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In this paper, we propose to cluster responses in order to identify groups 2 Julien Gibaud et al.

predicted by specific explanatory components. A response matrix is assumed to depend on a set of explanatory variables, and a set of additional covariates. Explanatory variables are supposed many and redundant, which implies some dimension reduction and regularization. By contrast, additional covariates contain few selected variables which are forced into the regression model, as they demand no regularization. The response matrix is assumed partitioned into several unknown groups of responses.

We suppose that the responses in each group are predictable from an appropriate number of specific orthogonal supervised components of explanatory variables. The classification is based on a mixture model of the responses. To estimate the model, we propose a criterion extending that of Supervised Component-based Generalized Linear Regression, a Partial Least Squares-type method, and develop an algorithm combining component-based model and Expectation Maximization estimation. This new methodology is tested on simulated data and then applied to a floristic ecology dataset.

Introduction

The climate change produces many ecosystem imbalances which might involve large extinctions of animal or plant taxa. In this context, the development of models which allow to predict the future of the biodiversity has become a crucial issue. A number of advances have been made, in particular by extending Species Distribution Preprint 3 Models (SDM, [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF], which treat the taxa separately, to Joint Species Distribution Models (JSDM, Pollock et al., 2014). JSDM allow to formalize the interdependence between taxa, and to understand its impact on the composition of communities. Besides, modeling responses (here, the abundances of taxa) requires taking into account a large set of possibly highly correlated explanatory covariates, which is the case of climatic variables, so SDM as JSDM demand regularization. This can be carried out by means of component-based dimension reduction. This consists in assuming that there is a small number of common latent explanatory dimensions, which we aim to capture through as many linear combinations of the explanatory variables, named components. Moreover, the case where the explanatory variables outnumber the observations (referred to as "high dimensional") is likely to become a new standard [START_REF] Warton | Model-based thinking for community ecology[END_REF]. In this paper, we aim to build components which can be interpreted as new and relevant synthetic climatic variables.

Elaborating on the Iteratively Reweighted Partial Least Squares (IRPLS) developed by [START_REF] Marx | Iteratively reweighted partial least squares estimation for generalized linear regression[END_REF], [START_REF] Bry | Supervised component generalized linear regression using a PLS-extension of the Fisher scoring algorithm[END_REF] proposed a methodology called Supervised Component-based Generalized Linear Regression (SCGLR) which bridges the multivariate Generalized Linear Model (GLM) estimation, with the component-based dimension reduction of the explanatory space. Unlike methods as Partial Least Squares (PLS, [START_REF] Wold | The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses[END_REF] regression or Reduced Rank Vector Generalized Linear Model (RRVGLM, [START_REF] Yee | Reduced-rank vector generalized linear models[END_REF], SCGLR optimizes a general and flexible trade-off criterion between the Goodness-of-Fit (GoF) of the model and the Structural Relevance (SR, [START_REF] Bry | THEME: THEmatic Model Exploration through multiple co-structure maximization[END_REF] of directions with respect to the explanatory variables. This methodology allows both to find strong interpretable explanatory directions modeled through components, and to produce regularized predictors in the high-dimensional framework. Different extensions have recently been proposed to deal with data with a more complex structure [START_REF] Chauvet | Component-Based Regularization of Multivariate Generalized Linear Mixed Models[END_REF]Bry et al., 2020a,b).

An

package SCGLR is available at https://github.com/SCnext/SCGLR.

All the aforementioned extensions assume that all the responses are explained by the same latent dimensions. In our context, this might well not be the case: the responses are very different, and are thus likely to be modeled from explanatory dimensions which are, to some extent, specific. To overcome the limitation of former versions of SCGLR, we propose to extend it so as to identify groups of response variables being modeled by the same specific explanatory dimensions. The clustering models or techniques classically used in statistical literature to identify groups do not consider the presence or abundance data as responses to explanatory variables [START_REF] Dufrêne | Species assemblages and indicator species: the need for a flexible asymmetrical approach[END_REF][START_REF] De Cáceres | Improving indicator species analysis by combining groups of sites[END_REF]. In order to take the modeling of responses into account in the clustering, we propose to combine the SCGLR model with a Finite Mixture Model (FMM) of responses (see [START_REF] Mclachlan | The pls Package: Principal Component and Partial Least Squares Regression in R[END_REF] for a reference book).

