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Abstract
Data-driven approaches to modeling physical
systems fail to generalize to unseen systems that
share the same general dynamics with the learn-
ing domain, but correspond to different physical
contexts. We propose a new framework for this
key problem, context-informed dynamics adap-
tation (CoDA), which takes into account the dis-
tributional shift across systems for fast and effi-
cient adaptation to new dynamics. CoDA lever-
ages multiple environments, each associated to a
different dynamic, and learns to condition the dy-
namics model on contextual parameters, specific
to each environment. The conditioning is per-
formed via a hypernetwork, learned jointly with
a context vector from observed data. The pro-
posed formulation constrains the search hypothe-
sis space to foster fast adaptation and better gen-
eralization across environments. It extends the
expressivity of existing methods. We theoreti-
cally motivate our approach and show state-of-
the-art generalization results on a set of nonlinear
dynamics, representative of a variety of applica-
tion domains. We also show, on these systems,
that new system parameters can be inferred from
context vectors with minimal supervision.

1. Introduction
Neural Network (NN) approaches to modeling dynamical
systems have recently raised the interest of several com-
munities leading to an increasing number of contributions.
This topic was explored in several domains, ranging from
simple dynamics e.g. Hamiltonian systems (Greydanus
et al., 2019; Chen et al., 2020b) to more complex settings
e.g. fluid dynamics (Kochkov et al., 2021; Li et al., 2021;
Wandel et al., 2021), earth system science and climate (Re-

*Equal contribution 1CNRS-ISIR, Sorbonne University,
Paris, France 2Criteo AI Lab, Paris, France 3Université de
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ichstein et al., 2019), or health (Fresca et al., 2020). NN
emulators are attractive as they may for example provide
fast and low cost approximations to complex numerical
simulations (Duraisamy et al., 2019; Kochkov et al., 2021),
complement existing simulation models when the physical
law is partially known (Yin et al., 2021b) or even offer so-
lutions when classical solvers fail e.g. with very high num-
ber of variables (Sirignano & Spiliopoulos, 2018).

A model of a real-world dynamical system should account
for a wide range of contexts resulting from different ex-
ternal forces, spatio-temporal conditions, boundary condi-
tions, sensors characteristics or system parameters. These
contexts characterize the dynamics phenomenon. For in-
stance, in cardiac electrophysiology (Neic et al., 2017;
Fresca et al., 2020), each patient has its own specificities
and represents a particular context. In the study of epi-
demics’ diffusion (Shaier et al., 2021), computational mod-
els should handle a variety of spatial, temporal or even soci-
ological contexts. The same holds for most physical prob-
lems, e.g. forecasting of spatial-location-dependent dynam-
ics in climate (de Bézenac et al., 2018), fluid dynamics pre-
diction under distinct external forces (Li et al., 2021), etc.

The physics approach for modeling dynamical systems re-
lies on a strong prior knowledge about the underlying phe-
nomenon. This provides a causal mechanism which is em-
bedded in a physical dynamics model, usually a system
of differential equations, and allows the physical model to
handle a whole set of contexts. Moreover, it is often pos-
sible to adapt the model to new or evolving situations, e.g.
via data assimilation (Kalman, 1960; Courtier et al., 1994).

On the other hand, Expected Risk Minimization (ERM)
based machine learning (ML) fails to generalize to unseen
dynamics. Indeed, it requires i.i.d. data for training and in-
ference while dynamical observations are non-i.i.d. as the
distributions change with initial conditions or physical con-
texts. Thus any ML framework that handles this question
should consider other assumptions. A common one used
e.g. in domain generalization (Wang et al., 2021b), states
that data come from several environments a.k.a. domains,
each with a different distribution. Training is performed
on a sample of the environments and test corresponds to
new ones. Domain generalization methods attempt to cap-
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ture problem invariants via a unique model, assuming that
there exists a representation space suitable for all the envi-
ronments. This might be appropriate for classification, but
not for dynamical systems where the underlying dynamics
differs for each environment. For this problem, we need
to learn a function that adapts to each environment, based
on a few observations, instead of learning a single domain-
invariant function. This is the objective of meta-learning
(Thrun & Pratt, 1998), a general framework for fast adap-
tation to unknown contexts. The standard gradient-based
methods (e.g. Finn et al., 2017) are unsuitable for com-
plex dynamics due to their bi-level optimization process
and are known to overfit when little data is available for
adaptation, as in the few-shot learning setting explored in
this paper (Mishra et al., 2018). Like invariant methods,
meta-learning usually handles basic tasks like classifica-
tion or regression on static data or simple sequences. Gen-
eralization for modeling real-world dynamical systems is
a recent topic. Simple simulated dynamics were consid-
ered in Reinforcement Learning (Lee et al., 2020; Clavera
et al., 2019) while physical dynamics were modeled in re-
cent works (Yin et al., 2021a; Wang et al., 2021c). These
approaches consider either simplified settings or additional
hypotheses e.g. prior knowledge and do not offer general
solutions to our adaptation problem (details in Section 6).

We propose a new ML framework for generalization in
dynamical systems, called Context-Informed Dynamics
Adaptation (CoDA). Like in domain generalization, we
assume availability of several environments, each with
its own specificity, yet sharing some physical properties.
Training is performed on a sample of the environments. At
test time, we assume access to example data from a new
environment, here a trajectory. Our goal is to adapt to the
new environment distribution with this trajectory. More
precisely, CoDA assumes that the underlying system is de-
scribed by a parametrized differential equation, either an
ODE or a PDE. The environments share the parametrized
form of the equation but differ by the values of the param-
eters or initial conditions. CoDA conditions the dynamics
model on learned environment characteristics a.k.a. con-
texts and generalizes to new environments and trajectories
with few data. Our main contributions are the following:

• We introduce a multi-environment formulation of the
generalization problem for dynamical systems.

• We propose a novel context-informed framework,
CoDA, to this problem. It conditions the dynamics
model on context vectors via a hypernetwork. CoDA
introduces a locality and a low-rank constraint, which
enable fast and efficient adaptation with few data.

• We analyze theoretically the validity of our low-rank
adaptation setting for modeling dynamical systems.

• We evaluate two variations of CoDA on several
ODEs/PDEs representative of a variety of applica-
tion domains, e.g. chemistry, biology, physics. CoDA
achieves SOTA generalization results on in-domain
and one-shot adaptation scenarios. We also illustrate
how, with minimal supervision, CoDA infers accu-
rately new system parameters from learned contexts.

The paper is organized as follows. In Section 2, we present
our multi-environment problem. In Section 3, we introduce
the CoDA framework. In Section 4, we detail how to im-
plement our framework. In Section 5, we present our ex-
perimental results. In Section 6, we present related work.

2. Generalization for dynamical systems
We present our generalization problem for dynamical sys-
tems, then introduce our multi-environment formalization.

2.1. Problem setting

We consider dynamical systems that are driven by unknown
temporal differential equations of the form:

dx(t)

dt
= f(x(t)), (1)

where t ∈ R is a time index, x(t) is a time-dependent state
in a space X and f : X → TX a function that maps x(t) ∈
X to its temporal derivatives in the tangent space TX . f
belongs to a class of vector fields F . X ⊆ Rd (d ∈ N⋆) for
ODEs or X is a space of functions defined over a spatial
domain (e.g. 2D or 3D Euclidean space) for PDEs.

Functions f ∈ F define a space Df(X ) of state trajectories
x : I → X , mapping t in an interval I including 0, to
the state x(t) ∈ X . Trajectories are defined by the initial
condition x(0) ≜ x0 ∼ p(X0) and take the form:

∀t ∈ I, x(t) = x0 +

∫ t

0

f(x(τ))dτ ∈ X (2)

In the following, we assume that f ∈ F is parametrized by
some unknown attributes e.g. physical parameters, external
forcing terms which affect the trajectories.

