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Spatially localized binary fluid convection in a porous medium
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The origin and properties of time-independent spatially localized binary fluid convection in a layer 
of porous material heated from below are studied. Different types of single and multipulse states are 
computed using numerical continuation, and the results related to the presence of homoclinic 
snaking of single and multipulse states.
�doi:10.1063/1.3439672�

I. INTRODUCTION

Stationary spatially localized states are of great interest
in the theory of pattern formation. Recently such states have
been found in several different types of convection, includ-
ing binary fluid convection,1,2 convection in an imposed
magnetic field3–5 and natural doubly diffusive convection.6–10

Similar states, localized in the cross-stream direction, have
been identified in plane Couette flow as well.11 Despite their
physical difference, these systems have two properties in
common: they are reversible in space �i.e., invariant under
the reflection x→−x, together with the corresponding change
in the dependent variables� and exhibit bistability �i.e., there
is a parameter regime in which a trivial spatially homoge-
neous state coexists with a spatially periodic steady state�.

The standard picture of systems of this type is most eas-
ily described in terms of a simple scalar model equation, the
Swift–Hohenberg equation �SHE�

ut = ru − ��x
2 + 1�2u + f�u� , �1�

where f�u� denotes a bistable nonlinearity, either f�u�=b2u2
−u3 �SH23� or f�u�=b3u3−u5 �SH35�. Here b2 and b3 are
positive constants that determine the extent of bistability be-
tween the trivial state u=0 representing the conduction state
and a periodic state u�x� representing convection. Of these
two possible choices, SH23 reflects the symmetries of natu-
ral doubly diffusive convection in a vertical slot,8–10 while
SH35 reflects the symmetries generally associated with
Boussinesq convection in a horizontal layer with identical
boundary conditions at the top and bottom.2,5 Specifically the
symmetry u→−u corresponds to the reflection symmetry in
the layer midplane characteristic of these systems. In Fig. 1
we show the results of numerical branch-following for SH35
on a periodic domain with moderately large period �.12,13

The figure shows a branch of spatially periodic steady states
�labeled uniform� that bifurcates subcritically from the con-
duction state u=0 at r=0. The branch is initially unstable but
acquires stability at a saddle-node bifurcation where it turns

around toward larger r. In the region of bistability, the figure
reveals the presence of �four� branches of distinct spatially
localized steady states. Two of these are symmetric with re-
spect to x→�−x �even parity states�, while two are antisym-
metric �odd parity states�. We refer to even parity states u�x�
with a maximum �minimum� at x=� /2 as �=0 ��=��
states, while odd parity states with maximum �minimum�
slope at x=� /2 are referred to as �=� /2 ��=3� /2�
states.12,14 The �=0 and �=� states are related by the mid-
plane reflection symmetry u→−u and so coincide in a dia-
gram such as Fig. 1 that shows the L2 norm N��0

�u2dx of
the solution and likewise for the �=� /2 and �=3� /2 states.
These states appear simultaneously in a secondary bifurca-
tion from the branch of uniform amplitude periodic states at
small amplitude, and near this bifurcation resemble localized
wave packets �profiles a and b�. These branches are unstable
until they enter a snaking or pinning region in which they
start to “snake” back and forth, the localized states growing
in spatial extent as they do so. Once the domain � is almost
full, this snaking behavior necessarily terminates, and the
branches exit the snaking region and terminate on the peri-
odic states near the aforementioned saddle-node. In this re-
gion the solutions resemble even and odd parity holes14,15 in
an otherwise spatially periodic pattern �profiles c and d�. As
the domain period L increases, the secondary bifurcation cre-
ating these states moves to smaller and smaller amplitude,
and in the limit �→�, the localized states bifurcate directly
from the conduction state, simultaneously with the periodic
states. At the same time the termination point approaches
closer and closer to the saddle-node.10 The figure also shows
that each snaking branch repeatedly gains and loses stability
via saddle-node bifurcations, producing, on an unbounded
domain, an infinite multiplicity of coexisting stable states
within the pinning region. Secondary bifurcations to pairs of
�unstable� branches of asymmetric states are found in the
vicinity of each saddle-node; these branches resemble
“rungs” that connect the snaking branches and are respon-
sible for the “snakes-and-ladders” structure of the pinning
region.12,14,16

The above discussion focused on so-called single pulse
states, i.e., single localized structures in the available do-
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main. However, it is clear that we may place multiple local-
ized states in a domain and that such multipulse states will
also represent steady solutions of the equation provided these
are separated by an integer number of half wavelengths of
the oscillations in their tails. Such multipulse states also
snake.17–20

The origin and properties of the behavior just described
are now quite well understood at least for single pulse states
in variational systems such as SH23 or SH35.21–24 In these
systems the rung states necessarily correspond to steady
solutions.12,16 This is not so, however, for nonvariational sys-

tems. In such systems asymmetric localized states cannot be
time-independent, and the rung states correspond to drifting
localized waves. On the other hand, since the snaking or
pinning region is created through the transversal intersec-
tions of certain stable and unstable manifolds,24–26 its solu-
tion structure is believed to be independent of the nature of
the system, provided only that it remains bistable and revers-
ible in space. Consequently simple model equations such as
SH35 are very useful for interpreting the properties of non-
variational fluid systems, be they binary fluid convection2,27

or plane Couette flow.11 Of course, stability properties of the
solutions in this region do depend on the details of the
system.

In this paper we are interested in exploring properties of
multipulse states in a system that shares the symmetry prop-
erties of SH35 but not its variational dynamics, focusing on
binary fluid convection in a porous medium. We describe the
snaking behavior of such states and show that the range of
possible behavior is substantially richer than that of the
single pulse states. Apart from the importance of porous me-
dium convection in various applications,28 the associated
simplification of the equation of motion allows one to com-
pute many more steady states and do so in larger domains
than in other problems of this type. This is, of course, essen-
tial for any investigation of multipulse states. We do not
consider time-dependent states.