In a context of multiple and numerous response variables, we have to cluster them, and not the statistical units as in the original and classical FMM approach. The interest of response clustering has already been shown in several works, e.g. those of [START_REF] Monni | A stochastic partitioning method to associate high-dimensional responses and covariates[END_REF]; [START_REF] Ovaskainen | Making more out of sparse data: hierarchical modeling of species communities[END_REF]; [START_REF] Pledger | Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection[END_REF]; [START_REF] Mortier | Mixture of inhomogeneous matrix models for species-rich ecosystems[END_REF] and [START_REF] Hill | Determining marine bioregions: A comparison of quantitative approaches[END_REF]. In our work, we use a modeling approach based on [START_REF] Dunstan | Model based grouping of species across environmental gradients[END_REF]Dunstan et al. ( , 2013)), which assumes that all responses can be clustered into a small number of groups with respect to their responses to environmental gradients. In their model, the responses within a group share the same regression parameters with an intercept specific to each outcome. By contrast, we propose to entitle responses to their own regression parameters, and to define a Preprint 5 group as a set of responses depending on the same common explanatory dimensions.

To help find these, the trade-off criterion of SCGLR had to be extended so as to preclude response groups from depending on too close explanatory sub-spaces.

The paper is organized as follows. In Section 2, we recall the principle of the original SCGLR. Section 3 presents the extension of SCGLR to a response FMM. Section 4 details two simulation studies that illustrate the interest of our work and the good performances of the proposed algorithm, highlighting the importance of a relevant selection of the hyper-parameters. Section 5 presents the results obtained on a floristic ecology dataset. Finally, a conclusion and a discussion are proposed in Section 6.

The original SCGLR

In this part, we consider the situation where there exists only one group of responses.

For the sake of simplicity, we restrict ourselves to calculating a single component.

The SCGLR context

In the framework of a multivariate Generalized Linear Model (GLM) we consider K response-vectors, encoded in a response matrix Y = [y 1 , . . . , y K ] ∈ R N ×K , to be predicted through explanatory variables partitioned in two sets. The first one A = [a 1 , . . . , a Q ] ∈ R N ×Q is a set of covariates that are only few and weakly or not redundant. These variables are a priori assumed to be interesting per se, and their marginal effects have to be taken into account explicitly in the model. The second group X = [x 1 , . . . , x P ] ∈ R N ×P is one of numerous and possibly highly redundant covariates, considered as proxies to latent dimensions, which must be found and interpreted. Thus, the matrix X demands dimension reduction and regularization.

To achieve this, SCGLR searches for explanatory components in X jointly supervised by the response set. A component f ∈ R N writes f = Xu, where u ∈ R P is a loading vector. For a single component model, the linear predictor associated with response y k is then given by:

η k = (Xu) γ k + Aδ k ,
where γ k and δ k are regression parameters. Component f is common to all the responses, and for an identification purpose, we impose u T M -1 u = 1, where M ∈ R P ×P is a symmetric positive definite matrix. We assume that the responses are independent conditional on the explanatory variables, and consequently on f .

Preliminary notations

The sequel contains mathematical developments which use notations listed hereafter:

• Let a, b ∈ R N be vectors and W ∈ R N ×N be a symmetric positive definite matrix. The Euclidean scalar product between a and b with respect to metric

W is given by a, b W = a T W b. Likewise, cos W (a, b) = a, b W a W b W denotes
the cosine of the angle between a and b with respect to metric W .

