infection, traumatic injuries, apoptosis, and
the application of restorative materials) are known activators
of the complement system,8e11 the present study supports the
current idea that, like other regeneration signals, complement
activation within the dentinepulp complex is locally acti-
vated and regulated.

To our knowledge, the present work is the first to identify
a nonimmune cell able to produce all components required
for efficient complement system activation. Our findings
highlight a new mechanism in dentinepulp regeneration,
linking pulp fibroblast to human pulp progenitor cell
recruitment, and may provide a useful therapeutic tool in
targeting the pulp fibroblasts in a dentinepulp regeneration
process.
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