This paper is organized as follows. In the next section
we describe briefly the equations we study. In Secs. III and
IV we present the results for two different parameter sets
obtained using numerical continuation. In Sec. V we provide
a theoretical interpretation of the results. We conclude in
Sec. VI with a summary of the important results.

II. BINARY FLUID CONVECTION
IN A POROUS MEDIUM

Binary fluid convection in a porous medium is charac-
terized by a porosity � and a separation ratio S. The latter
measures the separation between the lighter and heavier
components of the mixture in an applied temperature gradi-
ent. When S�0, the heavier component migrates toward the
colder boundary; the opposite is the case when S�0, the
case of interest here, since it results in bistability between the
conduction state and a spatially periodic convecting state
when the layer is heated from below. In two dimensions the
system is described by the dimensionless equations29

0 = − �p + Ra�T + SC�ez − u , �2�

0 = � · u , �3�

�T
�t
= − �u · ��T + �2T , �4�

�
�C
�t
= − �u · ��C + 	�2�C − T� , �5�

where u= �u ,w� and ����x ,�z� in �x ,z� coordinates, with x
in the horizontal direction and z in the vertical direction, T is
the temperature, and C is the concentration of the heavier
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FIG. 1. Bifurcation diagram �top panel� for SH35 showing the L2 norm of
u�x� on a periodic domain with period �. Snaking branches of even
��=0,�� and odd ��=� /2,3� /2� parity emerge in a secondary bifurcation
�solid circle� from a branch of uniform amplitude periodic states with ten
wavelengths within � and terminate on the same branch in a secondary
bifurcation �solid circle� near the saddle-node. Other spatially periodic
branches are also present but for clarity are not shown. Other solid circles
indicate the location of the profiles u�x� on �a� the �=� branch at
r=−0.18, �b� the �=3� /2 branch at r=−0.18, �c� the �=0 branch at
r=−0.83, and �d� the �=� /2 branch at r=−0.83. States �a� and �b� take the
form of opposite parity small amplitude wavepackets localized in the center
of the domain; states �c� and �d� take the form of opposite parity hole states
localized in the center of the domain. Thick �thin� lines indicate stable
�unstable� solutions. Parameters: b3=2 and �=10�. From J. H. P. Dawes,
SIAM J. Appl. Dyn. Syst. 8, 909 �2009�. Copyright © 2009 Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights
reserved.



component of the mixture. The �inverse� Lewis number 	,
the Rayleigh number Ra, and the separation ratio S are de-
fined by

	 =
D


, Ra =

g��T��Th




, S = − SSoret
�C
�T

� 0, �6�

where 
 is the Darcy friction coefficient, 
 is the thermal
diffusivity, D is the solute diffusivity, SSoret�0 is the Soret
coefficient, g is the gravitational acceleration, and h is the
thickness of the layer. In writing these equations we have
used the layer thickness h as a unit of length and the vertical
thermal diffusion time h2 /
 as the unit of time, together with
the linearized equation of state, ��T ,C�=�0+�T�T−T0�
+�C�C−C0�, where �T�0, �C�0, and the subscript zero in-
dicates reference values. We suppose that a temperature dif-
ference �T�0 is imposed across the system with the lower
boundary hotter than the upper boundary; in response the
system develops a concentration difference �C= �S��T, with
C larger at the bottom than at the top. We use �T and �C as
units of temperature and concentration.

Since the mass flux is proportional to the gradient of
C−T the boundary conditions read

at z = 0: w = T − 1 = �C − T�z = 0,
�7�

at z = 1: w = T = �C − T�z = 0,

together with periodic boundary conditions �PBCs� with di-
mensionless period � in the x direction. Note that because of
the Darcy friction law, we cannot impose boundary condi-
tions on u at z=0,1. Thus the velocity boundary conditions
are “stress-free.” This property of the system is beneficial for
numerical continuation; the absence of nonlinear terms in the
equation of motion �the effective Prandtl number in the me-
dium is infinite� also helps.

In the following we write T=1−z+� and C=1−z+�
and examine the properties of the equations for u, w, �, and
�. These are invariant under translations in x as well as un-
der two distinct reflections,

R1: �x,z� → �− x,z�, �u,w,�,�� → �− u,w,�,�� ,
�8�

R2: �x,z� → �x,1 − z�, �u,w,�,�� → �u,− w,−�,− �� ,

where x=0 is an arbitrarily chosen origin, hereafter the cen-
ter of the domain. The presence of the concentration field �
precludes the presence of additional symmetries of cosym-
metry type,30 although invariance with respect to Galilean
transformations remains. It follows that the equations pos-
sess O�2��Z2 symmetry �modulo Galilean transformations�,
where O�2� is the symmetry group of a circle under rotations
�translations in x mod �� together with the reflection R1,
while Z2 is the symmetry group 	1,R2
. The presence of the
symmetry R1 in O�2� implies that the problem is reversible
in space, with the reversibility acting by +1. As a result all
steady state bifurcations from the conduction state u=w=�
=�=0 as Ra increases are pitchforks of revolution and pro-
duce centered spatially periodic states that are either even or
odd under spatial reflection. Specifically, even solutions are
R1-symmetric and satisfy

�u�− x,z�,w�− x,z�,��− x,z�,��− x,z��

= �− u�x,z�,w�x,z�,��x,z�,��x,z�� , �9�

while odd solutions are R2 �R1-symmetric and satisfy

�u�− x,z�,w�− x,z�,��− x,z�,��− x,z��

= − �u�x,1 − z�,w�x,1 − z�,��x,1 − z�,��x,1 − z�� .
�10�

Since we are interested in spatially localized convection
that asymptotes to the conduction state as �x�→�, we need
the spatial eigenvalues of this state. Specifically we need to
determine values of the Rayleigh number Ra for which the
conduction state is hyperbolic, with stable and unstable ei-
genvalues so that a solution can depart from it as x increases
from −� and return to it as x→+�. Only in this regime can
we expect to find exponentially localized structures. To do so
we linearize the equations about the conduction state and
allow all perturbations to vary as exp�i�t+
x�, where � is
real and 
 complex. The resulting problem is a sixth order
complex-valued eigenvalue problem that can be written in
the form

�D2 + 
2�w = 
2Ra�� + S�� ,

i�� = w + �D2 + 
2�� , �11�

i��� = w + 	�D2 + 
2��� −�� ,

subject to the boundary conditions w=�=D��−��=0 at
z=0,1. Here D�d /dz. A complex-valued eigenvalue prob-
lem of this type has two eigenvalues. Given Ra and 
i, these
may be taken to be the frequency � and the spatial growth
rate 
r.