2.2. Multi-environment learning problem

We propose to learn the class of functions F with a data-
driven dynamics model gθ parametrized by θ ∈ Rdθ . Given
f ∈F , we observe N trajectories in Df(X ) with the form
in Eq. (2). The standard ERM objective considers that all
trajectories are i.i.d. Here, we propose a multi-environment
learning formulation which considers that observed trajec-
tories of f form an environment e ∈ E . We denote fe and
De ≜ {Dei }Ni=1 the corresponding function and set of tra-
jectories. We assume that we observe a set of known func-
tions in training environments Etr, {fe}e∈Etr . The goal is to
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learn gθ that adapts easily and efficiently to new environ-
ments Ead, corresponding to unseen functions {fe}e∈Ead
(“ad” stands for adaptation). We define ∀e ∈ E the corre-
sponding Mean Squared Error (MSE) loss, over De as

L(θ,De) ≜
N∑
i=1

∫
t∈I
∥fe(xe,i(t))− gθ(xe,i(t))∥22dt (3)

In practice, fe is unavailable and we can only approximate
it from discretized trajectories. We detail later in Eq. (10)
our approximation method based on an integral formula-
tion. It fits observed trajectories directly in state space.

3. The CoDA learning framework
We introduce CoDA, a new context-informed framework
for learning dynamics on multiple environments. It relies
on a general adaptation rule (Section 3.1) and introduces
two key properties: locality, enforced in the objective (Sec-
tion 3.2) and low-rank adaptation, enforced in the proposed
model via hypernetwork-decoding (Section 3.3). The va-
lidity of this framework for dynamical systems is analyzed
in Section 3.4 and its benefits are discussed in Section 3.5.

3.1. Adaptation rule

The dynamics model gθ should adapt to new environments.
Hence, we propose to condition gθ on observed trajectories
De,∀e ∈ E . Conditioning is performed via an adaptation
network Aπ , parametrized by π, which adapts the weights
of gθ to an environment e ∈ E according to

θe ≜ Aπ(De) ≜ θc + δθe, π ≜ {θc, {δθe}e∈E} (4)

θc ∈ Rdθ are shared parameters, used as an initial value
for fast adaptation to new environments. δθe ∈ Rdθ are
environment-specific parameters conditioned on De.

3.2. Constrained optimization problem

Given the adaptation rule in Eq. (4), we introduce a con-
strained optimization problem which learns parameters π
such that ∀e ∈ E , δθe is small and g fits observed trajecto-
ries. It introduces a locality constraint with a norm ∥·∥:

min
π

∑
e∈E
∥δθe∥2 s.t. ∀xe(t) ∈ De, dx

e(t)

dt
= gθc+δθe(x

e(t))

We consider an approximation of this problem which re-
laxes the equality constraint with the MSE lossL in Eq. (3).

min
π

∑
e∈E

(
L(θc + δθe,De) + λ∥δθe∥2

)
(5)

λ is a hyperparameter. For training, we minimize Eq. (5)
w.r.t. π over training environments Etr. After training, θc

is freezed. For adaptation, we minimize Eq. (5) over new
environments Ead w.r.t. {δθe}e∈Ead .

The locality constraint in the training objective Eq. (5) en-
forces δθe to remain close to the shared θc solutions. It
plays several roles. First, it fosters fast adaptation by acting
as a constraint over θc ∈ Rdθ during training s.t. minimas
{θe⋆}e∈E are in a neighborhood of θc i.e. can be reached
from θc with few update steps. Second, it constrains the hy-
pothesis space at fixed θc. Under some assumptions, it can
simplify the resolution of the optimization problem w.r.t.
δθe by turning optimization to a quadratic convex problem
with an unique solution. We show this property for our so-
lution in Proposition 1. The positive effects of this con-
straint will be illustrated on an ODE system in Section 3.3.

3.3. Context-informed hypernetwork

Solving Eq. (5) involves learning δθe for each environ-
ment. For adaptation, δθe should be inferred from few ob-
servations of the new environment. Learning such high-
dimensional parameters is prone to over-fitting, especially
under scarce data. We propose a hypernetwork-based solu-
tion to solve efficiently this problem by operating on a low-
dimensional space. It yields fixed-cost adaptation and en-
ables efficient sharing of information across environments.

Formulation We estimate δθe through a linear mapping
of conditioning information, called context, learned from
De and denoted ξe ∈ Rdξ . W = (W1, · · · ,Wdξ) ∈
Rdθ×dξ is the weight matrix of the linear decoder s.t.

Aπ(De) ≜ θc +Wξe, π ≜ {W, θc, {ξe}e∈E} (6)

W is shared across environments and defines a low-
dimensional subspaceW ≜ Span(W1, ...,Wdξ), of dimen-
sion at most dξ, to which the search space of δθe is re-
stricted. ξe is specific to each environment and can be in-
terpreted as learning rates along the rows of W . In our ex-
periments, dξ ≪ dθ is small, at most 2. Thus, adaptation
to new environments only requires to learn very few param-
eters, which define a completely new dynamics model g.

Aπ corresponds to an affine mapping of ξe parametrized
by {W, θc}, a.k.a. a linear hypernetwork. Note that hyper-
networks (Ha et al., 2017) have been designed to handle
single-environment problems and learn a separate context
per layer. Our formalism involves multiple environments
and defines a context per environment for all layers of g.
Linearity of the hypernetwork is not restrictive as contexts
are directly learned through an inverse problem detailed in
eqs. (7) and (8), s.t. expressivity is similar to a nonlinear
hypernetwork with a final linear activation.

Objectives We derive the training and adaptation objec-
tives by inserting Eq. (6) into Eq. (5). For training, both
contexts and hypernetwork are learned with Eq. (7):

min
θc,W,{ξe}e∈Etr

∑
e∈Etr

(
L(θc +Wξe,De) + λ∥Wξe∥2

)
(7)
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After training, θc is kept fixed and for adaptation to a new
environment, only the context vector ξe is learned with:

min
{ξe}e∈Ead

∑
e∈Ead

(
L(θc +Wξe,De) + λ∥Wξe∥2

)
(8)

Implementation of eqs. (7) and (8) is detailed in Section 4.
We apply gradient descent. In Proposition 1, we show for
∥·∥= ℓ2, that Eq. (8) admits an unique solution, recovered
from initialization at 0 with a single preconditioned gradi-
ent step, projected onto subspaceW defined by W .

Proposition 1 (Proof in Appendix B). Given {θc,W}
fixed, if ∥·∥ = ℓ2, then Eq. (8) is quadratic. If λ′W⊤W
or H̄e(θc) = W⊤∇2

θL(θc,De)W are invertible then
H̄e(θc) + λ′W⊤W is invertible except for a finite number
of λ′ values. The problem in Eq. (8) is then also convex and
admits an unique solution, {ξe⋆}e∈Ead . With λ′ ≜ 2λ,

ξe∗ = −
(
H̄e(θc) + λ′W⊤W

)−1

W⊤∇θL(θc,De) (9)

Interpretation We now interpret CoDA by visualizing
its loss landscape around θc in Figure 1, following Li et al.
(2018b). We consider the Lotka-Volterra system, described
in Section 5.1. Loss values are projected onto subspaceW ,
where dξ = 2. We make three observations. First, across
environments, the loss is smooth and has a single mini-
mum around θc. Second, the local optimum of the loss is
close to θc across environments. Finally, the minimal loss
value on W around θc is low across environments. The
two first properties were discussed in Section 3.2 and are
a direct consequence of the locality constraint on subspace
W . When ∥·∥= ℓ2, it makes the optimization problem in
Eq. (7) quadratic w.r.t. ξe and convex under invertibility of
H̄e(θc) + λ′W⊤W as detailed in Proposition 1. We pro-
vided in Eq. (9) the closed form expression of the solu-
tion. It also imposes small ∥ξe∥ s.t. when minimizing the
loss in Eq. (7), θc is forced to be close to local optimas of
all training environments. The final observation illustrates
that CoDA is able to find a subspace W on which there
are environment-specific parameters with low loss values
i.e. that low-rank adaptation performs well. We provide in
Appendix H, some further comparison with the loss land-
scape of ERM, projected onto the Span of the two principal
gradient directions. We show that ERM does not find low
loss values, as it aims at finding θc with good performance
across environments, thus cannot model several dynamics.

