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We present a theoretical and experimental investigation of drainage in porous media. The study
is limited to stabilized fluid fronts at moderate injection rates, but it takes into account capillary,
viscous, and gravitational forces. In the theoretical framework presented, the work applied on
the system, the energy dissipation, the final saturation and the width of the stabilized fluid front
can all be calculated if we know the dimensionless fluctuation number, the wetting properties, the
surface tension between the fluids, the fractal dimensions of the invading structure and its boundary,
and the exponent describing the divergence of the correlation length in percolation. Furthermore,
our theoretical description explains how the Haines jumps’ local activity and dissipation relate to
dissipation on larger scales.

I. INTRODUCTION

Two-phase flow in porous media is crucial in a variety
of sectors, ranging from fundamental research to appli-
cations in a wide array of industrial sectors such as fuel
cell [1] and solar cell technology [2], fiber-reinforced com-
posite materials [3], textile fabric characterization [4],
prospection and exploration of oil and gas [5–8] etc. The
description of flows inside natural porous media, such as
soils and rocks, is also crucial for the study of groundwa-
ter flows [9, 10] and the treatment of soil contaminants
[11–13] but it also matters for everyday tasks such as
making a cup of coffee [14]. It is a multidisciplinary sub-
ject that has been investigated for decades by hydrolo-
gists, physicists, chemists, geoscientists, biologists, and
engineers due to its practical importance and complex-
ity. The structures observed are controlled by the forces
involved, such as viscous [15–21], capillary [18–25], and
gravitational forces [26–31], as well as wetting properties
[32–38] and changes in the local geometry of the porous
medium [39, 40]. The structures vary in shape and com-
plexity [15, 16, 18, 32, 37, 41–47], from compact to ram-
ified and fractal [48, 49]. The fractal nature of porous
media is itself important for a number of applications
[50, 51], such as electrolyte diffusion through charged
media [52] a topic of relevance for the development of
modern battery technology [53].

In most practical applications of porous medium
physics, the typical length scales where our interest lies
is substantially larger than the scale where the relevant
physics is taking place. Oil reservoirs or water aquifers
are in the range of kilometers while the typical pore sizes
are commonly in the micrometer scale, about nine orders
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of magnitude smaller. How do we deduce the flow be-
havior at large scales from small-scale physics? The usual
way of solving these problems is a top-down approach us-
ing Darcy´s law [54] on a mesoscopic level. However this
approach does not take into account local fluctuations,
like capillary or viscous fluctuations, which are averaged
out. In this manuscript we take an alternative bottom-
up approach where we emphasize on the pore-level cap-
illary fluctuations and compare those fluctuations with
the characteristic forces which are set up by the external
fields on the whole system. Examples of such forces are
gravitational or viscous fields. We will also limit our dis-
cussion to the stable drainage regime, which occurs when
a nonwetting fluid displaces a wetting fluid, and when the
viscous and/or gravitational forces stabilize the displace-
ment front between the two fluids. This approach was
introduced in the late 1970s [55, 56] and its theoretical
development benefited greatly from invasion percolation
models [57]. On this subject, other relevant experimen-
tal, numerical, and theoretical articles have since been
published [26, 27, 58–61]. The dimensionless fluctuation
number F , introduced in [30, 61], quantifies the ratio
between the viscous and/or gravitational field and the
capillary pressure fluctuations. The characteristic length
scale η which describes the width of the invasion front,
and which depends on F , is of central importance to cal-
culate the saturation behind the front, which in turn gives
a measure of the sweeping efficiency of a given drainage
process, a quantity of great interest in a number of ap-
plications. The local structures will be fractal on length
scales smaller than η with a crossover to a homogeneous
behaviour on length scales larger than η. Knowing the
scaling of the fluid structures up to the length scale η
allows one to have full control of the energy balance of
the problem and calculate large-scale quantities such as
the final saturation behind the front, the dissipation or
the entropy production, and the work required to move
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the front forward.

The dynamics of slow displacement in porous media
has been observed to occur in an intermittent manner by
so called Haines jumps [59, 62–72]. The invasion perco-
lation model [55–57] describes well the structure of slow
displacement in porous media [22], but it does not de-
scribe the dynamics realistically because the invasion is
limited to one pore at a time. However it is possible to
introduce a realistic interpretation of time in a modified
invasion percolation model [63] by introducing a constant
κ relating the volume change at the interface with a cor-
responding change in pressure. Ref. [63, 64] found both
in simulations and experiments that the pressure fluctua-
tions of the Haines jumps follow a power law distribution
with an exponential cutoff function.

In the present work we use a new approach to calculate
the dissipation and the energy of the surfaces left behind
the front by considering the elastic energy (surface en-
ergy) released by the Haines Jumps when the front is in
a steady state regime. In between jumps all the external
work goes into building up the elastic (surface) energy
of the fluid front. When the invading fluid front is in
a steady state, its average length is constant, and the
work applied to the system (for example by an external
pump) must be equal to the elastic energy released by the
invasion front (green line in Fig. 1). As a result, using
the distribution function of the capillary pressure fluctu-
ations and performing a bottom-up approach to integrate
up the elastic energy released by the bursts, we can check
the consistency of our theory as well as the distribution
of dissipative events. We found as expected that the total
elastic energy released by the bursts is equal to the work
W = 〈p〉∆V , where 〈p〉 is the average pressure across
the model and ∆V is the volume change of the invading
fluid corresponding to the interface motion. This result
provides an important consistency check for the analysis.
The dissipation can then be calculated by subtracting
the generated surface energy from the total applied work.
The surface energy is directly computed by the scaling
of the invasion structure, which is given by the invasion
structure’s fractal dimension, also measured in our work.
As a result of the theory and quasi-two-dimensional ex-
periments, we discovered that the work W , dissipation Φ,
and the energy of the surfaces left behind the front Es are
all proportional to the number of pores S invaded. Up to
the characteristic length scale η, the spatial scaling of S
is fractal and for larger length scales the scaling becomes
proportional to the system size instead. We then show
that we can explicitly calculate W , Es, and Φ if we know
the surface tension of the fluids and the wetting prop-
erties from the experiments. We further discovered an
important analytical result: that the ratios Es/W and
Φ/W are both independent of system size.

