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ABSTRACT
Software projects use build systems to automate the compilation,
testing, and continuous deployment of their software products. As
software becomes increasingly configurable, the build of multiple
configurations is a pressing need, but expensive and challenging to
implement. The current state of practice is to build independently
(a.k.a., clean build) a software for a subset of configurations. While
incremental build has been studied for software evolution and
relatively small changes of the source code, it has surprisingly not
been considered for software configurations. In this exploratory
study, we examine the benefits and limits of building software
configurations incrementally, rather than always building them
cleanly. By using five real-life configurable systems as subjects, we
explore whether incremental build works, outperforms a sequence
of clean builds, is correct w.r.t. clean build, and can be used to
find an optimal ordering for building configurations. Our results
show that incremental build is feasible in 100% of the times in four
subjects and in 78% of the times in one subject. In average, 88.5%
of the configurations could be built faster with incremental build
while also finding several alternatives faster incremental builds.
However, only 60% of faster incremental builds are correct. Still,
when considering those correct incremental buildswith clean builds,
we could always find an optimal order that is faster than just a
collection of clean builds with a gain up to 11.76%.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Soft-
ware configuration management; Incremental compilers;
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Configurable software systems, build systems, configuration build

1 INTRODUCTION
Building software is a crucial activity for developers and maintain-
ers of projects. Various artifacts are assembled, compiled, tested, and
then deployed, presumably successfully. The emergence of continu-
ous integration (CI) has accelerated this trend with the integration
of build services into major code platforms (e.g., GitHub, GitLab).
The goal is to continuously ensure some quality assurance of soft-
ware products, whether in terms of functionality or non-functional

properties (e.g., security, execution time). Although widely adopted,
building software is increasingly complex and expensive in terms
of time and resources [6, 11, 21, 31].

Software configurations are adding further complexity to the
problem of building software. Different variants of the artifacts
can be assembled e.g., due to conditional compilation directives
#ifdef-s in the source code. Different external libraries can be
compiled and integrated as well. The way the build is realized can
also change e.g., with the use of different compiler flags. Developers
and maintainers of a project want to ensure that, throughout the
evolution, all or at least a subset of software configurations build
well. As most of today’s software is configurable in order to fit
constraints, functional and performance requirements of users, it is
not surprising to observe that many organizations build different
software configurations of their projects. For instance, initiatives
like KernelCI or 0-day build thousands of default or random Linux
configurations each day [26, 33]. Another example is JHipster, a
popular Web generator, that builds dozens of configurations at each
commit, involving different technologies (Docker, Maven, grunt,
etc.) [19].

The current state of practice is to build independently a subset
of configurations i.e., in a fresh and clean environment. This paper
proposes and explores an approach, called incremental build of con-
figurations. The idea is simple: instead of starting from scratch and
cleaning the build’s artifacts, a configuration can be built from an
existing and already completed configuration build (incrementally).
The hope is to reuse artifacts of previous configurations’ build and
thus save some computations, resources, and time. This is just a
hunch; the real question is to quantify howmuch and when you can
gain (or lose) compared to a more conventional build. Moreover,
the approach is not without risk: an incremental build may not
work or may be incorrect compared to a conventional, clean build.
The build system may forget to recompile some necessary artifacts,
for example. In fact, it is a hypothesis that needs inquiry. Another
unknown is about the strategy to order the incremental build of
configurations. Given a configuration to build, with which other
configurations should the incremental build be carried out? Should
incremental build be used all times? There are numerous possible
orderings, possibly with different effects on the correctness and
overall build time. Our goal is to explore these hypotheses and
address, to the best of our knowledge, new open questions: (𝑹𝑸1)
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Is incremental build simply possible in real-world configurable sys-
tems? (𝑹𝑸2) Does incremental build outperform clean build? (𝑹𝑸3)
Is the result of incremental build the same as that of clean build?
(𝑹𝑸4) Is there an order of configurations that brings an optimal
(overall) incremental build time?

Novelty. Surprisingly, while incremental build is supported and
has actually been designed for relatively small edits, it has not been
explored for software configurations. A possible reason is that the
usual compilation workflow and build process targets small, local
modifications (e.g., modification of one source file). Building sev-
eral configurations involve large modifications that span numerous
source files, thus challenging build systems. There are numerous
works in the software product line community about variability-
aware analysis [24, 25, 27, 28, 42, 48, 53]. The idea is to process
the configurable code base, exploiting similarities among individ-
ual variants with the goal of reducing analysis effort. Incremental
build shares the same principle and aims to leverage similarities
among configurations’ build. However, we are unaware of works
that consider the actual build of configurations in an incremental
way. To the best of our knowledge, investigating the benefits and
limits of incremental build at the configuration level has not yet
been considered.

Significance of the problem. The promise is to reduce the cost
of building software, a stressing topic when you think about the
environmental and financial costs that companies and public organi-
zations should have to bear [6, 11, 21, 31]. Society relies on software,
but building software has an enormous cost: we aim to mitigate
this trend. Beyond Linux and JHipster examples already mentioned,
numerous real-world software projects are configurable and actu-
ally build several configurations. The build is a necessary step to
check the correctness of the code, to dynamically test the system, to
observe non-functional properties (e.g., execution time, security), to
synthesize performance models [12, 18, 20, 29, 35, 41, 45, 46, 49, 52].
Owing to the cost and the frequencies of software builds, any im-
provement is more than welcome for developers and organizations.

Practical scenarios. Incremental build is mainly intended to be
part of a continuous integration. With each commit, rather than
building configurations separately, an ordering strategy can be used
to reduce build time or to build much more configurations given a
budget. Once the (optimal) order of the configurations is established,
the benefits can be obtained several times during the evolution
of a software project. Of course, the ordering can be updated in
case of major modifications. Out of an order, the distribution of
incremental build of software configurations on different machines
is also possible but out of the scope of the paper.

Methodology. This paper designs and performs the first study
about incremental build of configurations: the purpose is to under-
stand the challenges and practices in a real-world setting and to
generate hypotheses about other, similar contexts [50]. Our con-
tribution is limited to the study of incremental build on existing
and real projects. On the other hand, this study opens new per-
spectives and brings insights that can be used to design new build
systems or scheduling heuristics. Our data set covers five subject
systems, namely x264, sqlite, xz, curl, and xterm covering differ-
ent domains, respectively, video encoding, database, compression
utility, network communication, and terminal emulator. Though
all written in C language, their build process highly differs (more

details in the paper). We explore whether incremental build works
(i.e., produces something without errors), whether an incremental
strategy outperforms a sequence of clean builds, whether the re-
sult is correct w.r.t. clean build, and what an optimal ordering of
configurations brings in terms of build time.

Significance of the results. Our results showed that incremental
build is feasible in 100% of the times in four subjects and in 78%
of the times in the xz subject. On average, 88.5% of the config-
urations could be built faster with incremental build while also
finding several faster alternative incremental builds. However, only
60% of faster incremental build are correct. Still, when considering
those correct incremental builds with clean builds, we could always
find an optimal order that is faster than just a collection of clean
builds with a gain up to 11.76%. Overall, our results suggest that
incremental build of configurations can be beneficial. Owing to
the importance and increasing cost of build systems in the field of
software engineering, it is worth addressing the open issues for
fully realizing the potential of incremental build.

The main contributions of this paper are:
(1) the idea of incremental build of configurations;
(2) the design of an exploratory study to investigate the potential

benefits and pitfalls of incremental build;
(3) a quantitative and qualitative analysis of empirical results;
(4) a discussion on the impacts of our works on developers, build

systems designers, and researchers in configurable system
or continuous integration;

(5) a link to our publicly available data set for reproducibility.
The rest of the paper is structured as follows. Section 2 gives some

background about build systems and introduces incremental build.
Section 3 describes the design of our experiments. Section 4 reports
on empirical results and answers research questions. Section 5
discusses the impacts of our study and results. Section 6 reports
on threats to validity. Section 7 reviews related work. Section 8
formulates research directions after a short summary.

