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Training load responses modelling 
and model generalisation in elite 
sports
Frank Imbach1,2,3*, Stephane Perrey2, Romain Chailan1, Thibaut Meline3,4 & Robin Candau3

This study aims to provide a transferable methodology in the context of sport performance modelling, 
with a special focus to the generalisation of models. Data were collected from seven elite Short track 
speed skaters over a three months training period. In order to account for training load accumulation 
over sessions, cumulative responses to training were modelled by impulse, serial and bi-exponential 
responses functions. The variable dose-response (DR) model was compared to elastic net (ENET), 
principal component regression (PCR) and random forest (RF) models, while using cross-validation 
within a time-series framework. ENET, PCR and RF models were fitted either individually ( MI ) or on 
the whole group of athletes ( MG ). Root mean square error criterion was used to assess performances 
of models. ENET and PCR models provided a significant greater generalisation ability than the DR 
model ( p = 0.018 , p < 0.001 , p = 0.004 and p < 0.001 for ENETI , ENETG , PCRI and PCRG , respectively). 
Only ENETG and RFG were significantly more accurate in prediction than DR ( p < 0.001 and p < 0.012 ). 
In conclusion, ENET achieved greater generalisation and predictive accuracy performances. Thus, 
building and evaluating models within a generalisation enhancing procedure is a prerequisite for any 
predictive modelling.

The relationship between training load and performance in sports has been studied since decades. A key point 
of the performance optimisation is the training prescription delivered by coaches, physical trainers or the athlete 
himself. Such a programming involves both various modalities of exercise (i.e. the type of training regarding to 
the physical quality required to perform) and adjusted training load. Training load is usually dissociated into 
(i) an external load defined by the work completed by the athlete, independently of his internal characteristics1 
and (ii) an internal load corresponding to the psycho-physiological stresses imposed on the athlete in response 
to the external load2.

Models of training load responses emerged with the impulse response model promoted by Banister et al.3 in 
order to describe human adaptations to training loads. Afterwards, a simplified version of the original model built 
on a two-way antagonistic first order transfer function (fitness and fatigue components, so called Fitness–Fatigue 
model) has showed a large interest to describe the training process4–8. However, several limitations regarding to 
the model stability, parameter interpretability, ill-conditioning and predictive accuracy were reported9,10. Such 
models are considered as time-varying linear models according to their component structure11 and therefore, 
may require a sufficient number of observations (i.e. performances) to correctly estimate relationships between 
training load and performance9,12. To overcome some of the limits, refinements of the former impulse response 
model were proposed by using a recursive algorithm in order to estimate parameters according to each model 
input (i.e. the training load)11 and by introducing variations in the fatigue response to a single training bout13. 
Further adaptations to the Fitness–Fatigue model were also developed with the aim of improving both goodness-
of-fit and prediction accuracy14,15. Nonetheless, impulse response models sought to mitigate the underpinning 
physiological processes involved by exercise into a small number of entities for predicting training effects in both 
endurance (running, cycling, skiing and swimming)6,11,16–21 and more complex (hammer throw, gymnastic and 
judo)8,22,23 activities. This simplistic approach might prevent from catching the appropriate relationship between 
training and performance, and finally impair accuracy of predictions24. Moreover, with the exception of the 
one from Matabuena et al.15, these models assume that the training effect is maximal by the end of the training 
session. This assumption is reasonable only for the negative component of the model (i.e. “Fatigue”), where its 
maximal value is taken immediately after the session. Regarding to the positive effects induced by training (i.e. 
“Fitness”), such a response is quite questionable since physiological adaptations are continuing from the end of 
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the exercise session. For instance, skeletal muscle adaptations to training described by increases in muscle mass, 
fiber shortening velocity and myosin ATPase activity modifications are known to be progressive (i.e. short to 
long term after-effects) rather than instantaneous25–27. Consequently, serial and bi-exponential functions were 
proposed to counteract these limitations and better describe training adaptations through exponential growth 
and decay functions, according to physiological responses in rats28.

A more statistical approach was used to investigate the effects of training load on performance by using prin-
cipal component analysis and linear mixed models on different time frames12. Such models infer parameters from 
all available data (i.e. combining subjects instead of by-subject model) but allow parameters to vary regarding the 
heterogeneity between athletes. The model being multivariate, the multi-faceted nature of the performance could 
be conserved by including psychological, nutritional and technical information as predictors12,16,18. However, 
authors did not consider the cumulative facet of daily training loads, where exponential and decay cumulative 
functions such as proposed by Candau et al.17 may be suitable for performance modelling.

