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ABSTRACT

Building software is a crucial task to compile, test, and deploy
software systems while continuously ensuring some quality as-
surance of a project. As software is more and more configurable,
building multiple configurations is a stressing need, yet, costly and
challenging to instrument. The current state of practice is to build
independently (a.k.a., clean build) a software for a subset of config-
urations. While incremental build has been considered for software
evolution and relatively small modifications of the source code, it
has not been surprisingly investigated for software configurations.
In this first novel exploratory study, we investigate the benefits
and limits to incrementally build software configurations, instead
of always clean building them. By using five real-life configurable
systems as subjects, we explore whether incremental build works,
outperforms a sequence of clean builds, is correct w.r.t. clean build,
and can be used to find an optimal ordering for building config-
urations. Our results showed that incremental build is feasible in
100% of the time in four subjects and in 78% of the times in one
subject. In average, 88.5% of the configurations could be built faster
with incremental built while also finding several alternative faster
incremental builds. However, only 60% of faster incremental builds
are correct. Still, when considering those correct incremental builds
with clean builds, we could always find an optimal order that is
faster than just a collection of clean builds with a gain up to 11.76%.

CCS CONCEPTS

« Software and its engineering — Maintaining software.

KEYWORDS
Configurable, Variability, Build Systems, Exploratory Study

1 INTRODUCTION

Building software is a crucial activity in every non-trivial software
project. Different artefacts are assembled, compiled, tested, and
eventually deployed, hopefully with success. The rise of continuous
integration has amplified this trend with build services integrated
into major code platforms (e.g., GitHub, GitLab). The interest is
to continuously ensure some quality assurance of a project, being
in terms of functionality or non-functional properties (e.g., secu-
rity, execution time). Although widely adopted, building software
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is increasingly complex and expensive in terms of time and re-
sources [11, 15, 23, 31].

Software configurations are adding further complexity to the
problem of building software. Different variants of the artefacts
can be assembled due to e.g., conditional compilation directives
#ifdef in the source code. Different external libraries can be com-
piled and integrated as well. The way the build is realized can also
change e.g., with the use of different compiler flags. Developers
and maintainers of a project want to ensure that, throughout the
evolution, all or at least a subset of software configurations build
well. As most of today’s software is configurable in order to fit
constraints, functional and performance requirements of users, it
is no surprise to observe that many organizations build different
software configurations of their project. For instance, initiatives
like KernelCI or 0-day build thousands of default or random Linux
configurations each day [7]. Another example is JHipster, a popular
Web generator, that builds dozens of configurations at each commit,
involving different technologies (Docker, Maven, grunt, etc) [21].

The current state of practice is to build independently a subset of
configurations i.e., in a fresh environment. In this paper we propose
and explore an approach, called incremental build of configurations.
The idea is simple: instead of starting from scratch and cleaning
build’s artefacts, a configuration can be built from an existing and
already completed configuration build (incrementally). The hope
is to reuse artefacts of previous configurations’ build and thus
save some computations, resources, and time. This is just a hunch
and the real question is to quantify how much and when you can
gain (or lose) compared to a more conventional build. Moreover,
the approach is not without risk: an incremental build may not
work or may be incorrect compared to a conventional build. The
build system may forget to recompile some necessary artefacts, for
example. In fact, it is an hypothesis that needs inquiry. Another
unknown is about the strategy to schedule the incremental build of
configurations. Given a configuration to build, with which other
configuration should the incremental build be carried out? Should
incremental build be used all times? There are numerous possible
orderings, possibly with different effects on the correctness and
overall build time. Our goal is to explore these hypothesis and
address, to the best of our knowledge, new open questions: (RQ1)
Is incremental build simply possible in real-world configurable
systems? (RQ2) Does incremental build outperform clean build?



(RQ3) Is the result of incremental build the same as that of clean
build? (RQ4) Is there an order of configurations that brings an
optimal (overall) incremental build time?

Novelty. Surprisingly, while incremental build is supported and
has actually been designed for relatively small edits, it has not
been explored for software configurations. A possible reason is that
the usual compilation workflow and build process targets small,
local modifications (e.g., modification of one source file). Build-
ing several configurations involve large modifications that span
numerous source files thus challenging build systems. There are
numerous works in the software product line community about
variability-aware analysis [25-28, 40, 45, 50]. The idea is to process
the configurable code base, exploiting similarities among individ-
ual variants with the goal of reducing analysis effort. Incremental
build shares the same principle and aims to leverage similarities
among configurations’ build. However, we are unaware of works
that consider the actual build of configurations in an incremental
way. To the best of our knowledge, investigating the benefits and
limits of incremental build at the configuration level has not yet
been considered.

Significance of the problem. The promise is to reduce the cost of
building software, a stressing topic when you think about the envi-
ronmental and financial costs that companies and public organiza-
tions should have to bear [11, 15, 23, 31]. Society relies on software,
but building software has an enormous cost: we aim to mitigate
this trend. Beyond Linux and JHipster examples already mentioned,
numerous real-world software projects are configurable and actu-
ally build several configurations. The build is a necessary step to
check the correctness of the code, to dynamically test the system, to
observe non-functional properties (e.g., execution time, security), to
synthesize performance models [16, 20, 22, 29, 34, 39, 42, 43, 46, 49].
Owing to the cost and the frequencies of software builds, any im-
provement is more than welcome for developers and organizations.

Practical scenarios. Incremental build is mainly intended to be
part of a continuous integration. With each commit, rather than
building configurations separately, an ordering strategy can be used
to reduce build time or to build much more configurations given a
budget. Once the (optimal) order of the configurations is established,
the benefits can be obtained several times during the evolution
of a software project. Of course, the ordering can be updated in
case of major modifications. Out of an order, the distribution of
incremental build of software configurations on different machines
is also possible but out of the scope of the paper.

Methodology. This paper designs and performs the first study
about incremental build of configurations: the purpose is to under-
stand the challenges and practices in a real-world setting and to
generate hypotheses about other, similar contexts [47]. Our con-
tribution is limited to the study of incremental build on existing
and real projects. On the other hand, this study opens new per-
spectives and brings insights that can be used to design new build
systems or scheduling heuristics. Our data set covers five subject
systems, namely x264, sqlite, xz, curl, and xterm covering differ-
ent domains, respectively, video encoding, database, compression
utility, network communication, and terminal emulator. Though
all written in C language, their build process highly differs (more
details in the paper). We explore whether incremental build works
(i.e, produces something without errors), whether an incremental
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strategy outperforms a sequence of clean builds, whether the re-
sult is correct w.r.t. clean build, and what an optimal ordering of
configurations brings in terms of build time.