II. EXPERIMENTAL TECHNIQUE

The majority of the experimental results presented in
this paper are taken from data published in the past in
our group. The system is composed of a modified Hele-
Shaw cell [73], filled with a monolayer of glass beads with
diameters in the range [1.0mm, 1.2mm]. The glass beads
are randomly distributed in the cell gap and the voids
in between the beads form the porous network. This
quasi-two-dimensional geometry allows for the direct vi-
sualization of the fluid phases, by means of regular opti-
cal imaging using a digital camera. For details about the
model construction, see for instance Refs. [74] and [75].

In this paper we also present results produced using
an alternative stereolithography 3D printing technique to
create the porous structures. We have employed a Form-
labs Form 3 printer to produce models in a transparent
plastic material (Clear Resin FLGPCL04). This tech-
nique allows us to control the geometry of the porous
network and in particular to tune its porosity. In the
experiments presented here we have made quasi-two-
dimensional models where cylinders are distributed with
a Random Sequential Adsorption algorithm [76] where we
can set the minimum distance between the cylinders (see
Fig. 1), typically chosen as 0.3mm. The cylinders height
and diameter were both chosen to be 1mm. The spa-
tial resolution of these models is about 0.09mm and the
models are constructed to optimize the visualization of
the pores, which are seen from a top-down view. The 3D
printed porous model is placed between two thick Plex-
iglass plates which are clamped around the edges using
screws to give robustness to the setup and ensure the
quasi-two-dimensional geometry. A flexible PVC film is
placed between the porous model and the top Plexiglass
plate. This film plays an important role: due to its flex-
ibility, when the screws around the model are fastened
the PVC film gets in contact with the top of all cylin-
ders, thus ensuring the appropriate sealing of the model.
Fig. 1 shows a typical snapshot of an experiment and a
diagram of the setup. We also define in the upper part
of the figure the model’s width w, length L, the invading
front (green line), its average position h and width 2η.

The porous network is initially fully saturated with a
wetting viscous liquid composed of a mixture of glycerol
(80% in weight) and water (20% in weight). The kine-
matic viscosity, density and surface tension (with respect
to air) are ν = 4.25 · 10−5m2/s, ρ = 1.205 g/cm3 and
γ = 0.064N/m. The wetting liquid is dyed with a dark
blue colorant (Nigrosin), to aid visualization. Air is used
as the nonwetting phase. During an experiment, the liq-
uid phase is withdrawn with a syringe pump (Harvard
Apparatus) at a constant flow rate, leaving the model
from the a width-spanning channel at the bottom end
of the cell. Air enters the model from the top, through
another width-spanning channel that is open to the at-
mosphere.
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FIG. 1. Upper figure: A nonwetting fluid 1 invades another
wetting fluid 2 in a porous model of width w, length L and
coordinate system (x,y). A syringe pump is connected to
the lower side and the model is open to air on the upper
side. The model can be tilted with an effective gravitational
constant g = g0 sin(θ) along the x direction of the model,
where g0 = 9.82m/s2. The average position of the front is h
and the width of the front is 2η. Lower figure: Cross section
of the experimental model system a) shows two transparent
Plexiglass plates, b) the 3D printed porous model, c) a PVC
film kept under pressure to close the model and d) screws that
clamp the model. The model is illuminated from below and
pictures are taken from above.

III. SURFACE ENERGY, DISSIPATION AND
BURST DYNAMICS

Consider a single pore identified by the index i in which
a nonwetting fluid displaces a wetting fluid as illustrated
in Fig. 2. The front moves from a position with a radius of
curvature r0 to one with a radius of curvature r = r0−dr.
This results in a volume change dvi of the nonwetting
fluid, and a corresponding volume change −dvi of the
wetting fluid in that pore. Assume that we measure the
distances in the normal (radial) direction from each of the

points on the front defined with radius r0 to the front
defined by the radius of curvature r = r0 − dr. The
longest of these distances we denote as dxi. The distance
dxi to lowest order in dr is given by

dxi =
dxi
dr

∣∣∣∣
r0

dr = αidr , (1)

where

αi(ψ, p0) =
dxi
dr

∣∣∣∣
r0

(2)

depends on the wetting angle ψ (See Fig. 2) and the cap-
illary pressure p0 given by the Young-Laplace equation
p = γ(1/r + 1/r1) [10] for r = r0. Here r is the in-plane,
and r1 the out of plane radius of curvature assumed to
be constant in the quasi-two-dimensional experiments.