When �=0, this problem has a pair of purely imaginary
spatial eigenvalues �
=� ikc� of double multiplicity when
Ra=Rac�47.716 746 7 and kc=3.402 26 �S=−0.01,	=0.1�.
Moreover, for Ra�Rac, the double multiplicity eigenvalues
split and form a quartet of complex eigenvalues, while for
Ra�Rac, they also split but remain on the imaginary axis.

8

Thus exponentially localized states can only be present for
Ra�Rac. The bifurcation at Ra=Rac is a Hopf bifurcation
with 1:1 resonance in space and corresponds to the usual
primary bifurcation to steady convection with wave-
length �c=2� /kc in the time domain. We mention here that
once 
r�0, we expect the solution to drift since it is no
longer invariant under reflection. This is indeed the case, and
in Fig. 2, we show the frequency � as a function of
Rac−Ra together with 
r and 
i. The figure shows that

r� �Rac−Ra�1/2, 
i−kc�Rac−Ra, and �� �Rac−Ra�3/2.

III. NUMERICAL METHOD

We compute time-independent spatially localized
solutions of Eqs. �2�–�5� with the boundary conditions �7�
using a numerical continuation method based on a Newton
solver for the time-dependent equations written in terms
of � and �. The implementation of the method follows
that of Tuckerman31 and Mamun and Tuckerman32 but
employs a spectral element method in which the domain



�0,��� �0,1� is decomposed into Ne macroelements of size
��i−1�� /Ne, i� /Ne�� �0,1�, where Ne is the number of
spectral elements and i� 	1, . . . ,Ne
. In each element, the
fields are approximated by a high order interpolant through
the Gauss–Lobatto–Legendre points.33 The Newton solver
uses a first order time-stepping scheme for Eqs. �4� and �5�.
The diffusive linear part of the equations is treated implicitly,
while the nonlinear part is treated explicitly. Since the latter
requires the velocity, a Poisson problem is formulated for the
pressure p by combining Eqs. �2� and �3�. This problem is
solved subject to Neumann boundary conditions �NBCs� as
obtained from the projection of Eq. �2� on ez using the fact
that u ·ez=�=0 on z=0,1. With p known, Eq. �2� deter-
mines the velocity field u. Each time step therefore requires
the inversion of two Helmholtz problems and one Poisson
problem. This is carried out using a Schur factorization pro-
cedure on the weak form of the equations,33 a procedure that
ensures the periodicity of the unknowns and their first de-
rivative in the x-direction.

The continuation is initialized using small amplitude lo-
calized solutions computed from weakly nonlinear analysis
near Ra=Rac.

8 Since the primary bifurcation is subcritical,
these solutions are present in Ra�Rac.

Below we present results for the following parameter
combinations: �a� 	=0.5 and S=−0.1 as used by Charrier-
Mojtabi et al.34 and �b� 	=0.05 and S=−0.01. The relatively
large value of 	 in �a� avoids thin concentration boundary
layers allowing more detailed computational results. On the
other hand, the parameter choice �b� represents physically
more relevant parameter values. The porosity �, which we
take to be �=1, affects only the stability properties of the
steady solutions. To simplify the computations we impose
the symmetries R1 or R2 �R1 on all solutions. Throughout the
paper we use an aspect ratio �spatial period� given by
�=20�2� /kP�, where kP=3.75 is close to the infinite domain
critical wavenumber for onset of steady convection,
kc�3.747 in case �a� and kc�3.687 in �b�. Consequently we
expect the first primary bifurcation to lead to a periodic sta-
tionary state with nc=20 wavelengths in the periodic box,
and this is indeed the case.

IV. RESULTS: �=0.5 AND S=−0.1

In a finite but large periodic domain with aspect ratio
�=20�2� /kP�, the first primary bifurcation occurs at
Ra20=66.75�Rac and produces a subcritical branch of peri-
odic states with nc=20. This bifurcation is followed in
Ra�Ra20 by primary bifurcations with n�nc. In the follow-
ing we refer to the resulting branches of periodic states as Pn.
Thus P21 bifurcates at Ra21=67.01, P19 at Ra19=67.03, etc.
Figure 3 shows the Pn branches for 17�n�22 in terms of
their dimensionless kinetic energy E� 1

2�0
��0
1�u2+w2�dxdz.

The bifurcations to all Pn are subcritical. As a result each
branch undergoes a saddle-node bifurcation before turning
around toward larger values of Ra. The saddle-node on P20 is
found at Ra=52.84; however, as shown in Fig. 3, subsequent
branches extend to lower values of Ra despite bifurcating
from the conduction state at larger values of Ra. Thus P17
has a saddle-node at Ra=51.35, while P18 has a saddle-node
at Ra=51.56.
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FIG. 2. Solution of the linear stability problem �11�. �a� 
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A. Single pulse states

Figure 4 shows the n=17, 18, 20, and 21 periodic
branches together with three families of spatially localized
structures, labeled L20

1,2� and L21
1�. Branches labeled L20

1� bi-
furcate from P20 first, i.e., closest to the primary bifurcation,
while those labeled L20

2� bifurcate next. Likewise, branches
labeled L21

1� are the first to bifurcate from P21. The L20
1� states

are single pulse states, while both L20
2� and L21

1� correspond to
�different types of� two-pulse states. At small amplitude the
L20
1� states take the form of wave packets with a slowly vary-
ing envelope, the + state being even �i.e., invariant under R1�
and the � state being odd �i.e., invariant under R2 �R1�. In
this regime the corresponding solution branches are essen-
tially indistinguishable. However, as each branch in a pair is
followed toward smaller values of Ra and hence larger am-
plitude, the packets become more and more localized, and
the branches split apart. Once their amplitude and width be-
come comparable to the amplitude and wavelength of the
coexisting periodic states, the branches enter the so-called
snaking or pinning region and begin to snake back and forth
�see Fig. 5�a�� as each structure acquires additional rolls, one
on either side, as one passes from saddle-node to the corre-
sponding saddle-node higher up. Once the domain is almost
full, the snaking ceases, and the L20

1� branches exit the snak-
ing region and terminate together near the saddle-node on
P17 �see Fig. 4�. Near this point the solutions take the form of
a slowly modulated wavetrain as the “holes” between the
periodically spaced localized structures gradually fill in.

