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Abstract

Parking plays a central role in transport policies and has wide-ranging consequences: While
the average time spent searching for parking exceeds dozens of hours per driver every year in
many Western cities, the associated cruising traffic generates major externalities. However,
the laws governing the parking search time remain opaque in many regards, which hinders
any general understanding of the problem and its determinants. Here, we frame the parking
problem in a mathematically well posed manner which puts the focus on the role of the street
network and the unequal attractiveness of parking spaces. This problem is solved in two
independent ways, valid in any street network and for arbitrary behaviours of the drivers.
Numerically, this is done by means of a computationally efficient and versatile agent-based
model. Analytically, we leverage the machinery of Statistical Physics and Graph Theory
to derive a generic mean-field relation giving the parking search time as a function of the
occupancy of parking spaces; an expression for the latter is obtained in the stationary regime.
We show that these theoretical results are applicable in toy networks as well as in the complex,
large-scale case of the city of Lyon, France. Taken as a whole, these findings clarify the factors
that directly control the search time and establish formal connections between the parking
issue in realistic settings and physical problems.

Keywords: on-street parking, parking search time, street network, graph theory

1. Introduction

While cars are inherently designed to move, whether or not to use this mode of transportation
is oftentimes less a matter of driving to a certain destination than being able to park there.
Indeed, in many large metropolitan areas, it is hard to overstate the importance of parking
on mobility choices and, more broadly, daily life in a city (Shoup, 2018): The time spent
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searching for parking exceeds dozens of hours per driver every year (35h to 107h in Western
metropolises, according to INRIX survey data (Cookson and Pishue, 2017)), at an estimated
cost of several hundred Euros a year per driver. Furthermore, trips that motorists eventually
give up because of the lack of parking space are far from being unheard of 1. Beyond these
individual quandaries, cars cruising for parking may represent more than 10% of the total
traffic in many large cities (e.g., 15% in central Stuttgart, 28% to 45% in New York), according
to surveys and observations of the number of cars driving by a vacant spot before it is occupied
(Shoup, 2018; Hampshire and Shoup, 2018), and thus significantly contribute to congestion
and pollution in city centres. Admittedly, these quantitative figures are vividly debated and
may overestimate the typical share of traffic due to cruising for parking by investigating only
the most problematic areas (Weinberger et al., 2020).

Still, there is a broad consensus about the centrality of parking in transport policies. While
some cities require developers to add a parking facility to their development plans, through
so called minimum parking requirements (Shoup, 2018, chap. 3), in others restrictive parking
policies have become an essential lever of action for transport authorities (Boujnah, 2017;
Polak and Axhausen, 1990) to curb down the use of private cars. Besides, smart cities are on
the rise and intend to alleviate the pains of parking thanks to dynamic parking information
and the possibility to book a parking spot, as well as parking guidance systems (Al-Turjman
and Malekloo, 2019).

These points call for more reliable observations of the current state of parking in different
contexts, but also for a deeper understanding of the process of parking search, so as to
be able to predict the impact of hypothetical measures. However, for all its importance,
the topic of parking is still fairly opaque, with a limited current grasp of its main factors
and their impact. This dim understanding is not surprising given the complexity of the
problem, which mingles socio-psychological and economic factors with physical constraints
and collective effects. Worse still, it is interwoven with other facets of traffic, such as the
local urban traffic. Even some seemingly natural assumptions regarding the relation between
occupancy and parking search time (Axhausen et al., 1994; Arnott and Williams, 2017) seem
hard to reconcile with facts, albeit commonly used (Geroliminis, 2015).

In this paper, the parking problem is framed in a mathematically well posed manner which
puts the focus on the role of the street network and the unequal attractiveness of parking
spaces (due to their location and rates, for instance) among other blind spots of existing
approaches (Section 2), while leaving aside at present some more studied effects, notably
the underlying urban traffic and the elasticity of parking demand. Interesting parallels with
problems in the realm of Physics (Schadschneider et al., 2010), more precisely the asymmetric
motion of active particles on a graph, then become apparent and clarify some facets of parking
search. Importantly, once thus formulated, the parking problem can be solved not only by
means of a computationally efficient agent-based algorithm that we developed, but also by
leveraging the powerful machinery of Statistical Physics and Graph Theory (Section 3). This

1A 2005 survey conducted in 3 French cities indicated that the percentage of interviewees who had at least
once given up a trip (‘balking’) because of parking unavailability amounted to 48% in Grenoble, 67% in Lyon,
and 100% in Paris (SARECO / Prédit-Ademe, 2005).
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leads to analytical formulae for the search time and for the steady-state occupancy which are
valid in remarkably generic settings, for any street network and for a wide range of driving
strategies and parking choices. These theoretical results are found to be applicable in toy
networks as well as in the complex, large-scale case of the city of Lyon, France (Section 4)
and pave the way for theoretical assessments of e.g. the efficiency of smart parking solutions.

2. Blind spots of existing approaches to parking search

2.1. Literature survey of the determinants of parking search behaviour

The behaviours and strategies of drivers in search of parking have been examined by means
of field observations (‘revealed preferences’), surveys (‘stated preferences’), and more recently
serious games (Fulman et al., 2020). When it comes to the factors that influence parking be-
haviour, pricing has been intensely studied and plays a major role in parking choice (Shoup,
2018; Gao et al., 2021), which has prompted dynamic pricing strategies to control the occu-
pancy (Chatman and Manville, 2014). The price elasticity of parking volume (i.e., the number
of cars that parked in a given duration) generally lies in the range [−2,−0.2], but strongly
depends on the context, in particular the average occupancy and the existence of substitutes
in terms of parking facilities or mode of transportation (transit service); it is also found to
be sensitive to the methodology used, with disagreements between stated and revealed pref-
erences (see (Lehner and Peer, 2019) for a recent meta-analysis). The location of the parking
space, and most prominently the distance to destination, is of course another key determinant,
both for parking on the curb and for off-street parking, with a strong preference for spots near
the ticket machine (if there is one) in parking lots (Vo et al., 2016) or near the facility in rest
areas on expressways (Tanaka et al., 2017). This list of endogenous features of the parking
supply should be completed by mentioning the size of the parking space, the availability of
boards with parking guidance information, which may have an influence or not depending on
the conditions (Axhausen et al., 1994; Tanaka et al., 2017), etc. All these factors (which are
to be subsumed into an ‘attractiveness’ variable in the following) thus influence the parking
search process.