2 BACKGROUND AND MOTIVATION
This section gives a background on the tools and the process that are
commonly used to build a C-based, configurable software system,
which are the subjects of this study. Then, we motivate our work
with an example taken from the xterm terminal emulator subject.

2.1 Autotools
Installing a software package requires having its dependencies
(e.g., utilities and libraries) available in the current environment. In
addition, the package needs also to know which are the available
features of the current operating system in order to be configured
and built accordingly. With the high diversity of operating systems,
their features and even local hacks by the users, it is impossible to
manage the configuration script for every possible environment.
For this reason, the GNU Project introduced the Autotools utility to
automatically generate configuration and build scripts to fit to the
machine it is built upon.

The presented C-based projects in this paper, as subjects, mainly
use the GNU Autotools with the utilities of Autoconf [15] and Au-
tomake [16], as shown in Figure 1. Specifically, Autoconf takes as
input a file configure.ac in which the developer has specified the



On the Benefits and Limits of Incremental Build of Software Configurations: An Exploratory Study

configure.ac

Makefile.am

AUTOCONF

AUTOMAKE

configure

Makefile.in

./configure [options]

Makefile

Figure 1: The workflow of Autotools utility

Listing 1Makefile rules, illustrated in Figure 2
1 util.o: util.h util.c
2 cc -c util.c
3 main.o: util.h main.c
4 cc -c main.c
5 main: util.o main.o
6 cc util.o main.o -o main

packages to check and to determine which ones can be used or are
missing. Then it generates a configure file, which contains a script
to check the available packages and features of the current machine
and a script to configure the project given the user’s configuration.
On the other hand, while writing a software with a large amount of
files, it is complicated to keep track and specify how to build each
one of them. Therefore, the developers of C-based projects mainly
use a Makefile to describe how to build the project. But, the Make-
file support is different, depending on the computer environment.
This is why developers rely on the Automake utility. Specifically,
a developer first specifies the structure of the current project and
how to build it. Then, Automake generates a Makefile.in that
has the previous build rules with compatibility on the current ma-
chine’s environment. Once the configure and Makefile.in are
generated, the user needs to run only the configure script in order
to configure the project. The configure script can use different op-
tions from the user, which are well-known as compile-time options,
and generates the Makefile accordingly. After this configuration
step, the users need to run the make command in order to build the
given project. This entire process is also sketched in Figure 1.

Usually, Autotools is installed on the developer’s computer, but
not on the user’s environment. Thus, the configure, Makefile.am,
and Makefile.in often are shipped within the compressed folder
that contains the project’s sources. In this case, the user simply
needs to execute the configure && make && make install
command in order to configure, build, and install that given project.

2.2 Make and incremental build
Make is a well-known build system [13]. Make readsMakefileswhich
contain the build rules to build the current software package. A
Makefile can be either generated by using Autotools or written by
the developers themselves. To show howMakeworks, Figure 2 gives
an illustrative example of a Makefile for a toy project (its source
files are not included here). It is a borrowed example from [40],
with the build rules presented in Listing 1.

In the lines 1-2 of Listing 1 is defined the rule util.o which
depends on the header file util.h and util.c. In its line 2 is de-
scribed how to build it by using a cc compiler: the flag -c and the

Figure 2: File dependency (left) and incremental build (right)

file to compile util.c in order to produce an object file util.o.
The same thing is done by the next rule of main.o in lines 3-4. The
last main rule, in lines 5-6, specifies how to build the final main
product. In this case, it simply links the util.o and main.o files.

From this Makefile, Make can build a dependency graph like
the one shown in Figure 2 (left). During the compilation for the
first time, as nothing has been compiled yet, Make will build each
of the described rules in the Makefile in order to build the final
product. Building a project from scratch and from its clean basis is
well-known as a clean build.

But, if a developer modifies even a file, then Make will rebuild
only the rules that depend on this file. To build only the necessary
rules, Make checks their timestamp. A rule must be rebuild if one of
its dependencies is more recent than it. For instance, if the developer
modifies main.c, Make will only build the rule that depends on it,
that is, the main.o rule. Then, the rule that depends on main.o, the
main, and so on. As util.o does not depend on main.c, Make will
not update it. These updated rules by Make are also highlighted in
blue color in Figure 2 (right). This process, where the build system
does only the minimum work without rebuilding the unmodified
targets is well-known as the incremental build.

The incremental build process of Make is meant for file changes
of a single software configuration. However, we can leverage it to
apply on files changes that are triggered by different compile-time
configurations options in a C-based system. Indeed, configuration
options are enabled in the code through file addition or C prepro-
cessor directives. Inclusion of more files in a rule forces its update.
Moreover, additions of blocks of code through C preprocessor di-
rectives changes the file’s timestamp to a more recent one, hence it
forces again the rebuild of the targets depending on it. Thus, Make
will only recompile the necessary targets during an incremental
build of configurations.

2.3 Motivating example
Let us consider xterm, a standard terminal emulator for the X Win-
dow System. xterm has 63 compile-time options, which may lead
to less than 263 configurations (the exact number is certainly lower
due to constraints among options). Building all (or even a subset)
of its configurations is costly and time-consuming. It is where in-
cremental build can play a positive role. Table 1 shows the build
results for four configurations randomly generated for xterm. The
top of Table 1 gives the options of the four diverse configurations,
and the bottom of Table 1 gives the build time for clean build of
each configuration separately, and the incremental build of the four
configurations 𝑐1 → 𝑐2 → 𝑐3 → 𝑐4. Note that in the incremental
build, the first configuration must be built from scratch with a clean
build. Only then we can start building incrementally the rest of
configurations.
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Table 1: Example of clean build (CB) and incremental build
(IB) on four random configurations of xterm

𝑐1 (33 options) 𝑐2 (29 options) 𝑐3 (35 options) 𝑐4 (27 options)

–disable-active-icon –disable-ansi-color –disable-ansi-color –disable-ansi-color
–diabel-16-color –disable-direct-color –disable-16–color –disable-direct-color
–disable-256-color –disable-88-color –disable-direct-color –disable-88-color
–disable-88-color –enable-broken-osc –disable-88-color –enable-broken-osc
–disable-broken-st –disable-bold-color –disable-blink-cursor –disable-c1-print
# +28 other options # +24 other options # +30 other options # +22 other options

CB: 11.94 seconds 11.04 seconds 12.88 seconds 10.04 seconds
IB: – 10.36 seconds 10.91 seconds 8.21 seconds
Diff: n/a 6.16% 15.30% 18.23%

Total CB: 45.90 seconds IB: 41.42 seconds Diff: 9.80%

From Table 1, we observe that the total sum in time (seconds) of
the clean builds of the four configuration is 45.90 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . Whereas,
the total sum in time of the incremental build is 41.42 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , that
is, the sum of the clean build of 𝑐1 (hence the "–" for its incremental
build) and of the incremental builds of 𝑐2 to 𝑐4. This represents
a total gain of 4.48 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and 9.76% of time difference. We also
observe individual gain for every incremental build of the three last
configurations, respectively 6.16% for 𝑐2, 15.30% for 𝑐3, and 18.23%
for 𝑐4. This gain is only on four configurations and can potentially
be more significant the bigger the number of configurations that
need to be build. To the best of our knowledge, no study exists on
exploring the benefits and limits of incremental build on config-
urable software. The rest of the paper designs and reports on our
exploratory study.

3 EXPERIMENTAL APPROACH
This section details incremental build experimentation. We first
present the used research questions to address the goal of our
experiment. Then, we describe the used subject systems with their
configurations, and the used build approach in our experimentation.