In the present problem there are in fact four branches of
single pulse localized structures. This is a consequence of the
midplane reflection symmetry R2 of the present problem.

12

Two of these solutions are even with respect to R1 �cf. Eq.
�9��, and we refer to them using their spatial phase �=0, �
or simply as L+. The states with �=0 have maxima on the
symmetry line x=0, while states with �=� have the opposite
sign and so have minima at x=0. The remaining two
branches are odd under reflection �cf. Eq. �10�� with spatial

phase �=� /2 and 3� /2; states with �=� /2 have maximum
positive slope at x=0, while those with �=3� /2 have maxi-
mum negative slope at x=0. We refer to states of this type as
L−. This solution structure is identical to that found in binary
fluid convection between two identical �no-slip� horizontal
boundaries2,27 and is reproduced by SH35 �Fig. 1�. Note that,
like the L2 norm N in Fig. 1, the energy E used in Fig. 4 does
not distinguish between �=0 and � or between �=� /2 and
3� /2. Figure 6 shows sample profiles as one proceeds from
small to large amplitude along the even parity �=� branch,
while Fig. 7 shows the corresponding results for the odd
parity �=� /2 branch. In the case shown, all four branches
are born together on P20, and all four terminate together on
P17; this is not necessarily always the case.

10,13

We mention that in nonvariational problems of the type
studied here, the L� branches are connected by “rung states.”
These consist of states that are neither even nor odd and
hence take the form of drifting localized states; we have not
computed these nonstationary states.

B. Two-pulse states

The snaking region contains many additional states as
well. Figure 5�b� shows a second pair of snaking branches
labeled L20

2�. These also bifurcate from the first primary
branch P20 but in a subsequent secondary bifurcation �see
Fig. 4� and terminate together on the branch P18 �Fig. 4�.
One of these consists of two equidistant copies of the single
pulse �=0 state �branch L20

2+ in Fig. 5�b��, while the other
consists of two equidistant copies of the single pulse
�=� /2 state �branch L20

2− in Fig. 5�b��. Figures 8 and 9 show
the corresponding solution profiles at successive saddle-
nodes along the left boundary of the pinning region. We see
that these states are equivalent to a single pulse state on a
domain of period � /2; it is for this reason that they bifurcate
from P20 at larger amplitude than the corresponding states on
a domain of period � and also the reason they terminate on a
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different branch of periodic states. Since the available do-
main is only � /2 there are roughly half as many turns in the
snake before the domain fills up and snaking terminates.

Snaking branches, labeled L21
1�, bifurcate from P21 as

well �Fig. 4�. Once again there is a pair of branches, and this
time these terminate together on P17 �Fig. 4�. As expected,10

this termination point is further from the saddle-node on P17
than the termination point of L20

1�. Figure 10 shows the re-
sulting snaking branches. The branch L21

1+ consists of bound
states of two equidistant identical even parity states, with
�=0, � �see Fig. 11�, while branch L21

1− consists of bound
states of two equidistant identical odd parity states, with
�=� /2 and 3� /2, such that the overall structure retains re-
flection symmetry with respect to the centerline x=0 �see
Fig. 12�.

C. Secondary bifurcations from the snaking branches

We have already mentioned that the two single pulse
branches L20

1� are connected by a series of rungs consisting of
asymmetric drifting pulses forming the so-called snakes-and-
ladders structure of the snaking region. High up the snaking
structure, these interconnecting branches bifurcate from the
L20
1� exponentially close to the saddle-nodes, much as in the
SHE.12,16 However, there are bifurcations to stationary states
as well. Such states must again be even or odd under reflec-
tion, and such states bifurcate from L21

1�. In this section we
only consider states of this type that have even parity.

Figure 13 shows the L21
1� snaking branches that bifurcate

from P21. In addition, Fig. 13 shows �in blue� a branch of
solutions that is quite different from any found in the SHE.
Here a new branch of two-pulse states bifurcates off the
snaking two-pulse branch L21

1− at the point labeled by � �Fig.
13�a��. The branch follows a rung state and then a portion of
the L21

1+ branch as if to form an isola. However, the isola
remains incomplete since the branch only follows a part of
the next rung state before turning around and producing a
cusplike feature. Figure 14 shows a sequence of solution
profiles in this region. These cusplike features occur repeat-

(a)

(b)

FIG. 6. �a� Line plots showing the midplane vertical velocity w�x ,z=1 /2�
along the branch of even parity �=� localized states computed at the left-
most saddle-nodes in the snaking region; see L20

1+ in Fig. 5�a�. The dashed
line indicates the symmetry axis of the localized states. �b� The streamfunc-
tion at the same locations. Light �dark� shading indicates clockwise �coun-
terclockwise� flow. Parameters: 	=0.5 and S=−0.1.

(a)

(b)

FIG. 7. �a� Line plots showing the midplane vertical velocity w�x ,z=1 /2�
along the branch of odd parity �=� /2 localized states computed at the
leftmost saddle-nodes in the snaking region; see L20

1− in Fig. 5�a�. The dashed
line indicates the symmetry axis of the localized states. �b� The streamfunc-
tion at the same locations. Light �dark� shading indicates clockwise �coun-
terclockwise� flow. Parameters: 	=0.5 and S=−0.1.