We can then calculate the corresponding increase in
capillary pressure

dp =
γdr

r20
. (3)

Then by using Eqs. (1) and (3) we get

dp =
γ

r2oαi
dxi . (4)

The volume change dvi of the invading fluid in the pore
can be written as

dvi = Ai(ψ, p0)dxi, (5)

where Ai(ψ, p0) is the surface area in pore i which is
function of the wetting angle and the capillary pressure
p0. We then get

dp =
γ

r2oAiαi
dvi , (6)

such that

dvi = κidp , (7)

where the capacitive volume

κi(ψ, p0) =
r20Ai(ψ, p0)αi(ψ, p0)

γ
, (8)

gives the fluid volumetric change per unit capillary pres-
sure in pore i [63].

Let Ui(x) be the elastic energy (surface energy) of the
interface in pore i, and dxi a small displacement of the
interface between the two fluids due to an external pump
driving the system at a low flow rate such that viscous
forces can be neglected. Assume that the system is in me-
chanical equilibrium. The work performed by the pump
will then increase the elastic energy due to this displace-
ment. The elastic energy associated to pore i having
interface located at the position xi would then be

Ui(xi) = Ui(0) +

∫ xi

0

pAidxi , (9)
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FIG. 2. The figure illustrates a nonwetting fluid invading
a wetting fluid at a single pore-throat at different radius of
curvature r0 and r = r0 − dr. The distance moved between
the two front positions is dxi and ψ is the wetting angle

FIG. 3. The figure illustrates the dependence of the pressure
across the model p(t) and the time t. The front is in equilib-
rium between point 1 and point 2 and reaches the threshold
value of one of the pores along the front at point 2. A burst
will appear between point 2 and 3 and the front is there out
of equilibrium.

where p is the capillary pressure across the interface, and
Ui(0) is the elastic energy when xi = 0. Using Eqs. (7),
(9) and (5) we get

Ui(xi) = Ui(0) + κi

∫ p

p0

p∗dp∗ = Ui(0) +
κi
2
p2 . (10)

We have assumed p0 = 0 without loss of generality since
κip

2
0/2 also can be included in Ui(0). If instead of con-

sidering a single pore we consider the work done on a
front having n pores, the total elastic energy Ut will be
the sum of the contributions from all pores belonging to
the invasion front (green line in Fig. 1). We then get

Ut = Ut(0) + n
κ

2
p2 , (11)

where

κ = (

n∑
i=1

κi)/n , (12)

where κi is the capacitive volume of pore i so that κ is
the average capacitive volume over the n interface pores.
The capillary pressure p2 at the time t2 and the capillary
pressure p1 at the time t1 are related by

p2 − p1 =
q(t2 − t1)

nκ
, (13)

where q is the imposed volumetric flow rate. Since we
have assumed the system to be in mechanical equilib-
rium, the interface will slowly increase its capillary pres-
sure without any bursts (Haines jumps) [62]. The cap-
illary pressure will then build up from p1 at t1 to p2 at
t2 due to the work W performed by the external pump.
This work will then increase the total elastic energy (sur-
face energy) of the interface from Ut(t1) to Ut(t2)

Ut(t2)− Ut(t1) = W = nκ

∫ p2

p1

p∗dp∗ =

nκ

2
(p22 − p21) . (14)

After some time the interface will however reach a sit-
uation where the capillary pressure in one of the pore-
throats is at the threshold value pt. The interface at
that pore will then become unstable, and the invading
fluid will move into one or more neighboring pores. At
this time, the capillary pressure at the interface of the
growing burst will be lower than the capillary pressure
at the other parts of the interface. This produces a lo-
cal velocity field that extends from the growing burst to
the other parts of the interface. The interface will then
back-contract, beginning with the pores closest to the
pore where the burst begins and spreading out through
the interface until it reaches equilibrium. Then the cap-
illary pressure is again the same at all pores along the
interface. Let us assume that the burst starts at time t2
at a capillary pressure p2 = pt and that, after the burst,
the system reaches another equilibrium state at capillary
pressure p3. During the burst the elastic energy of the
part of the fluid interface which is back-contracting will
be reduced. This energy reduction is equal to

Ut(p2)− Ut(p3) =
κn(t2)

2
(p22 − p23) =

κn(t2)(p2 − p3)(p2 + p3)/2 , (15)

and will go to creation of the surface energy of the new
burst in addition to viscous dissipation due to the flow
that takes place during the burst. Here ∆p = p2 − p3
is the pressure drop in the burst and (p2 + p3)/2 is the
average pressure during the burst.

The surface energy of one single burst in our quasi-two-
dimensional experiments has two contributions, one from
the area of the burst 2γ2a

2s and one from the interface
contour aγ1bse. Here a is the average in-plane pore size,
b is the height of the cylinders (or the diameter of the
beads in the case of the previously published experiments
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FIG. 4. a) Tracking of the invasion front (green) and of
the contours of trapped liquid clusters and films inside the
medium (red). Notice that some isolated beads are included
in the tracking. This is because as air enters the medium a
thin liquid film is left covering their surface. b) Measurement
of mass fractal dimension D, the fractal dimension De of the
contours in a) and the fractal dimension Df of the main in-
vasion front (green line).

based on a monolayer of glass beads, see Sec. II), s is
the number of pores in the burst considered, and ase is
the length of the invasion contour of the burst (including
trapped clusters). The factor 2 in the term 2γ2a

2s is
due to the creation of two new solid-air interfaces after
the burst, one at the bottom and one at the top. The
need for two different surface energies values, γ1 and γ2,
is explained below.