Significance of the results. Our results showed that incremental
build is feasible in 100% of the time in four subjects and in 78% of
the times in the xz subject. On average, 88.5% of the configurations
could be built faster with incremental build while also finding sev-
eral alternative faster incremental builds. However, only 60% of
faster incremental build are correct. Still, when considering those
correct incremental build with clean build, we could always find an
optimal order that is faster than just a collection of clean builds with
a gain up to 11.76%. Overall, our results suggest that incremental
build of configurations can be beneficial. Owing to the importance
and increasing cost of build systems in the field of software engi-
neering, it is worth addressing the open issues for fully realizing
the potential of incremental build.

The main contributions of this paper are:

(1) the idea of incremental build of configurations;

(2) the design of an exploratory study to investigate the poten-
tial benefits and pitfalls of incremental build;

(3) a quantitative and qualitative analysis of empirical results;

(4) a discussion on the impacts of our works on developers,
build systems designers, and researchers in configurable
system or continuous integration;

(5) alink to our publicly available data set for reproducibility.

2 BACKGROUND AND MOTIVATION

This section gives a background on the tools and the process that are
commonly used to build a C-based, configurable software system,
which are the subjects of this study. Then, we motivate our work
with an example taken from the xterm terminal emulator subject.

2.1 Autotools

When installing a new software package in an environment, the
user needs to have its dependencies, such as the required utilities
and libraries by that software. In addition, the package needs also
to know which are the available features of the current operating
system in order to be configured and built accordingly. With the
high diversity of operating systems, their features and even local
hacks by the users, it is impossible to manage the configuration
script for every possible environment. For this reason, the GNU
Project introduced the Autotools utility to automatically generate
configuration and build scripts to fit to the machine it is built upon.

The presented C-based projects in this paper, as subjects, mainly
use the GNU Autotools with the utilities of Autoconf [1] and Au-
tomake [2], as shown in Figure 1. Specifically, Autoconf takes as
input a file configure.ac in which the developer has specified
which packages and features can be used-and-which-ones-are-miss-
ing. Then it generates a configure file, which contains a script to
check the available packages and features of the current machine
and a script to configure the project given the user’s configuration.
On the other hand, while writing a software with a large amount
of files, it is complicated to keep track and specify how to build
each one of them. Therefore, the developers of C-based projects
mainly use a Makefile to describe how to build the project. But,
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configure.ac

configure

Makefile.am

Makefile
Figure 1: The workflow of Autotools utility

Listing 1 Makefile rules, illustrated in Figure 2

util.o: util.h util.c
cc -c util.c
main.o: util.h main.c
cc -c main.c
main: util.o main.o
cc util.o main.o -o main

the Makefile support is different depending on every possible com-
puter environments. This is the case when the developer needs the
Automake utility. Specifically, the developer first specifies the struc-
ture of the current project and how to build it. Then, Automake
generates a Makefile. in that has the previously build rules with
compatibility on the current machine’s environment. Once the
configure and Makefile.in are generated, the user needs to run
only the configure script in order to configure the project. The
configure script can use different options from the user, which are
well-known as compile-time options, and generates the Makefile
accordingly. After this configuration step, the users need to run
the make command in order to build the given project. This entire
process is also sketched in Figure 1.

Usually, Autotools is installed on the developer’s computer, but
not on the user’s environment. Thus, the configure, Makefile. am,
and Makefile.in often are shipped within the compressed folder
that contains the project’s sources. In this case, the user simply
needs to execute the configure && make && make install
command in order to configure, build, and install that given project.

2.2 Make and incremental build

Make is a well-known build system [17]. Make reads Makefiles which
contain the build rules to build the current software project. A
Makefile can be either generated by using Autotools or written by
the developers themselves. To show how Make works, Figure 2 gives
an illustrative example of a Makefile for a toy project (its source
files are not included here). It is a borrowed example from [38],
with the build rules presented in Listing 1.

In the lines 1-2 of Listing 1 is defined the rule util.o which
depends on the header file util.h and util.c. In its line 2 is de-
scribed how to build it by using a cc compiler: the flag -c and the
file to compile util.c in order to produce an object file util.o.
The same thing is done by the next rule of main. o in lines 3-4. The
last main rule, in lines 5-6, specifies how to build the final main
product. In this case, it simply links the util.o and main.o files.

From this Makefile, Make can build a dependency graph like
the one shown in Figure 2 (left). During the compilation for the
first time, as nothing has been compiled yet, Make will build each
of the described rules in the Makefile in order to build the final

[util.c] [util.n] [main.c| [util.c] [utit.n] [main.c]

Figure 2: File dependency (left) and incremental build (right)

product. Building a project from scratch and from its clean basis is
well-known as a clean build.

But, if a developer modifies even a file, then Make will rebuild
only the rules that depend on this file. To build only the necessary
rules, Make checks their timestamp. A rule must be rebuild if one of
its dependencies is more recent than it. For instance, if the developer
modifies main. c, Make will only build the rule that depends on it,
that is, the main. o rule. Then, the rule that depends on main. o, the
main, and so on. As util.o does not depend on main.c, Make will
not update it. These updated rules by Make are also highlighted in
blue color in Figure 2 (right). This process, where the build system
does only the minimum work without rebuilding the unmodified
targets is well-known as the incremental build.

The incremental build process of Make is meant for file changes
of a single software configuration. However, we can leverage it to
apply on files changes that are triggered by different compile-time
configurations options in a C-based system. Indeed, configuration
options are enabled in the code through file addition or C prepro-
cessor directives. Inclusion of more files in a rule forces its update.
Moreover, additions of blocks of code through C preprocessor di-
rectives changes the file’s timestamp to a more recent one, hence it
forces again the rebuild of the targets depending on it. Thus, Make
will only recompile the necessary targets during an incremental
build of configurations.

2.3 Motivating example

Let us consider xterm, a standard terminal emulator for the X Win-
dow System. xterm has 63 compile-time options which may lead
to less than 2% configurations (the exact number is certainly lower
due to constraints). Building all (or even a subset) of configura-
tions is costly and time-consuming. It is where incremental build
can play a positive role. Figure 3 shows the build results for four
configurations randomly generated for xterm. The top of Figure 3
gives the options of the four diverse configurations, and the bottom
of Figure 3 gives the build time for clean build of each configura-
tion separately, and the incremental build of four configurations
¢1 — c2 — c¢3 — c4. Note that in the incremental build, the first
configuration must be built from scratch with a clean build. Only
then we can start building incrementally the rest of configurations.