(a)

(b)

FIG. 8. �a� Line plots showing the midplane vertical velocity w�x ,z=1 /2�
along the branch of bound states of two even parity �=0 localized states
computed at the leftmost saddle-nodes in the snaking region, see L20

2+ in Fig.
5�b�. The dashed line indicates the symmetry axis of the localized states. �b�
The streamfunction at the same locations. Light �dark� shading indicates
clockwise �counterclockwise� flow. Parameters: 	=0.5 and S=−0.1.



edly as one proceeds down the branch, following close to the
L21
1+ branch. The branch ultimately reaches very small ampli-
tude at a saddle-node labeled 9 �Fig. 13�c�� before it starts to
snake back upward, this time following the L21

1− branch. Dur-
ing this phase the branch again makes abortive attempts at
completing isolas by making excursions along the rung
states, but this time the excursions are shorter. The branch
eventually terminates near saddle-node 16 on the same
branch that it bifurcated from, also labeled by � �Fig. 13�a��.
The overall structure of the branch thus takes the form of an
“unzipped” snake. Figure 15 shows sample solution profiles
along this branch. The solution consists at small amplitude of
a pair of narrow single pulse states of type �� /2,3� /2� near
location 9; as one goes from 9 to 1, both pulses turn into type
�0,0� and grow in width but do so while maintaining the void
between them. As a result the growth is markedly asymmet-

ric. Indeed, both pulses grow from the inner region, and as
new oscillations are added at the location of the inner fronts,
existing oscillations are gradually pushed outward �Fig. 15�.
The approach to the �0,0� state is unexpected and not under-
stood; after all, Fig. 13�b� suggests that the branch follows
L21
1+, i.e., that the states along it between locations 2 and 9
should resemble �0,��. In contrast, from 9 to 16, the pulses
take the form �� /2,3� /2�, as they should, but again grow by
nucleating new structure at the inner fronts. This process
only terminates once each pulse has grown sufficiently that
their centers are separated by � /2 �see location 16, for
example�, and the solution turns into a regular two-pulse
state L21

1−.
Figure 13 also shows a second branch connecting L21

1− to
itself. This branch, drawn in green, has the shape of the letter
Z and evidently forms in the upper reaches of the snaking
diagram by the same process as that leading to the branch
drawn in blue. This disconnection appears to be a conse-
quence of an almost full domain. The solution profiles along
this branch are shown in Fig. 16 and resemble bound states
of type �� /2,3� /2� as expected.

(a)

(b)

FIG. 9. �a� Line plots showing the midplane vertical velocity w�x ,z=1 /2�
along the branch of bound states of two odd parity �=� /2 localized states
computed at the leftmost saddle-nodes in the snaking region; see L20

2− in Fig.
5�b�. The dashed line indicates the symmetry axis of the localized states. �b�
The streamfunction at the same locations. Light �dark� shading indicates
clockwise �counterclockwise� flow. Parameters: 	=0.5 and S=−0.1.

50

100

150

200

250

300

53.45 53.5 53.55 53.6

E

Ra

L1+
21

L1−
21

FIG. 10. �Color online� Further detail of the snaking region in Fig. 4.
Snaking of two-pulse states with phases �= �0,�� �L21

1+, solid line� and
�= �� /2,3� /2� �L21

1−, dashed line�. The widths of the two snaking regions
are the same. Parameters: 	=0.5 and S=−0.1.

(a)

(b)

FIG. 11. �a� Line plots showing the midplane vertical velocity
w�x ,z=1 /2� along the branch of bound states of two even parity localized
states with �=0, � computed at the leftmost saddle-nodes in the snaking
region; see L21

1+ in Fig. 10. The dashed line indicates the symmetry axis of
the localized states. �b� The streamfunction at the same locations. Light
�dark� shading indicates clockwise �counterclockwise� flow. Parameters: 	
=0.5 and S=−0.1.

(a)

(b)

FIG. 12. �a� Line plots showing the midplane vertical velocity
w�x ,z=1 /2� along the branch of bound states of two odd parity localized
states with �=� /2 and 3� /2 computed at the leftmost saddle-nodes in the
snaking region; see L21

1− in Fig. 10. The dashed line indicates the symmetry
axis of the localized states. �b� The streamfunction at the same locations.
Light �dark� shading indicates clockwise �counterclockwise� flow. Param-
eters: 	=0.5 and S=−0.1.



In contrast, Fig. 17 shows tertiary branches of steady
states connecting the branch L21

1+ to itself. These branches
have a characteristic S shape and consist of solutions along
the rungs connecting L21

1+ to L21
1− together with a segment

within which the solution resembles an L21
1− state very

closely. Figure 18 provides an indication of the changes in
the solution profile as one traverses the S shape from bottom
to top.

V. RESULTS: �=0.05 AND S=−0.01

In this section we present the corresponding results for
case �b�: 	=0.05 and S=−0.01, albeit more briefly. Figure 19
shows the structure of the basic periodic states as a function
of the Rayleigh number. For these parameter values P20
again bifurcates first, but this time P19 is second. Observe
that the saddle-node on P16 now lies between those on P17
and P18, thereby “breaking” the order observed in Fig. 3.