Alternatives from computer sciences field were also used to clarify the training load - performance relation-
ship in a predictive aim. Most notably, machine learning approaches are usually focused on the generalisation 
of models (i.e. how accurately a model is able to predict outcome values for previously unseen data). Various 
approaches tend to maximise such a criterion. For instance, one can perform cross-validation (CV) procedures, 
where data are separated into training sets for parameters estimation and testing sets for prediction29. Such a 
procedure fosters the determination of optimal models, relatively to the family of models considered and regard-
ing to their ability for generalisation. In the same time, CV procedures allow to diagnose under- and over-fitting 
of the model. Underfitting commonly describes an inflexible model unable of capturing noteworthy regularities 
in a set of exemplary observations30. In contrast, overfitting represents an over-trained model, which tends to 
memorise each particular observation thus leading to high error rates when predicting on unknown data31. 
While aforementioned studies aimed to describe the training load - performance relationships by estimating 
model parameters and by testing the model on a single data set, generalisation of models cannot be ensured. 
This challenges their usefulness in a predictive application. On the other hand, modelling methodologies using 
CV procedures are the standard in a predictive aim rather than only being descriptive. To our knowledge, only 
a few recent studies modelled performances with Fitness–Fatigue models using a CV procedure10,32,33 and one 
separated data into two equals training and testing data sets respectively34. Ludwig et al.10 reported that optimis-
ing all parameters including the offset term makes the model prone to overfitting. Consequently, interpretations 
drawn from predictions as well as model parameters may be incorrect.

The physiological adaptations involved by exercise being complex, some authors investigated the relation-
ship between training and performance by using Artificial Neural Networks (ANN), non-linear machine 
learning models35,36. Despite low prediction errors reported (e.g. 0.05 seconds error over a 200m swimming 
performance35), the methodological consideration in their study mostly influenced by a small sample size and 
the “black-box” nature of ANN question their use in sport performance modelling9,37. Computer sciences offer 
plenty of machine learning models although being often summarised in ANN for athletic performance predic-
tion. Considering labelled athletic performances, powerful algorithms from supervised learning could be alterna-
tively considered for solving athletic performance modelling issues, either through a regression or a classification 
formulation of the problem. To cite a few, non-linear approaches such as Random Forest (RF) models account for 
the non-linear relationships between a target and a large set of predictors38 for making predictions. In a different 
way, linear models such as regularised linear regressions39,40 also proved their efficiency in high dimensionality 
and multicollinearity contexts. On this basis, both could be profitable for sport performance modelling purposes.

To date, not any model family (i.e. impulse response and physiological based, statistical and machine learning 
models) seems to be preferred for athletic performance prediction based on a data set, mainly due to a lack of 
evidence and confidence in training effect modelling and performance prediction accuracy. In addition, because 
generalisation ability is not systemically appraised, practical and physiological interpretations drawn from some 
models may be incorrect and at least should be taken with caution.

In order to elucidate the relationships between training loads and athletic performance in a predictive applica-
tion, we hypothesised that following a model selection, regularisation and dimension reduction methods would 
lead to a greater model generalisation capability than former impulse response models.

Aiming to prescribe an optimal training programming, sport practitioners need to understand the physi-
ological effects involved by each training session and its after-effects on athletic performance. Hence, this study 
aimed to provide a robust and transferable methodology relying on model generalisation in a context of sport 
performance modelling. We collected data from elite Short-track speed skaters, part of the National French team. 
To date, only a few studies have investigated relationships between training and performances in this sport41–43. 
From linear and non-linear modelling approaches, Knobbe et al.42 provided an interesting methodology around 
aggregation methods for delivering key and actionable features of training components. The authors investigated 
individual patterns that represent adaptations to training and that might provide insightful information for 
coaches, involved in training programming tasks. On another note, Meline et al.43 examined the dose-response 
relationship between training and performance through simulations of overloading and a few tapering strategies. 
The dose-response model from Busso13 appeared to be a valuable model for evaluating taper strategies and their 
potential effects on skating performance. However, a contribution mostly based on the model generalisation 
principle seems to be of interest by reinforcing the knowledge of athletic performance modelling in elite sports.

After having constructed an appropriate data set, we considered the variable dose-response model (DR)13 as 
a baseline regression framework and compared it to three models: a principal component regression (PCR), an 
Elastic net (ENET) regularised regression and a RF regression model. These models allow: 
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1.	 To present and discuss the help of regularisation and dimension reduction methods in regards of the gen-
eralisation concept.

2.	 To model athletic performances using robust models to the high dimensionality and multicollinearity and 
to investigate the key factors of the short-track speed skating performance.

Materials and methods
Participants.  Seven national elite Short-track speed skaters (mean age 22.7 ± 3.4 years old; 3 males, body 
mass of 71.4 ± 9.4 kg, and 4 females, body mass of 55.9 ± 3.9 kg) voluntary participated to the study. Each ath-
letes experienced the 2018 Olympic Winter Games in PyeongChang, South Korea ( n = 2 ) or were preparing the 
Olympics Games of Pekin, China ( n = 7 ). The whole team was trained by the same coach, responsible for train-
ing programming and data collection. Mean weekly volume of training was 16.6 ± 2.5 hours. Data were collected 
over a three months training period without any competition, interrupted by a two weeks break and beginning 
one month after resuming training for a new season. Participants were fully informed about data collection and 
written consent was obtained from them. The study was performed in agreement with the standards set by the 
declaration of Helsinki (2013) involving human subjects. The protocol was reviewed and approved by the local 
research Ethics Committee (EuroMov, University of Montpellier, France). The present retrospective study relied 
on the collected data without causing any changes in the training programming of athletes.