From Figure 3, we observe that the total sum in time (seconds) of
the clean builds of the four configuration is 45,9 s, whereas the total
sum in time of the incremental build is 41,42 s. This represents a total
gain of 4,48 s and 9,8% of time difference. We also observe individual
gain for every incremental build of the three last configurations,
respectively 6,16% for ¢, 15,3% for c3, and 18,23% for c4. This gain is
only on four configurations and can potentially be more significant
the bigger the number of configurations that need to be build. To
the best of our knowledge, no study exists on exploring the benefits



C1 (33 options)
--disable-active-icon
--disable-16-color
--disable-256-color
--disable-88-color
--disable-broken-st

.... # + 28 other options

C (29 options)
--disable-ansi-color
--disable-direct-color
--disable-88-color
--enable-broken-osc
--disable-bold-color

.... # + 24 other options

C3 (35 options)
--disable-ansi-color
--disable-16-color
--disable-direct-color
--disable-88-color
--disable-blink-cursor
... # + 30 other options

Ca (27 options)
--disable-ansi-color
--disable-direct-color
--disable-88-color
--enable-broken-osc
--disable-c1-print

CB 11,94s 11,04 s 12,88 s 10,04 s

IB  11,94s 10,36 s 10,91 s 8,21s

Diff n/a 6,16% 15,3% 18,23%
Total CB 45,9 s Total IB 41,42 s Diff 9,8%

Figure 3: Example of clean build (CB) and incremental build
(IB) on four random configurations of xterm

and limits of incremental build on configurable software. The rest
of the paper designs and reports on our exploratory study.

3 EXPERIMENTAL APPROACH

This section details incremental build experimentation. We first
present the used research questions to address the goal of our
experiment. Then, we describe the used subject systems with their
configurations, and the used build approach in out experimentation.

3.1 Research questions

The goal of this study is to explore the feasibility, efficiency, op-
timization, and correctness of incremental build in real-life con-
figurable software systems. Hence, we define the following four
research questions.

RQ1— Feasibility: Is incremental build possible in each con-
figurable system? We first explore whether the build sta-
tus of each of our subject software systems is successful
during the incremental build in its all considered set of
configurations, in some of them, or in none of them.

RQ;— Efficiency: Does incremental build outperform clean
build? To this end, we propose a build approach to measure
and compare the clean build and incremental build time of
each subject system in its respective set of configurations.

RQs3— Correctness: Is the result of incremental build the
same as that of clean build? To this end, we compare
whether the resulting executable binary size and its sym-
bols are the same after the incremental and clean build of
each respective configuration in five subject systems.

RQ4— Optimal ordering: Is there an order of configurations
that brings an optimal (overall) incremental build
time? By using our build approach, we analyse whether
it exists an order of configurations such that the system
with a given configuration can be incrementally build faster
while being correct.

3.2 Subject systems

The objects of this experiment are five real-life software systems
(see Table 1). To select them, we had in consideration several criteria.
Namely, the fact that the system is an open-source and available
project, it has compile-time configuration options, is a popular
project, and covers a different application domain. As a result, we
selected five C-based software systems as subjects. We first se-
lected the command-line video encoder of x264, which has been

.... # + 22 other options

Randrianaina, et al.

Table 1: Subject systems with their respective analysed com-
mit/tag ID, LoC (lines of code), considered compile-time op-
tions, range of options within configurations, and batches

System Commit/Tag ID #LoC #Opt. Range #Batches
x264 ae03d92 115.243 16 3-7 2x20
sqlite version-3.35.4  318.521 25 7-18 2x 20
Xz e7da44d  39.714 87 14-23 2x20
curl curl-7_78 0 248.713 109 39-47 2x20
xterm xterm-368  130.850 63 26-37 2x20

system with ¢,

Incremental build

Figure 4: Experimentation workflow. Where ¢, is the system’s
baseline configuration, and c; - ¢, are its random generated
configurations. The dv, and dv,,, are the measured depen-
dent variables (build time, executable binary size, etc.)

widely studied among the highly configurable systems [9]. Then,
we selected the most used SQL database engine of sqlite, the
general-purpose data compression software of xz, the library of
curl, which supports a wide range of data transfer protocols with
URLs, and xterm, which is the standard terminal emulator for the
X Window System. To reason on a project’s popularity, we mostly
used as a proxy the recent number of stars (from 29 to 21.6k), com-
mits (from 1300 to 27k), and contributors in its git repository.

3.3 Variables

Our experiment aims to study the incremental build of a given con-
figurable system in contrast to its clean building. Hence, the incre-
mental and clean build of configurations is the independent variable
we controlled. To answer our research questions, we observed three
dependent variables, namely: the build time of a configuration, the
system’s executable binary size, and the system’s object files in its
build resulting folder, after both the clean and incremental builds.

3.4 Build approach

To be able to explore the qualities of incremental build in config-
urable systems and answer our research questions, we design the
following build approach, and apply it in the five subject systems.

Given a configurable system  with compile-time options Oy, =
{01,02, ....,0m}, where m € N, we first create a sample of configu-
rations Cy, = {c1,¢2, ..., cn} for that system. Where n = 20, in this
study, and each ¢; € Cy, has a varying size with a random list of
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Listing 2 x264’s clean build with c1 and incremental build with c2

Listing 3 x264’s clean build with c2 and incremental build with c1

/* Clean build with c1 */

[x2641$ ./configure --disable-interlaced --bit-depth=8 \
--chroma-format=444 --disable-bashcompletion

[x264]$ time make ; 1ls -1 x264

>> 0m20.262s

>> -rwxr-xr-x 1904936 x264

/* Incremental build with c2, after the clean build with c1 */

[x264]$ ./configure --disable-asm --disable-gpl \
--disable-thread --disable-interlaced

[x2641$ time make ; 1s -1 x264

>> 0m2.256s

>> -rwxr-xr-x 2423016 x264

/* Clean build with c2 */

[x2641$ ./configure --disable-asm --disable-gpl \
--disable-thread --disable-interlaced

[x2641$ time make ; ls -1 x264

>> 0m2.422s

>> -rwxr-xr-x 2423016 x264

/* Incremental build with c1, after the clean build with c2 */

[x264]$ ./configure --disable-interlaced --bit-depth=8 \
--chroma-format=444 --disable-bashcompletion

[x2641$ time make ; 1ls -1 x264

>> @m19.658s

>> —rwxr-xr-x 1904936 x264

generated options from Oy. In Figure 4 is given an overview of
our build approach. First, it should be noted that each configurable
system has a default configuration, to which we will refer in the
following as the baseline configuration (cp). The system with its ¢,
is at the root of our build approach. Then, we apply two main build
steps, named clean build and incremental build as in Figure 4.

Clean build. In this step, the baseline system is build with each
configuration ¢; € Cy from scratch. During this clean build, we
measure and record the dependent variables (dv;) of ¢;, namely, the
build time, the executable binary size, and the generated files.

Incremental build. Then, over each clean build configuration (cf.
c1 to ¢, in Figure 4), we incrementally build the same configurations,
except the current previous applied configuration during the clean
build. For instance, over the clean build of ¢, we incrementally
build all other configurations from cj up to c,—1 except the c,, itself.
We assume that the incremental build of ¢, after its clean build will
provide the same results, hence it will be insignificant to study.