Figure 20 shows some of the secondary branches con-
necting the periodic states in Fig. 19, with detailed behavior
shown in Fig. 21. As in Fig. 4 these take the form of both
single and two-pulse states. However, in contrast to Fig. 4
the states L20

2+ and L20
2− terminate on different periodic

branches, a possibility studied in detail10,13 using both SH23
and SH35. Moreover, the snaking region of L20

2� �Figs. 21�b�
and 21�c�� has a much different shape from the classical
snaking region exhibited by the single pulse states L20

1� �Fig.
21�a��. As in Fig. 5 the width of the snaking executed by odd
parity states is slightly narrower than that executed by even
parity states �Fig. 21�a��. In contrast, the snaking structure
associated with the L20

2� states is incomplete �Figs. 21�b� and
21�c��, and its upper tip extends far toward larger values of
Ra. This type of behavior, while uncommon, has also been
observed in other systems. For example, in natural doubly

diffusive convection,10 the wavenumber change across the
pinning region is sufficiently large that it is energetically
favorable for the system to incorporate a defect in the struc-
ture instead of terminating on a periodic state with the incor-
rect wavelength. In such circumstances, the snaking branch
may turn continuously into a mixed mode state that bifur-
cates from one of the periodic states and may fail to termi-
nate on a periodic state altogether. In the present example,
the snaking branches follow such a mixed mode branch to
larger amplitude before turning around and connecting to P16
�L20
2+� or P18 �L20

2−�. The mechanism whereby two snaking
branches originating in the same bifurcation terminate on
distinct periodic states was also first identified in the context
of natural doubly diffusive convection.10

In Fig. 22 we show the details of an additional pair of
snaking branches labeled L19

1� �Fig. 20�. These branches cor-
respond to different two-pulse states, each consisting of two
midplane reflection-related states of identical parity, either
even �L19

1+� or odd �L19
1−�. The resulting snaking structure is
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FIG. 14. Line plots showing the midplane vertical velocity w�x ,z=1 /2�
along the tertiary two-pulse �blue� branch in Fig. 13�a� in the cusp region
near location 2. Profiles correspond to the numbered locations in Fig. 13�b�.
The vertical lines indicate alignment of successive profiles. Parameters: 	
=0.5 and S=−0.1.
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FIG. 15. Tertiary two-pulse states: line plots showing the midplane vertical
velocity w�x ,z=1 /2� at locations nearest to the saddle-nodes on L21

1�, labeled
by integers as in Fig. 13. Parameters: 	=0.5 and S=−0.1.
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FIG. 13. �Color� �a� Global view of the L21
1� snaking branches together with

two tertiary branches of stationary states �in blue and green� connecting L21
1−

to itself. The blue tertiary branch extends between the two locations on L21
1−

denoted by �. The �blue� integers denote the locations of saddle-nodes on
L21
1− used in Fig. 15 to label the corresponding profiles on the tertiary solu-
tion branch. Solutions on the other tertiary branch �green� at locations indi-
cated by green roman numerals are shown in Fig. 16. �b� Detail of the region
near saddle-node 2; the �black� integers denote locations corresponding to
the solutions shown in Fig. 14. �c� The small amplitude part of the �blue�
tertiary branch. Parameters: 	=0.5 and S=−0.1.



inclined and does not follow either L20
1� or L20

2�. Figure 23
superposes the results for L19

1� and L20
2� and includes several

tertiary branches as well. The top panel shows a pair of
S-shaped branches connecting L19

1+ to itself and a similar
S-shaped structure connecting L19

1− to itself, together with ap-
propriate enlargements. The lower panel shows a pair of
similar S-shaped tertiary branches connecting L20

2+ to L19
1−

�green and red tertiary branches�. These interconnections
also exhibit cusplike structures arising from the breakup of
the rung states, much as in Fig. 13, although here the cusps
are difficult to discern. The breakup of the rung states also
creates the isolalike blue tertiary branch; this branch also
connects L20

2+ to L19
1−.

VI. THEORETICAL INTERPRETATION

Two-pulse states in model equations such as SH23 in
one spatial dimension have been studied before.17–20 In a
periodic domain of period �, the following solutions are
found:

• solutions consisting of identical equidistant structures,
• solutions consisting of “identical” but nonequidistant
structures, and

• solutions consisting of nonidentical structures.

The former bifurcate from the first branch of periodic
states with an even number of wavelengths in the imposed
period � and snake much as a single pulse state on a periodic
domain with period � /2. Thus the branch of identical equi-
distant structures also terminates near the saddle-node on a
branch of periodic states with an even number of wave-
lengths, but does so after undergoing only approximately
half the number of back and forth oscillations executed by
the single pulse branch. This is the case in Fig. 5�b�. In
contrast, nonequidistant pulses do not bifurcate from
branches of periodic states and instead form stacks of nested
isolas filling the snaking region �Fig. 24�. Each isola repre-
sents a closed branch of two identical pulses with a given
separation different from � /2. Since � is finite and the pulses
lock to the oscillations in the tails of their profiles, only a
finite number of nested isolas is present, and this is so for
isolas involving pulses with n oscillations, n=1,2 , . . ., with n
increasing by one as one proceeds up the stack of isolas from
bottom to top �Figs. 24 and 25�. Once the width of each

FIG. 16. Line plots showing the midplane vertical velocity w�x ,z=1 /2�
along the tertiary two-pulse �green� branch in Fig. 13�a� at locations �i�–�iv�.
Label �i�: solid line with points; label �ii�: dotted line; label �iii�: broken line;
and label �iv�: solid line. Lower panels show enlargements of the boxed
regions in the upper panel. Parameters: 	=0.5 and S=−0.1.
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FIG. 17. �Color online� �a� Global view of the L21
1� snaking branches to-

gether with S-shaped tertiary branches of stationary states �light solid lines�
connecting L21

1+ to itself. The �light solid� integers in the details �b� and �c�
denote the location of the solutions shown in Fig. 18. Parameters: 	=0.5 and
S=−0.1.

FIG. 18. Line plots showing the midplane vertical velocity w�x ,z=1 /2� at
the locations indicated in Fig. 17. Top �bottom� panels correspond to Fig.
17�b� �Fig. 17�c��. Label 1: solid line with points; label 2: dotted line; label
3: broken line; and label 4: solid line. Lower panels show enlargements of
the boxed regions in the upper panels. Parameters: 	=0.5 and S=−0.1.
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and S=−0.01.



pulse becomes comparable to � /2, the stack of isolas termi-
nates. Exactly how this happens is not known. We have not
computed here such unequally spaced two-pulse states; since
these states lie on isolas, numerical continuation is difficult
to initialize unless one finds a stable state of this type using
time-stepping from a suitably selected initial condition.
Other numerical issues in following these isola states are
discussed in Ref. 20.