3.1 Research questions
The goal of this study is to explore the feasibility, efficiency, op-
timization, and correctness of incremental build in real-life con-
figurable software systems. Hence, we define the following four
research questions.
𝑅𝑄1− Feasibility: Is incremental build possible in each con-

figurable system?We first explore whether the build status
of each of our subject software systems is successful during
the incremental build in its all considered set of configura-
tions, in some of them, or in none of them.

𝑅𝑄2− Efficiency: Does incremental build outperform clean
build? To this end, we propose a build approach to measure
and compare the clean build and incremental build time of
each subject system in its respective set of configurations.

𝑅𝑄3− Correctness: Is the result of incremental build the
same as that of clean build? To this end, we compare
whether the resulting executable binary size and its symbols
are the same after the incremental and clean build of each
respective configuration in five subject systems.

𝑅𝑄4− Optimal ordering: Is there an order of configurations
that brings an optimal (overall) incremental build

Table 2: Subject systems with their respective analysed com-
mit/tag ID, LoC (lines of code), considered compile-time op-
tions, range of options within configurations, and batches

System Commit/Tag ID #LoC #Opt. Range #Batches
x264 ae03d92 115.243 16 3 - 7 2 x 20
sqlite version-3.35.4 318.521 25 7 - 18 2 x 20
xz e7da44d 39.714 87 14 - 23 2 x 20
curl curl-7_78_0 248.713 109 39 - 47 2 x 20
xterm xterm-368 130.850 63 26 - 37 2 x 20

time? By using our build approach, we analyse whether
it exists an order of configurations such that the system with
a given configuration can be incrementally build faster while
being correct.

3.2 Subject systems
The objects of this experiment are five real-life software systems
(see Table 2). To select them, we had in consideration several criteria.
Namely, the fact that the system is an open-source and available
project, it has compile-time configuration options, is a popular
project, and covers a different application domain. As a result, we
selected five C-based software systems as subjects. We first selected
the command-line video encoder of x264, which has been widely
studied among the highly configurable systems [2, 3, 23]. Then, we
selected the widely used SQL database engine sqlite, the general-
purpose data compression software of xz, the library of curl, which
supports a wide range of data transfer protocols with URLs, and
xterm, which is the standard terminal emulator for the X Window
System. To reason on a project’s popularity, we mostly used as a
proxy the recent number of stars (from 29 to 21.6k), commits (from
1300 to 27k), and contributors in its git repository.

3.3 Variables
Our experiment aims to study the incremental build of a given con-
figurable system in contrast to its clean building. Hence, the incre-
mental and clean build of configurations is the independent variable
we controlled. To answer our research questions, we observed three
dependent variables, namely: the build time of a configuration, the
system’s executable binary size, and the system’s object files in its
build resulting folder, after both the clean and incremental builds.

3.4 Build approach
To be able to explore the qualities of incremental build in config-
urable systems and answer our research questions, we design the
following build approach, and apply it in the five subject systems.

Given a configurable system𝜓 with compile-time options 𝑂𝜓 =

{𝑜1, 𝑜2, ..., 𝑜𝑚}, where𝑚 ∈ N, we first create a sample of configu-
rations 𝐶𝜓 = {𝑐1, 𝑐2, ..., 𝑐𝑛} for that system. Where 𝑛 = 20, in this
study, and each 𝑐𝑖 ∈ 𝐶𝜓 has a varying size with a random list of
generated options from 𝑂𝜓 . In Figure 3 is given an overview of
our build approach. First, it should be noted that each configurable
system has a default configuration, to which we will refer in the
following as the baseline configuration (𝑐𝑏 ). The system with its 𝑐𝑏
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system with 𝑐𝑏

𝑐1 𝑐2 . . . 𝑐𝑛

𝑐2 𝑐3 . . . 𝑐𝑛 𝑐1 𝑐3 . . . 𝑐𝑛 𝑐1 𝑐2 . . . 𝑐𝑛−1

𝑑𝑣1 𝑑𝑣2 𝑑𝑣𝑛

𝑑𝑣12 𝑑𝑣13 𝑑𝑣1𝑛 𝑑𝑣21 𝑑𝑣23 𝑑𝑣2𝑛 𝑑𝑣𝑛1 𝑑𝑣𝑛2 𝑑𝑣𝑛𝑛−1

Clean build

Incremental build

Figure 3: Experimentation workflow. Where 𝑐𝑏 is the sys-
tem’s baseline configuration, and 𝑐1 - 𝑐𝑛 are its random gen-
erated configurations. The 𝑑𝑣𝑛 and 𝑑𝑣𝑛𝑚 are the measured
dependent variables (build time, executable binary size, etc.)

is at the root of our build approach. Then, we apply two main build
steps, named clean build and incremental build as in Figure 3.

Clean build. In this step, the baseline system is build with each
configuration 𝑐𝑖 ∈ 𝐶𝜓 from scratch. During this clean build, we
measure and record the dependent variables (𝑑𝑣𝑖 ) of 𝑐𝑖 , namely, the
build time, the executable binary size, and the generated files.

Incremental build. Then, over each clean build configuration (cf.
𝑐1 to 𝑐𝑛 in Figure 3), we incrementally build the same configurations,
except the current previous applied configuration during the clean
build. For instance, over the clean build of 𝑐𝑛 we incrementally
build all other configurations from 𝑐1 up to 𝑐𝑛−1 except the 𝑐𝑛 itself.
We assume that the incremental build of 𝑐𝑛 after its clean build will
provide the same results, hence it will be insignificant to study.

Listings 2 and 3 show an illustrative example taken from the
first subject system of x264 with two of its used configurations,
called 𝑐1 and 𝑐2. In Listing 2, the x264’s baseline system is first
build with 𝑐1 (lines 2-4), that is, it is clean build, and then it is
incrementally build with 𝑐2 (lines 9-11) over the previous build.
Similarly, in Listing 3, the system is first clean build with 𝑐2 (lines
2-4) and then it is incrementally build with 𝑐1 (lines 9-11). It should
be noted that after the first build, in line 9 of Listings 2 and 3, instead
of cleaning the directory with make clean, we directly configure
the system to host the new configuration: this is what we refer to
as an incremental build. Hence, we incrementally build the next
configuration on top of the previous clean build configuration.

Further, during each clean and incremental build process, we
measure the build time and the executable binary size of the sys-
tem (lines 4-6 and 11-13). Moreover, we save the state of the build
system’s directory after each build. In this way, we can retrieve
useful data such as the binary, configuration logs and object files
for further analysis.

Listing 2 x264’s clean build with 𝑐1 and incremental build with 𝑐2
1 /* Clean build with c1 */
2 [x264]$ ./configure --disable-interlaced --bit-depth=8 \
3 --chroma-format=444 --disable-bashcompletion
4 [x264]$ time make ; ls -l x264
5 >> 0m20.262s
6 >> -rwxr-xr-x 1904936 x264
7
8 /* Incremental build with c2, after the clean build with c1 */
9 [x264]$ ./configure --disable-asm --disable-gpl \
10 --disable-thread --disable-interlaced
11 [x264]$ time make ; ls -l x264
12 >> 0m2.256s
13 >> -rwxr-xr-x 2423016 x264

Listing 3 x264’s clean build with 𝑐2 and incremental build with 𝑐1
1 /* Clean build with c2 */
2 [x264]$ ./configure --disable-asm --disable-gpl \
3 --disable-thread --disable-interlaced
4 [x264]$ time make ; ls -l x264
5 >> 0m2.422s
6 >> -rwxr-xr-x 2423016 x264
7
8 /* Incremental build with c1, after the clean build with c2 */
9 [x264]$ ./configure --disable-interlaced --bit-depth=8 \
10 --chroma-format=444 --disable-bashcompletion
11 [x264]$ time make ; ls -l x264
12 >> 0m19.658s
13 >> -rwxr-xr-x 1904936 x264

3.5 Experiments settings
By using the presented build approach, we conduct an experiment
with the five subject systems. Specifically, we build each system by
using two batches with 20 random generated configurations each.
In this way, we perform 2 ∗ 20 clean builds and 2 ∗ (20 ∗ 19) = 760
incremental builds, or in total 800 builds of each system. To correctly
handle all of them, we used a local git structure where each system
build is saved in a new git branch. The resulting git structure of a
system with all its builds has the same view as in Figure 3.