In Fig. 4 a) we show the tracking of the invasion front
(green line), and the in-plane invasion contour left behind

the front (red line). The fractal dimensions D of the in-
vading fluid phase (air), De of the invasion contours, and
Df of the invasion front are shown in Fig. 4 b), where
a box counting technique was employed in the measure-
ment [49]. We have obtained the values D = 1.87± 0.10,
De = 1.84 ± 0.10 and Df = 1.45 ± 0.10. The dotted
and dashed lines on the left correspond to the exponents
-2 and -1 respectively. These are expected as the frac-
tal nature of the invasion structure has a lower bound
at the pore-size a. For boxes of size δ < a, we recover
the intrinsic 2 dimensional nature for the invading struc-
ture mass (dotted line) and the 1 dimensional nature of
the perimeters of the front and internal contours (dashed
lines). When a fluid film is left behind the invasion front
the surface tension γ1 = γ2 = γ which is the surface ten-
sion between the two fluids. However when no film is
left behind the invasion front, γ2 = γns − γws, where γns
is the interface tension between the nonwetting fluid and
the solid and γws is the interface tension between the wet-
ting fluid and the solid. Using the Young equation [10]
we can also write the previous relation as γ2 = γ cos(ψ),
where ψ is the static contact angle at the liquid-solid-air
triple line. In the situation in which no wetting fluid film
is left behind the invasion, the in-plane interface contour
(red lines in Fig. 4) will be partly formed by nonwetting-
wetting segments and partly formed by nonwetting-solid
phase segments. This division is exemplified in Fig. 5,
where we have split the contours shown in red in Fig. 4
into orange and green segments, where orange denotes
the interface between the nonwetting and wetting phases
and green the interface between nonwetting and solid
phases. Let us define the ratio ε = Ans/At, where Ans is
the interface’s surface area between the nonwetting phase
and the solid phase, and At is the total surface area of
the interface. In Fig. 5, ε corresponds to the ratio be-
tween the total length of green lines to the total length
of both green and orange lines added. We then get an
effective surface tension γ1 = (1− ε)γ + ε(γns − γws) for
the total internal interfacial contours. Using again the
Young equation [10] we can rewrite this expression as
γ1 = (1− ε)γ + εγ cos(ψ).

We will in the following consider a situation where we
have a long channel containing the porous medium with
the invading fluid entering from one of the short sides of
this channel and with the outlet on the other side. We
will further assume that we follow the displacement front.
The front will have a width of the order of the width w
of the channel. Apart from an initial transient we can
then consider the front to be in a steady state regime
with a constant average length n (measured in number of
pores). Since the elastic energy of the growing interface
on average must be constant, the work W applied by
the pump must equal the elastic energy released by the
bursts which is equal to the dissipation φ plus the surface
energy needed to create the the new interface Es, such
that

W = Φ + Es . (16)
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FIG. 5. Tracking of the internal interfacial contours between
the nonwetting and wetting phases (orange) and the nonwet-
ting and solid phases (green).

It is important to note that W , Φ, and Es are average
quantities that do not account for fluctuations, and that
φ and Es are averaged over a large number of bursts.

From [63] we know that the distribution function of
the burst sizes G(s) is directly linked to the distribution
of the capillary pressure drops F(∆p) during the bursts
since

s = nκ∆p/v̄ , (17)

where v̄ is the average single pore volume averaged over
the invading structure, and

F(∆p) = G(s)
ds

d∆p
. (18)

We found [59, 63, 64, 71], both in simulations and ex-
periments that the burst size distribution G(s) is given
by the scaling relation

G(s) = s−τH(
s

s∗
) , (19)

where the cutoff size of the bursts s∗ is [63]

s∗ = nκ∆p∗/v̄ =

(
nκ

v̄N(pc)

) νD
1+νD

. (20)

where N(pc) is the value of the normalized capillary pres-
sure threshold distribution taken at the critical percola-
tion threshold pressure pc, and ν = 4/3 is the exponent

FIG. 6. Burst size distribution G(s) from slow drainage ex-
periments. The line has a slope of −1.32 corresponding to the
results predicted by the analytical prediction Eq. (21). The
data for EXP-2 (blue triangles) has been shifted vertically by
0.4. Data from Ref. [71].

describing the divergence of the correlation length in per-
colation [77]. Since the capillary pressure threshold dis-
tribution N(pt) is normalized, the width of the distribu-
tion σ ≈ 1/N(pc). Therefore the cutoff size of the bursts
will increase with σ according to Eq. (20) as s∗ ∝ σ0.78.
Martys et al. [78] derived the analytical form

τ = 1 +
Df − 1/ν

D
, (21)

where D and Df are, respectively, the fractal dimensions
of the growing cluster and its front (seen as the green
line Fig. 1). Using the literature values D = 1.82 [22, 57]
and Df = 4/3 [23, 27, 58], we obtain τ = 1.32, consistent
with our experimental data shown in Fig. 6.

We therefore get from Eqs. (17), (18), (19) and (20)

F(∆p) = ∆p−τH(
∆p

∆p∗
)
(nκ
v̄

)(1−τ)
, (22)

where Eqs. (20) and (17) give the cutoff pressure ∆p∗

∆p∗ =
1

N(pc)

(
nκ

N(pc)v̄

) −1
1+νD

. (23)

Fig. 7 shows the scaling function H(∆p/∆p∗) for vari-
ous values of κ from invasion percolation simulations [16]
which confirms (22) and (23).