We emphasize that each pulse within the equidistant
states in Fig. 5�b� is itself symmetric with respect to either R1
�about a suitable origin� or R2 �R1 �about a suitable origin�.
These symmetry properties imply that on its own, neither
pulse drifts. When combined into equidistant two-pulse
states such as L20

2�, the distortion of a pulse due to pulses on
either side preserves these symmetries, and the resulting
two-pulse states are therefore also stationary. Moreover,

bound states of types �0,0� and �0,�� consisting of identical
states with unequal separations are R1-symmetric and
R2 �R1-symmetric, respectively, in both cases with respect to
the midpoint of each bound pair. Thus we expect isolas of
unequally spaced steady states of either type, in addition to
the snaking branches L20

2+ �Fig. 5�b�� and L21
1+ �Fig. 10� of

equidistant steady states of either type. Equidistant
�� /2,� /2� and �� /2,3� /2� states are likewise R2 �R1- and
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FIG. 20. �Color online� Bifurcation diagram showing some of the secondary
branches of localized states connecting the various periodic states. The in-
sets show enlargements of the small amplitude behavior near onset and the
termination of the secondary branches near the saddle-nodes on P16, P17,
and P18. The classical snaking region near Ra=41.17 is not resolved on the
scale of this plot. Parameters: 	=0.05 and S=−0.01.
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FIG. 21. �Color online� Detail of the snaking region in Fig. 20. Left: snaking
of the single pulse states L20

1�; solid �dashed� line represents even �odd�
parity states L20
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1−�. The L20

1− snaking region is narrower than the L20
1+

snaking region. Center and right: snaking of two-pulse states with phases
�= �0,0� �L20
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R1-symmetric, and these symmetries persist for unequal
separations of identical pulses as well. Thus we expect non-
equidistant steady states of either type to also lie on isolas, in
addition to the snaking branches L20

2− �Fig. 5�b�� and L21
1− �Fig.

10� of equidistant steady states of either type.
We remark that, within SH23, one also finds snaking

branches of unequal pulses that bifurcate from the first
branch of periodic states with an odd number of wavelengths
in the period � �Fig. 26�. In nonvariational systems, states of
this type necessarily drift. We have not computed similar
states in the present problem, although there is every indica-
tion that such states are in fact present. Instead we have
focused on the steady states that bifurcate from such
branches, here P21 or P19, instead of the primary branch, here
P20 �Figs. 4 and 20�. These states necessarily consist of iden-
tical equidistant states with either R1 or R2 �R1 symmetry and
hence do not drift.

The states L21
1� consist of two equidistant pulses of the

same parity but opposite signs �Figs. 11 and 12�. Tertiary
bifurcations from these states create new steady states pro-
vided the resulting state remains reflection-symmetric. To
understand the nature of these states, we examine the solu-
tions on the half-domain 0�x�� /2, identify possible bifur-

cations, and then construct a reflection-symmetric state on
the full domain −� /2�x�� /2 by putting the bifurcated
state back-to-back with its mirror image in x=0. The state
L21
1+ in Fig. 11, restricted to 0�x�� /2, satisfies NBCs at
x=0, � /2. On this domain the state has the reflection sym-
metry R2 �R�/4, where R�/4 represents a reflection in x=� /4.
It follows that aside from saddle-node bifurcations �Fig. 10�,
the L21

1+ state can also undergo symmetry-breaking pitchfork
bifurcations. These bifurcations do take place �Fig. 17� and
lead to the solutions shown in Fig. 18. Because of the broken
reflection symmetry, these solutions, if posed on a periodic
domain of length � /2, would drift; however when put back-
to-back with the mirror image obtained by reflection in x
=0, the reconstructed state becomes reflection-symmetric
and so is stationary with PBC on the domain �. The resulting
tertiary branches form S-shaped curves �Figs. 17�b� and
17�c�� parts of which hug the rung states, while the middle
part hugs the L21

1− branch.
The L21

1− state restricted to 0�x�� /2 also satisfies NBC
and is likewise invariant under R2 �R�/4. Once again, aside
from saddle-node bifurcations, symmetry-breaking bifurca-
tions generate states of the type observed in Fig. 15. With
PBC on a domain � /2, these states would drift, but the re-
constructed solution on the original domain seen in Fig. 15 is
reflection-symmetric and so corresponds to steady states.
This time the tertiary branches have a very spiky form,
where adjacent parts of the branch hug rung states. There are
two types of these cusps, longer ones that form when the
tertiary branch hugs the L21

1+ branch and shorter ones when it
hugs the L21

1− branch. These structures resemble similar be-
havior identified in SH35 when the boundary conditions on
the domain � are changed13 from PBC to NBC; the S-shaped
branches resembling those bifurcating from L21

1+ arise when
the boundary conditions are changed to Dirichlet boundary
conditions �DBCs� instead �Fig. 27�. These results are evi-
dently related to the behavior reported in Figs. 13 and 17.
This is because the centered L21

1+ states in Fig. 11 do in fact
satisfy DBC on −� /4�x�� /4, while the L21

1− states in Fig.
12 satisfy NBC on 0�x�� /2. Thus in both SH35 and the
present system, the observed structure of the tertiary
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FIG. 24. �Color online� �a� Bifurcation diagram showing isolas of symmet-
ric two-pulse states in SH23. The nested isolas correspond to fixed pulse
width as the pulse separation varies. For reference, the snaking branches of
equidistant two-pulse states are plotted as dotted lines. The light solid line is
a branch of unstable periodic states. �b� Profiles at the points labeled in the
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FIG. 25. �Color online� �a� Bifurcation diagram showing isolas of symmet-
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labeled in the bifurcation diagram. Parameters: b2=1.8 and �=118. Re-
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FIG. 26. �Color online� �a� Bifurcation diagram showing a branch of non-
symmetric two-pulse localized states in SH23, which emerges from and
terminates on the spatially periodic branch P19. �b� Profiles at the points
labeled in the bifurcation diagram. Parameters: b2=1.8 and �=118. Re-
printed with permission from J. Burke and E. Knobloch, Discrete Contin.
Dyn. Syst. Supplement 2009, 109. Copyright © 2009, American Institute of
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branches follows the geometrical mechanism described in
Ref. 24.