But parking search, in turn, can also affect the driver’s decision, with a marked reluctance for
long travel times, especially in congested conditions (Gao et al., 2021), and queues (Tanaka
et al., 2017). The typical driver thus first drives to the vicinity of the destination (85% of
times in the serious game of (Fulman et al., 2020), where the average on-street occupancy
was set to φ = 99.7%). Then, they start circling around it and possibly spiral farther and
farther away from it, before eventually quitting the search or heading for an off-street parking
lot, after a few minutes (Fulman et al., 2020) or more (SARECO / Prédit-Ademe, 2005; Levy
et al., 2013; Weinberger et al., 2020; Fulman and Benenson, 2021). For drivers that keep
searching, the time to park is believed to also depend on the turnover rate of parked vehicles
(SARECO / Prédit-Ademe, 2005) and the competition with other cruising cars (SARECO /
Prédit-Ademe, 2005; Arnott and Williams, 2017).
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2.2. Real search times elude common approaches

Despite the interdependence of the search time Ts and parking choices, it is tempting to try
and assess the former on the basis of simple considerations. To this end, and throughout
the paper, let us consider a situation in which the parking supply and the global volume of
parking demand are constant. Supposing that the average occupancy φ of parking spots is
known, a basic but nonetheless very common approximation (Anderson and De Palma, 2004;
Geroliminis, 2015) assumes that cars move along lanes of spots that are randomly occupied
with uniform probability φ, and park in the first available space that they encounter. This
is the theoretical foundation of the binomial approximation Ts ' T0

1−φ , where T0 is the time
to drive from one spot to the next one. According to this formula, for φ 6 99%, the mean
search time cannot be significantly longer than 100T0, which is around one minute if spots are
adjacent. This result is manifestly at odds with the empirical observation of surging search
times long before φ reaches 100% (Arnott and Williams, 2017; Gu et al., 2020; Weinberger
et al., 2020); in San Francisco, Weinberger et al. (2020) even suggest the blocks where cruising
cars eventually park might be occupied only at φ = 59%. In any event, the time to park
is drastically underestimated by this approximation and ad hoc corrections to mitigate the
discrepancy issue (Belloche, 2015) are devoid of theoretical ground.

Arnott and Williams (2017) rationalised this underestimation by the following factors:

1. there are spatial correlations between occupied spots 2,

2. the occupancy is not constant in time, but undergoes statistical fluctuations, and periods
of higher occupancy have a stronger impact on the mean search time,

3. the competition between searching cars aggravates the difficulty of the search,

4. circling leads to inefficient double checks.

A simple model with cars moving along a circle strewn with 100 spots and parking in the first
available spot was simulated to illustrate these effects, yielding search times 44% larger than
the binomial estimate at an occupancy φ 6 67%; unfortunately, the authors could not explain
this effect from an analytical standpoint. More broadly speaking, it is critical to realise that
(regardless of the selection bias in scientific works on the topic that favours situations with
more acute parking issues) the parking occupancy φ is a spatio-temporal aggregate, obtained
by averaging observations over a geographic area and sampling them in, or averaging them
over, a time period. Since the relation between occupancy and search time is non-linear, this
averaging procedure washes away the oversized impact of long cruising times near hot spots
at rush hours.

On the other hand, Weinberger et al. (2020) insist on the role of the drivers’ idiosyncratic
behaviours in generating excess travel distances (perhaps they have kept driving because they
were arguing about where to go for dinner or trying to lull a baby to sleep); the excess travel
may be misapprehended for cruising (e.g., using GPS data) in districts of San Francisco and
Ann Arbor where there is actually no lack of vacant spots. For the specific case of San

2This ‘bunching’ effect was later addressed analytically by Krapivsky and Redner (2019, 2020) and an
approximate expression was proposed by Fulman and Benenson (2021) if the per-block occupancy is known

4



Francisco, Millard-Ball et al. (2020) further note that cruising is actually rare because the
lack of vacant spots may be internalised in the regular drivers’ behaviours and ‘perceived
parking scarcity leads drivers to stop short of their destinations’, thus curtailing cruising.
However, these caveats do not suppress the ample evidence of cruising for parking in other
cities (SARECO / Prédit-Ademe, 2005; Shoup, 2006; Hampshire and Shoup, 2018; Cookson
and Pishue, 2017).

To settle the debate about the actual parking pain, it is essential to gain insight into what
governs the parking search time and its dependence on the occupancy in realistic settings.
The following sections will blaze a theoretical trail to do so in a rigorous and generic way. But
let us first highlight the influence on parking search of oft-overlooked features, in particular
the topology of the explored street network and the fact that parking spaces are not equally
attractive to drivers. These effects will be illustrated with particularly simple, somewhat
caricatural examples in this section, before delving into the technical complexity of more
general settings.

2.3. Topology of the street network

While previous theoretical endeavours have considered linear or circular geometries for parking
lanes (Levy et al., 2013; Krapivsky and Redner, 2019, 2020; Arnott and Williams, 2017), in
reality parking spaces are located on a geometrically more complex network of streets (or
alleys in the case of a parking lot), whose topology constrains the motion of the cars. Specific
street networks have been studied numerically, with a more or less realistic description of
their characteristics (see the review in (Boujnah, 2017)), but the sensitivity of the results to
the topology has not been investigated.

Nevertheless, it is easy to understand that, for an equal number of on-street spots, their dis-
tribution along the streets and the topology of the network will affect the disutility associated
with parking. First consider the simple case illustrated in Fig. 1 with a single major destina-
tion point (hot spot) and no off-street parking facility. Under equal demand, parking issues
will be all the more severe as they are few streets allowing parking on the curb that lead to
the hot spot. With fewer incoming streets, it will be harder to find a spot close enough to the
destination.

Even if drivers park in the first vacant spot that they encounter, the network topology will
matter. To understand this, we turn to the two examples of parking lots displayed in Fig. 1,
where cars are injected at constant rate at the entrance and spots are located at exactly
the same positions in space but are not accessible in the same way: In topology (A), cars
enter one of the 9 parallel branches from the main alley on the top of the sketch, with equal
probabilities for each (which is done by setting the turning probabilities adequately), whereas
in topology (B) cars visit the alleys sequentially, driving by every spot before returning to
the entrance point. At low occupancy, the search time will be mostly constant constant in
topology (A), resulting from the travel time along the main alley on the top, whereas it will
increase almost linearly with the occupancy in topology (B), as the first spots get more and
more occupied. These intuitions are confirmed by the numerical results (with the protocol
detailed in Section 3.2) shown in Fig. 1, which evidence a crossover (around φc ≈ 40%) from
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a low-occupancy situation with shorter searches in topology (B) to the opposite case when
φ > φc. At high occupancies (φ >80% or 90%), the mean search time starts to be dominated
by the periods of time when the parking lot is full, because of statistical fluctuations, and
cars have to circle several times before a parked car leaves. The search time then surges
dramatically and diverges to ∞ as φ → 100%, with a possibly steeper increase in topology
(A), where the rare vacant spot may be found only after several loops. Obviously, the binomial
approximation can explain neither the steepness of this divergence, nor the differences between
topologies (A) and (B) at moderate occupancies.