Data set.  Dependent variable: performance.  Participants performed each week standing start time trials 
( distance = 166.68meters equal 1.5 lap) after a standardised warm-up. At the finish line, timing gates system 
(Brower timing system, USA) recorded individual time trial performance in order to ensure a high standard of 
validity and reliability between measures44,45. A total of n = 248 performances were recorded for an average of 
35.4± 2.23 individual performances. The performance test being a gold standard for the assessment of accelera-
tion ability46, athletes were all familiar with it prior to the study.

In the sequel, let Y ⊂ R be the domain of definition of such a performance and Y ∈ Y the continuous 
random variable. In this context, each observation yj ∈ Y  can be referenced by both its athlete i and its day of 
realisation t as yi,t.

Independent variables.  Independent variables stem from various sources, which are summarised in Table 1. In 
the sequel, let X ⊂ R

d with d ∈ N be the domain of definition of the random variable X = [X1, . . . ,Xd] ∈ X . 
The variable X is thus defined as a vector composed of the independent variables detailed hereafter. First, {X1} 
refers to the raw training loads (TL, Fig. 1c), calculated from on-ice and off-ice training sessions (see details on 
Supplementary material Appendix 1). Then, {X2,X3} represent two aggregations of daily TL. Those aggregations 
come from the daily training loads w(t)—also known here as X1—convoluted to two transfer functions adapted 
from Philippe et al.28, which are denoted gimp(t) and gser(t).

The associated impulse response Gimp(t) reflects the acute response to exercise (e.g. fatigue). It is defined as

where τI is a short time constant equals to 3 days in this study (Fig. 1a). Respectively, the response Gser(t) 
describes a serial and bi-exponential function reflecting training adaptations over time. It is defined as

(1)Gimp(t) = e
−t
τI ,

(2)Gser(t) =
(

1− e
−t
τG
)

U + e
−(t−TD)

τD | U − 1 | , with U =

{

1 if t < TD
0 otherwise.

Table 1.   Summary of independent variables. The two aggregation methods (impulse ans serial cumulative 
responses) are defined in Eqs. (1) and (2).

Independent variables Xi Description Aggregation

Raw training load X1
Daily training load computed from TLice , TLRT , TLaer , TLRS , TLact (see Supplementary 
material Appendix 1) Daily recorded

Cumulative Training load X2 , X3 Daily computed from X1 values Impulse and serial cumulative responses

Rate of Perceived Exertion (RPE) X4 , X5 Borg category ratio (CR) 0–10 scale Impulse and serial cumulative responses

Averaged power X6 , X7 On-ice sessions Impulse and serial cumulative responses

Maximal power X8 , X9 On-ice sessions Impulse and serial cumulative responses

Relative intensity X10 , X11 On-ice sessions (see Supplementary material Appendix 1, Eq. S1) Impulse and serial cumulative responses

Session duration X12 , X13 All sessions, overall session duration Impulse and serial cumulative responses

Session density X14 , X15 All sessions, effective work only Impulse and serial cumulative responses

Ice quality X16 Subjective information quoted on a Borg 0–10 CR scale Recorded the day of performance

Rest X17 Rest between two consecutive sessions (days) Sum of rest days preceding the performance

Past performance X18 Significantly correlated past performancet−k with performancet Performance at dayt−k

Athlete X19 Athlete’s id
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Figure 1.   Cumulative daily training loads of a representative athlete following (a) the impulse response 
function ( X2 , Eq. 1) and (b) the serial bi-exponential response function ( X3 , Eq. 2). (c) illustrates the raw daily 
training loads X1 , expressed by w(t). In (a) and (b), dots represent daily values of the cumulative training load 
and vertical solid lines indicate occurrence of training sessions. Values are represented in arbitrary units (a.u).
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The time delay for the decay phase to begin only after the growth phase is given by the constant TD. Here, 
TD = 4τG . Both τG and τD are the time constants of respectively the growth phase and the decline phase with 
τG = 1 day and τD = 7 days (Fig. 1b). Note that the time constants τI , τG , τD were averaged and based on empirical 
knowledge and previous findings13. Hence, for a given athlete,

Note that the symbol ∗ denotes the convolution product.
Similarly, some characteristics components of each session were aggregated. This encompasses Rate of Per-

ceived Exertion (RPE) {X4,X5} , averaged power {X6,X7} , maximal power output {X8,X9} , relative intensity 
{X10,X11} , session duration {X12,X13} and session density {X14,X15} . Also, for each session ice quality {X16} and 
rest between two consecutive sessions {X17} were considered. Since some models may benefit from time through 
autocorrelated performances yi,t , the preceding performance yi,t−k with k = 1 was included as predictor, denoted 
{X18} . Finally, athlete {X19} was considered excepted for individually built models.

Applied to the observed data of this study a data set of n = 248 observations of performances associated with 
19 independent variables was obtained (see Table 1). To formalise, allowing that X × Y ∼ f  with f a function of 
density, the built data set is a sample S = {(xj , yj)}j≤n ∼ f n.

Modelling methodology.  Formally, the goal is to find a function h : X → Y  which minimises the gener-
alisation error

In practice the minimisation of R is unreachable. Instead, we get a sample set S = (xi , yi)i≤n ∈ X × Y  and note 
the empirical error as

The objective becomes to find the best estimate ĥ = argmin
h∈HRe(h) with H the class of function that we 

accept to consider.
Here, four family of models are evaluated in this context. With the exception of the DR, all models were 

individually and collectively computed ( hI and hG , respectively).