To generate the random configurations, we use the random prod-
uct generator in the FeatureIDE framework [38]. It should be noted
that the range of options within the sample of configurations (cf.
column ’Range’ in Table 2) changes quite proportionally with the
number of considered options among the subjects (cf. column ’#Opt.’
in Table 2). Whereas, for their comparison, we take two batches
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Figure 4: The distance between different generated configu-
rations, per batch, in five subject systems
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Table 3: The build time and binary size of subjects for two batches (𝐵1 and 𝐵2) with 20 configurations each. Legend of colors is
in Table 4. 𝐶𝐵 - clean build, 𝐼𝐵 -incremental build,𝑚𝐼𝐵 - minimum IC, 𝑐𝐼𝐵 - currect IB, ” − ” - failed build, and ”/” - no value

System 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11 𝑐12 𝑐13 𝑐14 𝑐15 𝑐16 𝑐17 𝑐18 𝑐19 𝑐20

x2
64

(𝐵
1) CB (𝑡𝑛 ) 38.09 38.60 34.91 70.58 38.24 66.00 21.30 20.79 66.40 32.27 65.72 38.13 20.61 17.90 33.91 18.57 40.74 19.14 35.15 37.87

IB (𝑐𝑚 ) 𝑐3 𝑐4 𝑐11 𝑐17 𝑐4 𝑐11 𝑐4 𝑐20 𝑐3 𝑐7 𝑐3 𝑐8 𝑐5 𝑐12 𝑐11 𝑐4 𝑐8 𝑐4 𝑐6 𝑐18
IB (𝑡𝑛 ) 37.42 37.85 33.93 69.24 37.41 65.18 20.96 20.33 65.35 31.78 64.58 37.25 20.25 17.65 33.38 18.17 39.99 18.76 34.46 37.22

BS [MB] 1.83 1.85 2.17 2.91 2.33 2.71 1.53 1.58 2.70 1.67 2.71 1.83 1.50 1.40 2.12 1.48 1.95 1.49 2.18 1.83

x2
64

(𝐵
2) CB (𝑡𝑛 ) 38.09 18.49 18.31 31.31 69.86 65.46 17.73 34.45 40.12 34.18 34.56 64.44 36.40 18.25 33.62 70.73 34.03 18.43 38.18 31.35

IB (𝑐𝑚 ) 𝑐15 𝑐8 𝑐18 𝑐3 𝑐3 𝑐14 𝑐3 𝑐16 𝑐13 𝑐1 𝑐16 𝑐3 𝑐17 𝑐1 𝑐3 𝑐3 𝑐3 𝑐15 𝑐3 𝑐17
IB (𝑡𝑛 ) 37.95 18.54 18.24 31.32 69.84 65.52 17.70 34.53 40.06 34.04 34.51 64.56 36.32 18.23 33.68 70.77 34.03 18.38 38.07 31.34

BS [MB] 1.85 1.42 1.48 1.64 2.95 2.75 1.37 1.78 1.95 2.17 2.18 2.69 1.79 1.48 2.17 2.96 2.17 1.47 1.85 1.64

sq
li
te

(𝐵
1) CB (𝑡𝑛 ) 61.07 65.67 68.35 68.64 68.55 72.64 57.08 59.41 72.58 71.36 68.11 68.57 54.45 70.82 62.49 65.98 67.85 58.87 72.43 70.91

IB (𝑐𝑚 ) 𝑐7 𝑐4 𝑐15 𝑐7 𝑐7 𝑐3 𝑐4 𝑐14 𝑐3 𝑐3 𝑐15 𝑐4 𝑐4 𝑐8 𝑐8 𝑐7 𝑐5 𝑐2 𝑐8 𝑐3
cIB (𝑡𝑛 ) / / / / / 70.02 / / / / / / / / / / / / / /
mIB (𝑡𝑛 ) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
BS[MB] 9.20 9.70 9.25 9.73 9.68 9.73 8.07 8.13 9.72 9.64 9.74 9.68 8.17 9.61 8.55 9.52 9.65 8.26 9.73 9.62

sq
li
te

(𝐵
2) CB (𝑡𝑛 ) 103.25 94.24 101.89 103.8 83.63 98.71 90.24 101.67 82.28 91.83 82.95 87.05 89.91 105.17 87.05 96.4 84.8 103.32 103.58 96.58

IB (𝑐𝑚 ) 𝑐3 𝑐16 𝑐4 𝑐1 𝑐15 𝑐20 𝑐8 𝑐3 𝑐3 𝑐9 𝑐4 𝑐3 𝑐5 𝑐4 𝑐5 𝑐2 𝑐6 𝑐12 𝑐3 𝑐16
cIB (𝑡𝑛 ) 63.42 / / / / 94.30 / / / / / / / / / / / / / 56.32
mIB (𝑡𝑛 ) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
BS[MB] 9.70 9.51 9.62 9.73 8.41 9.75 9.23 9.60 8.07 8.64 8.58 8.39 9.68 9.73 8.61 9.68 8.62 9.70 9.72 9.70

xz
(𝐵

1) CB (𝑡𝑛 ) 12.15 10.78 11.39 10.52 10.24 10.37 11.20 11.89 11.24 10.59 10.29 10.20 10.58 10.44 10.53 12.46 10.53 11.17 11.59 10.19
IB (𝑐𝑚 ) 𝑐18 𝑐18 − 𝑐18 𝑐10 − − 𝑐9 𝑐8 𝑐5 − 𝑐18 𝑐17 − 𝑐18 − 𝑐13 𝑐20 − 𝑐18
cIB (𝑡𝑛 ) 11.43 10.28 − 10.72 / − − 11.28 / / − 10.06 / − 10.65 − / 10.67 − 10.30
mIB (𝑡𝑛 ) 11.43 10.28 − 10.72 0.40 − − 1.35 0.42 0.87 − 10.06 0.61 − 10.65 − 0.96 10.67 − 10.30
BS [MB] 1.16 1.02 1.15 1.02 1.02 1.06 1.09 1.13 1.10 0.96 1.00 0.99 1.02 1.09 1.04 1.23 0.96 1.03 1.16 1.01

xz
(𝐵

2) CB (𝑡𝑛 ) 10.38 10.08 11.01 9.75 10.02 10.20 9.94 9.69 10.00 10.90 9.96 9.86 10.74 11.47 9.98 10.18 11.63 11.08 9.82 9.83
IB (𝑐𝑚 ) 𝑐13 𝑐17 𝑐2 𝑐2 𝑐7 − 𝑐5 𝑐9 𝑐2 𝑐6 − 𝑐3 𝑐1 𝑐8 𝑐17 𝑐18 𝑐15 𝑐5 𝑐17 𝑐2
cIB (𝑡𝑛 ) / 9.93 10.91 9.46 10.08 − / 9.74 10.10 / − 10.17 10.42 11.49 / 10.18 11.51 10.95 / 9.77
mIB (𝑡𝑛 ) 0.86 9.93 10.91 9.46 0.81 − 0.47 9.74 10.10 0.95 − 10.17 0.89 11.49 0.28 10.18 1.91 10.95 0.38 9.77
BS [MB] 1.17 1.01 1.18 0.94 1.02 1.18 1.05 0.92 1.06 1.19 1.09 1.02 1.08 1.17 1.10 1.03 1.16 1.06 0.95 1.01

cu
rl

(𝐵
1) CB (𝑡𝑛 ) 23.56 42.42 30.52 44.02 24.99 23.61 22.91 34.05 29.37 24.05 55.98 26.14 40.80 70.95 41.08 44.38 29.34 23.26 21.72 56.86