3.4. Validity for dynamical systems

We further motivate low-rank decoding in our context-
informed hypernetwork approach by providing some evi-
dence that gradients at θc across environments define a low-
dimensional subspace. We consider the loss L in Eq. (3)
and define the gradient subspace in Definition 1.
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Figure 1. CoDA’s loss landscape centered in θc, marked with ×,
for 3 environments on the Lotka-Volterra ODE. Loss values are
projected onto subspace W , with dξ = 2. ∀e, → points to the
local optimum θe⋆ with loss value reported in yellow.

Definition 1 (Gradient directions). With L in Eq. (3),
∀θc ∈ Rdθ parameterizing a dynamics model gθc , the sub-
space generated by gradient directions at θc across envi-
ronments E is denoted Gθc ≜ Span({∇θL(θc,De)}e∈E).

We show, in Proposition 2, low-dimensionality of Gθc for
linearly parametrized systems.

Proposition 2 (Low-rank under linearity. Proof in Ap-
pendix B). Given a class of linearly parametrized dynam-
ics F with dp varying parameters, ∀θc∈Rdθ, subspace Gθc
in Definition 1 is low-dimensional and dim(Gθc)≤dp≪dθ.

The linearity assumption is not restrictive as it is present
in a wide variety of real-world systems e.g. Burger or Ko-
rteweg–De Vries PDE (Raissi et al., 2019), convection-
diffusion (Long et al., 2018), wave and reaction diffusion
equations (Yin et al., 2021b) etc. Under nonlinearity, we
do not have the same theoretical guarantee, yet, we show
empirically in Appendix D that low-dimensionality of pa-
rameters of the dynamics model gθ still holds for several
systems. This property is comforted by recent studies that
highlighted that gradients are low-rank throughout opti-
mization in single-domain settings, meaning that the so-
lution space is low-dimensional (Gur-Ari et al., 2019; Li
et al., 2018a;b). In the same spirit as CoDA, this property
was leveraged to design efficient solutions to the learning
problems (Frankle & Carbin, 2019; Vogels et al., 2019).

3.5. Benefits of CoDA

We highlight the benefits of CoDA w.r.t. related meth-
ods, with further details in Appendix A.1. The adaptation
rule in Eq. (4) is similar to the one used in gradient-based
meta-learning. Yet, our first order joint optimization prob-
lem in Eq. (5) considerably simplifies the complex bi-level
optimization problem (Antoniou et al., 2019). Moreover,
CoDA introduces the two key properties of locality con-
straint and low-rank adaptation which guarantee efficient
adaptation to new environments as discussed in Section 3.3.
It generalizes contextual meta-learning methods (Garnelo
et al., 2018; Zintgraf et al., 2019), which also perform low-
rank adaptation, via the hypernetwork decoder (details in
Appendix A.2). Our decoder learns complex environment-
conditional dynamics models while controlling their com-
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plexity. CoDA learns context vectors through an inverse
problem as Zintgraf et al. (2019). This decoder-only strat-
egy is particularly efficient and flexible in our setting. An
alternative is to infer them via a learned encoder of De as
Garnelo et al. (2018). Yet, the latter was observed to un-
derfit (Kim et al., 2019), requiring extensive tuning of the
encoder and decoder architecture. CoDA is easy to imple-
ment and maintains expressivity with a linear decoder.

4. Framework implementation
We detail how to perform trajectory-based learning with
our framework and describe two instantiations of the local-
ity constraint. We detail the corresponding pseudo-code.

Trajectory-based formulation As derivatives in Eq. (3)
are not directly observed, we use in practice for training
a trajectory-based formulation of Eq. (3), defined over N
trajectories {Dei }Ni=1, discretized over a uniform temporal
and spatial grid. ∆t,∆s are the temporal and spatial reso-
lutions and T, S the temporal horizon and spatial grid size.
Each trajectory includes T

∆t

(
S
∆s

)ds states, where for PDEs
ds is the spatial dimension and for ODEs ds = 0. With
tk = k∆t, and sj the jth spatial coordinate, we denote
xe,i(tk, sj) the state value in trajectory i from environment
e at spatial coordinate sj and time tk. Our loss writes as:

L(θ,De) =
N∑
i=1

(S/∆s)ds∑
j=1

T/∆t∑
k=1

∥∥xe,i(tk, sj)− x̃e,i(tk, sj)∥∥22
x̃e,i(tk) = xe,i(tk−1) +

∫ tk

tk−1

gθ
(
x̃e,i(τ)

)
dτ (10)

where x(t) = [x(t, s1), · · · , x(t, s(S/∆s)ds )]
⊤ is the state

vector over the spatial domain at t. We apply for integration
a numerical solver (Hairer et al., 2000) as detailed later.

Locality constraint Instead of penalizing λ∥Wξe∥2 in
Eq. (7), we found it more efficient to penalize separatelyW
and ξe. We thus introduce the following regularization:

R(W, ξe) ≜ λξ∥ξe∥22+λΩΩ(W ) (11)

It involves hyperparameters λξ, λΩ and a norm Ω(W )
which depends on the choice of ∥·∥ in Eq. (5). We con-
sider two variations of ∥·∥. CoDA-ℓ2 sets ∥·∥ ≜ ℓ2(·) and
Ω ≜ ℓ22, constrainingWξe to a sphere. CoDA-ℓ1 sets ∥·∥ ≜
ℓ1(·) and Ω = ℓ1,2 over rows i.e. Ω(W ) ≜

∑dθ
i=1∥Wi,:∥2

to induce sparsity and find most important parameters for
adaptation. ℓ1,2 constrains W to be axis-aligned; then the
number of solutions is finite as dim(W) is finite. Minimiz-
ing R(W, ξe) can be interpreted as minimizing an upper-
bound to ∥·∥, derived in appendix E for each variation.

Pseudo-code We solve Eq. (7) for training and Eq. (8) for
adaptation using eqs. (10) and (11) and Algorithm 1. We

Algorithm 1 CoDA Pseudo-code
Training:
Input: Etr ⊂ E , {De}e∈Etr with ∀e ∈ Etr,#De = N ;
π = {W, θc, {ξe}e∈Etr} where W ∈ Rdθ×dξ , θc ∈ Rdθ
are randomly initialized and ∀e ∈ Etr, ξ

e = 0 ∈ Rdξ .
loop
π ← π − η∇π

( ∑
e∈Etr

N∑
i=1

L(θc +Wξe,Dei )+R(W, ξe)
)

Adaptation:
Input: e ∈ Ead; De where #De = N ;

Trained W ∈ Rdθ×dξ , θc ∈ Rdθ and ξe = 0 ∈ Rdξ .
loop
ξe←ξe− η∇ξe

( N∑
i=1

L(θc +Wξe,Dei ) +R(W, ξe)
)

back-propagate through the solver’s internals with torchd-
iffeq (Chen, 2021) and apply exponential Scheduled Sam-
pling (Goyal et al., 2016) to stabilize training.

5. Experiments
We validate our approach on four classes of challenging
nonlinear temporal and spatiotemporal physical dynamics,
representative of various fields e.g. chemistry, biology and
fluid dynamics. We evaluate in-domain and adaptation pre-
diction performance and compare them to related base-
lines. We also investigate how learned context vectors can
be used for system parameter estimation. We consider a
few-shot adaptation setting where only a single trajectory
is available at adaptation time on new environments.

5.1. Dynamical systems

We consider four ODEs and PDEs described in Ap-
pendix F.1. ODEs include Lotka-Volterra (LV, Lotka,
1925) and Glycolitic-Oscillator (GO, Daniels & Nemen-
man, 2015), modelling respectively predator-prey interac-
tions and the dynamics of yeast glycolysis. PDEs are de-
fined over a 2D spatial domain and include Gray-Scott (GS,
Pearson, 1993), a reaction-diffusion system with complex
spatiotemporal patterns and the challenging Navier-Stokes
system (NS, Stokes, 1851) for incompressible flows. All
systems are nonlinear w.r.t. system states and all but GO
are linearly parametrized. The analysis in Section 3.4 cov-
ers all systems but GO. Experiments on the latter show that
CoDA also extends to nonlinearly parameterized systems.

5.2. Baselines

We consider three families of baselines, compared in Ap-
pendix Figure 5 and detailed in Section 6. First, Gradient-
Based Meta-Learning (GBML) methods MAML (Finn
et al., 2017), ANIL (Rusu et al., 2019) and Meta-SGD (Li
et al., 2017). Second, the Multi-Task Learning method
LEADS (Yin et al., 2021a). Finally, the contextual meta-
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Table 1. Test MSE (↓) in training environments Etr (In-Domain) and new adaptation environments Ead (Adaptation).