Reference: variable dose‑response.  The time-varying linear mathematical model developed by Busso13 was con-
sidered as the model of reference. Formally and according to the previously introduced notation, this model 
is a function h( busso) : X1 → Y  . It describes the training effects on performance over time, y(t), from the raw 
training loads X1 . TL are convoluted to a set of transfer functions gapt(t) and gfat(t) , relating respectively to the 
aptitude and to the fatigue impulse responses as

with τ1 and τ2 two time constants. Combined with the basic level of performance y∗ of the athlete, the modelled 
performance is

with k1 and k2(t) being gain terms. The later is related to the training doses by a second convolution to the 
transfer function

with τ3 a time constant. Since is defined as k2(t) = k3(w ∗ gfat’)(t) where k3 is a gain term, one may note that 
k2(t) increases proportionally to the training load and decay decreases exponentially from this new value. From 
discrete convolutions, the modelled performance can be rewritten as

with k2(l) = k3
∑l

m=1 w(m)e
−(l−m)

τ3 .
The five parameters of the model (i.e. k1 , k3 , τ1 , τ2 and τ3 ) are fitted by minimizing the residual sum of squares 

(RSS) between modelled and observed performances, such as

X2(t) =
(

w ∗ gimp

)

(t) =

t
∑

l=1

w(l)

(

e
−(t−l)

τI

)

, and

X3(t) =
(

w ∗ gser
)

(t) =

t
∑

l=1

w(l)

(

(

1− e
−(t−l)
τG

)

U + e
−(t−TD−l)

τD | U − 1 |

)

, with U =

{

1 if t < TD
0 otherwise.

R(h) = P(h(X) �= Y) = E[1[h(X) �= Y ]].

Re(h) =
1

n

n
∑

i

[1[h(xi) �= yi]].

gapt(t) = e
−t
τ1

gfat(t) = e
−t
τ2 ,

ŷ(busso)(t) = y∗ + k1(w ∗ gapt)(t)− ((k2w) ∗ gfat)(t) ,

gfat’(t) = e
−t
τ3 ,

ŷ(busso)(t) = y∗ + k1

t−1
∑

l=1

w(l)e
−(t−l)
τ1 −

t−1
∑

l=1

k2(l)w(l)e
−(t−l)
τ2 ,
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where t ∈ T being the day in which the performance is measured. A non-linear minimisation was employed 
according to a Newton-type algorithm47.

Unlike this model of reference, the next presented models take benefit from the augmented data space 
X∗ = X \X1.

Regularisation procedures.  Elastic net.   In highly dimensional contexts, multivariate linear regressions may 
lead to unsteady models by being excessively sensitive to the expanded space of solutions. To tackle this issue, 
cost functions penalising some parameters on account of correlated variables exist. On one side, Ridge penalisa-
tion reduces the space of possible functions by assigning a constraint to the parameters, thus minimising their 
amplitude to almost null values. On the other side, Least Absolute Shrinkage and Selection Operator (LASSO) 
penalisation has the capacity to fix parameters coefficient to null. The ENET regularisation combines both Ridge 
and LASSO penalisation39. Hence, the multivariate linear model h(enet) : X∗ → Y  is

with x ∈ X∗ the predictors, β ∈ R
d the parameters of the model and ǫt the error term. The regularisation stems 

from the optimisation of the objective

where α ∈ [0, 1] denotes the mixing parameter which defines the balance between the Ridge regularisation and 
the LASSO regularisation. � denotes the impact of the penalty with � → ∞ . For α = 0 and α = 1 , the model 
will use a ridge and a lasso penalisation, respectively. Thus, for α → 1 and a fixed value of � , the number of 
removed variables (null coefficients) increases with monotony from 0 to the LASSO most reduced model. The 
model was adjusted by hyper-parameters α and � during the model selection, being part of the CV process (as 
described below).

Principal component regression.   In this multivariate context with potential multicollinearity issues, principal 
component analysis aims to project the original data set from X∗ into a new space X̃∗ of orthogonal dimensions 
called principal components. These dimensions are built from linear combinations of the initial variables. One 
may use the principal components to regress the dependent variable: also known as Principal Components 
Regression (PCR). The regularisation is performed by using as regressors only the first principal components 
which retain the maximum of variance of the original data, by construction. In our study and according to the 
Kaiser’s rule48, p principal components with an eigenvalue higher than 1 were retained and further used in linear 
regression.

Such a model, h(pcr) : X̃∗ → Y , can be defined as a linear multivariate regression over principal components as

with x ∈ X̃∗ \{X̃∗
p+1, . . . , X̃∗

d} the predictors, β ∈ R
p the parameters of the model and ǫt the error term. In 

addition to being a regularisation technique by using a subset of principal components only, PCR also exerts a 
discrete shrinkage effect on the low variance components (the lower eigenvalue components), nullifying their 
contribution in the original regression model.

Random forest.  Random Forest model consists of a large number of regression trees that operate as an ensem-
ble. RF is random in two ways, (i) each tree is based on a random subset of observations and (ii) each split within 
each tree is created based on a random subset of candidate variables. The overall performance of the forest is 
defined by the average of predictions from the individual trees49. In this study, random subset of variables and 
number of trees were the two hyper-parameters for adjusting the model within the model selection. The model 
is a function h(rf) : X∗ → Y .