Listings 2 and 3 show an illustrative example taken from the
first subject system of x264 with two of its used configurations,
called ¢; and cy. In Listing 2, the x264’s baseline system is first
build with ¢; (lines 2-4), that is, it is clean build, and then it is
incrementally build with c; (lines 9-11) over the previous build.
Similarly, in Listing 3, the system is first clean build with ¢ (lines
2-4) and then it is incrementally build with ¢ (lines 9-11). It should
be noted that after the first build, in line 9 of Listings 2 and 3, instead
of cleaning the directory with make clean, we directly configure
the system to host the new configuration: this is what we refer to
as an incremental build. Hence, we incrementally build the next
configuration on top of the previous clean build configuration.

Further, during each clean and incremental build process, we
measure the build time and the executable binary size of the sys-
tem (lines 4-6 and 11-13). Moreover, we save the state of the build
system’s directory after each build. In this way, we can retrieve
useful data such as the binary, configuration logs and object files
for further analysis.

3.5 Experiments settings

By using the presented build approach, we conduct an experiment
with the five subject systems. Specifically, we build each system by
using two batches with 20 random generated configurations each.
In this way, we perform 2 * 20 clean builds and 2 * (20 * 19) = 760
incremental builds, or in total 800 builds of each system. To correctly
handle all of them, we used a local git structure where each system

xterm_B2 — fomemeoeoes I:D """"""" i

xterm_B1

curl_B2 [RERREE, I:l:‘ """"" i
curl_B1+
xz_B2 - [EREEEEEE T ED ————————————— { o oo o
xz_B1- foommmeeme- I:I:‘ ********** 1
sqlite_B2-| oo ::l """""""""""""" 1
sqlite_B1
X264_B2  f-oeeoeeoneeees I I 1 .
X264 BL o feeescecesesceneens I I 1 .

1
100

Figure 5: The distance between different generated configu-
rations, per batch, in five subject systems

build is saved in a new git branch. The resulting git structure of a
system with all its builds has the same view as in Figure 4.

To generate the random configurations, we use the random prod-
uct generator in the FeatureIDE framework [36]. It should be noted
that the range of options within the sample of configurations (cf:
column 'Range’ in Table 1) changes quite proportionally with the
number of considered options among the subjects (cf. column "#Opt.
in Table 1). Whereas, for their comparison, we take two batches
with 20 sample of configurations in all five subjects. Further, to en-
sure that the generated set of configurations is diverse enough, we
looked at the distance between each pair of configurations within
a batch. By distance, we mean the percentage of common options
between configurations. Hence, the distance 0 between two config-
urations c;, ¢j € Cy, indicates that the sets of compile-time options
in these two configurations are disjoint sets. Whereas, the distance
of 1 indicates that c; is the same or at least a subset of c;. Figure 5
shows the overall calculated distribution of the distance between
all pairs of configurations in our five subject systems. The median
distance varies between 33.33% in the second batch (B2) of x264 and
48.57% in the second batch (By) of xterm, indicating that in each
subject the considered configurations within a batch are diverse for
more than 50% on average. We also observed 82 configurations of 0
distance in x264 (B; and By) and in sqlite (By), that is, completely
different. Then, in x264 (B and By) there are only three cases with
distance 1, that is, entirely included in another one.

We conducted the experiments on a Linux workstation running
Fedora 34 with Intel Core i7-10610U CPU and 15.3 GiB of memory.
To prevent side effects, all experiments are run twice using Docker
and sequentially, as the only processes in the workstation. Moreover,



the Dockerfile of each subject system is made available ! and can be
used to reproduce the experiments. At the same place, we provide
the build configurations in all systems with their generated data.

4 RESULTS

We now discuss the results with regard to our research questions.

4.1 Feasibility of incremental build (RQ;)

In order to measure and compare the build time and system cor-
rectness after an incremental build, we first had to ensure that the
system is successfully building during the clean build of its configu-
rations, that is, it has a build status 0 and an executable file is created.
In cases when the system threw an error during the clean build of a
configuration, we analysed the dependencies between compile-time
options and resolved it by removing one of the conflicting options.
For example, we encountered such option’s dependencies in the
configurations of xterm. As a result, in our experiment with five
systems, the clean build of each of their configurations is successful.
Put differently, in all our clean build cases the system’s build status
is 0 and a system’s executable file is created.

Despite the successful clean build of all configurations, we no-
ticed that some configurations in some systems have a failed build
status during their incremental build. Finding out whether the in-
cremental build is feasible in a system or not was hard to deduce by
simply inspecting its Makefile. Therefore, we incrementally build
all pairs of configurations in five systems and observed their build
status, including the presence of their executable file. As a result,
all of the configurations in x264, sqlite, curl, and xterm are suc-
cessfully incrementally build. But, there are 9 configurations in xz
that have a failed build status during their incremental build. These
cases are marked with a dash ("—’) in Table 2 for batches B; and
B,. For instance, by incrementally building xz with configuration
c3 over any other configuration, in By, it resulted in a failed build
status and without an xz’s executable file.

Based on our experiments with five subjects, a successful clean
build configuration is not necessarily build successfully during its
incremental build. Our initial observations, based only on the build
status and the created system’s executable, are that the incremental
build is feasible in 100% of configurations in 4 systems, namely in
x264, sqlite, curl, and xterm. Whereas, the incremental build in
xz is feasible in 78% of its configurations. This indicates that the
rest 22% of configurations in xz always require to be clean build.

RQ; insights: It can be noticed that incremental build is
feasible in 78% of the times in the xz software system and in
100% of the time in the other four software systems.

4.2 Incremental vs. clean build time (RQ-)

To answer the second research question, we recorded the clean
build time of each configuration and the incremental build time
of their all paired combinations. For this purpose, we follow the
described build approach in Section 3.4. In Table 2 is given the
resulting clean and incremental build time of each configuration,
for two batches By and Bg, in each subject system. All build times
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Figure 6: The % of configurations per system that have a
faster, slower, and failed incremental build, than clean build

are expressed in seconds. Specifically, the row CB(t,) shows the
obtained clean build time per configuration. For instance, the clean
build time of ¢1¢ in the By of curl is 50.13 seconds. The row mIB(t,)
shows the minimum incremental build time of configuration n, from
its all paired incremental builds. For instance, the fastest time to
incrementally build ¢z of By in xz is 10.28 seconds. The next row,
IB(cm), shows which is the clean build configuration for which
the incremental build of a given configuration is faster. In the case
of xz, the ¢z in Bj is incrementally build faster after the clean
build of c15. To easily notice whether the incremental build of a
given configuration is faster than its clean build, then the fastest
incremental build is colored in green, given in the row of mIB(ty).
Otherwise, when it is slower, it is colored in red. For instance, the
incremental build of ¢1 in the By of x264 is 37.95 seconds, or 0.14
seconds faster than its clean build, therefore it is colored in green.
On the contrary, the ¢;2 in the By of x264 is 64.56 seconds, or 0.12
seconds slower than its clean build, hence it is colored in red.