We will in the following use F(∆p) to calculate the
work. Assume that the viscosity is low such that the
total time of the bursts is short, and can be neglected
compared to the total time considered. The work can
then be calculated by averaging Eq. (15)

W = Mnκ〈p〉
∫ ∞
0

∆pF(∆p)d∆p , (24)

where M is the total number of bursts during the time
considered. Here we have assumed that the average pres-
sure in each burst (p2 + p3)/2 in Eq. (15) is independent
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FIG. 7. The dependence of the crossover function
H(∆p/∆p∗) of the pressure jump distribution in a modified
invasion percolation simulation [63]. For each value of κ, the
points represent averages over five independent simulations on
200× 1500 lattices. The scaling exponent 0.30 ≈ 1/(1 + νD).
Data is taken from [63].

of the capillary pressure drop of that burst and there-
fore can be averaged independently of ∆p. The value
of that average is 〈p〉. This assumption can be readily
verified experimentally if we look at the typical temporal
signature of the capillary pressure in one experiment, see
Fig. 8. The pressure signal in this figure corresponds to
an experiment performed with a liquid withdrawal rate
of 1ml/h on a horizontal model, i.e, the angle θ = 0◦ (see
Fig. 1). The data is shown after the transient regime in
which the capillary pressure grows from 0 to the fluctu-
ating signal around a characteristic pressure 〈p〉. Notice
that the typical size of the fluctuations in the pressure do
not seem to depend strongly on the instantaneous value
of the pressure, thus confirming the assumption made in
the derivation of Eq. (24). This can be better seen from
the insets in the shaded red and green regions in the plot.
We observe the typical Haines jumps signature charac-
teristic of slow drainage processes. The signal on the left
inset is statistically very similar to that on the right, thus
further justifying the assumptions in Eq. (24)), i.e., that
the capillary pressure drop ∆p in a given burst does not
depend strongly on the average pressure in the burst at
steady state. The thick horizontal line in the plot denotes
a characteristic pressure 〈p〉 = 210Pa.

By inserting the expression for F(∆p) from Eq. (22)
into Eq. (24), we have

W = M〈p〉v̄(
nκ

v̄
)2−τ

∫ ∞
0

∆p1−τH(
∆p

∆p∗
)d∆p =

M〈p〉v̄
(nκ
v̄

)2−τ
∆p∗2−τI , (25)

where I is the integral

I =

∫ ∞
0

y1−τH(y)dy . (26)

FIG. 8. Typical evolution of the pressure signal during an
experiment. In this specific case, the liquid was withdrawn
from the bottom at a rate of 1ml/h and the model was po-
sitioned horizontally, i.e., θ = 0◦. The thick horizontal line
denotes a characteristic average pressure during the bursts
〈p〉 = 210Pa. The left and right insets (shaded respectively
in red and green) show zoomed in sections of the signal, where
we can see the characteristic Haines jumps. The signal looks
statistically similar in both insets, thus justifying the assump-
tions made in Eq. (24).

Then by using Eq. (23) we obtain

W = Mv̄〈p〉I
(

nκ

v̄N(pc)

) (2−τ)νD
1+νD

. (27)

Assume that we consider the time tw the front needs to
move a length w corresponding to the width of the model.
Within this time the invading fluid has invaded an area
a2S of S pores. The total number of bursts considered
M can be calculated as S/〈s〉, where 〈s〉 is the average
size of the bursts

〈s〉 = Is∗2−τ = I

(
κn

N(pc)v̄

) (2−τ)νD
1+νD

. (28)

where I is the integral in (26). We then get the following
simple expression for the work

W = Sv̄〈p〉 . (29)

This expression is the well-known relation of the work
expressed as a pressure times a volume change 〈p〉∆V ,
where ∆V = Sv̄ = Sa2b = qtw is the volume injected by
the pump during the time tw.

We can then calculate the total dissipation within tw
by using equations (16) and (29)

Φ = W − Es =

Sa2b〈p〉 − γ2a22S − Cγ2ab2S(D−1)/D − γ1abSe , (30)

where C is a constant. Here the second term corresponds
to the contribution to the surface energy from the top and
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the bottom interfaces (see discussion after Eq. (15)) and
the third term to the contribution from the side walls.
The D−1 term in the exponent is due to the cut between
the fractal invasion structure and the sidewall using one
of Mandelbrot’s rules of thumb [48, 49]. The last term
corresponds to the surface energy connected to the con-
tours of the trapped clusters Se seen in red in Fig. 4. For
large S the third term can be neglected and

Φ ≈ Sa2b〈p〉 − γ2a22S − γ1abSe . (31)

The length of the front n, seen as the green line in Fig. 4,
is given by

n ∝ (w/a)Df ∝ SDf/D ∝ SDf/Dee , (32)

where Df is the fractal dimension of the front (not in-
cluded trapping) and De is the fractal dimension of con-
tours of the trapped clusters. From Fig. 4 we see that
the measured fractal dimensions for De and D seem very
close, effectively indistinguishable from one another con-
sidered the error bars. This result implies that S ∝ Se.
In the experiment shown in Fig. 4 we have measured
the proportionality relation to be Se = 1.32S. We have
also measured the prefactor linking S and the window
size w/a (see relation (32)), obtaining the expression
S = 0.72(w/a)D. By plugging these two equations into
Eq. (31) for the dissipation φ, we gain access to the full
energy balance of the system, the resulting plot is shown
in Fig. 9. In this figure we see how the total applied work
W (thick black line) is split into the dissipated energy φ
(blue) and the surface energy associated to creation of
the top and bottom interfaces Est = γ2a

22S (green) and
the lateral interface Esl = γ1abSe (yellow). The dissi-
pation is calculated directly from Eq. (31). The total
applied work, the surface energy associated to the top
and bottom interfaces and that associated to the lateral
interfaces are given respectively by the first, second and
third terms in Eq. (31). Because all terms in (31) and
(29) are proportional to S the ratios φ/W , Esl/W and
Est/W are independent of w/a for large systems.