Time series cross‑validation and prediction.  Since we aim at predicting daily skating performances 
such as non-independent and identically distributed random variables, the time dependencies have to be 
accounted for in the cross-validation procedure. It ensures information from the future are not used to predict 
performances of the past. Hence, data were separated—respectively to the time index—into one training data 
set for time series CV (80% of the total data) and the remaining data for an unbiased model evaluation (evalu-
ation data set). In this procedure, a model selection occurs first with the search of hyper-parameters values that 
minimise the predictive model error over validation subsets. The model selection is detailed in Algorithm 1.

RSS =

T
∑

t=1

(ŷ(busso)(t)− y(t))2 ,

y
(enet)
t = xt

tβ + εt ,

min
β∈Rd

1

2
||y

(enet)
t − yt ||

2
2 + �

(

(1− α)||β||22 + α||β||1
)

,

y
(pcr)
t = x̃

t
tβ + εt ,
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Algorithm 1 iteratively evaluates a class of functions H , in which each function h(i) differs from its hyper-
parameters values. A time ordered data set S is partitioned into training and validation subsets ( Strain and Svalid , 
respectively). For each partition k with k ∈ {1, ...,K} , h(i) functions are fitted on the incremental Strain and evalu-
ated on the fixed Svalid subset that occurs after the last element of Strain . Once h(i) functions are evaluated on K 
partitions of S, a function h(i∗) that provides the lowest and averaged root mean square error (RMSE) among 
validation subsets defines an optimal model denoted h∗.

Model evaluation.  Afterwards and for each partition of S, h∗ is adjusted on new time ordered training subsets 
S′train which combines both Strain and Svalid . Then, the generalisation capability of h∗ is evaluated on fixed length 
subsets of evaluation data Seval , saved for that purpose. This procedure refers to the so-called “evaluation on 
a rolling forecasting origin” since the “origin” at which the forecast is based rolls forward in time50. Note that 
the DR is only concerned by the model evaluation step since it has no hyper-parameters to be optimised in the 
model selection phase.

Statistical analysis.  For any model, the goodness of fit according to linear relationships and to perfor-
mance were described by the coefficient of determination ( R2 ) and the RMSE criterion respectively. Their gen-
eralisation ability is described by the difference between RMSE computed on each training and evaluation data. 
The prediction error was reported through the Mean Absolute Error (MAE) between observations and predic-
tions. After checking normality and variance homogeneity of the dependant variable by a Shapiro-wilk and a 
Levene test respectively, linear mixed models were performed to assess the contribution of each class of model 
over the modelling error rate. Inter and intra subject variability over athletic performances modelling have been 
considered through random effects. Repeated measure ANOVAs were performed in order to assess the effect 
of the model class and population over the response, the effect size being reported through η2 statistic. Multiple 
pairwise comparison of errors between the model of reference and the other models were performed using Dun-
nett’s post-hoc analysis. Significance threshold was fixed to p < 0.05 . For linear mixed models, unstandardised 
regression coefficients β are reported along with 95% confidence interval (CI) as a measure of effect size. Models 
computation and statistical analysis were conducted with R statistical software (version 4.0.2). The DR model 
was computed with personal custom-built R package (version 1.0)51.

Results
Through the times series CV, models provided heterogeneous generalisation and performance prediction. Dis-
tributions of RMSE per model are illustrated in Fig. 2.

Models generalisation.  Mixed model analysis showed that both ENET and PCR models lowered the differ-
ences in terms of prediction errors between the training and evaluation data set ( β = −0.023 ∈ [−0.037,−0.007]

95%CI , p = 0.003 and β = −0.057 ∈ [−0.065,−0.047] 95%CI , p < 0.001 for ENETI and ENETG ; 
β = −0.026 ∈ [−0.040,−0.011] 95%CI , p < 0.001 and β = −0.032 ∈ [−0.041,−0.022] 95%CI , 
p < 0.001 for PCRI and PCRG , respectively). A significant effect of the model class on the generalisa-
tion risk was also reported ( p < 0.001, η2 = 0.23 ∈ [0.20, 0.26] 95%CI ). The most generalisable mod-
els were ENET and PCR models computed on overall data, followed by individual based models. Gener-
ally, group-built models likely provided a greater generalisation capability than individual based models 
( βdiff = −0.0144, p < 0.001, η2 = 0.01 ∈ [0.00, 0.01] 95%CI ). A summary of model pairwise comparisons is 
provided in Table 2.
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Prediction performances.  Root mean square errors reported on evaluation data using mixed 
model analysis indicated that ENETG was the most contributing model in lowering the prediction errors 
( β = −0.041 ∈ [−0.055,−0.027] 95%CI , p < 0.001 ), followed by RFG as shown in Table  2. Accordingly, a 
significant model class effect on prediction errors was reported ( p < 0.001, η2 = 0.18 ∈ [0.15, 0.21] 95%CI ). 
Computing models over a larger population (i.e. group-based models) showed only a trend in favour of group-
based models over the errors response rate ( p = 0.146).