Figure 1: Influence of the topology of the street network on (a,b) curbside and (c,d) off-street parking. A
major destination (hot spot) is located at the extremity of a dead-end street in sketch (a) and at an intersection
in sketch (b). Panel (c) displays two model off-street parking lots of N = 180 spaces; the evolution of the
search time Ts in each, for drivers parking in the first vacant spot, is shown in panel (d) as a function of the
average occupancy φ. Inset : Relation between φ and the product of the injection rate I with the parking time
D−1 [D−1 = 30 min for the triangles (4), 60 min for the circles (©)].

More generally, it goes without saying that these topological effects can hardly be captured
by approaches that are oblivious of the street network. Yet, these considerations should not
be regarded as merely abstract, as they have contributed to shaping cities and land (Shoup,
2018, intro.); this is perhaps best exemplified by the strip geometry of strip malls in North
America or retail parks in Europe, which enables customers to park directly in front of the
shops.

2.4. Attractiveness of parking spaces

Beyond the (fixed) structure of the street network, the way in which motorists navigate
through it in search of a vacant space also matters. An archetypal example of this influence is
the anonymous driver observed by Hampshire et al. (2016) who routinely circles around the
free parking spaces on the edge of downtown before driving to the paying spaces downtown.
Somewhat similarly, some drivers may tend to circle through the very same blocks over and
over again, waiting for a spot to be freed, rather than extending their search to neighbouring
streets; the recurring driving through the same blocks naturally prolongs the search, compared
to the exploration of new blocks. In the same vein, the driver may refrain from parking at the
first vacant spot that they encounter and exhibit distinct preferences, for instance balking at
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parking too far from the destination or in a paying space when there remains a possibility to
park for free (Weinberger et al., 2020).

Quantitatively, we choose to gauge the driver’s willingness to park at a given spot i by the
probability pi that she will park there if she drives by this spot while it is vacant. The
distribution of pi in a neighbourhood clearly affects parking search. For instance, consider the
‘toy’ network corresponding to a small neighbourhood of Lyon shown in Fig. 2(a); for the same
demand, search times will drastically differ between a situation with equally attractive spaces
(pi = 100% for every spot i) and a situation in which drivers exhibit a marked preference for
two lanes of attractive (e.g., free) spots at pi = 100% and balk at parking in other (costly)
spots, where pi = 1%. In the latter case, drivers are prone to circling before finding a vacant
free spot and search times sky-rocket even though the network-averaged occupancy remains
moderate (as also supported by the numerical simulations displayed in Fig. 2(c)).

This simple example shows how using spatially averaged occupancies to estimate parking dif-
ficulties goes completely amiss whenever there is a contrast in spot attractiveness, in which
case the high occupancy of attractive spots may be balanced by their vacant counterparts.
Fulman and Benenson (2021) recently improved the binomial approximation by taking into
account the occupancies averaged over small neighbourhoods instead of the global one and
demonstrated that it much better reproduces search times in the presence of bunching (an
inherent consequence of the sequential parking process) and a spatially heterogeneous de-
mand. Nevertheless, their approach requires simulations to estimate of the distribution of
local occupancies and does not explicitly handle spots of unequal attractiveness.

Figure 2: Influence of the inhomogeneous attractiveness of parking spots in a small ‘toy’ network. Cars have
equal turning probabilities at each intersection. Numerically (a) and analytically (b) derived average occupancy
of parking spaces (represented as squares) in the steady state, when drivers are most attracted to free spots
(pi = 100%) and only have a pi = 1% probability to park at every other vacant spot that they drive by.
Panel (c) compares the resulting mean search times with the situation in which all spots are equally attractive
(pi = 100%).
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3. Modelling framework

To take into account the various factors discussed in the previous section, we introduce a
new modelling framework, which rests on an agent-based model with high spatial resolution.
Unlike its forebears, this framework does not postulate specific behavioural rules for the
drivers looking for parking. Its generic formulation opens the door to a theoretical resolution
through the recourse to graph theoretical and statistical physical methods. Besides, it will
allow a very efficient numerical implementation.

The model relies on an explicitly described network of streets (or parking alleys), with parking
spots located along them. Car drivers are grouped into distinct categories α = 1, 2, . . .
depending on their destination, trip purpose, etc. At an intersection (which is a node of the
graph representing the network), they turn into an outgoing street with a probability given
by the corresponding entry of the category-dependent turn-choice matrix T (α). Finally, when

driving by a spot i, they will choose to park there with probability p
(α)
i if it is vacant. Parked

cars leave their space, and are thus removed from the simulation, at a rate D(α), which is the
reciprocal of the average parking duration.

Now, in principle, the on-site parking probability p
(α)
i depends on a variety of explanatory

variables, first of which the parking rate, the distance to destination, and the odds of finding
a ‘better’ spot estimated by the driver (Levy et al., 2013; Bonsall and Palmer, 2004), viz.,

p
(α)
i = f(rate, distance, ...). (1)

A central idea of the model is to subsume all these variables into two generic variables: (i) an

attractiveness A
(α)
i reflecting how attractive a spot i is perceived to be intrinsically, (ii) the

driver’s perception of how easy it currently is to park, β(α) ∈ [0,∞).

p
(α)
i (t) = f(A

(α)
i , β(α)(t)). (2)

At very low occupancy, when parking seems extremely easy, viz., β → ∞, the driver will
refuse to park anywhere but in their preferred spot, of attractiveness Amax. To the opposite,
at extremely high occupancy, β will tend to zero and virtually any admissible spot (of perceived

attractiveness A
(α)
i > −∞) will be deemed acceptable, viz. p

(α)
i = 1. Since p

(α)
i ∈ [0, 1], these

considerations invite us to express pi using a Boltzmann-like functional form, viz.,

p
(α)
i (t) = eβ

(α)(t)·(A(α)
i −Amax). (3)

At this stage, we should stress that, in practice, much will depend on the behavioural choices

implicitly encoded in the attractiveness field A
(α)
i and the route choices governed by T (α). Our

reasoning holds for any such choices, whether they are realistic (as we claim for those made
in Section 4) or not. Therefore, it reaches far beyond current studies focusing on specific
rules. In this regard, note that our general formulation encompasses these rules, whether
they prescribe to park in the first vacant spot within a radius of the destination (Fulman and
Benenson, 2021) (which we interpret as β(α) ' 0 and Ai equal to −∞ outside the admissible
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radius and 0 inside) or they assess the odds of finding a vacant spot before the destination
(Benenson et al., 2008) (which is similar, at high occupancy, to setting β(α) = 1 − φ and Ai
as the negative of the distance from spot i to the destination, measured in number of spots).

3.1. Simplifications for the current study

Despite our wish to develop a very general model for parking, we will make a number of
simplifications in this ground-laying work.

First, while in principle each driver evaluates their own β depending on their experience along
their trajectory, here we assume that β(α)(t) only depends on the currently occupied spots in
the network. For our practical tests, we will even assume that this parameter is a function of
the global occupancy φ(t), β(α)(t) = f [φ(t)] ≡ β.