IB (𝑐𝑚 ) 𝑐5 𝑐16 𝑐1 𝑐16 𝑐9 𝑐5 𝑐6 𝑐5 𝑐3 𝑐5 𝑐16 𝑐5 𝑐16 𝑐16 𝑐16 𝑐11 𝑐1 𝑐9 𝑐18 𝑐16
cIB (𝑡𝑛 ) / 38.17 25.99 39.82 / / 18.66 / / 19.66 51.47 22.01 36.34 64.56 37.70 / 24.71 / 17.33 52.37
mIB (𝑡𝑛 ) 0.05 1.06 0.11 0.11 0.06 1.17 0.12 0.05 0.06 0.10 0.11 1.07 0.12 1.07 0.36 1.01 0.12 0.05 1.05 1.08
BS [MB] 4.67 3.50 0.61 4.15 1.02 4.31 4.09 4.56 0.75 4.31 4.29 0.82 2.61 4.54 3.47 3.89 4.45 0.69 1.10 4.01

cu
rl

(𝐵
2) CB (𝑡𝑛 ) 28.61 71.51 33.53 39.86 25.26 67.21 30.87 28.31 29.61 50.13 23.47 41.16 23.40 23.58 44.98 23.35 25.30 22.97 44.97 29.27

IB (𝑐𝑚 ) 𝑐13 𝑐11 𝑐11 𝑐11 𝑐11 𝑐13 𝑐11 𝑐13 𝑐13 𝑐11 𝑐13 𝑐13 𝑐11 𝑐13 𝑐11 𝑐13 𝑐13 𝑐13 𝑐13 𝑐11
cIB (𝑡𝑛 ) 24.69 67.95 29.63 36.75 21.32 65.67 26.98 24.39 25.80 46.52 / 37.59 / 19.61 41.64 19.32 21.18 18.93 41.48 24.82
mIB (𝑡𝑛 ) 1.06 35.01 0.11 19.56 0.12 34.78 1.06 0.11 0.12 24.54 1.01 19.94 0.05 0.11 22.08 0.11 0.11 0.11 21.82 1.07
BS [MB] 4.47 4.42 4.42 2.85 1.31 4.32 3.60 4.67 3.66 2.83 0.54 3.22 0.58 4.22 3.93 0.70 0.82 3.60 3.93 3.89

xt
er
m
(𝐵

1) CB (𝑡𝑛 ) 8.60 8.24 11.64 11.33 11.82 10.23 9.74 9.96 11.53 10.77 9.89 9.08 10.17 8.91 10.26 9.83 7.67 8.63 11.85 10.91
IB (𝑐𝑚 ) 𝑐3 𝑐1 𝑐10 𝑐2 𝑐1 𝑐3 𝑐2 𝑐1 𝑐18 𝑐2 𝑐20 𝑐2 𝑐1 𝑐1 𝑐2 𝑐1 𝑐15 𝑐1 𝑐1 𝑐2
IB (𝑡𝑛 ) 8.42 8.06 11.43 11.13 11.68 9.83 9.56 9.74 11.42 10.59 9.66 8.94 10.01 8.72 10.11 9.65 7.50 8.49 11.66 10.72

BS [MB] 2.61 2.35 3.05 3.19 3.30 2.88 2.72 2.77 3.07 2.88 2.77 2.75 2.88 2.62 2.92 2.73 2.28 2.61 3.14 2.89

xt
er
m
(𝐵

2) CB (𝑡𝑛 ) 11.41 11.32 10.46 8.88 10.19 10.20 9.08 8.33 12.80 10.76 10.46 10.81 8.52 11.74 11.68 9.88 7.60 11.76 10.59 8.45
IB (𝑐𝑚 ) 𝑐3 𝑐1 𝑐2 𝑐5 𝑐3 𝑐2 𝑐10 𝑐10 𝑐2 𝑐2 𝑐9 𝑐7 𝑐6 𝑐3 𝑐5 𝑐3 𝑐5 𝑐2 𝑐2 𝑐5
IB (𝑡𝑛 ) 11.18 11.11 10.24 8.69 10.05 10.06 8.93 8.17 12.57 10.68 10.31 10.62 8.38 11.53 11.1 9.67 7.4 11.58 10.41 8.24

BS [MB] 3.11 3.09 2.88 2.55 2.81 2.84 2.52 2.50 3.38 2.91 2.80 3.04 2.44 3.21 3.13 2.61 2.30 3.23 2.75 2.51

with 20 sample of configurations in all five subjects. Further, to en-
sure that the generated set of configurations is diverse enough, we
looked at the distance between each pair of configurations within
a batch. By distance, we mean the percentage of common options
between configurations. Hence, the distance 0 between two config-
urations 𝑐𝑖 , 𝑐 𝑗 ∈ 𝐶𝜓 indicates that the sets of compile-time options
in these two configurations are disjoint sets. Whereas, the distance
of 1 indicates that 𝑐𝑖 is the same or at least a subset of 𝑐 𝑗 . Figure 4
shows the overall calculated distribution of the distance between
all pairs of configurations in our five subject systems. The median
distance varies between 33.33% in the second batch (𝐵2) of x264 and
48.57% in the second batch (𝐵2) of xterm, indicating that in each
subject the considered configurations within a batch are diverse for
more than 50% on average. We also observed 82 configurations of 0
distance in x264 (𝐵1 and 𝐵2) and in sqlite (𝐵2), that is, completely
different. Then, in x264 (𝐵1 and 𝐵2) there are only three cases with
distance 1, that is, entirely included in another one.

We conducted the experiments on a Linux workstation running
Fedora 34 with Intel Core i7-10610U CPU and 15.3 GiB of memory.
To prevent side effects, all experiments are run twice using Docker
and sequentially, as the only processes in theworkstation.Moreover,
the Dockerfile of each subject system is made available 1 and can be
used to reproduce the experiments. At the same place, we provide
the build configurations in all systems with their generated data.

4 RESULTS
We now discuss the results with regard to our research questions.

4.1 Feasibility of incremental build (𝑅𝑄1)
In order to measure and compare the build time and system cor-
rectness after an incremental build, we first had to ensure that
the system is successfully building during the clean build of its
configurations, that is, it has a build status 0 and an executable
1https://doi.org/10.5281/zenodo.5915116

https://doi.org/10.5281/zenodo.5915116
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file is created. In cases when the system threw an error during
the clean build of a configuration, we analysed the dependencies
between compile-time options and resolved the error by removing
one of the conflicting options. For example, we encountered such
option’s dependencies in the configurations of xterm. As a result,
in our experiment with five systems, the clean build of each of their
configurations is successful. Put differently, in all our clean build
cases, the system’s build status is 0 and a system’s executable file is
created.

Despite the successful clean build of all configurations, we no-
ticed that some configurations in some systems have a failed build
status during their incremental build. Finding out whether the in-
cremental build is feasible in a system or not was hard to deduce by
simply inspecting its Makefile. Therefore, we incrementally build
all pairs of configurations in five systems and observed their build
status, including the presence of their executable file. As a result,
all of the configurations in x264, sqlite, curl, and xterm are suc-
cessfully incrementally build. But, there are 9 configurations in xz
that have a failed build status during their incremental build. These
cases are marked with a dash (′−′) in Table 3 for batches 𝐵1 and
𝐵2. For instance, by incrementally building xz with configuration
𝑐3 over any other configuration, in 𝐵1, it resulted in a failed build
status and without an xz’s executable file.

Based on our experiments with five subjects, a successful clean
build configuration is not necessarily build successfully during its
incremental build. Our initial observations, based only on the build
status and the created system’s executable, are that the incremental
build is feasible in 100% of configurations in 4 systems, namely in
x264, sqlite, curl, and xterm. Whereas, the incremental build in
xz is feasible in 78% of its configurations. This indicates that the
rest 22% of configurations in xz always require to clean build.