LV (×10−5) GO (×10−4) GS (×10−3) NS (×10−4)

IN-DOMAIN ADAPTATION IN-DOMAIN ADAPTATION IN-DOMAIN ADAPTATION IN-DOMAIN ADAPTATION

MAML 60.3±1.3 3150±940 57.3±2.1 1081±62 3.67±0.53 2.25±0.39 68.0±8.0 51.1±4.0
ANIL 381±76 4570±2390 74.5±11.5 1688±226 5.01±0.80 3.95±0.11 61.7±4.3 48.6±3.2
META-SGD 32.7±12.6 7220±4580 42.3±6.9 1573±413 2.85±0.54 2.68±0.20 53.9±28.1 44.3±27.1
LEADS 3.70±0.27 47.61±12.47 31.4±3.3 113.8±41.5 2.90±0.76 1.36±0.43 14.0±1.55 28.6±7.23
CAVIA-FILM 4.38±1.15 8.41±3.20 4.44±1.46 3.87±1.28 2.81±1.15 1.43±1.07 23.2±12.1 22.6±9.88
CAVIA-CONCAT 2.43±0.66 6.26±0.77 5.09±0.35 2.37±0.23 2.67±0.48 1.62±0.85 25.5±6.31 26.0±8.24
CODA-ℓ2 1.52±0.08 1.82±0.24 2.45±0.38 1.98±0.06 1.01±0.15 0.77±0.10 9.40±1.13 10.3±1.48
CODA-ℓ1 1.35±0.22 1.24±0.20 2.20±0.26 1.86±0.29 0.90±0.057 0.74±0.10 8.35±1.71 9.65±1.37
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Figure 2. Adaptation results with CoDA-ℓ1 on LV. Parameters
(β, δ) are sampled in [0.25, 1.25]2 on a 51 × 51 uniform grid,
leading to 2601 adaptation environments Ead. • are training envi-
ronments Etr. We report MAPE (↓) across Ead (Top). On the bot-
tom, we choose four of them (×, e1–e4), to show the ground-truth
(blue) and predicted (green) phase space portraits. x, y are respec-
tively the quantity of prey and predator in the system in Eq. (15).

learning method CAVIA (Zintgraf et al., 2019), with con-
ditioning via concatenation (Concat) or linear modulation
of final hidden features (FiLM, Perez et al., 2018). Base-
lines consider also the loss in Eq. (10).

5.3. Architecture, optimizer and hyperparameters

We use MLPs for ODEs, ConvNets for GS and Fourier
Neural Operators (Li et al., 2021) for NS (details in Ap-
pendix F.2). Adam optimizer (Kingma & Ba, 2015) is used
for all datasets. We tuned dξ and observed that dξ = dp,
the number of system parameters that vary across environ-
ments, performed best. This is reported in an ablation study
in Section 5.5. Solvers, optimization and regularization hy-
perparameters are detailed in Appendix F.2.

5.4. Experimental Setting

Each environment e ∈ E is defined by system parameters
and we denote pe ∈ Rdp those that vary across E . dp repre-
sents the degrees of variations in F and is set to dp = 2 for
LV, GO, GS and dp = 1 for NS. We define in Appendix F.1
for each system the number of training and adaptation envi-
ronments (#Etr and #Ead) and the corresponding parame-
ters. We also define in Appendix F.1 the number of training
trajectories N per environment and the distribution p(X0)
from which are sampled initial conditions.

We perform two types of evaluation: in-domain general-
ization on Etr (In-domain) and out-of-domain adaptation
to new environments Ead (Adaptation). Evaluation is per-
formed on 32 new test trajectories per environment with
initial conditions sampled from p(X0). We report, in our
tables, mean and standard deviation of Mean Squared Error
(MSE) across test trajectories (Eq. (10)) over four different
seeds. We report, in our figures, Mean Absolute Percentage
Error (MAPE) in % over trajectories, as it allows to bet-
ter compare performance across environments and systems.
We define MAPE(z, y) between a d-dimensional input z
and target y as 1

d

∑
j=1...d:yj ̸=0

|zj−yj |
|yj | . Over a trajectory, it

extends into
∫
t∈I MAPE(x̃(t), x(t))dt, with x̃ in Eq. (10).

5.5. Generalization results

In Table 1, we observe that CoDA improves significantly
test MSE w.r.t. our baselines for both In-Domain and Adap-
tation settings. We visualize trajectories for PDE systems
in Appendix G and also notice improvements. Across
datasets, all baselines are subject to a drop in performance
between In-Domain and Adaptation while CoDA maintains
remarkably the same level of performance in both cases. In
more details, GBML methods (MAML, ANIL, Meta-SGD)
overfit on training In-Domain data especially when data is
scarce. This is the case for ODEs which include less system
states for training than PDEs. LEADS performs better than
GBML but overfits for Adaptation as it does not adapt effi-
ciently. CAVIA-Concat/FiLM perform better than GBML
and LEADS, as they leverage a context, but are less expres-
sive than CoDA. Both variations of CoDA perform best as
they combine the benefits of low-rank adaptation and lo-
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Figure 3. Dimension of the context vectors (dξ) and test In-
Domain MAPE (↓) with CoDA-ℓ1. “⋆” is the minimum of MAPE.

Table 2. ℓ2 locality constraint and In-Domain test MSE (↓).

LV (×10−5) GO (×10−4)

CODA W/O ℓ2 WITH ℓ2 W/O ℓ2 WITH ℓ2

FULL 2.28±0.29 1.52±0.08 2.98±0.71 2.45±0.38
FIRSTLAYER 2.25±0.29 2.41±0.23 2.38±0.71 2.12±0.55
LASTLAYER 1.86±0.24 1.27±0.03 28.4±0.60 28.4±0.64

cality constraint. CoDA-ℓ1 is better than CoDA-ℓ2 as it in-
duces sparsity, further constraining the hypothesis space.

We evaluate in Figure 2 CoDA-ℓ1 on LV for Adaptation
over a wider range of adaptation environments (#Ead =
51 × 51 = 2601). We report mean MAPE over Ead
(Top). We observe three regimes: inside the convex hull of
training environments Etr, MAPE is very low; outside the
convex-hull, MAPE remains low in a neighborhood of Etr;
beyond this neighborhood, MAPE increases. CoDA thus
generalizes efficiently in the neighborhood of training en-
vironments and degrades outside this neighborhood. We
plot reconstructed phase space portraits (Bottom) on four
selected environments and observe that the learned solution
closely follows the target trajectories.

5.6. Ablation studies

We perform two studies on LV and GO. In a first study in
Table 2, we evaluate the gains due to using ℓ2 locality con-
straint on In-Domain evaluation. On line 1 (Full), we ob-
serve that CoDA-ℓ2 performs better than CoDA without lo-
cality constraint. Prior work perform adaptation only on the
final layer with some performance improvements on clas-
sification or Hamiltonian system modelling (Raghu et al.,
2020; Chen et al., 2020a). In order to evaluate this strat-
egy, we manually restrict hypernetwork-decoding to only
one layer in the dynamics model gθ, either the first layer
(line 2) or the last layer (line 3). We observe that the impor-
tance of the layer depends on the parameterization of the
system: for LV, linearly parametrized, the last layer is bet-
ter while for GO, nonlinearly parametrized, the first layer is
better. CoDA-ℓ1 generalizes this idea by automatically se-
lecting the useful adaptation subspace via ℓ1,2 regulariza-
tion, offering a more flexible approach to induce sparsity.

In a second study in Section 5.5, we analyze the impact on
MAPE of the dimension of context vectors dξ for CoDA-

ℓ1. We recall that dξ upper-bounds the dimension of the
adaptation subspaceW and was cross-validated in Table 1.
In the following, dp is the number of parameters that vary
across environments. We illustrate the effect of the cross-
validation on MAPE for dp = 2 on LV and GO as in Sec-
tion 5.5 and additionally for dp = 4 on LV. We observe
in Section 5.5 that the minimum of MAPE is reached for
dξ = dp with two regimes: when dξ < dp, performance
decreases as some system dimensions cannot be learned;
when dξ > dp, performance degrades slightly as unneces-
sary directions of variations are added, increasing the hy-
pothesis search space. This study shows the validity of the
low-rank assumption and illustrates how the unknown dp
can be recovered through cross-validation.