Secondly, each category of drivers will keep a constant strategy during their search. In other
words, while in reality drivers may modify their turn choices and their perception of spot

attractivenesses A
(α)
i over time, for instance if they see that their preferred spot is occupied,

here the turning probabilities and attractivenesses will be prescribed once and for all. (Note,
however, that the actual turn choices and parking decisions may vary due to stochasticity, in
our probabilistic framework).

Finally, for simplicity, we do not describe the interaction between cruising cars and the rest
of the traffic and thus define fixed circulation speeds for each street. It follows that there is
no point in simulating cars after they have left their parking space; they will simply vanish.
Besides, we recall that a fixed initial parking demand is considered here; the feedback of
parking search times on the parking demand is left outside the scope of this study.

3.2. Numerical implementation

The model is implemented in C++ using data structures that lead to optimal computational
performances. The nodes (i.e., intersections) and edges (i.e., street portions) of the network,
and if needed the locations and attractivenesses of spots, are read from CSV files as input
and used to create objects of the Spot, Node, Street, and City classes. At each time step
(dt = 1 s in general), a number of car objects set by a Poisson process of parameter I (where
I is the global injection rate) are instantiated and injected into the network at one of the
entry points. Their positions are measured relative to their current street and are updated
iteratively at each time step. They switch streets upon reaching one intersection by randomly
selecting an outgoing street according to the specified turning probabilities. We keep track
of the (time-ordered) list of spots by which they have driven during the current time step
and loop over it to test whether they have chosen to park at any of them, depending on the
attractiveness of the spot and the (constantly updated) parking tension parameter β. At
each time step, another iteration over currently parked cars removes them with a probability
set by their departure rate D(α). (The numerical results shown in the previous section were
obtained with this implementation.)
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Let us finally underline that in our implementation each street is linked to all incoming
and outgoing streets and has access to the list of spots located along it; this allows optimal
computational efficiency.

3.3. Mean-field analytical solution for the search time

Once thus posed, the problem is amenable to theoretical handling. Indeed, having abstracted
human behaviour and strategies, we are left with the physical problem of self-propelled par-
ticles (namely, cars) moving on a directed graph (the street network) and having known
probabilities to adsorb at any site (parking spot) along the edges (streets) of this graph.

From now on, it will be more convenient to consider that every street position associated with
a parking spot as well as every intersection are nodes of this graph (notice that the street
position where the car starts to park and the parking spot will share the same node label).
The instantaneous number of cars of category α, α-cars, at each node is then represented by

a vector V (α)(t) of size Nnodes, where Nnodes is the number of nodes and V
(α)
i (t) ∈ [0, 1] is

the number of cars at node i and time t averaged over random realisations. The drivers’ turn

choices at the nodes define a transition matrix T (α) such that T
(α)
ij ∈ [0, 1] is the probability

that an α-car chooses to move from node i to node j along an edge of the graph in one
arbitrary time step, if it does not park in the meantime. In this graph theoretical approach,

α-cars initially injected at nodes j (hence, V
(α)
j (t = 0) > 0) will be located at positions

represented by V (α)(t = 1) = V (α)(0) · T (α) at the next time step and at

V (α)(K) = V (α)(0) ·
(
T (α)

)K
(4)

after K steps, if they do not park in the mean-time. However, at each spot i, cars may actually

have parked, with a probability p̃
(α)
i given by p̃

(α)
i = p

(α)
i n̂i, where n̂i = 1 − ni is zero (one)

if the spot is vacant (occupied). Taking this possibility to park into account, the transition

matrix T (α) should be replaced by M
(α)
ij = (1 − p(α)i n̂i) · T (α)

ij and the spatial distribution of
cars at t = K is actually

V (α)(K) = V (α)(0) ·
(
M (α)

)K
. (5)

Provided that the occupancy field (ni) is known, the probability that an α-car injected at
reaches spot j and parks there reads

P
(α)
j =

∞∑
K=0

V
(α)
j (K) · p̃(α)j

= V (α)(0) ·
∞∑
K=0

(
M (α)

)K
· p̃(α)j

= V
(α)
i (0)

[(
I−M (α)

)−1]
ij︸ ︷︷ ︸

R
(α)
j

p̃
(α)
j , (6)
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where Einstein’s summation convention (on repeated indices, excluding fixed index j here)
is implied and I is the identity matrix. Here, we have considered that the occupancy field
(ni) remains unchanged during the search, which will not hold true in the regime of strong
competition between cruising cars.

Along the same lines, the average ‘driving, searching, and parking’ time T
(α,j)
s of an α-car

finally parking at spot j (in arbitrary time steps) can be derived; it is the average number of

steps K needed to park at spot j, weighted by the probability Vj(K) · p̃(α)j to reach j after K
steps and park there. Accordingly, summing over all spots j,

T(α)
s =

∞∑
K=0

K V
(α)
i (0) ·

[
M (α)K

]
ij
· p̃(α)j

= V
(α)
i (0)

∞∑
K=0

K−1∑
l=0

·
[
M (α)K

]
ij
· p̃(α)j

= V
(α)
i (0) ·

∞∑
l=0

[ ∞∑
K=l+1

M (α)K
]
ij
· p̃(α)j

= V
(α)
i (0) ·

∞∑
l=0

[
M (α)l+1 ·

(
I−M (α)

)−1]
ij
· p̃(α)j

= V
(α)
i (0) ·

[
M (α) ·

(
I−M (α)

)−2]
ij
· p̃(α)j . (7)

Equations 6 and 7 involve matrices of linear dimension Nnodes, which may be very large.
However, since each node is connected to a few other nodes at most, these matrices (notably
M (α)) are particularly sparse. Therefore, their multiplication and inversion can be handled
quite efficiently, for instance using the dedicated Python library; in particular, we avoid
computing the inverse of sparse matrix A ≡ I−M (α) and, instead calculate Y ·A−1 by solving
the linear problem X ·A = Y .

Incidentally, should an upper bound Kmax be set on the number of steps K allowed for parking
search before cars quit searching, the foregoing expressions will turn into (see Appendix A.2
for the details)

P̄
(α)
j = P

(α)
j − V (α)

i (0)
[(

I−M (α)
)−1
·M (α)Kmax+1

]
ij
p̃
(α)
j (8)

T̄s
(α)

= T(α,j)
s − V (α)

i (0) ·
[
(I−M (α))−2 ·M (α)Kmax+1

]
ij
p̃
(α)
j , (9)

where one has arbitrarily defined as Kmax the search time of cars that quit searching. Also
note that this gives access to the survival function of the search time, that is to say, the fraction

of cars that needed longer than Kmax steps to park, which is
∑

j

(
P

(α)
j − P̄ (α)

j

)
= 1−

∑
j P̄

(α)
j .