𝑹𝑸1 insights: Our results show that between 78% (in the
case of xz) and 100% (in the case of x264, sqlite, curl, and
xterm) of configurations can be built incrementally. Hence,
instead of always clean building, the incremental build of
configurations is feasible on highly configurable systems.

4.2 Incremental vs. clean build time (𝑅𝑄2)
To answer the second research question, we recorded the clean
build time of each configuration and the incremental build time
of their all paired combinations. For this purpose, we follow the
described build approach in Section 3.4. In Table 3 is given the
resulting clean and incremental build time of each configuration,
for two batches 𝐵1 and 𝐵2, in each subject system. All build times
are expressed in seconds. Specifically, the row 𝐶𝐵(𝑡𝑛) shows the
obtained clean build time per configuration. For instance, the clean
build time of 𝑐10 in the𝐵2 of curl is 50.13 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . The row𝑚𝐼𝐵(𝑡𝑛)
shows theminimum incremental build time of configuration𝑛, from
its all paired incremental builds. For instance, the fastest time to
incrementally build 𝑐2 of 𝐵1 in xz is 10.28 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . The next row,
𝐼𝐵(𝑐𝑚), shows which is the clean build configuration for which
the incremental build of a given configuration is faster. In the case
of xz, the 𝑐2 in 𝐵1 is incrementally build faster after the clean
build of 𝑐18. To easily notice whether the incremental build of a
given configuration is faster than its clean build, then the fastest

Figure 5: The % of configurations per system that have a
faster, slower, and failed incremental build, than clean build
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Figure 6: The number of configurations with a faster incre-
mental build (IB) than clean build (CB) in each system

incremental build is colored in green, given in the row of𝑚𝐼𝐵(𝑡𝑛).
Otherwise, when it is slower, it is colored in red. For instance,
the incremental build of 𝑐1 in the 𝐵2 of x264 is 37.95 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , or
0.14 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 faster than its clean build, therefore it is colored in
green. On the contrary, the 𝑐12 in the 𝐵2 of x264 is 64.56 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ,
or 0.12 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 slower than its clean build, hence it is in red.

From Table 3, it can be observed that in four systems, namely,
in x264 (𝐵1), sqlite (𝐵1, 𝐵2), curl (𝐵1, 𝐵2), and xterm (𝐵1, 𝐵2),
there is always a pair combination of configurations for which the
incremental build of a given configuration is faster. However, in
x264 (𝐵2) there are 7 from 20 configurations for which the incre-
mental build is always slower than the clean build. Similarly, there
are 7 from 20 cases in xz (𝐵1, 𝐵2) that always have a slower incre-
mental build than clean build. In Figure 5 is given the percentage
of configurations per system that resulted in a faster, slower, or
failed build during their incremental build. Specifically, 100% of the
configurations in sqlite, curl, and xterm have at least one case
where they are incrementally build quicker than during their clean
build. Further, 82.50% of the configurations in x264 and 60.00% of
the configurations in xz have a faster build during their incremental
building. In average, for all five systems, 88.50% of the configura-
tions are built faster during their incremental build than during
their clean build. Then, only 7.00% of them are built slower, and
4.50% have a failed built during the incremental building.
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Figure 7: The gained time, in seconds, by the incremental
build of configurations instead of their clean build

In cases when a configuration showed a quicker incremental
build, we went further and wondered whether it has more than
one pair combination for which it is faster than its clean build. For
instance, 𝑐1 in the 𝐵1 of xterm is incrementally built over all other
19 clean build configurations, that is, over the clean build configura-
tions of 𝑐2 to 𝑐20. When it is built over 𝑐3, given in the row 𝐼𝐵(𝑐𝑚),
it is faster for 0.18 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 than during its clean building. But, we
noticed that there are also cases for which the 𝑐1 is incrementally
built faster, which cases are not shown in Table 3. Therefore, we
count all these cases and show them summarized in Figure 6. It
resulted that, except in two case in sqlite and curl, all their 20
configurations in two batches show a faster incremental build time
in all 19 pair combinations with the other configurations. In the 𝐵1
of x264, there are between 15 and 19 pair combinations for which
20 configurations are incrementally built faster. In the contrary,
in the 𝐵2 of x264 there are less, between 1 and 13 pairs of combi-
nations. Quite similarly, in xz there are configurations that have
faster incremental build in up to 3 and 8 pairs of combinations per
batch, respectively. In xterm there is also a large number of cases
for which a configuration can be incrementally build faster, up to
15 and 19 cases, per batch. Hence, in the majority of the cases, one
can find more than one pair combination to incrementally build a
configuration faster than in its clean build.

In addition, in cases when the incremental built configurations
are faster, we then wondered for howmuch they are. In this way, we
want to find out for how many minutes or seconds one can benefit
by incrementally building instead of clean building a configuration.
To analyse it, we calculated the difference between the clean build
time and the fastest (the best) incremental build time of each config-
uration in all systems. The obtained results are shown in Figure 7.
The gained time by incrementally building a configuration in x264
is between 0 and 1.34 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . Quite similarly, in xz is between
0 and 10.82 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . In xterm is the smallest gain, between 0.08
and 0.58 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . Whereas, in sqlite is the largest gained time,
between 54.44 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 up to 1𝑚𝑖𝑛𝑢𝑡𝑒 𝑎𝑛𝑑 45 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . This seems
to be related also with the taken time to build the system itself. For
instance, xterm has the smallest build time, less than 12 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 in
all cases. Hence, the gained time during the incremental build is
the smallest in xterm. The overall gained time for an incremental
build configuration, in all systems, is between 0 (i.e., it is the same
time as in the clean build) and almost 2𝑚𝑖𝑛𝑢𝑡𝑒𝑠 .

These findings show several things. First, in the majority of the
cases (88.50%), the incremental build of a system’s configuration is
faster than its clean build. A successful clean build configuration
may have a fail incremental build (in 4.5% of the cases). Thirdly, in
order to benefit on time during the incremental build, the order of
build configurations may matter. Then, depending on the system,
one can find more than one pair combination of configurations
(between 1 and 19) to quickly build a given configuration. The
gained time per configuration is quite large (from 0 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to
1 𝑚𝑖𝑛𝑢𝑡𝑒 𝑎𝑛𝑑 45 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). Benefiting in terms of seconds can be
significant, for example, in cases when the system needs to be often
build and regarding several configurations.

𝑹𝑸2 insights: The incremental build of a given configuration
can outperform its clean build, but the gain depends on the
configuration that was previously built. Our results show
that, in average, 88.5% of configurations can be build faster
with incremental build.

4.3 System correctness (𝑅𝑄3)
The observations in the second research question show that in
the majority of cases the incremental build of a system’s configu-
ration is faster than its clean build. For instance, the clean build
time of the configurations in sqlite is between 54.45 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 and
1𝑚𝑖𝑛𝑢𝑡𝑒 𝑎𝑛𝑑 45 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 , whereas their fastest incremental build
time is always 0.01 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . Similar examples can be observed also
in xz and curl. Hence, we raised the question whether the result-
ing incremental build systems in these cases are also correct. That
is, whether the system after the incremental build and clean build
is exactly the same. To reason about a system’s correctness, we
first defined the correctness of an incremental build based on some
properties of its produced binary. It should be noted that comparing
the binaries of the same clean and incremental build configuration
bit by bit can give inaccurate results. This happens because the
incremental build is not expected to be an exact reproduction of the
clean build in the binary level. Still, two binaries that are produced
by the same configuration share some similarities, such as the bi-
nary size and symbol table. Hence, we chose these two properties
of a binary (i.e., binary size and symbol table) to ensure the system
correctness.