The above arguments apply to case �b� as well �Fig. 23�:
one finds S-shaped tertiary branches connecting L19

1+ to itself
as well as S-shaped tertiary branches connecting L19

1− to itself.
In addition, one now finds tertiary branches that connect L19

1−

to L20
2+. Whether similar connections are present in SH35 is

unknown.
It will have been noticed that while the single pulse even

and odd parity convectons snake in more or less the same
interval in Ra, the widths of the snaking intervals are not the
same: the snaking interval for the odd parity states is nar-
rower than that of the even parity states, an observation that
also applies to standard binary fluid convection.2 This is a
consequence of the fact that the odd parity states pump con-
centration from one side of the convecton to the other. In
fact, the corresponding saddle-nodes align very well along
the left boundary of the snaking region corresponding to a
tangency between the unstable manifold of the conduction

state and the center-stable manifold of the periodic state with
wavelength 
c. This alignment occurs because at this value
of the Rayleigh number, new cells are being nucleated and
are still too weak to entrain concentration into the convecton.
Thus at this Ra, the mean concentration inside and outside
the odd convectons is the same, and this is so for the even
convectons as well. However, as one follows the snaking
branch upward to the next saddle-node at the right boundary
of the snaking region, the new cells on either side strengthen
in amplitude to the characteristic amplitude of the existing
convection cells. For even parity convectons, this implies
that the cells at either end of the convecton either both en-
train high concentration fluid into the convecton or that both
entrain low concentration fluid. Thus the concentration inside
is either larger or smaller than average, depending on the
direction of the flow in the outermost cells.2 In an odd con-
vecton, however, the cells at both ends rotate in the same
direction. As a result concentration is entrained at one end
and rejected at the other, i.e., there is net pumping of con-
centration across the structure, and this pumping sets up a
concentration gradient between adjacent odd convectons.
This is the case for single pulse states on a periodic domain
and also for two-pulse states of �� /2,� /2� type such as L20

2−.
This is the reason behind the different widths of the snaking
region of L20

2�. In contrast, if one places odd parity convec-
tons back-to-back as in the �� /2,3� /2� state L21

1− �Fig. 12�,
both structures pump toward one another, thereby raising the
concentration between them to an above average value while
depleting it outside, i.e., between �3� /2,� /2� �or vice
versa�. In such a situation, each convecton finds itself em-
bedded in an inhomogeneous background, and no net con-
centration flux is present. The effect of the resulting bound
pair of convectons is thus identical to that of a single even
parity state. It is for this reason that the snaking regions of
L21
1� are identical �Fig. 10�, while those of L20

1� or L20
2� are not.

In the presence of impermeable walls, the same argument
applies �despite the different velocity boundary conditions�,
and the width of the snaking region for odd and even con-
vectons in closed containers is therefore the same, in contrast
to the case with PBC.27,35 This all-important pumping effect
is not captured by Swift–Hohenberg type models.

VII. CONCLUSIONS

In this paper we have explored the bifurcation behavior
of a relatively simple convection problem—binary convec-
tion in a porous medium. Like other problems of this type,
this problem exhibits a subcritical primary instability to a
spatially periodic state. However, because of the simpler
boundary conditions on the velocity field, the problem is
amenable to more detailed numerical continuation, particu-
larly if the �inverse� Lewis number 	 is not too small. As a
result we have been able to identify much new behavior as-
sociated with the presence of bistability in this system. In
particular we have verified that the behavior of single pulse
states follows the snaking behavior observed in other fluid
systems2,9 and familiar from studies of variational systems
such as the SHE.14 In addition, we have been able to study
two-pulse states, i.e., bound states of two convectons. We
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FIG. 27. �Color online� Superposition of the DBC and NBC bifurcation
diagrams for SH35. �a� The even parity branch undergoes a pitchfork bifur-
cation at G1 producing a narrow bubble of asymmetric states; this bubble
closes at larger r. The odd parity branch also produces a bubble of asym-
metric states between pitchfork bifurcations at H1 and H2. �b� Enlargement
of �a� with an inset plot of the localized states at points a, b, and c. Point a
in �b� is the same as point G1 in �a�. Parameters: b3=2 and �=10�. From J.
H. P. Dawes, SIAM J. Appl. Dyn. Syst. 8, 909 �2009�. Copyright © 2009
Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.
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have identified a variety of different bound states depending 
on the spatial phase � of the constituent convectons and 
showed that these also fall on snaking branches. Although 
we have focused on the properties of equidistant two-pulse 
states, we have argued for the presence of a multiplicity of 
other states of this type that lie on isolas, i.e., disconnected 
solution branches. Finally, we have identified a variety of 
tertiary branches consisting of bound states of asymmetric 
pulses and showed that these also snake. These states con-
nect the equidistant two-pulse branches either to themselves 
or to one another in a manner reminiscent of the single pulse 
rung states in the snake-and-ladders structure of the single 
pulse snaking region.12,24 The details of this structure remain 
to be elucidated, however, since our techniques only allow us 
to compute steady states, and as we have argued, many of 
these states will in fact drift.

We believe that the states we have computed here are 
more than a curiosity. Indeed our calculations demonstrate 
vividly the richness of even very simple partial differential 
equations and in particular of the region in parameter space 
called the snaking or pinning region. This region not only 
consists of the snake-and-ladders structure of single pulse 
states but, as we have shown here, also includes the corre-
sponding structure associated with two-pulse states and pre-
sumably higher order bound structures as well. This im-
mensely complex region appears to be a general property of 
reversible bistable systems in which a stable homogeneous 
state coexists with a structured or heterogeneous state and is 
associated with transverse intersections of their stable and 
unstable manifolds when viewed as a dynamical system 
evolving in space from x=−� to x=�. Thus it is no surprise 
that related two-pulse states are present in binary fluid con-
vection as well.36
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