Distributions of RMSE on data used for model evaluation have shown heterogeneous variance between 
models. The greatest standard deviations were found for DRI and PCRG with σ = 0.053 and σ = 0.062 respec-
tively. The ENET, PCRI and RF models provided more consistent performances with lower standard deviations 
comprised within [0.023; 0.027] and [0.012; 0.017] intervals for individual and group computed models, respec-
tively. Note that the greatest errors on evaluation data were systematically attributed to one particular athlete. In 
average, predictions made from this athlete led to greater RMSE than ones made from other athletes ( p < 0.001 , 
βdiff = 0.22 [0.163, 0.286] 95%CI ). Mean values of R2 indicated that weak linear relationships between perfor-
mance and predictors were identified by models ( R2 ∈ [0.150; 0.206] ). The highest averaged R2 value but also 
the greatest standard deviations were reported for DRI models ( R2 = 0.206± 0.093 ). However, significant differ-
ences of averaged R2 were only found for ENETI , RFG and PCRG ( β = −0.056 [−0.10;−0.01] 95% CI , p = 0.02 ; 
β = −0.041 [−0.08;−0.01] 95% CI , p = 0.02 and β = −0.036 [−0.07;−0.01] 95% CI , p = 0.04 respectively). 
A summary of model performances is provided in Table 3.

Predictions made from the two most generalisable models—ENETG and PCRG—and the reference DRI illus-
trate the sensitivity of models for a representative athlete (Fig. 3). Performances modelled from DRI model were 
relatively steady and less sensitive to real performance variations. Standard deviation calculated on data used 
for model evaluation supported such a smooth prediction with σ = 0.015 , σ = 0.071 and σ = 0.062 for DRi , 
PCRG and ENETG , respectively. Regarding ENETG , the greatest standardised coefficients were attributed to the 
auto-regressive component (i.e. the past performance) such as β = 0.469 , followed by the athlete factor and then 
impulse and serial bi-exponential aggregations. For regression, PCRG used the three first principal components 
explaining 52.3%, 16.5% and 7.6% of the total variance, respectively. Details about models’ parameters as well as 
principal component compositions are available on Supplementary material Appendix 2.

Figure 2.   Distributions of models’ performance. (a) RMSE distributions of each individual models and (b) the 
models computed on the whole group. Within boxplot midline represents the median of the distribution. All of 
them are compared to the dose-response (DR) model.
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Discussion.  In the present study, we provided a modelling methodology that encompasses data aggregation 
relying on physiological assumptions and model validation for future predictions. Data were obtained from elite 
athletes, able of improving their performance by training and being very sensitive to physical, psychological and 
emotional states. The variable dose-response model13 was fitted on individual data. It was compared to statistical 
and machine-learning models fitted on individual and on overall data: ENET, PCR and RF models.

Cross validation outcomes revealed significant heterogeneity in performances of models, even though the 
differences remain small regarding the total time of skating trials (see Table 3). The main criterion of interest, 
generalisation, was significantly greater for both ENET and PCR models than DRI model. One can explain this 
result by the capabilities of the statistical models to better catch the underlying skating performance process 
using up to 19 independent variables when associated with regularisation methods. Conversely, the DRI model 
relies on two antagonistic components strictly based on the training load dynamics. It does not deal with any 
other factors that may greatly impact the performance (e.g. psychological, nutritional, environmental, training-
specific factors)12,18,52. Thus, such a conceptual limit can be overtaken by employing multivariate modelling 
that may result in a greater comprehension of the training load - performance relationship, for the purpose of 
future predictions9,12. To date, only a recent study from Piatrikova et al.53 extended the former Fitness–Fatigue 
model framework3 to account for some psychometric variables as model inputs. Despite the authors reported an 
improved goodness of fit for this multivariate alternative, attributing impulse responses to these variables might 
question the conceptual framework behind the model.

Distributions of RMSE from training and evaluation data sets allow us to establish a generalisation model 
ranking (Table 2). Linear models computed on overall data offer a better generalisation. This finding is essen-
tial because by handling the bias-variance trade-off, models are more suited for capturing a proper underlying 
function that maps inputs to the target even on unknown data. Hence, it allows further physiological and 
practical interpretations from the models such as the remodelling process of skeletal muscle involved by exer-
cise, dynamically represented by exponential growth and decay functions28. Besides, this result might be partly 
explained by the sample size. It is well known that statistical inference on small samples leads to bad estimates 
and consequently to bad performances in prediction54,55. A greater sample size obtained by combining individual 

Table 2.   Summary of models pairwise comparisons for generalisation and prediction abilities. βdiff  represents 
the marginal mean difference of the RMSE distribution between the DR model and its comparison.

Comparison βdiff t ratio p Criterion

DRI − ENETG 0.057 − 11.841 < 0.001 Generalisation

DRI − PCRG 0.032 6.644 < 0.001 Generalisation

DRI − PCRI 0.026 3.365 0.004 Generalisation

DRI − ENETI 0.023 2.933 0.018 Generalisation

DRI − RFG − 0.027 − 5.649 < 0.001 Generalisation

DRI − RFI − 0.028 − 3.831 < 0.001 Generalisation

DRI − ENETG 0.041 5.607 < 0.001 Prediction

DRI − RFG 0.022 3.067 0.012 Prediction

DRI − ENETI 0.021 2.112 0.156 Prediction

DRI − RFI 0.018 1.789 0.294 Prediction

DRI − PCRI 0.016 1.537 0.438 Prediction

DRI − PCRG − 0.042 − 5.779 < 0.001 Prediction

Table 3.   Summary of the predictive models. According to model families, criteria were averaged among 
folders and displayed with their standard deviation. For individual models, averaged values of hyper 
parameters are displayed along with lower and upper recorded values. The greatest performance among criteria 
is listed in bold type.   *Indicates the DRI as the reference model and specification of its averaged parameters.