In all the above formulae, the search time was expressed in arbitrary units, each unit cor-
responding to the time taken for a car to travel between two nodes. To recover real time

units, we introduce an auxiliary ‘generating’ function N(z) defined by Nij(z) = zτij M
(α)
ij ,
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where z is a real variable and τij is the travel time between neighbouring nodes i and j (note
that, if i and j are not directly connected, then Mij = 0). As with the transition matrix,
exponentiating N(z) into NK(z) gives access to paths of length K steps. This contrivance,
detailed in Appendix A.1, helps us express the search time in real time units as

T (α)
s = V

(α)
i (0) ·

[
(I−M (α))−1 ·N ′(z = 1) · (I−M (α))−1

]
ij
p̃
(α)
j , (10)

where the derivative of N(z) satisfies N ′ij(z = 1) = τijM
(α)
ij

The foregoing formulae were derived for a given configuration of the occupancy n. To get the
actual mean search time requires averaging over an ensemble of equivalent realisations of n
(or over time in the steady state). This would be straightforward if one could compute the
average by plainly substituting 〈nj〉 ∈ [0, 1] for nj = 0 or 1 in the definition of the Mij matrix.
Unfortunately, in general, spatio-temporal correlations between spot occupations ni prohibit
such a factorisation. Still, albeit not strictly rigorous, this is a valid approximation in the
mean-field regime, wherein any mutual dependence between instantaneous spot occupations
is neglected. We expect it to be quite reasonable as long as the search time is not dominated
by cars looping over the very same street blocks over and over again, and we thus have an
equation (Eq. 10) relating the drive-and-search time to the occupancy field (ni) in this case.
Conversely, when circling starts to prevail, the approximation will lose its accuracy.

3.4. Analytical solution for the occupancy in the stationary state

Up to now, it has been assumed that the occupancy of each spot (or its time average) is
known. We now purport to show that this occupancy field can be derived theoretically, at
least in some regimes. This is achieved by balancing the probability to reach a spot and park
there for an incoming car with the rate of departure of a car parked at this spot. Generally
speaking, the resulting equations will display a dependence on the initial occupation. In this
study, we restrict our attention to the stationary state, where this dependence is washed away
so that methods from steady-state statistical physics are directly applicable. In other words,
in the considered time period, the parking demand is assumed to evolve slowly enough to
strike a balance between incoming α-cars and departing ones, viz.,

0 = (1− p(α)leakage)I
(α) −N · φ(α) ·D(α), (11)

where, for α-cars, I(α) is the total injection rate and the leakage fraction p
(α)
leakage vanishes if all

incoming drivers eventually manage to park. Therefore, if only a negligible fraction of drivers
quit searching, one arrives at

φ(α) =
1

N
· I

(α)

D(α)
, (12)

and, should all categories of cars have similar parked times 1/D,

φ =
1

N
· I
D
, (13)

where I =
∑

α I
(α).

12



In addition to this global balance, the rate at which cars park at any given spot j must be
balanced by the (supposedly constant) departure rate D of parked cars, viz.,

∑
α

I(α)P
(α)
j = D〈nj〉. (14)

Using Eq. 6, one finally arrives at the mean-field stationary occupancy

〈nj〉 =

∑
αR

(α)
j p

(α)
j I(α)/D

1 +
∑

αR
(α)
j p

(α)
j I(α)/D

, (15)

where R
(α)
j , defined in Eq. 6, implicitly depends on the 〈ni〉’s.

Note in passing that, if there is a single category of drivers, one can express pj from Eq. 15 and,
on the basis of the empirically observed occupancies 〈nj〉, infer the empirical attractivenesses
(or more precisely βAj) using a fixed-point method. The problem becomes more complex in
the more realistic case of multiple categories of drivers and it will be addressed in our future
works.

3.5. Numerical validation of the theory on a small street network

The self-consistent formula, Eq. 15, giving the stationary mean-field occupancy is solved with
the fixed-point method, using an empty network (nj = 10−5) as an initial guess and iteratively
inserting it into Eq. 15 until the solution converges. Applied to the ‘toy’ network of Fig. 2(a),
this method yields spot occupancies nj that agree very well with the numerical results, as
illustrated in Fig. 2(b), with a mean error per spot that does not exceed ∼ 5%. Using the
analytical stationary occupancy, the search time in seconds is computed with the help of
Eq. 10. Figure 2(c) demonstrates the excellent agreement with the simulation results, with
the possible exception of the very competitive regime at high injection rates.

3.6. Implications

The theoretical framework exposed in the previous paragraphs is somewhat technical, but it
has immediate practical implications. First, it is easy to understand that, in the mean-field
regime, the average parking time 1/D only matters relative to the parking demand quantified
by the injection rates I(α); in other words, the time unit of the problem could be reset so
that D = 1. More importantly, these rates D and I(α) do not directly affect the mean-field

parking search time T
(α)
s (Eq. 10); their effect is mediated by the occupancy field n and the

average occupancy φ. This notably implies that the turnover rate, although widely believed
to be central for the parking tension, only impacts the parking search process via its influence
on the average occupancy. Put differently, as long as the fraction of time during which spots
are occupied remains constant in a homogeneous period, increasing the turnover rate does
not reduce the search time. Of course, in practice, limiting the parking time by rule or by
cost will ease the parking pain, by altering the parking demand and the average occupancy –
but not per se.

13



One should however bear in mind that these results are rigorous only under the mean-field
hypothesis, which notably breaks down when drivers start circling significantly and competing
for freshly vacated spots. This breakdown is particularly conspicuous in the high-occupancy
(i.e., rightmost) part of Fig. 1(d) (where there is no longer a unique relation between the
search time and the occupancy, especially for Parking Lot A).

4. Large-scale application of the method: On-street parking in Lyon, France

So far, we have shown that our theoretical and numerical modelling framework is applicable
in small-scale street networks, but its scalability to the larger-scale networks of actual cities
has not been proven yet. This section is aimed at demonstrating that our methods are quite
efficient in rendering parking search in a large city. This will be illustrated with the morning
peak hour (7am to 10 am) in the city of Lyon, as of 2019, which belongs to the second urban
area in France, with a municipal population around 500,000 people, and features well-known
difficulties to park in its centre (SARECO / Prédit-Ademe, 2005). Let us make it clear from
the outset that our aim is not to provide the most accurate picture of parking in Lyon, which
would require more input data than we own, but rather to put to the test our methods in a
fairly realistic case study.