5.7. Parameter estimation

In Figure 4a (Left), we visualize on LV the learned con-
text vectors ξe (Red) and the system parameters pe (Black),
∀e ∈ Etr ∪ Ead. We observe empirically a linear bijection
between these two sets of vectors. Such a correspondence
being learned on the training environments, we can use the
correspondence to verify if it still applies to the new adap-
tation environments. Said otherwise, we can check if our
model is able to infer the true parameters for new environ-
ments. We evaluate in Table 3 the parameter estimation
MAPE over LV, GS and NS. Figure 4 displays estimated
parameters along estimation MAPE for LV and NS. This
visualization is provided for GS in Figure 10 (Appendix I).
Experimentally, we observe low MAPE inside the convex-
hull of training environments and even outside it. This
shows that CoDA identifies accurately the unknown system
parameters pe with little supervision.

We justify these empirical observations theoretically in
Proposition 3 under the conditions in Assumption 1:
Assumption 1. (a) the dynamics in F are linear w.r.t. in-
puts and system parameters, (b) the dynamics model g and
hypernetwork A are linear, (c) ∀e ∈ E , the system parame-
ters of fe, pe ∈ Rdp , are unique, (d) the dimension of con-
text vectors dξ is fixed to dp, (e) the system parameters pi
of dynamic fi ∈ B, where B is a basis of F , are known.
Proposition 3 (Identification under linearity. Proof in Ap-
pendix C). Under Assumption 1, system parameters are
perfectly identified on new environments if the dynamics
model g and hypernetworkA satisfy ∀fi ∈ B, gA(pi) = fi.

Intuitively, Proposition 3 says that given some observations
representative of the degrees of variation of the data (a ba-
sis of F) and given the system parameters for these ob-
servations (condition (d) in Assumption 1), we are guaran-
teed to recover the parameters of new environments for a
family systems. This strong guarantee requires strong con-
ditions described in Assumption 1. (a), (b) state that the
systems should be linear w.r.t. inputs and that the dynam-
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Figure 4. Parameter estimation with CoDA-ℓ1 in new adaptation
environments on LV (a) and NS (b). On LV, we visualize, on the
left, context vectors ξ (red) and true parameters (β, δ) (black). On
other figures, we visualize estimated parameters with correspond-
ing estimation MAPE (↓). • are training environments Etr with
known parameters. - - delimits the convex hull of Etr.

Table 3. Parameter estimation MAPE (↓) for CoDA-ℓ1 on LV
(#Etr = 9), GS (#Etr = 4) and NS (#Etr = 5).

IN-CONVEX-HULL OUT-OF-CONVEX-HULL OVERALL

MAPE (%) #Ead MAPE (%) #Ead MAPE (%)

LV 0.15±0.11 625 0.73±1.33 1976 0.59±1.33
GS 0.37±0.25 625 0.74±0.67 1976 0.65±0.62
NS 0.10±0.08 40 0.51±0.35 41 0.30±0.33

ics model should be linear too. Linearity of the hypernet-
work is not an issue as detailed in Section 3.3. (c) applies
to several real-world systems used in our experiments (cf.
Appendix C lemmas 1 and 2). (d) is not restrictive as we
showed that dp is recovered through cross-validation (Sec-
tion 5.5). We propose an extension of Proposition 3 to non-
linear systems w.r.t. inputs and nonlinear dynamics model
g in Appendix C Proposition 4. This alleviates the linearity
assumption in (a), (b) and fits our experimental setting.

6. Related Work
We review OoD, Multi-Task Learning (MTL) and meta-
learning methods and extensions to dynamical systems.

Learning in multiple environments OoD methods ex-
tend the ERM objective to learn domain invariants e.g. via
robust optimization (Sagawa et al., 2020) or Invariant Risk
Minimization (IRM) (Arjovsky et al., 2019; Krueger et al.,
2021). However, they are not adapted to our problem as an
unique model is learned. CoDA is closer to meta-learning

and MTL. A standard meta-learning approach is gradient-
based meta-learning (GBML), which learns a model ini-
tialisation through bi-level optimization. GBML can then
adapt to a new task with few gradient steps. The standard
GBML method is MAML (Finn et al., 2017), extended in
various work. ANIL (Raghu et al., 2020) restricts meta-
learning to the last layer of a classifier while other work
improve adaptation by preconditioning the gradient (Lee &
Choi, 2018; Flennerhag et al., 2020; Park et al., 2019) e.g.
Meta-SGD (Li et al., 2017) learns dimension-wise inner-
loop learning rates. Contextual meta-learning approaches
in Zintgraf et al. (2019); Garnelo et al. (2018) partition pa-
rameters into context parameters, adapted on each task, and
meta-trained parameters, shared across tasks. CoDA fol-
lows the same objective of learning a low-dimensional rep-
resentation of each task but generalizes these approaches
with hypernetworks. For MTL, a standard approach is
hard-parameter sharing which shares earlier layers of the
network (Caruana, 1997). Several extensions were pro-
posed to learn more efficiently from a set of related tasks
(Rebuffi et al., 2017; 2018). Yet, MTL does not address
adaptation to new tasks, which is the focus of CoDA. Some
extensions have also considered this problem, mainly for
classification (Wang et al., 2021a; Requeima et al., 2019).

Generalization for dynamical systems Only few work
have considered generalization for dynamical systems.
LEADS (Yin et al., 2021a) is a MTL approach that per-
forms adaptation in functional space. CoDA operates in
parameter space, making adaptation more expressive and
efficient, and scales better with the number of environ-
ments as it does not require training a full new network
per environment as LEADS does. A second work is
DyAd (Wang et al., 2021c), a context-aware meta-learning
method. DyAd adapts the dynamics model by decoding
a time-invariant context, obtained by encoding observed
states. However, unlike CoDA, DyAd uses weak supervi-
sion obtained from physics quantities to supervise the en-
coder, which may not always be possible. Moreover, it per-
forms AdaIN modulation (instance normalization + FiLM),
a particular case of hypernetwork decoding, which per-
formed worse than CoDA in our experiments.

7. Conclusion
We introduced CoDA, a new framework to learn context-
informed data-driven dynamics models on multiple envi-
ronments. CoDA generalizes with little retraining and few
data to new related physical systems and outperforms prior
methods on several real-world nonlinear dynamics. Many
promising applications of CoDA are possible, notably for
spatiotemporal problems, e.g. partially observed systems,
reinforcement learning, or NN-based simulation.
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A. Discussion
We discuss in more details the originality and differ-
ences of CoDA w.r.t. several Multi-Task Learning (MTL)
and gradient-based or contextual meta-learning methods
illustrated in Figure 5. We consider CAVIA (Zintgraf
et al., 2019), MAML (Finn et al., 2017), ANIL (Raghu
et al., 2020), hard-parameter sharing MTL (Caruana, 1997;
Ruder, 2017), LEADS (Yin et al., 2021a).

A.1. Adaptation rule

We compare the adaptation rule in Eq. (4) w.r.t. these work.

GBML Given k gradient steps, MAML defines

θe = θc + (−η
k∑
i=0

∇θL(θei ,De)) (12)

where

{
θei+1 = θei − η∇θL(θei ,De) i > 0

θe0 = θc i = 0

With δθe ≜ −η
∑k
i=0∇θL(θei ,De), Eq. (4) thus includes

MAML. ANIL and related GBML methods (Lee et al.,
2019; Bertinetto et al., 2019) restrict Eq. (12) to parameters
of the final layer, while remaining parameters are shared.

MTL MTL models can be identified to Eq. (12). They fix
θc ≜ 0, removing the ability of performing fast adaptation
as parameters are retrained from scratch instead of being
initialized to θc. Hard-parameter sharing MTL restricts the
sum in Eq. (12) to the final layer, as ANIL. LEADS sums
the outputs of a shared and an environment specific net-
work, thus splits parameters into two independent blocks
that do not share connections.