Model R2 MAE RMSE Hyper parameters*

DR∗
I 0.206 ± 0.093 0.189 ± 0.055 0.225 ± 0.053

k1 = −3.95e−05, k1 ∈ [−4.85e−05;−3.19e−05]

k3 = −7.75e−09, k3 ∈ [−4.01e−09;−1.71e−08]

τ1 = 36.02, τ1 ∈ [25.82; 42.28] , τ2 = 22.57, τ2 ∈ [14.58; 26] , 
τ3 = 5.23, τ3 ∈ [4.33; 6.67]

ENETI 0.150 ± 0.010 0.169 ± 0.020 0.197 ± 0.023 α = 0.176,α ∈ [0; 0.6] , � = 0.273, � ∈ [0; 1]

PCRI 0.164 ± 0.068 0.173 ± 0.025 0.201 ± 0.027 n comp = 1.918, n comp ∈ [1; 3]

RFI 0.193 ± 0.074 0.170 ± 0.023 0.199 ± 0.024 mtry = 8.90,mtry ∈ [1; 17]

ENETG 0.179 ± 0.063 0.150 ± 0.010 0.176 ± 0.012 α = 0.28, � = 0.02

PCRG 0.17 ± 0.053 0.22 ± 0.044 0.259 ± 0.062 ncomp = 3

RFG 0.164 ± 0.069 0.163 ± 0.017 0.195 ± 0.017 mtry = 16
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data led to more accurate parameter estimates, being more suitable for sport performance modelling12. That is 
particularly important to consider when we aim to predict a very few discipline specific performances through-
out a season. However, predicting non-invasive physical quality assessments which can be daily performed (e.g. 
squat jumps and its variations for an indirect assessment of neuromuscular readiness56, short sprints) may be an 
alternative for small sample size issues. In our case, standing start time trials over 1.5 laps allowed for the coach 
to evaluate underlying physical abilities of the skating performance, several times a week. Also, regularisation 
tends to stabilise parameters estimators and favour generalisation of the models. For instance, multicollinearity 
may occur in high-dimensional problems and stochastic models generally suffer from such a conditioning. One 
would note that the ENET and PCR models attempt to overcome these issues in their own way by (i) penalising 
or removing features—or both—that are mostly linearly correlated and (ii) by projecting the initial data space 
onto a reduced space, which is optimised to keep the maximum of variance of the data from linear combinations 
of the initial features. Both approaches limit the number of unnecessary—or noisy—dimensions. In contrast, in 
this study non-linear machine learning models ( RFI and RFG ) expressed a lower generalisation capability than 
linear models even when models combine data from several athletes. We believe that such models may be pow-
erful in multidimensional modelling but require an adequate data set with, in particular, ones with a sufficient 
sample size. Otherwise, model overfitting may occur at the expense of inaccurate predictions on unknown data.

As reported previously and with the exception of PCRG , models were more accurate in prediction than 
DRI (Table 3). The large averaged RMSE as well as large standard deviations provided by the DRI among per-
formance criteria tend to agree with the literature, since the model is prone to suffer from a weak stability and 
ill-conditioning raised by noisy data that impact its predictive accuracy9,10. This evokes that linear relationships 
between the two components “Aptitude”—“Fatigue” and the performance are not clear. However, because of a 
lack of cross-validation procedures on impulse response models and particularly the DR employed in our study, 
our results cannot be validly compared with the literature. Despite lower standard deviations of R2 reported by 
ENET and PCR models, the weak averaged R2 values suggest that linear models can only explain a few part of 
the total variance. Note that all linear models are concerned (including the DRI ), since the differences in aver-
aged R2 between models are relatively small and only significant for ENETI , RFG and PCRG models. Therefore 
and if the data allow it (i.e. a sufficient sample size and robustly collected data), non-linear models may still be 
effective and should be considered during the modelling process.

The sensitivity of models according to gains and losses of performances differed between the two most gen-
eralisable models—ENETG and PCRG—and the reference DRI (Fig. 3). Such differences can be explained by the 
influence of variables that may affect performance, other than training loads dynamic (e.g. ice quality the day of 