In particular, we resort to crude Origin-Destination matrices for Lyon-bound cars in the morn-
ing, on the basis of the number of people living and working in each district (‘arrondissement ’),
corrected by a plainly empirical factor to reflect the proportion of drivers trying to park on the
curb. Note that more accurate matrices based on GPS tracking are commercially available,
but expensive. More precisely, 46 injection points (‘sources’) are chosen in, and at the bound-
ary of, the city. For entry points inside the boundaries, the relative rates at which cars are
injected at these points depend on the population of the arrondissement. For points located
on the boundary, they depend on the estimated inflow of cars from outside the city. The latter
points account for about half of the injected cars. The global injection rate will be varied
in the following. Regarding the destinations, 36 points were selected (Fig. 3) and attract a
fraction of the injected cars that is roughly proportional to the local number of jobs, upon
aggregation over the arrondissement ; empirical correction factors intended to reflect the avail-
ability of private and off-street parking were introduced manually. We assume no correlation
between the injection point and the destination: cars are randomly bound to a destination,
with the same probabilities irrespective of where it was injected. Also note that, even though
our theoretical framework can include off-street parking, only drivers looking for on-street
parking are considered here; parking search will therefore be described as unsuccessful if the
drivers eventually opt for off-street parking or if they give up their trip altogether.

Detailed information about the locations of the ∼ 84,000 on-street parking spots, their rate,
and their occupancy (as of 2019) as well as the street network was provided to us by the
City of Lyon. Here, their attractiveness is assumed to depend exclusively on the Euclidean
distance to the driver’s destination and on the parking rate (either free of charge, or 1 Euro
per hour or 2 Euros per hour). The hourly rate ch in Euros is converted into an equivalent
additional distance to destination dcharge ≈ ch · 200 m by balancing the cost for a dwell time
of 3 hours with the cost of walking a distance 2 · dcharge (from the spot to the destination and
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Figure 3: Map of the city of Lyon with its 84k on-street parking spots (as of 2019) and the injection points
and destinations implemented in our model (the symbol sizes represent the injection rates of cars associated
with these points).

the other way round), under the premise of a value of time around 13 Euros/h, multiplied
by a penalty factor of 2 for the effort of walking (Bonsall and Palmer, 2004), and an effective
walking speed of 1 m/s (with respect to Euclidean distances). Finally, we consider that the
attractiveness decreases with the square of the distance to destination, with a characteristic
length dwalk = 250 m, so that

Ai = −
(d(i)dest − 200 ch

dwalk

)2
. (16)

Regarding the perceived parking tension, we adopt the following arbitrary expression for the
dependence of the tension factor on the occupancy φ, β = 1−φ

2φ2
, which verifies β → 0 at very

high occupancy and β � 1 when φ is small. In principle, β should reflect the parking tension
experienced by each user or category of users, but, for simplicity, it is here assumed to be
fully correlated with the current global occupancy of the network, φ(t).

However, it should be realised that a large fraction of the existing spots will remain occupied
over the whole simulation period (i.e., the morning peak hour). Estimating that 95% of spots
in the centre and 87% in the periphery are occupied at a given time in the morning rush
hour, this long-term occupancy was replicated by randomly declaring forbidden (‘frozen’) a
corresponding fraction of spots, reduced by around 20% to account for cars departing during
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Figure 4: Examples of a few typical simulated car trajectories, from the injection point to the parking spot
near the destination, represented by a star. The colours inside the circles denote the time passed since the
car’s entry in the network.

the simulation period. Besides, the mean parking time was set to 2.5 hours, for all destinations
(note that, in any event, it cannot exceed the duration of the simulated period).

Figure 3 gives an overview of the locations and rates of parking spots, as well as the chosen
injection points and destinations. Cars are directed towards their target by computing the
shortest-path distance d̃ of every node at the end of a street portion, with the help of the
Dijkstra algorithm, and favouring turns into streets whose ends are closest to the destination.
Technically, for every category α of drivers (i.e., destination), the probability of turning into
an adjacent street Si when a car in street S0 reaches an intersection is given by

TS0→Si =
1

Z
e
η[d̃(α)(S0)]·

d̃(α)(S0)−d̃
(α)(Si)

li , (17)

where li is the length of street portion Si, Z is a normalising factor that makes the turning

probabilities to adjacent streets sum to one, and the coefficient η(d̃) = min(5, d̃
500m) results

in more deterministic trajectories far away from the destination and more fluctuations when
approaching it or while cruising, where circling or spiralling behaviours are expected. We
do not explicitly model the interactions with transit-related traffic and assume that cars
have a constant speed v ≈ 22 km/h throughout the city in the morning peak hour. Typical
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examples of car trajectories to their parking spot, simulated with these turning probabilities,
are presented in Fig. 4. One can see that the route choices to the target destination look
reasonable and that they are possibly followed by circling in the vicinity of the destination if
no attractive spot is found in the first place.

Our highly efficient computational methods allow us to simulate the driving and parking of
∼ 104 cars in the whole city (containing ∼ 104 street blocks) over a period of 3 hours in a
matter of tens of seconds, using a single CPU core on a personal laptop. The outcome of the
simulations in terms of average travel times (including parking search) is shown in Fig. 5, as
a function of the global injection rate, and distinguished between destinations in Fig. 6.

It must be plainly admitted that we lack empirical data to gauge the accuracy of these
numerical results. At best, we can say that the travel times reported in Fig. 6 are compatible
with the average time spent in trips in a day, which lies around 70 minutes in the Lyon area
(Sytral / Agence d’Urbanisme aire métropolitaine Lyonnaise, 2018), but this compatibility
is more a safety check than a stringent validation. Furthermore, the output of the model in
terms of spot occupancy cannot be used as a touchstone, because empirical occupancy data
were used as model input. Regarding the excess travel times due to parking search, i.e., the
difference between the observed travel times and those found for vanishing demand (injection
rate), it is quite reassuring that they can reach 5 to 10 minutes at reasonable injection rates
(Fig. 5), which is broadly consistent with the older data collected in (SARECO / Prédit-
Ademe, 2005). Incidentally, focusing on this total driving time rather than on the search time
enables us to circumvent the ambiguous definition of the start of the parking search or the
onset of cruising, which was pointed out in (Millard-Ball et al., 2020). Lastly, the ‘search
times’ are found to be strongly dependent on the destination and on the injection rate, which
makes sense but also urges to take with a grain of salt empirical validations of models based on
data from a single day or place. That being said, it must not be forgotten that our goal is on
no account to fine-tune the calibration of the model parameters to reproduce the conditions
of a specific day in Lyon as closely as possible, but instead to validate the formal connections
that we have established between the occupancy and the search time, as a function of the
injection rate and the drivers’ preferences.

Indeed, we can now make use of the theoretical framework introduced above to get these
results without resorting to extensive simulations. The parking tension factor β is first derived
from the conservation equation, Eq. 13, yielding φ, and then serves as input for the fixed-
point equation giving the occupancy field nj , Eq. 15. This occupancy field, in turn, is used to
calculate the average driving time (including parking search) via Eq. 10. Figure 5 underscores
the quality of these analytical predictions in the regime of low to moderate competition for
spots. The analytical results also display concordance with the numerical ones if the travel
times of cars are inspected separately for every destination, as shown in Fig. 6 for an injection
rate of 24 cars looking for on-street parking per minute: the root-mean-square relative error
on these times is smaller than 3%, while the root-mean-square absolute error on the occupancy
is under 0.04 in that case. Given the complexity of the street network, the possibly intricate
car trajectories (see Fig. 4), and the multiple car categories and attractiveness fields, this
agreement is remarkable. We should stress that these results were obtained using only the
above analytical formulae, and not the output of the simulations; even the parking tension

17



parameter β was determined theoretically.
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Figure 5: Dependence of the mean total driving time, including the curbside parking search time, for two
categories of drivers (i.e., two destinations, irrespective of the entry point) on the global injection rate. Cyan-
filled symbols represent destination 12 (Ainay), whereas yellow-filled symbols represent destination 18 (Part-
Dieu).