From Table 2, it can be observed that in four systems, namely,
in x264 (By), sqlite (Bi, By), curl (Bi, By), and xterm (Bi, B),
there is always a pair combination of configurations for which the
incremental build of a given configuration is faster. However, in
X264 (Bz) there are 7 from 20 configurations for which the incre-
mental build is always slower than the clean build. Similarly, there
are 7 from 20 cases in xz (By, Bz) that always have a slower incre-
mental build than clean build. In Figure 6 is given the percentage
of configurations per system that resulted in a faster, slower, or
failed build during their incremental build. Specifically, 100% of the
configurations in sqlite, curl, and xterm have at least one case
where they are incrementally build quicker than during their clean
build. Further, 82.50% of the configurations in x264 and 60.00% of
the configurations in xz have a faster build during their incremental
build. In average, for all five systems, 88.50% of the configurations
are build faster during their incremental build than during their
clean build. Then, only 7.00% of them are build slower, and 4.50%
have a failed build during the incremental build.

In cases when a configuration showed a quicker incremental
build, we went further and wondered whether it has more than
one pair combination for which it is faster than its clean build.
For instance, ¢ in the By of xterm is incrementally built over all
other 19 clean build configurations, that is, over the clean build
configurations of ¢z to cz9. When it is built over c3, given in the row
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Table 2: The build time and binary size of subjects for two batches (B; and B;) with 20 configurations each. Legend of colors is
in Table 3. CB - clean build, IB -incremental build, mI/B - minimum IC, ¢IB - currect IB, ” — ” - failed build, and ”/” - no value

SYStem c1 c2 c3 C4 c5 C6 c7 c8 149 €10 €11 C12 c13 C14 C15 C16 c17 c18 €19 €20
S CB(m) 3809 3860 3491 7058 3824 6600 2130 2079 6640 3227 6572 3813 2061 1790 3391 1857 4074 1904 3515 3787
3 IB (cm) c3 c4 c11 c17 c4 c11 cy4 €20 c3 c7 c3 cg 43 c12 c11 (2 cg cq c6 c18
g IB(t,) 3742 37.85 3393 6924 3741 6518 2096 2033 6535 3178 6458 3725 2025  17.65 3338 1817 39.99 1876 3446  37.22
X BS[MB] 183 185 217 291 233 271 153 158 270 167 271 185 150 140 212 148 195 1.49 218 183
@  CB(m) 3809 1849 1831 3131 6986 65d6 1773 3445 4012 3418 3456 6444 3640 1825 3362 7073 3403 1843 3818 3135
3 1B (cm) 15 cg c18 c3 c3 c14 c3 16 c13 c1 16 c3 c17 c1 c3 c3 c3 15 c3 c17
g IB(t,) 3795 1854 1824 3132 69.84 6552 1770 3453 4006 3404 3451 6456 3632 1823 3368 7077 3403 1838 3807 3134
X BS[MB] 185 142 148 164 295 275 137 178 195 217 218 269 179 148 217 296 217 1.47 185 164
S CB(m) 6107 6567 6835 6864 6855 7264 57.08 5941 7258 7136 6811 6857 5445 7082 6249 6598 6785 5887 7243 7091
S Blem) c7 c4 €15 c7 7 c3 c4 c14 €3 c3 €15 c4 c4 8 cs c7 c5 c2 cs c3
= dB(tn) / / / / /7002 / / / / / / / / / / / / / /
= miB (t) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
@ BS[MB] 9.20 9.70 9.25 9.73 9.68 9.73 8.07 8.13 9.72 9.64 9.74 9.68 8.17 9.61 8.55 9.52 9.65 8.26 9.73 9.62
g CB (tn) 103.25 94.24 101.89 103.8 83.63 98.71 90.24 101.67 82.28 91.83 82.95 87.05 89.91 105.17 87.05 96.4 84.8 103.32 103.58 96.58
S Blem) 3 €16 [ c1 15 €20 cs c3 c3 €9 cq c3 s c4 s c2 6 c12 c3 16
2 cdB(tn) 6342 / / / 94.30 / / / / / / / / / / / / / 5632
= miIB (ty) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
@ BS[MB] 9.70 9.51 9.62 9.73 8.41 9.75 9.23 9.60 8.07 8.64 8.58 8.39 9.68 9.73 8.61 9.68 8.62 9.70 9.72 9.70
i CB (tn) 12.15 10.78 11.39 10.52 10.24 10.37 11.20 11.89 11.24 10.59 10.29 10.20 10.58 10.44 10.53 12.46 10.53 11.17 11.59 10.19
9 IB (cm) c18 c18 - c18 €10 - - c9 cg cs - c18 c17 - c18 - c13 €20 - €18
IS cIB (tn) 1143 10.28 - 1072 / - - 11.28 / / - 10.06 / - 1065 - / 10.67 - 1030