A.2. Decoding for context-informed adaptation

We show that conditioning strategies in contextual meta-
learning for decoding context vectors ξe into δθe are a spe-
cial case of hypernetwork-decoding. The two main ap-
proaches are conditioning via concatenation and condition-
ing via feature modulation a.k.a. FiLM (Perez et al., 2018).

A.2.1. CONDITIONING VIA CONCATENATION

We show that conditioning via concatenation is equivalent
to a linear hypernetwork Aϕ : ξe 7→ Wξe + θc with ϕ =

✓c✓c

�✓e�✓e

+
utut due

t/dtdue
t/dt

(a)
CAVIA-Concat

✓c✓c

�✓e�✓e
+

utut due
t/dtdue
t/dt

(c)
ANIL

✓c✓c

�✓e�✓e + + + +
utut due

t/dtdue
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(b)
MAML

(e)
LEADS ✓c✓c

�✓e�✓e
utut due

t/dtdue
t/dt

(f)
CoDA ✓c✓c

�✓e�✓e
+

utut due
t/dtdue
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utut due
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MTL
(hard sharing)

+ + +

+

Figure 5. Illustration of representative baselines for multi-
environment learning. Shared parameters are blue, environment-
specific parameters are red. (a) CAVIA-Concat acts upon the bias
of the first layer with conditioning via concatenation. (b) MAML
acts upon all parameters without penalization nor prior structure
information. (c) ANIL restricts meta-learning to the final layer.
(d) Hard-sharing MTL train the final layer from scratch, while the
remaining is a hard-shared. (e) LEADS sums the output of a com-
mon and a environment-specific network. (f) CoDA acts upon a
subspace of the parameter space with a locality constraint.

{θc,W} that only predicts the bias of the first layer of gθ.

We assume that gθ has N layers and analyze the output of
the first layer of gθ, omitting the nonlinearity, when the in-
put x ∈ Rdx in an environment e ∈ E is concatenated to a
context vector ξe ∈ Rdξ . We denote x∥ξe the concatenated
vector, nh the number of hidden units of the first layer,
W 1 ∈ Rnh×(dx+dξ) and b1 ∈ Rnh the weight matrix and
bias term of the first layer, W 2, · · · ,WN and b2, · · · , bN
those of the following layers. The output of the first layer is

y1 =W 1 · x∥ξe + b1

We split W 1 along rows into two weight matrices, W 1
x ∈

Rnh×dx and W 1
ξ ∈ Rnh×dξ s.t.

y1 =W 1
x · x+W 1

ξ · ξe + b1

b1ξ ≜ W 1
ξ · ξe + b1 does not depend on x and corresponds

to an environment-specific bias. Thus, concatenation is in-
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cluded in Eq. (4) when

θc ≜ {W 1
x , b

1,W 2, b2, · · · ,WN , bN}
δθe ≜ { 0 , b1ξ , 0 , 0 , · · · , 0 , 0}

where δθe is decoded via a hypernetwork with parameters
{θc,W ≜ (0,W 1

ξ , 0, · · · , 0)}.

A.2.2. CONDITIONING VIA FEATURE MODULATION

We show that conditioning via FiLM is equivalent to a lin-
ear hypernetwork Aϕ : ξe 7→Wξe + θc with ϕ = {θc,W}
that only predicts the batch norm (BN) statistics of gθ.

For simplicity, we focus on a single BN layer and denote
{hi}Mi=1, M feature maps output by preceding convolu-
tional layers. These feature maps are first normalized then
rescaled with an affine transformation. Rescaling is similar
to a FiLM layer that transforms linearly {hi}Mi=1 with:

∀i ∈ {1, · · · ,M},FiLM(hi) = γi ⊙ hi + β

where γ, β ∈ RM are output by a NN fψ conditioned on
the context vectors ξe i.e. [γ, β] = fψ(ξ

e). In general, fψ is
linear s.t. fψ(ξe) ≜ Wξξ

e + bξ, with ψ = {Wξ, bξ}. Then
γ =W γ

ξ ξ
e + bγξ , β =W β

ξ ξ
e + bβξ .

Thus, for this layer, modulation is included in Eq. (4) when

δθe ≜Wξe = {W γ
ξ ξ

e,W β
ξ ξ

e}

θc ≜ bξ = {bγξ , b
β
ξ }

where δθe is decoded via hypernetwork fψ ≜ Aϕ with pa-
rameters ϕ = {θc ≜ bξ,W ≜Wξ}.

B. Proofs
Proposition 2. Given a class of linearly parametrized dy-
namics F with dp varying parameters, ∀θc ∈ Rdθ , sub-
space Gθc in Definition 1 is low-dimensional and satisfies
dim(Gθc) ≤ dp ≪ dθ.

Proof. We define the linear mapping ψ : p ∈ Rdp → f ∈
F from parameters to dynamics s.t. ψ(Rdp) = F . Given
this linear mapping, we first prove the following lemma:
dim(F) ≤ dp. The proof is based on surjectivity of ψ
onto F , given by definition. We define {bi}

dp
i=1 a basis of

Rdp . Given f ∈ F , ∃p ∈ Rdp , ψ(p) = f . We note p =∑dp
i=1 λibi where ∀i, λi ∈ R. Then ψ(p) =

∑dp
i=1 λiψ(bi).

We extract a basis from {ψ(bi)}
dp
i=1 and denote df ≤ dp the

number of elements in this basis. This basis forms a basis
of F i.e. df = dim(F) ≤ dp.

Now, given fe ∈ F and θ ∈ Rdθ ,

L(θ,De) ≜ Ex∈De∥(fe − gθ)(x)∥22= ∥fe − gθ∥22

The gradient of L(θ,De) is then

∇θL(θ,De) = −2
(
dgθ
dθ

)⊤

(fe − gθ)

where the adjoint of a linear map h is denoted h⊤. f 7→
−2

(
dgθ
dθ

)⊤
f is a linear map as θ 7→ dgθ

dθ is linear (dif-
ferential of gθ) and the adjoint preserves linearity, s.t.
dimSpan({∇θL(θ,De)}e∈E) ≤ dim(F) ≤ dp.

Proposition 1. Given {θc,W} fixed, if ∥·∥ = ℓ2,
then Eq. (8) is quadratic. If λ′W⊤W or H̄e(θc) =
W⊤∇2

θL(θc,De)W are invertible then H̄e(θc)+λ′W⊤W
is invertible except for a finite number of λ′ values. The
problem in Eq. (8) is then also convex and admits an unique
solution, {ξe⋆}e∈Ead . With λ′ ≜ 2λ,

ξe∗ = −
(
H̄e(θc) + λ′W⊤W

)−1

W⊤∇θL(θc,De)

H̄e(θc)+ λ′W⊤W is invertible ∀λ′ except a finite number
of values if H̄e(θc) or λ′W⊤W is invertible.

Proof. When ∥·∥= ℓ2, we consider the following second
order Taylor expansion of Lreg(θ,De) = L(θ,De)+λ∥θ−
θc∥22 at θc, where δθe = θ − θc =Wξe.

Lreg(θ
c + δθe,De) = L(θc,De) +∇θL(θc,De)⊤δθe+

1

2
δθe⊤

(
∇2
θL(θc,De) + 2λId

)
δθe + o(∥δθe∥32) (13)

With δθe =Wξe, we expand Eq. (13) into

Lreg(θ
c+Wξe,De) = L(θc,De)+

(
W⊤∇θL(θc,De)

)⊤
ξe+

1

2
ξe⊤

(
W⊤∇2

θL(θc,De)W+2λW⊤W
)
ξe+o(∥δθe∥32)

i.e. with H̄e(θc) =W⊤∇2
θL(θc,De)W and λ′ = 2λ

Lreg(θ
c+Wξe,De) = L(θc,De)+

(
W⊤∇θL(θc,De)

)⊤
ξe

+
1

2
ξe⊤

(
H̄e(θc) + λ′W⊤W

)
ξe + o(∥δθe∥32) (14)

Eq. (14) is quadratic. If H̄e(θc) + λ′W⊤W is invertible,
then the problem is also convex with unique solution

ξe∗ = −
(
H̄e(θc) + λ′W⊤W

)−1

W⊤∇θL(θc,De)

H̄e(θc) and λ′W⊤W are two square matrices. The ap-
plication p : λ′ 7→ det(H̄e(θc) + λ′W⊤W ) is well-
defined and forms a continuous polynomial. Thus either it
equals zero or it has a finite number of roots. If H̄e(θc) or
λ′W⊤W is invertible, then p(0) = det(H̄e(θc)) ̸= 0 or
p(∞) ∼ det(λ′W⊤W ) ̸= 0. Thus p ̸= 0 has a finite num-
ber of roots i.e. H̄e(θc)+λ′W⊤W is invertible ∀λ′ except a
finite number of values corresponding to the roots of p.