• If a and b are centred and W = 1 N I N , the cosine defines Pearson's correlation, denoted ρ. In this paper, unless otherwise stated, the correlation refers to Pearson's correlation. 

• A = [a 1 , . . . , a P ] ∈ R N ×P and B = [b 1 , . . . , b Q ] ∈ R N ×Q being matrices

Measuring the Goodness-of-Fit

For parameter estimation, we make use of the Fisher Scoring Algorithm (FSA) (refer to [START_REF] Mccullagh | Generalized Linear Models[END_REF] for a complete overview of GLM methodologies). Let w k be the working variable associated with the response y k , and W -1 k its variance matrix. Contrary to [START_REF] Bastien | PLS generalised linear regression[END_REF], we weight the model based on components by W -1 k . Indeed, in the spirit of [START_REF] Nelder | Generalized linear models[END_REF], at iteration t, w k can be viewed as the response in the linearized model:

w (t) k = (Xu) γ k + Aδ k + ζ (t) k , with E[ζ (t) k ] = 0 and V[ζ (t) k ] = W -1(t) k
. Due to the product uγ k , this linearized model must be estimated through an alternated weighted least squares process, estimating in turn {γ k , δ k } and u.

Let Π W k span[f,A] be the projection on span[f , A] with respect to W k . The loading Julien Gibaud et al.

vector u solution of the least squares minimization may alternatively be viewed as the solution of the following optimization program:

max u,u T M -1 u=1 ψ A (u) := K k=1 α k w k 2 W k cos 2 W k w k , Π W k span[f,A] w k ,
where {α 1 , . . . , α K } is a weighting system reflecting the a priori relative importance of working variables. ψ A is merely a Goodness-of-Fit (GoF) measure, and maximizing it does not lead to strong and interpretable components. The GoF measure must therefore be aptly combined with a measure of Structural Relevance (SR) to extract dimensions that are both meaningful and predictive, and achieve satisfactory regularization.

Measuring the Structural Relevance of components

Bry [START_REF] Bry | THEME: THEmatic Model Exploration through multiple co-structure maximization[END_REF] proposed the SR measure as a possible extension of the component's variance to measure the ability of a component to capture information in a set of variables containing latent structures such as variable-bundles. Informally, a bundle is a set of variables correlated "enough" to be viewed as produced by a common latent dimension. We call W the weight matrix reflecting the a priori relative importance of statistical units (typically,

W = 1 N I N ). Finally, consider component f = Xu,
where u is constrained by u T M -1 u = 1. Most often, we can take M -1 = I P although M -1 may take various forms according to the type of variables and structure of data [START_REF] Bry | Component-based regularization of a multivariate GLM with a thematic partitioning of the explanatory variables[END_REF]. Assuming that X consists of P standardized numeric variables, the associated SR measure φ is defined as the following generalized average The locality of a bundle of correlated variables is defined by the within-bundle correlation: the higher the correlation, the more local the bundle. The locality of the bundles to be tracked by components is tuned through the hyper-parameter l ≥ 1.

Components will line up with a more or less local bundle depending on whether l is greater or smaller, respectively. The main objective is to focus on the most interpretable directions.

The original SCGLR criterion

The SCGLR specific criterion, proposed by [START_REF] Bry | Component-based regularization of a multivariate GLM with a thematic partitioning of the explanatory variables[END_REF], introduced a hyperparameter s ∈ [0, 1] to tune the importance of the SR relative to the GoF. SCGLR attempts a trade-off between φ and ψ A by solving:

max u,u T M -1 u=1 s ln(φ(u)) + (1 -s) ln(ψ A (u)).
When s = 0, the criterion identifies with the GoF, while at the other end, taking s = 1 makes it identify with the SR. Thus, increasing s intensifies both the focus of components on "strong" dimensions, and the regularization.