miIB (t) 11.43 10.28 - 10.72 0.40 - - 1.35 0.42 0.87 - 10.06 0.61 - 10.65 - 0.96 10.67 - 10.30
BS [MB] 1.16 1.02 1.15 1.02 1.02 1.06 1.09 1.13 1.10 0.96 1.00 0.99 1.02 1.09 1.04 1.23 0.96 1.03 1.16 1.01
N CB (tn) 10.38 10.08 11.01 9.75 10.02 10.20 9.94 9.69 10.00 10.90 9.96 9.86 10.74 11.47 9.98 10.18 11.63 11.08 9.82 9.83
S Bem) c13 c17 c2 [ c7 - [ co c2 6 - c3 c1 cg c17 c18 15 cs c17 c2
5 cIB (tn) / 9.93 10.91 9.46  10.08 - / 9.74  10.10 / - 1017 1042 11.49 10.18  11.51 10.95 / 9.77
miB (¢,,) 0.86 9.93 10.91 9.46 0.81 - 0.47 9.74 10.10 0.95 - 10.17 0.89 11.49 0.28 10.18 1.91 10.95 0.38 9.77
BS [MB] 117 101 118 094 102 118 105 092 106 119 109 102 108 117 110 103 116 1.06 095 101
;—7 CB (tn) 23.56 42.42 30.52 44.02 24.99 23.61 2291 34.05 29.37 24.05 55.98 26.14 40.80 70.95 41.08 44.38 29.34 23.26 21.72 56.86
= 1B (cm) cs 16 c1 16 co cs 3 cs c3 cs 16 cs 16 16 c16 c11 c1 €9 c18 16
S cIB (tn) /3817 25.99  39.82 / /  18.66 / /1966 5147 2201  36.34 64.56  37.70 24.71 / 1733 5237
©  mIB(ty) 005 106 011 011 006 117 012 005 006 010 011 107 012 107 036 101 012 0.05 105 108
BS [MB] 467 | 350 061 415 102 431 | 409 456 075 | 431 429 082 26l 454 347 389 | 445 0.69 110 401
% CB (tn) 28.61 71.51 33.53 39.86 25.26 67.21 30.87 28.31 29.61 50.13 23.47 41.16 23.40 23.58 44.98 23.35 25.30 22.97 44.97 29.27
= 1B (cm) c13 c11 c1 c11 c1 €13 c11 €13 c13 cn €13 c13 ci c13 c1 c13 c13 c13 c13 cn
T CB(fn) 2469 6795 2963 3675 2132 6567 2698 2439 2580  46.52 /3759 /1961 4164 1932 2118 1893 4148  24.82
O mIB(ty) 1.06 3501 011 1956 012 3478 106 011 012 2454 101 1994 005 011 2208 011 011 011 2182 1.07
BS [MB] 447 442 442 285 131 432 360 467 366 283 054 | 322 058 422 393 070 082 3.60 393 389
E CB (tn) 8.60 8.24 11.64 11.33 11.82 10.23 9.74 9.96 11.53 10.77 9.89 9.08 10.17 8.91 10.26 9.83 7.67 8.63 11.85 10.91
g B (¢m) c3 c1 €10 c2 c1 c3 c2 c1 c18 c2 €20 c2 c1 c1 c2 c1 15 c1 c1 c2
£ IB (tn) 842 806 1143 1113 1168 983 956 974 1142 1059 966 894 1001 872 1011 965  7.50 849 1166 1072
£ BS[MB] 261 235 305 319 330 288 272 277 307 288 277 275 288 262 292 273 228 2.61 314 289
& CB(ta) 1141 1132 1046 888 1019 1020  9.08 833 1280 1076 1046 1081 852 1174 1168 988  7.60 1176 1059 845
g B (¢m) c3 c1 c2 cs c3 c2 €10 c10 c2 c2 2 c7 c6 c3 cs c3 cs5 c2 c2 s
£ B(t,) 1118 1111 1024 869 1005 10.06  8.93 817 1257 1068 1031 1062 838 1153 111  9.67 74 1158 1041 824
£ BS[MB] 311 3.00 288 255 281 284 252 250 338 291 280 304 244 321 313 261 230 3.23 275 251
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Figure 7: The number of configurations with a faster incre-
mental build (IB) than clean build (CB) in each system

IB(cm), then it is build faster for 0.18 seconds than during its clean
build. But, we noticed that there are also other cases for which the
c1 is incrementally built faster, which cases are not shown in Table 2.
Therefore, we count all these cases and show them summarized

cases for which a configuration can be incrementally build faster,
up to 15 and 19 cases, per batch. Hence, in the majority of the cases,
one can find more than one pair combination to incrementally build
a configuration faster than in its clean build.

In addition, in cases when the incremental built configurations
are faster, we then wondered for how much they are. In this way, we
want to find out for how many minutes or seconds one can benefit
by incrementally building instead of clean building a configuration.
To analyse it, we calculated the difference between the clean build
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Figure 8: The gained time, in seconds, by the incremental
build of configurations instead of their clean build

time and the fastest (the best) incremental build time of each config-
uration in all systems. The obtained results are shown in Figure 8.
The gained time by incrementally building a configuration in x264
is between 0 and 1.34 seconds. Quite similarly, in xz is between
0 and 10.82 seconds. In xterm is the smallest gain, between 0.08
and 0.58 seconds. Whereas, in sqlite is the largest gained time,
between 54.44 seconds up to 1 minute and 45 seconds. This seems
to be related also with the taken time to build the system itself. For
instance, xterm has the smallest build time, less than 12 seconds
in all cases. Hence, the gained time during the incremental build is
the smallest in xterm. The overall gained time for an incremental
build configuration, in all systems, is between 0 (i.e., it is the same
time as in the clean build) and almost 2 minutes.

These findings show several things. First, in the majority of the
cases (88.50%), the incremental build of a system’s configuration is
faster than its clean build. A successful clean build configuration
may have a fail incrementally build (in 4.5% of the cases). Thirdly, in
order to benefit on time during the incremental build, the order of
build configurations may matter. Then, depending from the system,
one can find more than one pair combination of configurations
(between 1 and 19) to quickly build a given configuration. The
gained time per configuration is quite large (from 0 seconds to
1 minute and 45 seconds). Benefiting in terms of seconds can be
significant, for example, in cases when the system needs to be build
often and regarding several configurations.

RQ; insights: In average, 88.5% of the configurations could
be built faster with incremental built while also finding several
alternative faster incremental builds.

4.3 System correctness (RQ3)

The observations in the second research question show that in the
majority of cases the incremental build of a system’s configuration
is faster than its clean build. For instance, the clean build time of the
configurations in sqlite is between 54.45 seconds and 1 minute
and 45 seconds, whereas their fastest incremental build time is
always 0.01 seconds. Similar examples can be observed also in xz
and curl. Hence, we raised the question whether the resulting
incremental build systems in these cases are also correct. That is,
whether the system after the incremental build and clean build is
exactly the same. To reason on a system’s correctness, we analysed
the system’s executable binary size and symbols of its executable.
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Table 3: The percentage of correct systems after their incre-
mental builds, based on their binary size (BS) and symbols
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Fast & Same BS & 20 12 1 3 5 8 13 18 20 20
—Fast & Same BS & 0 7 0 0 3 5 0 0 0 0
Fast &—Same BS & 0 1 19 17 5 5 7 2 0 0
—Fast &— Same BS & 0 0 0 0 7 2 0 0 0 0
Overall same BS (%) 100 95 5 15 40 65 65 90 100 100
Same Symbols (%) 100 95 2 2 2 2 32 46 100 100
—Same Symbols (%) 0 5 97 98 98 98 68 54 0 0

In the row of BS[MB] in Table 2 is given the executable binary
size, in megabytes (MB), of each clean build system for each config-
uration. These values are summarized in the first four rows in Ta-
ble 3. As it can be observed, we encountered the four possible cases.
Specifically, 60 % of configurations in all systems have a faster in-
cremental build and the resulting system has the same exact binary
size as in the clean build. Then, 7.50 % of their configurations have
a slower incremental build but still their system has the same exact
binary size. On the other hand, there are 32.50 % of configurations
in all systems that have a faster or slower incremental build but
their resulting system has always a different binary size. Hence,
based on the binary size, in 67.50 % of the cases the incrementally
build systems are correct, whereas in 32.50 % of the cases they are
incorrect. These cases can also be easily identified in Table 2 by
using the legend of the colors given in Table 3.