Generalizing to New Physical Systems via Context-Informed Dynamics Model: Supplementary Material

C. System parameter estimation
We show in Proposition 3 that parameters of new systems
can be recovered under Assumption 1.

Proposition 3. Under Assumption 1, system parameters
are perfectly identified on new environments if the model g
and hypernetwork A satisfy ∀fi ∈ B, gA(pi) = fi.

Proof. We define the linear mapping ψ : p ∈ Rdp →
f ∈ F from parameters to dynamics s.t. ψ(Rdp) = F
(Assumption 1 (a)). Unicity of parameters (Assumption 1
(c)) implies that ψ is bijective with inverse ψ−1, thus
dim(F) = dim(Rdp) = dp. Given a basis B = {fi}

dp
i=1

of F , we denote pi = ψ−1(fi). We fix g,A s.t. ∀i ∈
{1, ..., dp}, gA(pi) = fi = ψ(pi). This is possible as fi and
g are linear w.r.t. inputs (Assumption 1 (a) and (b)) and pi
are known (Assumption 1 (e)).

∀i ∈ {1, ..., dp}, fi ∈ Im(gA(·)), thus F ⊂ Im(gA(·))
i.e. dp ≤ dim(Im(gA(·))). g,A are linear (Assump-
tion 1 (b)), thus gA(·) is linear with inputs in Rdξ . Then,
dim(Im(gA(·))) ≤ dξ and dp ≤ dim(Im(gA(·))) ≤ dξ.
dξ = dp (Assumption 1 (d)) i.e. dim(Im(gA(·))) = dp. As
F ⊂ Im(gA(·)), this implies that F = Im(gA(·)) i.e. gA(·)
is surjective onto F . As dim(F) = dξ, gA(·) is bijective.

By bijectivity of ψ, {pi}
dp
i=1 forms a basis of Rdp . gA(·)

and ψ map this basis to the same basis {fi}
dp
i=1 of F . As

both mappings are bijective, this implies that gA(·) = ψ(·).
This means that ∀e ∈ E , gA−1(fe) = ψ−1(fe) i.e. system
parameters pe are recovered.

Proposition 4 (Extension to nonlinear dynamics). For lin-
early parametrized systems, non-linear w.r.t. inputs and
nonlinear dynamics model gθ where θ is output by a lin-
ear hypernetwork A, ∃α > 0 s.t. system parameters are
perfectly identified on all environments e ∈ E that satisfy
∥ξe∥≤ α, if ∀i ∈ J1, dpK, gA(α

pi
∥pi∥

) = fi.

Proof. On environment e ∈ E , gθe is differentiable w.r.t.
θe = A(ξe) = θc +Wξe ∈ Rdθ . We perform a first order
Taylor expansion of gA(·) around 0. We note α > 0, s.t.
∀ξe ∈ Rdξ that satisfy ∥ξe∥< α, we have gθe = gθc +
∇θgθcWξe. gA(·) is then linear in the neighborhood of 0
defined by α. ∀i, α pi

∥pi∥ belongs to this neighborhood s.t.
the proof of Proposition 3 applies to this neighborhood if
∀i ∈ J1, dpK, gA(α

pi
∥pi∥

) = fi.

We now show the validity of the unicity condition (As-
sumption 1c) for two linearly parametrized systems.

Lemma 1. There is an unique set of parameters in R4 for
a Lotka-Volterra (LV) system.

Proof.

With ψ : c ≜ (α, β, δ, γ) 7→
[( x

y

)
7→

( αx− βxy
δxy − γy

)]
a surjective linear mapping from R4 to F (all LV sys-
tems are parametrized). Injectivity of ψ i.e. ψ(c1) =
ψ(c2) ⇐⇒ c1 = c2 will imply bijectivity i.e. unicity of
parameters for a LV system. As ψ is linear, injectivity is
equivalent to ψ(c) = 0 ⇐⇒ c = 0, shown below:

ψ(c) = 0 ⇐⇒ ∀
( x
y

)
,
( αx− βxy
δxy − γy

)
=

( 0
0

)
⇐⇒ ∀

( x
y

)
,
( x(α− βy)

(δx− γ)y
)
=

( 0
0

)
⇐⇒ ∀

(
x
y

)
,
(
α− βy
δx− γ

)
=

(
0
0

)
⇐⇒ c = (α, β, δ, γ) = (0, 0, 0, 0)

Lemma 2. There is an unique set of parameters in Rd+1,
where d is the grid size, for a Navier-Stokes (NS) system.

Proof. With ψ : c ≜ (ν, f) 7→
[
w 7→ −v∇w+ν∆w+f

]
,

a surjective linear mapping from Rd+1 toF (all NS systems
are parametrized), bijectivity of ψ is induced by injectivity
i.e. ψ(c1) = ψ(c2) ⇐⇒ c1 = c2, shown below:

ψ(c1) = ψ(c2)

⇐⇒ ∀w,−v∇w + ν1∆w + f1 = −v∇w + ν2∆w + f2

⇐⇒ ∀w, (ν1 − ν2)∆w = −(f1 − f2)
⇐⇒ (ν1, f1) = (ν2, f2) ⇐⇒ c1 = c2

D. Low-rank assumption
When the systems are nonlinearly parametrized, we show
empirically with Figure 6 that the low-rank assumption is
still reasonable for two different systems.

Glycolitic-Oscillator (GO) We consider the Glycolitic-
Oscillator system (GO), described in Appendix F.1, which
is nonlinear w.r.t. K1. We vary parameters k1,K1 in
Eq. (16) across environments. We observe in Figure 6
(Left, Middle) that there are three main gradient directions
with SVD. The first is the most significant one while the
second and third ones are orders of magnitude smaller.

Sinusoidal (Sin) We consider a sinusoidal family of
functions S(n) = {f : R→ R|f(x) =

∑N
i=1 λi sin(ωix+

ϕi)} (Sin). We sample 20 environments that correspond
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Figure 6. Ranked singular values of the gradients across environments Etr, Gθc for CoDA-ℓ1. On the Left and Middle, we consider GO
where k1 and K1 vary across E . On the right, we consider Sin.

each to different amplitudes (uniformly sampled in [0, 1]),
frequencies (uniformly sampled in [0, 10])) and phases
(uniformly sampled in [0, 3.14]). We depict in Figure 6
(Right) the evaluation of the singular values at initializa-
tion. Figure 6 (Right) shows that the number of directions
to consider for convergence is small and that a single direc-
tion accounts for a significant amount of the variance in the
gradients. This corroborates the low-rank assumption.

E. Locality constraint
We derive the upper-bounds to ∥·∥ for two variations.

∥·∥ = ℓ2: we apply triangle inequality to obtain Ω = ℓ22

∥Wξe∥22 ≤ ∥W∥22∥ξe∥22

∥·∥ = ℓ1: we apply Cauchy-Schwartz inequality to obtain
Ω(W ) = ℓ1,2(W ) ≜

∑dθ
i=1∥Wi,:∥2

∥Wξe∥1 =

dθ∑
i=1

|Wi,:ξ
e| ≤ ∥ξe∥2

dθ∑
i=1

∥Wi,:∥2

Eq. (11) minimizes the log of the above upper-bounds.

F. Experimental settings
We present in Appendix F.1 the equations and the data gen-
eration specificities for all considered dynamical systems.

F.1. Dynamical Systems

Lotka-Volterra (LV, Lotka, 1925) The system describes
the interaction between a prey-predator pair in an ecosys-
tem, formalized into the following ODE:

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(15)

where x, y are respectively the quantity of the prey and the
predator, α, β, δ, γ define how two species interact.