This compound criterion is quite general. Indeed, the GoF measure adapts any situation where a likelihood function is available for the model taking the components and A as covariates. Generally, this likelihood involves a vector of parameters. The maximization is carried out alternating two steps:

(i) Given u, maximize the criterion with respect to the parameter vector. This step is performed using a classical likelihood maximization algorithm relevant to the situation.

(ii) Given the parameter vector, maximize the criterion with respect to u using a dedicated algorithm: PING (for Projected Iterated Normed Gradient) recalled in Supplementary Material (SM). PING is designed to maximize, at least locally, any criterion on the unit sphere [START_REF] Chauvet | Component-Based Regularization of Multivariate Generalized Linear Mixed Models[END_REF]Bry et al., 2020a,b). We shall adapt the criterion and its maximization to the response-mixture model.

Response Mixture SCGLR

In this part, we formally express the combination of SCGLR with a FMM we use to build and estimate our response mixture component-based model.

The response mixture model

Let Y = [y 1 , . . . , y K ] ∈ R N ×K be the response matrix. The responses are assumed to be modeled through a finite mixture of regression models, comprising G groups.

The probability distribution function (pdf) of response y k is thus:

L(y k ; θ k ) = G g=1 p g N n=1 d k (y nk ; µ nkg ),
where the nth individual of the kth response of the gth group has a pdf d k belonging to the exponential family, with expectation µ nkg . θ k denotes the vector of parameters, including the regression parameters γ kg and δ kg , as defined in Section 2.1, and p g is Preprint 11 the gth mixing probability with p g ∈ [0, 1] and G g=1 p g = 1. Denoting h k the kth canonical link function, we assume:

h k (µ nkg ) = (x T n u g )γ kg + a T n δ kg ,
where u g is the loading vector of the (first) component of group g, and x n and a n are the vectors composed by the nth rows of matrices X and A respectively. Thus, the responses in group g are predicted by component f g = Xu g , together with A.

For each k = 1, . . . , K, d k and h k are chosen so as to suit the type of response y k (e.g. binary, count, categorical, continuous etc.).

Conditional on the explanatory variables, the response variables are assumed independent. The group memberships of the responses being unknown, the model loglikelihood

l(Θ; Y ) = K k=1 ln (L(y k ; θ k )) ,
where the set of parameters is Θ = {θ 1 , . . . , θ K }, being difficult to maximize directly, we shall adopt the Expectation Maximization (EM, Dempster et al., 1977) algorithm to estimate the model parameters.

Let z kg be the latent indicator variable equal to 1 if the response y k belongs to the gth group, and 0 otherwise. Let z k = (z kg ; g = 1, . . . , G) be the vector of group membership indicators of response y k , and let Z = [z k ; k = 1, . . . , K] be a G × K matrix. Conditional on z kg = 1, the pdf of response y k for unit n is d k (y nk ; µ nkg ).

The model complete log-likelihood writes:

l(Θ; Y , Z) = K k=1 G g=1 z kg ln p g N n=1 d k (y nk ; µ nkg ) .
Step (i) in Section 2.5 boils down to maximizing the likelihood of the componentbased model. Owing to the latent variable Z, this step will be performed using the EM algorithm. The expectation of the complete log-likelihood writes

E [l(Θ; Y , Z)|Y ; Θ ] = K k=1 G g=1 α kg ln p g N n=1 d k (y nk ; µ nkg ) .
The posterior probability is computed as

α kg := p g N n=1 d k (y nk ; µ nkg ) G r=1 p r N n=1 d k (y nk ; µ nkr )
.

As a result, we use the algorithm presented in SM to estimate the parameters of the response mixture model.

Calculating the components of the response groups

When clustering the responses according to their "common" SCGLR components, we must ensure that the explanatory subspaces spanned by the components associated to response clusters be reasonably separated (else, the algorithm may fail to converge).

To achieve that, when calculating a component explanatory of a response cluster, we must prevent that it be too close to the explanatory subspaces of other clusters.