In the computation of the energy balance in Fig. 9
using Eqs. (31) and (32), we used ε = 0.71 measured from
the experimental images (see Fig. 5), γ = 0.064N/m,
ψ = 70◦, γ1 = (1 − ε)γ + εγ cos(ψ) = 0.034N/m, 〈p〉 =
210Pa and D = 1.87, see Fig. 4. As previously stated,
our assumptions for γ1 and γ2 correspond to the scenario
in which no film of the defending wetting fluid is left
behind covering the solid surfaces after the invasion by
the nonwetting phase.

If instead of the quasi-two-dimensional system consid-
ered thus far we had a three-dimensional long square
channel with a cross sectional area of w2, Eq. (29) for
the work would remain the same, while Eq. (30) for the
dissipation would be modified to

Φ = Sa3〈p〉 − γ1a2Se − 4Cγ2a
2S(D−1)/D , (33)

where C is a constant. When the system gets large the
last term can be neglected compared to the two first

FIG. 9. Energy balance showing how the width of the model
w/a (horizontal axis) influences the applied work (thick black
line), and how this work is split into energy dissipation (blue),
surface energy associated to the top and bottom surfaces
(green) and surface energy associated to the lateral surfaces
(yellow).

terms such that

Φ ≈ Sa3〈p〉 − γ1a2Se . (34)

If the invaded surface area Sea
2 times the characteristic

pore size a is proportional to the invaded volume Sa3,
the ratio φ/W and Esl/W will be independent of w/a.

IV. STABILIZING FIELDS AND CROSSOVER
LENGTHS

Let’s now take into account a gravitational field and
consider an experiment where a low density fluid with
density ρ1 and viscosity µ1 = 0 invades another fluid with
a higher density ρ2 and viscosity µ2 from above. (See
Fig. 1). The mapping between the occupation probability
in percolation theory f and the capillary pressure p is
given by [77, 79]

f =

∫ p

0

N(pt)dpt . (35)

We therefore have

f − fc =

∫ p

pc

N(pt)dpt , (36)

where the critical occupation probability is fc and the
critical percolation pressure is pc. As before, N(pt) is
the normalized capillary pressure threshold distribution.
Now, by Taylor expanding N(pt) around pc to the lowest
order in p− pc in Eq. (36) we get

f − fc = N(pc)(p− pc) . (37)

It is reasonable to assume that the viscous pressure drop
in the displaced fluid will depend linearly on the length
scale since there are no trapped invading fluid clusters in



9

the displaced fluid. Let us consider the capillary pressure
at a height x. Since the gravitational field also depends
linearly on the length scale x we have

f −fc = N(pc)(∆ρga−
qµ2a

kA
)(x−x0)/a = F (x−x0)/a ,

(38)
where x0 corresponds to a the height along the front
where the capillary pressure is at the percolation thresh-
old. Here k is the permeability felt by the displaced
fluid, A the cross-section area of the porous medium, and
∆ρ = ρ2 − ρ1 the density difference between the fluids.
The fluctuation number F

F = N(pc)(∆ρga−
qµ2a

kA
) , (39)

is a dimensionless number [61] which characterizes the
gravitational and viscous fields and the capillary pres-
sure fluctuations. Note that the width of the capillary
pressure threshold distribution is σ ≈ 1/N(pc), as the
distribution is normalized. We will then use an assump-
tion, first introduced by Sapoval [27, 57, 80, 81], that the
correlation length in percolation will scale as the width
of the front η = (x− x0) ∝ ξ, where ξ is the percolation
correlation length. This is based on the observation that
the largest trapped cluster of wetting fluid is limited by
the front width. From percolation theory, the correlation
length ξ is given by [77]

(ξ/a) ∝ (f − fc)−ν , (40)

Using Sapoval’s argument, and inserting Eq. (40) into
Eq. (38) gives [26, 61]

η/a ∝ F
−ν
1+ν . (41)

Therefore, when F > 0, the front will be stabilized with
a characteristic length scale η [26, 27, 61] . This scal-
ing behaviour is shown in Fig. 10. The blue dots show
experimental data taken from [61] where the authors an-
alyzed the scaling of the invasion front in drainage by
keeping the Bond number Bo = ∆ρga2/γ = 0.154 fixed
but changing the capillary number Ca by varying the
flow rate q (see Fig. 10 in Ref. [61] and experiments 1,
2, 3, 4, 5, 7, and 9 in Table I in the same reference).