We generate trajectories on a temporal grid with ∆t = 0.5
and temporal horizon T = 10. We sample on each environ-
ment N = 4 initial conditions for training from a uniform
distribution p(X0) = Unif([1, 3]2). We sample for eval-
uation 32 initial conditions from p(X0). Across environ-
ments, α = 0.5, γ = 0.5. For training, we consider #Etr =
9 environments with parameters β, δ ∈ {0.5, 0.75, 1.0}2.
For adaptation, we consider #Ead = 4 environments with
parameters β, δ ∈ {0.625, 1.125}2.

Glycolytic-Oscillator (GO, Daniels & Nemenman, 2015)
GO describes yeast glycolysis dynamics with the ODE:

dS1

dt
= J0 −

k1S1S6

1 + (1/Kq
1)S

q
6

dS2

dt
= 2

k1S1S6

1 + (1/Kq
1)S

q
6

− k2S2(N − S5)− k6S2S5

dS3

dt
= k2S2(N − S5)− k3S3(A− S6)

dS4

dt
= k3S3(A− S6)− k4S4S5 − κ(S4 − S7)

dS5

dt
= k2S2(N − S5)− k4S4S5 − k6S2S5

dS6

dt
= −2 k1S1S6

1 + (1/Kq
1)S

q
6

+ 2k3S3(A− S6)− k5S6

dS7

dt
= ψκ(S4 − S7)− kS7

(16)
where S1, S2, S3, S4, S5, S6, S7 represent the concentra-
tions of 7 biochemical species. We generate trajectories
on a temporal grid with ∆t = 0.05 and temporal hori-
zon T = 1. We sample on each environment N =
32 initial conditions for training from a uniform distri-
bution p(X0) defined in Table 2 in (Daniels & Nemen-
man, 2015). We sample for adaptation 1 initial condi-
tion from p(X0). Across environments, J0 = 2.5, k2 =
6, k3 = 16, k4 = 100, k5 = 1.28, k6 = 12, q = 4, N =
1, A = 4, κ = 13, ψ = 0.1, k = 1.8. For training, we
consider #Etr = 9 environments with parameters k1 ∈
{100, 90, 80},K1 ∈ {1, 0.75, 0.5}. For adaptation, we
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consider #Ead = 4 environments with parameters k1 ∈
{85, 95},K1 ∈ {0.625, 0.875}.

Gray-Scott (GS, Pearson, 1993) The PDE descibes a
reaction-diffusion system with complex spatiotemporal
patterns through the following 2D PDE:

∂u

∂t
= Du∆u− uv2 + F (1− u)

∂v

∂t
= Dv∆v + uv2 − (F + k)v

(17)

where u, v represent the concentrations of two chemical
components in the spatial domain S with periodic bound-
ary conditions. Du, Dv denote the diffusion coefficients re-
spectively for u, v and F, k are the reaction parameters.

We generate trajectories on a temporal grid with ∆t = 40
and temporal horizon T = 400. S is a 2D space of di-
mension 32×32 with spatial resolution of ∆s = 2. We de-
fine initial conditions (u0, v0) ∼ p(X0) by uniformly sam-
pling three two-by-two squares in S. These squares trig-
ger the reactions. (u0, v0) = (1 − ϵ, ϵ) with ϵ = 0.05 in-
side the squares and (u0, v0) = (0, 1) outside the squares.
We sample on each environment N = 1 initial conditions
for training. We sample for adaptation 1 initial condition.
Across environments, Du = 0.2097, Dv = 0.105. For
training, we consider #Etr = 4 environments with param-
eters F ∈ {0.30, 0.39}, k ∈ {0.058, 0.062}. For adapta-
tion, we consider #Ead = 4 environments with parameters
F ∈ {0.33, 0.36}, k ∈ {0.59, 0.61}.

Navier-Stokes (NS, Stokes, 1851) NS describes the dy-
namics of incompressible flows with the 2D PDE:

∂w

∂t
= −v∇w + ν∆w + f

∇v = 0

w = ∇× v

(18)

where v is the velocity field, w = ∇ × v is the vor-
ticity. Both v, w lie in a spatial domain S with periodic
boundary conditions, ν is the viscosity and f is the con-
stant forcing term in the domain S. We generate trajecto-
ries on a temporal grid with ∆t = 1 and temporal horizon
T = 10. S is a 2D space of dimension 32×32 with spa-
tial resolution of ∆s = 1. We sample on each environ-
ment N = 16 initial conditions for training from p(X0)
as in Li et al. (2021). We sample for adaptation 1 initial
condition from p(X0). Across environments, f(X,Y ) =
0.1(sin(2π(X+Y ))+cos(2π(X+Y ))). For training, we
consider #Etr = 5 environments with parameters ν ∈ {8 ·
10−4, 9 ·10−4, 1.0 ·10−3, 1.1 ·10−3, 1.2 ·10−3}. For adap-
tation, we consider #Ead = 4 environments with parame-
ters ν ∈ {8.5 · 10−4, 9.5 · 10−4, 1.05 · 10−3, 1.15 · 10−3}.

F.2. Implementation and hyperparameters

Architecture and solver We implement the dynamics
model gθ with the following architectures:

• for LV and GO, 4-layer MLPs with 64-dimension hid-
den layers

• for GS, 4-layer ConvNet with 64-channel hidden lay-
ers, and 3× 3 convolution kernels

• for GS and a Fourier Neural Operator (Li et al., 2021)
with 4 spectral convolution layers for NS. The number
of frequency modes is 12 and the hidden layers have
10 dimensions.

We apply Swish activation (Ramachandran et al., 2018) on
all architectures and RK4 solver for LV, GS, GO and Euler
solver for NS. The hypernet A is a single affine layer NN.

Optimizer We use the Adam optimizer (Kingma & Ba,
2015) with learning rate 10−3 and (β1, β2) = (0.9, 0.999).
We apply early stopping. All experiments are performed
with a single NVIDIA Titan Xp GPU on an internal clus-
ter. For GBML methods, we choose a single inner-loop
/ outer-loop step to maintain low running times. We dis-
tribute training by batching together predictions across tra-
jectories to reduce running time. States across batch ele-
ments are concatenated.

Hyperparameters We define hyperparameters for the
following models: (a) CoDA: • LV: λξ = 10−4,
λℓ1 = 10−6, λℓ2 = 10−5 • GO: λξ = 10−3, λℓ1 = 10−7,
λℓ2 = 10−7 • GS: λξ = 10−2, λℓ1 = 10−5, λℓ2 = 10−5

• NS: λξ = 10−3, λℓ1 = 2 · 10−3, λℓ2 = 2 · 10−3

(b) LEADS: we use the same parameters as Yin et al.
(2021a). (c) GBML: the outer-loop learning rate is 10−3,
we apply 1-step inner-loop update for training and adap-
tation, and the inner-loop learning rate for each system is:
• LV: 0.1 • GO: 0.01 • GS: 10−3 • NS: 10−3. These val-
ues are also used to initialize the per-parameter inner-loop
learning rate in Meta-SGD.

G. Trajectory prediction visualization
We visualize in Figures 7 and 8 predicted trajectories
by MAML, LEADS, CAVIA-Concat and CoDA-ℓ1 along
ground truth trajectories on the PDE systems NS and GS.
We consider a new test trajectory on an Adaptation envi-
ronment e ∈ Ead with parameters defined in the caption.

H. Loss landscape visualization
We visualize loss landscapes of CoDA, ERM in Figure 9.
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Figure 7. Adaptation to new GS system - (F, k) = (0.033, 0.061)
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Figure 8. Adaptation to new NS system - νe = 1.15 · 10−3
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Figure 9. Loss landscapes around θc ( ×) for 5 training environments on the Lotka-Volterra ODE system for ERM and CoDA. The local
optimum θe⋆ is indicated with →. CoDA’s loss (Row 1) is projected onto subspace W , with dξ = 2. ERM’s loss (Row 2) is projected
onto the two principal directions of the gradients computed with Singular Value Decomposition.

I. System parameter estimation
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Figure 10. Parameter estimation MAPE (↓) and estimated pa-
rameters on GS over environments defined by (F, k) ∈
[0.0225, 0.0435]× [0.056, 0.064]