Besides, we compared the system’s executable symbols after the
clean and incremental build of each configuration in all five subjects.
The obtained results are summarized in the last two rows in Table 3.
It can be observed that x264 and xterm have the same number (in
percentage) of their configurations have a correct system regarding
its binary size and its symbols. In other three systems of sqlite, xz,
and curl, there are less number of configurations (between 2 % and
46 %) that have the same symbols during their clean and incremental
builds. In all systems, there are 48.03 % of configurations for which
the resulting system has the same symbols in both build scenarios.

Based on these results, in almost all incrementally build cases
x264 and xterm are correct. After investigation, we noticed that
the incremental build in these systems is actually not performed
by design. In both cases, the configure script is generating a con-
figuration file (config.h and xtermcfg. h, respectively) on which
all the other files depend on. Hence, after each configuration ev-
erything is rebuilt from scratch. Therefore, the incremental build
that we were expecting is actually equivalent to a clean build in
these two systems. In the contrast, in xz we had incremental build
issues. We were getting a same specific linker error telling that
some symbols are undefined in some libraries. Hence, the reason
of the error is that some libraries were supposed to be rebuild dur-
ing the incremental build of a configuration, but they were not.
Further, the reason for which curl and sqlite were incorrect is
the same. Whenever two configurations shared the same files and
generates the same object files then, even when the content in
these files changes by a configuration, they are not rebuild and up-
dated. Hence, the incorrect builds in these systems return a warning
message that there is nothing to be build.
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Table 4: Results for the optimal ordering

Total Clean  Total Optimal Ordering Reduced N° of

System Build of Incremental Build Gain Clean Builds
x264 (B1) 754.92 [sec] 666.12 [sec] 11.76% 20— 2
X264 (Bg) 747.99 [sec] 747.26 [sec] 0.10% 20 > 8
sqlite (By)  1,325.83 [sec] 1323.21 [sec] 0.20% 20 > 19
sqlite (By)  1,888.35 [sec] 1803.85 [sec] 4.47% 20 — 17
xz (B1) 218.35 [sec] 216.89 [sec] 0.67% 20 — 13
xz (B2) 206.52 [sec] 205.67 [sec] 0.41% 20 > 13
curl (By) 710.01 [sec] 652.01 [sec] 8.17% 20 > 7
curl (Bz) 707.35 [sec] 641.14 [sec] 9.36% 20> 2
xterm (By) 201.06 [sec] 197.33 [sec] 1.86% 20 > 1
xterm (By) 204.92 [sec] 201.14 [sec] 1.84% 20> 1

RQs insights: The incremental build of a configuration is
correct between 48.03% and 67.50 % of the cases, based on
binary size/symbols. It is faster and correct in 60% of the time.

4.4 Optimal ordering (RQ,)

Now that we found that incremental build can be faster and correct,
the question is to what extent can we leverage on that to outperform
clean build of all configurations. To answer this research question,
we use our whole data and not only the minimum time that we
report in Table 2, that is, all measured times for the different com-
binations of incremental build. For this reason, we searched for an
optimal ordering of configurations based on build time. To do that,
we first start by building a directed graph g = (V, E) where vertices
V are all configurations and edges E are incremental builds between
configurations 2. We add an edge only when the incremental build
is successful and is correct. Each edge has as a weight the minimum
time of incremental build. These information comes from Table 2.
Then, we add a root vertex that is linked with all other vertices
by edges weighted with their respective clean build times. This is
essential for configurations that cannot be built incrementally. After
that we run a minimum spanning tree directed graph algorithm
[19]. In this way, we calculate the optimal order of configurations
that leverages to the best possible time on incremental build.
Table 4 shows our obtained results after running our algorithm
on all incrementally build configurations for two batches on five
subject systems. From the column Gain, we can observe that indeed
we are able to find an optimal ordering that allows us to correctly
build all configurations while being faster by performing incremen-
tal builds. The gain varies from 0.10% to 11.76%. Furthermore, we
could observe that we were always reducing the required number
of clean builds in a system, which vary from 1, 2, 7, 8, 13, 17 to 19
times. Where 1 meaning one necessary clean build upon which the
rest of configurations are incrementally built, and 19 where only
one incremental built was possible. In particular, xterm, x264, and
curl did not need many clean builds and used several incremental
builds contrary to sqlite and xz. For example, in the optimized
order for xterm B; we had only one clean build and the rest was a
tree of incremental builds for the rest of configurations. Whereas in
sqlite By used only three incremental builds and 17 clean builds.

2The graphs are available in our companion page.

RQj4 insights: When considering correct incremental builds,
we could always find an optimal order that is faster than just
a series of clean builds.

5 DISCUSSION

This section discusses the impacts of our results on three actors.

For developers. From our experiments, we observe that RQ» and
RQ4 highlight the benefits of incremental build, while RQ; and RQ3
highlight its limits. Nonetheless, we see that the benefits overcome
the limits, in particular, when finding the correct optimal ordering.
Hence developers can already benefit from incremental build. A
current limitation is that the optimal order is specific to a set of
configurations and deserves an upfront computational investment.
However there are several projects that have a predefined, fixed set
of default configurations to build (e.g., JHipster [21]). Furthermore,
the investment can pay for itself with the frequency of commits
and thus the use of incremental builds several times throughout
the evolution.

Besides, developers should take into account the specifics of
their projects and possibly fix their build artefacts to fully realize
the potential of incremental build. For instance, the case of xz (see
Section 4.3) is challenging: each build depends on a library that
is also compiled during the same build to be used later. This kind
of critical library on which the build depends must be forced to
rebuild. Indeed, it is possible to specify that the build rule related to
the library must be rebuilt each time, allowing it to propagate the
build to its dependency and update the new configuration. There-
fore, developers of configurable software can miss opportunities of
relying on incremental build due to mismanagement of their build
scripts.

For build system designers. Numerous new build systems
have been recently developed to support the specific needs of or-
ganisations [3-6]. The design space of build system is still to be
explored and the case of configurations adds a new dimension. De-
signers should give an interface between the build rules written by
the developer and the build system’s back-end which is building the
project. In the case of Make, the issues observed when aiming to in-
crementally build in our case studies cannot be only spotted by the
developer in charge of writing build rules. Hence configurations-
aware build system are still to be designed and developed. We
believe the limits and insights of our study can help.