Let us first assume that the gravitational effect is large
enough such that it is the characteristic length scale η
that sets the width of the front η < w. Consider again a
time scale tw corresponding to the time the front needs
to move a length scale w. Dividing space into cells of
size η2, below which the fluid distribution is fractal, the
number of pores S and Se are given by

S ∝ (
w

η
)2(

η

a
)D , Se ∝ (

w

η
)2(

η

a
)De , (42)

and the work can be written as

W = −g(ρ2h+ ρ1(L− h))qtw +
qµ2h

kA
Sa2b

+ Sa2b〈p〉 , (43)

FIG. 10. The dependence of the front width η/a on the gener-
alized Bond number Fa/(γN(pc)) = Bo−Ca. The blue dots
correspond to data taken from [61] where the Bond number
Bo = ∆ρga2/γ = 0.154 is kept fixed but the capillary number
Ca = qµ2a

2/(γkA) is changed by varying the flow rate q.

where h is the average position of the front from the lower
outlet. The first term in (43) is the negative work due
to the hydrostatic pressure, the second term the work
due to the viscous pressure in the displaced fluid, and
the last term is the work needed to continuously build
up the interface energy. The work must be equal to the
dissipation Φ plus the surface energy Es minus the change
in gravitational potential energy ∆Up (corresponding to
the first term in Eq. (43))

W = Φ + Es −∆Up . (44)

We then get the dissipation

Φ =
qµ2h

κA
Sa2b+ Sa2b〈p〉

− γ2a22S − Cγ2ab2S(D−1)/D − γ1abSDee , (45)

which for large S can be approximated as

Φ =
qµ2h

κA
Sa2b+ Sa2b〈p〉 − γ2a22S − γ1abSDee . (46)

On the other hand if η > w we will have the following
relations for S and Se

S ∝ (
w

a
)D , Se ∝ (

w

a
)De , (47)

but the same expressions for W and φ. Again if De = D,
the ratios φ/W , Esl/W and Est/W will be independent
of w/a for large systems.

V. SATURATION BEHIND THE INVASION
FRONT

The up-scaling problem of calculating the large scale
saturation involves identifying the cross-over length scale
where the fluid distribution is no longer fractal. Let L
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be the length of the porous model and assume L > w.
The final saturation behind the front of the invading fluid
and its dependence on the pressure across the model has
been studied in Ref. [82]. In this study, we considered
the volume of the invaded fluid in boxes with size corre-
sponding to the width of the invading front. On length
scales below this size, the structure of the invading fluid
is fractal, while on length scales larger than this size,
the structure is homogeneous. For sufficiently large F ,
when η is the characteristic length scale of the front, the
saturation SFnw of the nonwetting fluid behind the front
becomes [82]

SFnw ∝
(Lw

d−1

ηd
)(ηa )Dad

Lwd−1
= (

η

a
)D−d , (48)

where d is the spatial dimension (2 or 3). Hence using
Eq. (41)

SFnw ∝ F−ν(D−d)/(ν+1) . (49)

However, when the fluctuation number F is sufficient
small, η > w, and the width of the model w will be
the characteristic length scale in the problem. Then

SFnw ∝ (
w

a
)(D−d) . (50)

Fig. 11 shows a two-dimensional invasion percolation sim-
ulation with a gravitational field together with drainage
experiments performed by Ayaz et al. [82]. The red
dash-dotted line confirms the predictions of the theoret-
ical scaling in Eq. (49). We make the important remark
here that in the equations considered above we have ne-
glected the boundary effects at the inlet and outlet since
L/w � 1. These boundary effects are however important
when the characteristic length scale of the front w is of
the same order as the length L of the system [75].

In section IV we considered an invading fluid with a
negligible viscosity µ1 = 0. Let us now instead consider
the scenario in which this fluid has a non-negligible vis-
cosity µ1. In that case the fluctuation number will be

F = N(pc)(∆ρga+
qµ1a

k1A
− qµ2a

kA
) , (51)

where k1 is an effective permeability that depends on the
characteristic crossover length scale of the system which
is either η or w. The expression (51) is meaningful only
if the pressure drop in the invading fluid depends linearly
on the length scale along the average flow direction. Net-
work simulations in two dimensions however, show a lin-
ear change in the capillary pressure due to viscous flow
[60], [59]. This is due to the loop-less strands in the in-
vading nonwetting fluid. It is of great interest to know if
this is also valid in three dimensions.

The structure left behind the front is a fractal structure
with clusters of all length scales up to the characteristic
length scale η or w [27, 58]. Therefore if η < w, the

FIG. 11. The final saturation as a function of the gen-
eralized Bond number Fa/(γN(pc)) = Bo − Ca is plot-
ted both for experimental (black dots) and numerical results
(blue stars) produced via invasion percolation with a gravita-
tional field, together with the predicted result Eq. (49) (red
dash-dotted line) in two dimensions. The capillary number
Ca = qµ2a

2/(γkA) = 1.2 · 10−4 is kept fixed while the Bond
number Bo = ∆ρga2/γ is changed in the experiments. Nu-
merical and experimental data from [82].

permeability k1(F ) will be a function of F . If we know
this functional dependence we can solve the equation

F = N(pc)(∆ρga+
qµ1a

k1(F )A
− qµ2a

kA
) , (52)

with respect to F and thereby find the characteristic
length scale η from

η/a ∝ F
−ν
1+ν . (53)

We then also know the saturation through Eq. (48).
A goal for future experiments/simulations/theory
should therefore be to measure/predict the permeability
dependence of the invading fluid as function of the
characteristic length scale η.