Figure 6: Map of Lyon comparing the the simulated mean total driving time and its analytically derived
counterpart for all possible destinations (drivers’ category), irrespective of the entry point, for a global injection
rate of 24 cars/min.

5. Conclusions

In summary, our study of the parking search process has unveiled a quantitative relation
between the total travel time and the occupancy of parking spaces, which takes into account
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the effect of oft-overlooked factors such as the topology of the street network and the unequal
attractiveness of parking spaces. The derived equations are quite generic and can be applied
to arbitrary parking search strategies and to any street network, from simple parking lot
models to large cities.

While it lays the ground for a rigorous approach to the topic, the present work involves a
number of simplifications that limit its capacity to describe the reality of parking-related
issues. Firstly, the framework introduced here discards possible changes in behaviour of the
drivers during their search (e.g., if they have a specific favourite spot and realise that it is
occupied) and it handles parking decisions spot by spot, in a sequential way, overlooking the
possibility to see other spots at a distance; the drivers’ perception of parking tension is also
handled as a function of the occupancy of the network, instead of depending on the drivers’
observations. Secondly, the generic mean-field formula that we derived for the search time
requires detailed information about the occupation of spots in the network; we showed how
to theoretically compute such information only in the stationary regime. Lastly, to permit
the evaluation of hypothetical scenarios, the framework needs to be extended to integrate the
interaction between the cruising traffic and the regular traffic and the elasticity of parking
demand to search times.

Still, the parallels that have been drawn with well posed physical problems (namely, the
motion on a directed graph of self-propelled particles that can adsorb on its edges) bear
appealing promises: the foregoing limitations may indeed be overcome by tackling more refined
physical models, which may incidentally open new avenues of research for physicists and
mathematicians. Perhaps even more importantly, these abstract connections can clarify the
influence of some parking characteristics on the occupancy and the search time (for instance,
the parking time and the turnover rate, in this contribution).

To conclude, we would like to highlight the potential of this theoretical approach to address
practically relevant issues that may be out of reach of agent-based simulations. This is partic-
ularly relevant for optimisation problems, which typically require numerous simulations that
can be bypassed by our analytical formulae. We mention two such examples. First, the idea
of adaptive parking pricing, whereby the attractiveness of spots is modulated by changing
the parking rates, has already been experimented in San Francisco and Los Angeles, notably
(Shoup, 2018). These modulations affect not only the demand, but also the parking search
time (Dutta and Nicolas, 2021); our formulae relating the search time to the attractiveness
in the stationary regime can help find an optimal spatial modulation of the parking rates
in busy neighbourhoods. Secondly, in the context of the development of smart cities and
the emergence of smart guidance and parking reservation system, our work paves the way
for an assessment of the maximal performances that can be expected from smart guidance
applications. This will be the focus of a forthcoming manuscript.
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Appendix A. Details pertaining to the analytical calculations

Appendix A.1. Search time in real time units

In the main text, we have exposed the calculation of the search time expressed in arbitrary
units (Eq. 7. In order to derive a search time in minutes, a slightly more elaborate method
is needed. For that purpose, we insert the transition matrix into a ‘generating’ function

z → N (α)(z), where z is a real variable, N
(α)
ij (z) = zτij M

(α)
ij , and τij is the travel time from

node i to node j. At this stage, one can notice that the exponentiation of this matrix to the
power K yields

[
N (α)K

]
ij

(z) =
∑

π s.t. π0=0,πK=j

zτπ0π1+...+τπK−1πK

K−1∏
k=0

Mπkπk+1
, (A.1)

where the sum runs over permutations π of indices (or ‘paths’) such that π0 = i and πK = j.
It immediately follows that

d

dz

[
N (α)K

]
ij

(z = 1) =
∑

π s.t. π0=0,πK=j

(
τπ0π1 + . . .+ τπK−1πK

)K−1∏
k=0

Mπkπk+1
(A.2)

is the probability to reach spot j a number K of steps after injection of the car at node i,
multiplied by the total travel time from i to j. The (unbound) travel time before parking
thus reads

T (α)
s = V

(α)
i (0) ·

∞∑
K=0

d

dz

[
N (α)K

]
ij

(z = 1) · p̃(α)j

= V
(α)
i (0) · d

dz

[(
I−N (α)(z)

)−1]
ij

(z = 1) · p̃(α)j

But, since
dA−1

dz = −A−1(z)dAdz A
−1(z) for any differentiable function z → A(z) of invertible

matrices A(z) and N (α)(z = 1) = M (α),

T (α)
s = V

(α)
i (0) ·

[(
I−M (α)

)−1
·N (α)′(z = 1) ·

(
I−M (α)

)−1]
ij

· p̃(α)j , (A.3)

where we recall that N
(α)′
ij (z = 1) = τijM

(α)
ij and p̃

(α)
j = n̂jp

(α)
j .

Equation A.3 expresses the mean search time in minutes (or, more generally, in the same
units as τij) as a function of the occupancy field (nj).

Appendix A.2. Capped search time in arbitrary and real time units

Equations 6 and 7 of the main text give the mean search time of drivers that will hypothetically
keep cruising forever. In reality, one expects them to quit searching after a given time.
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Let us first assume that this upper time bound is given as a number Kmax of steps from node
to node. Then, capping the search simply implies restricting the sum on K in Eqs 6 and 7 to

0 6 K 6 Kmax, which yields Eq. 8 for the probability P̄
(α)
j to reach spot j and park there.

The stationary occupancy field (nj) can then be derived iteratively by inserting the capped

reaching probabilities R̄
(α)
j ≡ P̄ (α)

j /p̃j into Eq. 15.

Once the occupancy field is known, one can turn to the capped search time,

T̄s
(α)

= V
(α)
i (0) ·

[
Kmax∑
K=0

KM (α)K +

∞∑
K=Kmax+1

KmaxM
(α)K

]
ij

p̃
(α)
j

= V
(α)
i (0) ·

[
Kmax∑
K=0

KM (α)K +Kmax

(
I−M (α)

)−1
·M (α)Kmax+1

]
ij

p̃
(α)
j

= V
(α)
i (0) ·

[
Kmax∑
K=0

K−1∑
l=0

M (α)K +Kmax

(
I−M (α)

)−1
·M (α)Kmax+1

]
ij

p̃
(α)
j ,

where one has arbitrarily defined as Kmax the search time of cars that quit searching.