In the row of 𝐵𝑆 [𝑀𝐵] in Table 3 is given the executable bi-
nary size, in megabytes (MB), of each clean build system for each
configuration. These values are summarized in the first four rows
in Table 4. As it can be observed, we encountered the four possible
cases. Specifically, 60% of configurations in all systems have a faster
incremental build and the resulting system has the same exact bi-
nary size as in the clean build. Then, 7.50% of their configurations
have a slower incremental build, but still their system has the same
exact binary size. On the other hand, there are 32.50% of configura-
tions in all systems that have a faster or slower incremental build,
but their resulting system has always a different binary size. Hence,
based on the binary size, in 67.50% of the cases the systems that are
built incrementally are correct, whereas in 32.50% of the cases they
are incorrect. These cases can also be easily identified in Table 3 by
using the legend of the colors given in Table 4.
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Table 4: The percentage of correct systems after their incre-
mental builds, based on their binary size (BS) and symbols
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Fast & Same BS & 20 12 1 3 5 8 13 18 20 20
¬Fast & Same BS & 0 7 0 0 3 5 0 0 0 0
Fast &¬Same BS & 0 1 19 17 5 5 7 2 0 0
¬Fast &¬ Same BS & 0 0 0 0 7 2 0 0 0 0

Overall same BS (%) 100 95 5 15 40 65 65 90 100 100

Same Symbols (%) 100 95 2 2 2 2 32 46 100 100
¬Same Symbols (%) 0 5 97 98 98 98 68 54 0 0

Besides, we compared the system’s executable symbols after
the clean and incremental build of each configuration in all five
subjects. The obtained results are summarized in the last two rows
in Table 4. It can be observed that, x264 and xterm after each built
configurations are correct, that is, in 100% of the cases they have
the same binary size and symbols. In the other systems, sqlite, xz,
and curl, there are less number of configurations (between 2% and
46%) that have the same symbols during their clean and incremental
builds. In all systems, there are 48.03% of configurations for which
the resulting system has the same symbols in both build scenarios.

Based on these results, in almost all incrementally build cases
x264 and xterm are correct. After investigation, we noticed that
the incremental build in these systems is actually not performed
by design. In both cases, the configure script is generating a con-
figuration file (config.h and xtermcfg.h, respectively) on which
all the other files depend on. Hence, after each configuration, ev-
erything is rebuilt from scratch. Therefore, the incremental build
that we were expecting is actually equivalent to a clean build in
these two systems. In the contrast, in xz we had incremental build
issues. We were getting a same specific linker error telling that
some symbols are undefined in some libraries. The reason of the
error is that some libraries were supposed to be rebuilt during the
incremental build of a configuration, but they were not. Further,
the reason for which curl and sqlite were incorrect is the same.
Whenever two configurations shared the same files and generate
the same object files then, even when the content in these files
changes by a configuration, they are not rebuild and updated. Con-
sequently, the incorrect builds in these systems return a warning
message notifying that there is nothing to build.

𝑹𝑸3 insights: After an incremental build of configurations,
configurable systems are likely to be correct (in 57.80% of
the cases), but not always. Specifically, the resulting bina-
ries are correct w.r.t. their executable binary size for 67.50%
of configurations and w.r.t. their symbol table for 48.03% of
configurations.

4.4 Optimal ordering (𝑅𝑄4)
Now that we found that incremental build can be faster and correct,
the question is to what extent can we leverage on that to outperform
clean build of all configurations. To answer this research question,
we use our whole data and not only the minimum time that we

Table 5: Results for the optimal ordering

System Total Clean
Build

Total Optimal Ordering
of Incremental Build Gain Reduced N° of

Clean Builds

x264 (𝐵1) 754.92 [sec] 666.12 [sec] 11.76% 20→ 2

x264 (𝐵2) 747.99 [sec] 747.26 [sec] 0.10% 20→ 8

sqlite (𝐵1) 1,325.83 [sec] 1323.21 [sec] 0.20% 20→ 19

sqlite (𝐵2) 1,888.35 [sec] 1803.85 [sec] 4.47% 20→ 17

xz (𝐵1) 218.35 [sec] 216.89 [sec] 0.67% 20→ 13

xz (𝐵2) 206.52 [sec] 205.67 [sec] 0.41% 20→ 13

curl (𝐵1) 710.01 [sec] 652.01 [sec] 8.17% 20→ 7

curl (𝐵2) 707.35 [sec] 641.14 [sec] 9.36% 20→ 2

xterm (𝐵1) 201.06 [sec] 197.33 [sec] 1.86% 20→ 1

xterm (𝐵2) 204.92 [sec] 201.14 [sec] 1.84% 20→ 1

report in Table 3, that is, all measured times for the different com-
binations of incremental build. For this reason, we searched for an
optimal ordering of configurations based on build time. To do that,
we first start by building a directed graph 𝑔 = (𝑉 , 𝐸) where vertices
𝑉 are all configurations and edges 𝐸 are incremental builds between
configurations2. We add an edge only when the incremental build
is successful and is correct. Each edge has as a weight the minimum
time of incremental build. These information comes from Table 3.
Then, we add a root vertex that is linked with all other vertices by
edges weighted with their respective clean build times. This is essen-
tial for configurations that cannot be built incrementally. After that,
we run a minimum spanning tree directed graph algorithm [17].
In this way, we calculate the optimal order of configurations that
leverages to the best possible time on incremental build.

Table 5 shows our obtained results after running our algorithm
on all incrementally build configurations for two batches on five
subject systems. From the column Gain, we can observe that indeed
we are able to find an optimal ordering that allows us to correctly
build all configurations while being faster by performing incremen-
tal builds. The gain varies from 0.10% to 11.76%. Furthermore, we
could observe that we were always reducing the required number
of clean builds in a system, which vary from 1, 2, 7, 8, 13, 17 to 19
times. Where 1 meaning one necessary clean build upon which the
rest of configurations are incrementally built, and 19 where only
one incremental built was possible. In particular, xterm, x264, and
curl did not need many clean builds and used several incremental
builds contrary to sqlite and xz. For example, in the optimized
order for xterm 𝐵1 we had only 1 clean build and the rest was a tree
of incremental builds for the rest of the configurations. Whereas,
sqlite 𝐵2 used only 3 incremental builds and 17 clean builds.

𝑹𝑸4 insights: It is possible to find an order of configurations
for which (1) all incremental build configurations in this order
are correct; (2) the overall incremental build time (with few
clean builds in the middle of the order) is always smaller than
the overall time when configurations are only clean built.

5 DISCUSSION
This section discusses the impacts of our results on three actors.
2The graphs are available in our companion page.
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For developers. From our experiments, we observe that 𝑅𝑄2 and
𝑅𝑄4 highlight the benefits of incremental build, while 𝑅𝑄1 and 𝑅𝑄3
highlight its limits. Nonetheless, we see that the benefits overcome
the limits, in particular, when finding the correct optimal order-
ing. Hence, developers can already benefit from incremental build.
A current limitation is that the optimal order is specific to a set
of configurations and deserves an upfront computational invest-
ment. However, there are several projects that have a predefined
or fixed set of default configurations to build (e.g., JHipster [19]).
Furthermore, the investment can pay for itself with the frequency
of commits and thus the use of incremental builds several times
throughout the continuous evolution.

Besides, developers should take into account the specifics of
their projects and possibly fix their build artifacts to fully realize
the potential of incremental build. For instance, the case of xz
(cf. Section 4.3) is challenging: a critical library on which the build
of configurations depends must be forced to rebuild. Indeed, it is
specified that the build rule related to the library must be rebuilt
each time, allowing it to propagate the build to its dependency and
update the new configuration. This rebuild is unnecessary, and the
build could be done once and for all. Therefore, developers of con-
figurable software can miss opportunities of relying on incremental
build due to mismanagement of their build scripts.