Figure 3.   Modelled performance of a representative subject. Solid and dashed lines represent the DR model 
and the two models offering the best generalisation. On this example, the training data set (80% of the data 
that combines training and validation subsets) and evaluation data set (20% of the data, the evaluation subset) 
areas are separated by the vertical solid line. Fitted parameters of the DR model were k1 = −2.45e−05 , 
k3 = −2.58e−09 , τ1 = 39 , τ2 = 26 , τ3 = 5 . Hyper-parameters of the PCR and ENET models were n comp = 3 
and α = 0.28 , � = 0.02.
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performance, cumulative training loads following a serial and bi-exponential function, the last known perfor-
mance) or a DRI model failure in parameter estimates regarding to the variability of the data. Indeed, parameters 
estimates of ENETG supported that since changes in skating performance were mostly explained through the 
past performance, weighted by individual properties and to a lesser degree by training related parameters. The 
PCRG used a different approach for the same purpose and greatly relied on training related aggregations as well 
as environmental and training programming variables (see Appendix 2). However, this applied example does 
not inform us about neither the generalisation ability of models nor accuracy of predictions because it concerns 
only a particular set of data, where the selected models (i.e. with optimal hyper-parameters) are trained on the 
first 80% of data and evaluated on the 20% remaining data. In addition, since model estimates greatly depend 
on the sample size, we might expect significant different estimates with more data (particularly for ENETG).

This study presents some limits. The first one concerns the data we used and particularly the criterion of 
performance: standing start time trials few times a week during an approximately 3-months period. Even though 
being a very discipline specific test in which athletes are familiar and being conducted in standardised condi-
tions, each test requires high levels of arousal, buy-in, motivation and technique. Therefore, psychological states 
and cognitive functions monitoring such as motivation and attentional focus57,58 should have been done prior 
performing each trial. A concrete example is provided through the Fig. 3, where ENETG greatly penalised the 
training correlated features and kept the influence of the auto-regressive component predominant over other 
features. This may be the consequence of either an inference issue due to the relative small sample size, or a lack 
of informative value of training related features that do not allow to explain changes in skating performance. Also, 
both reasons support models failure in predicting skating performances of one particular athlete, who showed 
significant greater errors of prediction. It emphasises the importance of measuring the “right” variables for perfor-
mance modelling purposes, in particular if the sport-specific performance involves various determining factors.

Secondly, the time series cross-validation presented here has a certain cost, most notably when only few 
data are available (e.g. when models are individually computed). The rolling origin re-calibration evaluation 
performed as described by Beirgmer et al.59 implies a model training only on a incremental sub-sequence of 
training data. Hence, the downsized sample size of the first training sub-sequences may cause model failure in 
parameter estimates and consequently, an increase of prediction errors. Then, training and evaluation data sets 
present some dependencies. In order to evaluate models on fully independent data, some modifications of the 
current CV framework exist at the expense of withdrawing even more data in the learning procedure. According 
to Racine60, the so-called hv - block cross-validation is one of the least costly alternative to the CV used in our 
study, requiring a certain gap between each training and validation subsets. However, due to a limited sample 
size, we voluntary chose to not adapt the original CV framework described in Algorithm 1. Nonetheless, we 
recommend researchers and practitioners to consider such alternatives in case of significant dependencies and 
when sample size is sufficient.

Finally, backtesting was performed in order to evaluate model performances on historical data. From a prac-
tical point of view, models are able to predict the coming performance following a given feature of data known 
until day t. However, the contribution of training load responses modelling also concerns training after-effects 
simulations over a longer time frame. Having identified a suitable model, practitioners may pinpoint key per-
formance indicators—specific to the discipline of interest—and confront model estimates to field observations. 
Then, simulations of these independent variables within their own distributions would allow practitioners and 
coaches to simulate changes in performance following objective and subjective measures of training loads, and 
any performance factors that are monitored. Conditional simulations that consider known relationships between 
independent variables (e.g. relationships between training load parameters)61,62 may improve the credibility of 
simulations.

The modelling process presented so far constitutes a part of a decision support system (DSS), from issue and 
data understanding to evaluation of the modelling results63. Supported by a deployment framework that makes 
models usable by all, DSS helps technical, medical staffs in the training programming and scheduling tasks64 
throughout a systemic and holistic approach of a complex problem, such as athletic performance65. Besides, 
the technological improvement of sports wearable sensors and underpinning available data for quantifying and 
characterising exercise foster the development of DSS in individual and team sports.

Conclusion
In this study, we provided a transferable modelling methodology which relies on the evaluation of models gen-
eralisation ability in a context of sport performance modelling. The mathematical variable dose-response model 
along Elastic net, principal component regression and random forest models were cross-validated within a time 
series framework. Generalisation of the DR model was outperformed by ENET and PCR models, though our 
results may not be directly compared with the literature. The ENET model provided the greatest performances 
both in terms of generalisation and accuracy in prediction when compared to the DR, PCR and RF models. Glob-
ally, increasing sample size by computing models on the whole group of athletes led to more performing models 
than the individually computed ones. Yet, our results should be interpreted in the light of the models used. In our 
study, we foster the use of regularisation and dimension reduction methods for addressing high dimensionality 
and multicollinearity issues. However, other models could stand valuable for athletic performance modelling (e.g. 
mixed-effect models for repeated measures, generalised estimating equations since there are possible unknown 
correlation between outcomes, autocorrelation and cross-correlation functions for time-series analysis).

The methodology highlighted in our study can be reemployed whatever the data, with the aim of optimising 
elite sport performance through training protocols simulations. Beyond that, we believe that model validation 
is a requisite for any physiological and practical interpretation for the purpose of making future predictions. 
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Further researches that involve training session simulations and model evaluations in forecasting would highlight 
the relevance of some model families for training programming optimisation.
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