Using the following identity,

Kmax∑
K=0

K−1∑
l=0

M (α)K =

Kmax−1∑
l=0

Kmax∑
K=l+1

MK

= (I−M (α))−1
K−1∑
l=0

M (α)l+1
(
I−M (α)Kmax−l

)
= M (α) · (I−M (α))−2 · (I−M (α)Kmax

)−Kmax(I−M (α))−1 ·M (α)Kmax+1
,

we arrive at

T̄s
(α)

= V
(α)
i (0) ·

[
M (α) · (I−M (α))−2 · (I−M (α)Kmax

)
]
ij
p̃
(α)
j

= T(α)
s − V

(α)
i (0) ·

[
(I−M (α))−2 ·M (α)Kmax+1

]
ij
p̃
(α)
j . (A.4)

As in the main text, Einstein’s summation convention on repeated indices is implied.

To recover real time units, we calculate an average conversion factor between steps K and
seconds using the case of unbound searches, by equating the (unbound) search time given by
Eq. 7 and that given by Eq. 10. The maximum number of steps Kmax is then first estimated

from the maximum allowed time and the capped search time T̄s
(α)

is eventually converted
into seconds on the same basis.

Unfortunately, evaluating the capped search time via Eq. A.4 involves the computation of

M (α)Kmax+1
for Kmax � 1, which will not necessarily be a sparse matrix even if M (α) is. This
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computation turns out to be numerically very demanding if the number of nodes in the graph
is huge, as in the Lyon test case. However, the method is operational and quick on smaller
networks. Consider for example the ‘toy’ network introduced in Fig. 2(a). Capping search
times to 180 s reduces the simulated mean search time all the more as the injected rate is
high, as expected and shown on Fig. A.7. These capped times are very well captured by the
theoretical method outlined above, culminating in Eq. A.4, as can be seen on Fig. A.7.
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Figure A.7: Variations of the driving and cruising time in the ‘toy’ network of Fig. 2(a) (with free spots) with
the car injection rate. The outcome of the simulation (circles) is compared with the analytical predictions
(triangles), both in the case of unbound search times and when search times are capped to 180 s.

Appendix B. Detailed input for the simulations of Lyon

Section 4 presented a large-scale application of the proposed framework in the case of the
city of Lyon, France. In this application, drivers are classified into 36 categories according to
their final destination (the list of which is given in Tab. B.2). Their cars are injected into the
networks at one of the 49 entry points enumerated in Tab. B.4, with a relative probability
inferred either from the population of the surrounding neighbourhood or on a rough estimation
of the inflow from the periphery of the city, if the entry point is located at its boundary.
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Label x y Proba of injection Vi(0)

0 843661 6520685 0.017

1 841446 6516539 0.161

2 844237 6520113 0.017

3 840046 6520488 0.024

4 842098 6515492 0.011

5 846715 6516345 0.048

6 846268 6515772 0.012

7 843023 6521479 0.017

8 841709 6517901 0.014

9 844843 6520013 0.017

10 846215 6518226 0.020

11 843218 6515591 0.011

12 844862 6519680 0.020

13 842529 6520514 0.007

14 844989 6517334 0.012

15 839541 6521161 0.064

17 842670 6517036 0.011

18 844226 6518050 0.011

20 841862 6516427 0.011

21 841071 6522242 0.017

22 847245 6517797 0.039

23 841429 6520673 0.007

24 844289 6516742 0.012

25 842837 6518111 0.011

26 842041 6520903 0.007

27 839305 6519151 0.012

28 839305 6519151 0.012

29 841647 6520269 0.012

30 845762 6518982 0.023

31 839240 6521852 0.024

32 846693 6515848 0.012

33 844198 6515464 0.048

34 843204 6518705 0.011

35 844645 6516244 0.048

36 840767 6519147 0.012

38 845656 6516640 0.012

39 843257 6519411 0.020

40 844439 6520869 0.042

41 844554 6517528 0.012

42 844889 6516878 0.012

43 842446 6521030 0.007

44 844431 6519483 0.020

45 845021 6519236 0.020

47 842325 6519031 0.015

48 839654 6522705 0.023

Table B.4: List of the 49 entry points considered for the injection of cars into the street network, with their
relative probabilities. Coordinates are given in the RGF-93/Lambert-93 reference system.
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Label Name x y Probability

0 Saint-Rambert - industrie 841367.9 6523437.7 0.012

1 La Duchère 839095.5 6522460.5 0.015

2 Vaise 840269.9 6521523.7 0.046

3 Champvert – Point-du-jour 840501.8 6520877.9 0.0114

4 Ménival - La Plaine 839660 6519395.7 0.011

5 Saint-Just 840845.5 6519201.4 0.011

6 Vieux-Lyon 841609.7 6519231.4 0.011

7 Chazière -Flammarion 841413.3 6520955.4 0.028

8 Cœur Croix-Rousse 842199.3 6521377.5 0.028

9 Les Chartreux 841921.4 6520617 0.022

10 Pentes 842580 6520652.1 0.022

11 Terreaux – Cordeliers 842555.7 6520004.7 0.031

12 Ainay 842195 6519007.4 0.031

13 Sud Perrache 841731.4 6517736.3 0.031

14 Tête d’or – Foch 843412.4 6520782.8 0.04

15 Brotteaux – Europe 844411.3 6520546.7 0.032

16 Bellecombe – Thiers 844989.5 6519947.4 0.040

17 Mutualité-Préfecture 843080.8 6519272 0.032

18 Part-Dieu - Bir Hakeim 843782.1 6519416.5 0.032

19 Paul Bert – Villette 845042.8 6519497.8 0.032

20 Dauphiné - Sans Souci 845321.7 6518826.4 0.032

21 Montchat 846350.6 6518432.2 0.032

22 Jean Macé 842992.7 6518754.3 0.037

23 Guillotière 843092.8 6518310.3 0.046

24 Blandan 843950.4 6518243.7 0.046

25 Gerland nord 842799.7 6517560.4 0.046

26 Gerland sud 842756.2 6516727.5 0.046

27 Grand Trou – Moulin à vent 844554.8 6516452.7 0.02

28 Monplaisir 844588.2 6517391.2 0.021

29 Le Bachut 844966.5 6517711.6 0.021

30 Etats-Unis 845574.1 6517087.7 0.021

31 Mermoz – Laennec 846128.7 6516429 0.021

32 Général André - Santy 846210.7 6515824.3 0.021

33 Pinel 845979 6518623 0.014

34 6e arrondissement Sud 843836.9 6520125.1 0.040

35 5e arrondissement Sud 838846.3 6518189.5 0.011
Table B.2: List of the 36 destinations implemented in our study of Lyon. The ‘probability’ column specifies
the fraction of cars bound to a given destination. Coordinates are given in the RGF-93/Lambert-93 reference
system.
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