For build system designers. Numerous build systems have been
recently designed and developed to support the specific needs of
organizations [5, 7, 37, 43]. The design space of build system is still
to be explored and the case of configurations adds a new dimension.
Designers should give an interface between the build rules written
by the developer and the build system’s back-end which is building
the project. In the case of Make, the issues observed when aiming to
incrementally build in our case studies cannot be only spotted by the
developer in charge of writing build rules. Hence, configurations-
aware build systems are still to be designed and developed. We
believe the limits and insights of our study can help.

For researchers. Our results call for more research on the topic of
incremental build of configurations. Researchers can evaluate the
incrementality of existing build systems: most have been designed
to support variability in time (evolution), not variability in space
(configurations). We encourage researchers to assess the feasibility,
correctness, and performance of build systems with the novel sce-
nario of building successive software configurations as we did in
the study. In general, there is still a lack of evaluation on a wider
scope of incremental build of configurations with various build sys-
tems [5, 7, 37, 43]. Researchers can design further empirical studies
(e.g., confirmatory studies) to gain further insights or validate some
hypotheses of our work. A major specificity of incremental build of
configurations is that there is an order to define. Intuitively, given
a set of configurations, the order of their incremental build can
be defined given according to their distance and closeness. How-
ever, this notion of distance has to be defined precisely. It can be
based on the difference of activated options within configurations,
or on the relation between options and their implementation, or
even include the impact on the build. Therefore, understanding
why certain pairs of configurations benefit more from incremental
build is an immediate research direction. It would be interesting to
propose heuristics to find an order before the actual build, based

on configuration similarities and build rules. In other words, how
can we automatically find the optimal orders in 𝑅𝑄4? It is an open
problem that deserves much more research (e.g.,, choice and defini-
tion of a metric, correlation of distance with build time, thorough
evaluation).

6 THREATS TO VALIDITY
Internal validity. To measure the benefits and limits of incremen-

tal build, we had to build several pairs of configurations. To reduce
the risk of interference with other running software, we isolated
the build environment. To do so, we created one docker image per
system with the needed build tools and only needed dependencies.
The machine we used was dedicated to the experiment. However,
some OS processes and services were still running on the computer
that can bring measurements noises. Nevertheless, as we docker-
ized similarly every run of our experiments, we expect that the
noises would be similar, in particular, that we did not launch any
other task in parallel. We only run twice the experiments owing
to the cost of computations. Moreover, there is a threat related
to the sampling used to generate configurations. We deliberately
used random sampling to diversify our data sets of configurations.
However, we observe from Figure 4 that our configurations are
relatively disjoint. Nevertheless, for each sample batch, we repeat
the experiment process 2 times. Finally, to check for the correctness
of an incremental build, we compared the size and symbols of the
produced binary with the one produced with a clean build.

External validity. We experimented on five subjects that are C-
based configurable software systems with the Make build system.
Although we think that the incremental build would be applica-
ble in other build systems and software technologies, we cannot
generalize our results. Further experimentation is necessary.

Conclusion validity. Our experiments showed promising results
for incremental build of configurations by accelerating the build
time. We also show limits when it comes to correctness. Even
though, we could still find faster and correct incremental builds,
which we used to find the optimal ordering of configurations. To
have more insights and statistical evidence, further evaluation is
needed on more subject systems and larger set of configurations.

7 RELATEDWORK
Build systems. Many works exist on incremental build systems

(e.g., [5, 12, 13, 20, 29, 35, 39, 46, 52]) but without handling a set of
configurations. In Cao et al. [8], the authors forecast the duration
of incremental build jobs for over 2 thousand of commits in GLib
(library) and VTK (Visualisation ToolKit). While incremental build
jobs vary in terms of duration, they propose a tooled approach,
BuildMÉTÉO, to forecast how long a job will take based on the de-
pendency graph extracted from a first clean build usingMAKAO [1].
BuildMÉTÉO can estimate the build time of a project after some
modifications in its files. However, it is considering only the evolu-
tion of one configuration of the project and not diverse ones like our
preliminary study. In Cserép and Fekete [10], they introduce a way
to detect only the necessary files to build by parsing the whole code-
base. Instead of parsing every file from scratch each time, which
takes an important amount of time, they use incremental parsing.
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In addition, they also check the build rules modifications associated
with the files. Hence, a file to rebuild is a file that has been either
modified or for which a build rule has changed. By doing so, they
do not check the binaries’ metadata, such as timestamps like Make
does, and thus avoid issues we present in Section 4.3. Maudoux
and Mens [34] present in their paper that incremental build helps
to save time on local builds. However, it is not available yet on
continuous integration (CI) platforms. Indeed, incremental build is
not brought on CI because of some factors such as the correctness
of the produced binary. In our paper, we show that the correctness
of incremental build with real-world projects based on GNU Build
System is not ensured due to the Make’s strategy to perform incre-
mental build over configurations. Further, Konat et al. provide a
DSL to increase the effectiveness of writing build scripts by using
their proposed language of PIE [29, 30]. With such expressive build
scripts, analysis and error detection could be prevented beforehand.
They also introduce a build system that takes track of files and
focus only on the part that changed, to avoid having too much
information in memory and perform strictly the minimum while
being effective.

Several empirical studies on build systems have been performed
(e.g., [21, 22, 31, 35, 36, 54]). For instance, a case study at Google
reported a large corpus of builds and build errors mainly focusing
on static compilation problems [47]. Beller et al. [6] performed an
analysis of builds with Travis CI on top of GitHub. About 10% of
builds show different behavior when different environments are
used. In our case, we are considering different configurations rather
than environments. To the best of our knowledge, incremental build
for software configurations has received little attention.

Software product line (SPL) and variability. The SPL community
develops numerous methods and techniques to manage a family
of variants (or products). Configurations are used to build vari-
ants and are subject to intensive research. Formal methods and
program analysis can identify some classes of configurations’ de-
fects [9, 51], leading to variability-aware testing approaches (e.g.,
[14, 24, 25, 27, 28, 32, 42, 48, 53]). The general principle is to exploit
the commonalities among variants, mainly at the code level. For
instance, variability-aware execution [4, 27, 42] instruments an in-
terpreter of the underlying programming language to execute the
tests only once on all the variants of a configurable system. Nguyen
et al. implemented Varex, a variability-aware PHP interpreter, to
test WordPress by running code common to several variants only
once [42]. Reisner et al. use a symbolic execution framework to eval-
uate how the configuration options impact the coverage of the sys-
tem given a test suite [44]. Static analysis and notably type-checking
has been used to look for bugs in configurable software and can
scale to very large code bases such as the Linux kernel [24, 25, 53].
Though variability-aware analysis is relevant in many engineering
contexts, our interest differs and consists in studying the practice
of concretely building a sample of (representative) configurations
with an unexplored approach – incremental build.

There are several empirical studies about the build of SPLs and
configurable systems. For instance, Halin et al. [19] report on the
endeavor to build all possible configurations of an industry-strength,
open source configurable software system JHipster, a popular code

generator for web applications. We are unaware of studies that
consider incremental build of configurations.

8 CONCLUSION
In this paper, we conducted a novel study investigating the benefits
and limits to incrementally build software configurations, as op-
posed to always cleaning as in conventional build. By considering
five real-life configurable software systems, we explored whether
incremental build works, outperforms a sequence of clean builds, is
correctw.r.t. clean build, and can be used to find an optimal ordering
of building configurations. Our results suggest that incremental
build of configurations can reduce build time without trading cor-
rectness. Developers and maintainers can already benefit from this
simple approach. Owing to the frequencies of build in continuous
integration and their increasing cost, we encourage the software
engineering community (build system designers, researchers, etc.)
to further investigate incremental build of configurations.

As a future work, we plan to replicate our study with other build
systems and more batches of configuration samples. We also plan
to investigate the possibility of having a heuristic for finding auto-
matically the optimal ordering. This is challenging as it requires to
infer a priori the unknown distances among configurations. Finally,
we aim to synthesize knowledge of patterns and anti-patterns of
incremental build to increase benefits and reduce limits.
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