VI. CONCLUSION

In this paper, we discussed the importance of capillary
fluctuations in porous media, as well as the characteris-
tic length scales set by the competition between capillary
fluctuations and external fields, gravitational or viscous.
We focused on fluid fronts that are stabilized by gravi-
tational and viscous fields. The fluctuation number F ,
which describes the scaling of the front width η, was in-
troduced. When considering viscous and gravitational
fields, the theory describes well the scaling of the width
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of the fluid front and the final saturation of the fluid left
behind the invasion front observed in experiments. On
a length scale smaller than η, the structure within the
front is generally fractal, while on a length scale larger
than η, it is homogeneous. The characteristic length scale
η is thus of primary importance in defining a relevant
Representative Elementary Volume (REV) for an aver-
age Darcy description of the two-phase flow problem.

We also discussed the energy dissipation caused by
out-of-equilibrium Haines jumps and calculated the total
elastic energy released by those jumps using the pressure
drops connected to the jumps’ known scaling behavior.
When the invasion front is in a steady state regime, we
find that the elastic energy released by the jumps corre-
sponds to the work applied to the system, as expected.
However, this description also explains the local activity
and dissipation caused by local Haines jumps, as well as
how it is related to dissipation on a larger scale.

We calculated the energy dissipation and saturation
left behind the invasion front in addition to the work done
by the pump to push the fluid front forward. These quan-
tities are affected by the generalized fluctuation number,
as well as the fractal dimension of the invasion structure,
the fractal dimension of the contour of the trapped clus-
ters, and the exponent ν, which describes the divergence
of the correlation length in percolation as it approaches
the critical percolation threshold fc. The work W , dis-
sipation Φ, and surface energy Es were discovered to be
proportional to the number of pores invaded S, with frac-
tal scaling on length scales smaller than the characteristic
length scale, η or w, but scaling with the spatial dimen-
sion on larger length scales. Hence, the ratio of these
energies stays constant as the system size increases.

The theory described here is a bottom-up approach
that allows the problem to be scaled up from small to
large scales. The theoretical results were compared to
and found to be consistent with quasi-two-dimensional
experiments. Because of the small temperature increase
involved in heat dissipation from the Haines jumps (mK
or less), it is very challenging to measure these temper-
ature fluctuations. Such a measurement remains to be
done. An experimental verification of the theoretical
scaling of the invasion front and the saturation behind
the front for three-dimensional porous media is also of
great interest for future work [82]. Experiments involv-
ing changing the gravitational effects in a geophysical
centrifuge could be one way to accomplish this. The
porous medium in a real rock is typically not homoge-
neous, in contrast to the porous media considered here.
As a result, it is of great interest to extend the theory
to include also the case of inhomogeneous porous media,
for example with a porosity gradient.
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EnglishLarge scale experiment on transport of
trichloroethylene in a controlled aquifer, Transp.
Porous Media 44, 145 (2001).
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[14] J. Gagné, The Physics of Filter Coffee (Scott Rao Coffee

Books, 2021).
[15] J.-D. Chen and D. Wilkinson, Pore-scale viscous fingering

in porous media, Phys. Rev. Lett. 55, 1892 (1985).
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E. G. Flekkøy, and K. J. Måløy, Steady-state, simulta-
neous two-phase flow in porous media: An experimental
study, Phys. Rev. E 80, 036308 (2009).

[22] R. Lenormand and C. Zarcone, Invasion percolation in
an etched network: Measurment of a fractal dimension,
Phys. Rev. Lett 54, 2226 (1985).

[23] L. Furuberg, J. Feder, A. Aharony, and T. Jøssang, Dy-
namics of invasion percolation, Phys. Rev. Lett. 61, 2117
(1988).
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[45] C. Odier, B. Levaché, E. Santanach-Carreras, and
D. Bartolo, Forced imbibition in porous media: A four-
fold scenario, Phys. Rev. Lett. 119, 208005 (2017).

[46] M. Ferer, W. N. Sams, G. R.A., and D. H. Smith,
Crossover from fractal to compact growth from simula-
tions of two-phase flow with finite viscosity ratio in two-
dimensional porous media, Phys. Rev. E 47, 2713 (1993).

[47] M. Ferer, G. S. Bromhal, and D. H. Smith, Pore-level
modeling of drainage: Crossover from invasion percola-
tion to compact flow, Phys. Rev. E 67, 051601 (2003).

[48] B. B. Mandelbrot, The fractal geometry of nature, W. H.
Freeman. San Fransisco (1982).

[49] J. Feder, Fractals, Plenum, New York (1988).
[50] B. Yu, Analysis of flow in fractal porous media, Applied

Mechanics Reviews 61, 050801 (2008).
[51] B. Xiao, W. Wang, X. Zhang, G. Long, J. Fan, H. Chen,

and L. Deng, A novel fractal solution for permeability and
kozeny-carman constant of fibrous porous media made up
of solid particles and porous fibers, Powder Technology
349, 92 (2019).

[52] M. Liang, C. Fu, B. Xiao, L. Luo, and Z. Wang, A frac-
tal study for the effective electrolyte diffusion through
charged porous media, International Journal of Heat and
Mass Transfer 137, 365 (2019).



13

[53] M. Armand, P. Axmann, D. Bresser, M. Copley,
K. Edström, C. Ekberg, D. Guyomard, B. Lestriez,
P. Novák, M. Petranikova, W. Porcher, S. Trabesinger,
M. Wohlfahrt-Mehrens, and H. Zhang, Lithium-ion bat-
teries – current state of the art and anticipated develop-
ments, Journal of Power Sources 479, 228708 (2020).

[54] H. Darcy, Les fontaines publiques de dijon, Dalmont,
Paris (1856).

[55] P. de Gennes and E. Guyon, Lois generales pour
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