For researchers. Our results calls for more research on the topic
of incremental build of configurations. Researchers can evaluate the
incrementality of existing build systems: most have been designed
to support variability in time (evolution), not variability in space
(configurations). We encourage researchers to assess the feasibility,
correctness, and performance of build systems with the novel sce-
nario of building successive software configurations as we did in
the study. In general, there is still a lack of evaluation on a wider
scope of incremental build of configurations with various build
systems [3—6]. Researchers can design further empirical studies
(e.g., confirmatory studies) to gain further insights or validate some
hypotheses of our work. A major specificity of incremental build
of configurations is that there is an order to define. Given a set of
configurations, the order of their incremental build can be defined
given according to their distance. However, this notion of distance



has to be defined precisely. It can be based on the difference of
options or the relation between options and their implementation
and the impact on the build. It would be interesting to propose
heuristics to find an order before the build, based on configuration
similarities and build rules. In other words, how can we automat-
ically find the orders in RQ4? This hard and open problem can
expand the applicability to an arbitrary set of configurations (e.g.,
random).

6 THREATS TO VALIDITY

Internal validity. To measure the benefits and limits of incre-
mental build, we had to build several pairs of configurations. To
reduce the risk of interference with other running software, we
isolated the build environment. To do so, we created one docker
image per system with the needed build tools and only needed de-
pendencies. The machine we used was dedicated to the experiment.
However, some OS processes and services were still running on the
computer that can bring measurements noises. Nevertheless, as we
dockerized similarly every run of our experiments, we expect that
the noises would be similar, in particular, that we did not launch
any other task in parallel. We only run twice the experiments ow-
ing to the cost of computations. Moreover, there is a threat related
to the sampling used to generate configurations. We deliberately
used random sampling to diversify our data sets of configurations.
However, we observe from Figure 5 that our configurations are
relatively disjoint. Nevertheless, for each sample batch, we repeat
the experiment process 2 times. Finally, to check for the correctness
of an incremental build, we compared the size and symbols of the
produced binary with the one produced with a clean build.

External validity. We experimented on five subjects that are
C-based configurable software systems with the Make build system.
Although we think that the incremental build would be applica-
ble in other build systems and software technologies, we cannot
generalize our results. Further experimentation is necessary.

Conclusion validity. Our experiments showed promising re-
sults for incremental build of configurations by accelerating the
build time. We also shows limits when it comes to correctness. Even
though, we could still find faster and correct incremental builds,
which we used to find the optimal ordering of configurations. To
have more insights and statistical evidence, further evaluation is
needed on more subject systems and larger set of configurations.

7 RELATED WORK

Build systems. Many works exists on incremental build sys-
tems [3, 16, 17, 22, 29, 34, 37, 43, 49] but without handling a set of
configurations. In Cao et al. [12], the authors forecast the duration
of incremental build jobs for over 2 thousands of commits in GLib
(library) and VTK (Visualisation ToolKit). While incremental build
jobs vary in terms of duration, they propose a tooled approach,
BuildMETEO, to forecast how long a job will take based on the de-
pendency graph extracted from a first cold build using MAKAO [8].
BuildMETEO can estimate the build time of a project after some
modifications in its files. However, it is considering only the evolu-
tion of one configuration of the project and not diverse ones like
our preliminary study. In Cserep et al. [14], they introduce a way to
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detect only the necessary files to build by parsing the whole code-
base. Instead of parsing every file from scratch each time which
takes an important amount of time, they use incremental parsing.
In addition, they also check the build rules modifications associated
with the files. Hence a file to rebuild is a file that has been either
modified or which the build rule has changed. By doing so, they
do not check the binaries metadata such as timestamps like Make,
and avoid issues we present in Section 4.3. Maudoux et al. [33]
present in their paper that incremental build helps to save time on
local builds. However, it not available yet on continuous integra-
tion (CI) platforms. Indeed, incremental build is not brought on CI
because of some factors such as the correctness of the produced
binary. In our paper, we show that the correctness of incremental
build with real-world projects based on GNU Build System is not
ensured due to Make’s strategy to perform incremental build over
configurations. In [29, 30], Konat et al. provide a DSL to increase
the effectiveness of writing build scripts by using their proposed
language of PIE. With such expressive build scripts, analysis and
error detection could be prevented beforehand. They also introduce
a build system that takes track of files and focus only on the part
that changed, to avoid having too much information in memory
and perform strictly the minimum while being effective.

Several empirical studies on build systems have been performed
(e.g., [23, 24, 31, 34, 35, 51]). For instance, a case study at Google
reported a large corpus of builds and build errors mainly focusing
on static compilation problems [44]. Beller et al. [11] performed an
analysis of builds with Travis CI on top of GitHub. About 10% of
builds show different behaviour when different environments are
used. In our case, we are considering different configurations rather
than environments. To the best of our knowledge, incremental build
for software configurations has received little attention.

Software product line (SPL) and variability. The SPL com-
munity develops numerous methods and techniques to manage a
family of variants (or products). Configurations are used to build
variants and are subject to intensive research. Formal methods
and program analysis can identify some classes of configurations’
defects [13, 48], leading to variability-aware testing approaches
(e.g., [18, 25-28, 32, 40, 45, 50]). The general principle is to exploit
the commonalities among variants, mainly at the code level. For
instance, variability-aware execution [10, 27, 40] instruments an
interpreter of the underlying programming language to execute the
tests only once on all the variants of a configurable system. Nguyen
et al. implemented Varex, a variability-aware PHP interpreter, to test
WordPress by running code common to several variants only once
[40]. Reisner et al. use a symbolic execution framework to evaluate
how the configuration options impact the coverage of the system
given a test suite [41]. Static analysis and notably type-checking
has been used to look for bugs in configurable software and can
scale to very large code bases such as the Linux kernel [25, 26, 50].
Though variability-aware analysis is relevant in many engineering
contexts, our interest differs and consists in studying the practice
of concretely building a sample of (representative) configurations
with an unexplored approach — incremental build.

There are several empirical studies about the build of SPLs and
configurable systems. For instance, Halin et al. [21] report on the en-
deavour to build all possible configurations of an industry-strength,
open source configurable software system JHipster, a popular code
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generator for web applications. We are unaware of studies that
consider incremental build of configurations.

8 CONCLUSION

In this paper, we conducted a novel study investigating the benefits
and limits to incrementally build software configurations, as op-
posed to always cleaning as in conventional build. By considering
five real-life configurable software systems, we explored whether
incremental build works, outperforms a sequence of clean builds, is
correct w.r.t. clean build, and can be used to find an optimal ordering
of building configurations. Our results suggest that incremental
build of configurations can reduce build time without trading cor-
rectness. Developers and maintainers can already benefit from this
simple approach. Owing to the frequencies of build in continuous
integration and their increasing cost, we encourage the software
engineering community (build system designers, researchers, etc.)
to further investigate incremental build of configurations.

As a future work, we plan to replicate our study with other build
systems and more batches of configuration samples. We also plan
to investigate the possibility of having an heuristic for finding au-
tomatically the optimal ordering. This is challenging as it requires
to infer a priori the unknown "distances" among configurations. Fi-
nally, we aim to synthesize knowledge of patterns and anti-patterns
of incremental build to increase benefits and reduce limits.
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