An additional sub-criterion to better separate explanatory sub-spaces

Let F -g = {f 1 , . . . , f g-1 , f g+1 , . . . , f G } be the set of components from which the component of group g was removed. The space spanned by the component f g may be uniquely represented by the orthogonal projector on it: through the function of u g :

ϕ F -g (u g ) = 1 - 1 G -1 r =g W span[fg] , W span[fr] Frob .
(3.1) Indeed, if for all r = g, span[f g ] is orthogonal to span[f r ] then the Frobenius product will be 0, so that the criterion will be equal to 1. At the other end, if for all r = g,

span[f g ] = span[f r ],
the Frobenius product will be equal to 1, and the criterion to 0.

The new program optimizing the combined criterion we propose for group g is thus:

max ug,u T g M -1 ug=1 s ln(φ(u g )) + t ln(ϕ F -g (u g )) + (1 -s -t) ln(ψ A (u g )), (3.2)
where s, t, (s + t) ∈ [0, 1].

Rank-1 component

Let us address step (ii) of the combined criterion maximization. The GoF measure applied to group g is given by

ψ A (u g ) = K k=1 α kg w kg 2 W kg cos 2 W kg w kg , Π W kg span[fg,A] w kg ,
where the weights reflecting the degrees of membership to group g of responses are the posterior probabilities {α 1g , . . . , α Kg }. The functions φ and ϕ F -g are respectively given in Section 2.4 and Equation (3.1). The explicit expression of the criterion is given in SM.

Higher rank components

We shall henceforth calculate the higher rank components. Let f h g = Xu h g be the hth component of group g, and let

F h g = [f 1 g , . . . , f h g ],
where h ≤ H g , be the matrix of the first h components of group g. According to the local nesting principle [START_REF] Bry | THEME-SEER: a multidimensional exploratory technique to analyze a structural model using an extended covariance criterion[END_REF], the new component f h+1 g must best complement both the existing ones and A, that is

A h g := [F h g , A]. So f h+1 g
has to be calculated using A h g as the new set of additional covariates. Moreover, to avoid linear redundancy of components, we impose that f h+1 g be orthogonal to F h g , i.e. F h T g W f h+1 g = 0.

We calculate every new component as the solution of the optimization program (3.2), with the additional constraint: ∆ h T g u h+1 g = 0, where ∆ h g = X T W F h g , and loop on g until overall convergence of the component system. Taking

A h g = [F h g , A]
and

F -g = {F H 1 1 , . . . , F H g-1 g-1 , F H g+1 g+1 , . . . , F H G G }, the sub-criteria become ψ A h g u h+1 g = K k=1 α kg w kg 2 W kg cos 2 W kg w kg , Π W kg span[f h+1 g ,A h g ] w kg and ϕ F -g u h+1 g = 1 - 1 G -1 r =g W span[F h+1 g ] , W span[F Hr r ] Frob .
For all g = 1, . . . , G, the rank-1 component of group g is calculated using the same program with A 0 g = A and ∆ 0 g = 0.

Optimizing the cluster-specific components

In order to identify the groups, one may have to put a heavy weight on the separation sub-criterion. As a result, the supervised components output by the former maximiza-Preprint 15 tion may be artificially too strongly separated between groups. So, this maximization is used merely to identify groups having specific explanatory dimensions. Posterior to that, we must optimize the group-specific components for prediction in a second phase, performing classical SCGLR separately on each group.

The overall algorithm

The method comprising these two phases (clustering, and component optimization), is named response mixture SCGLR (rmSCGLR). The overall algorithm of the clustering phase, presented in SM, consists in alternating the following steps: (i) Given the current set of components, estimate the mixture response parameters through the EM algorithm; (ii) Given the current group memberships of responses, calculate all the components of all the groups. To give our algorithm a good starting point, namely well separated response clusters and strong initial components, we use the ClustOfVar package [START_REF] Chavent | ClustOfVar: An R Package for the Clustering of Variables[END_REF] to determine the G initial response groups, and then, the pls package (Mevik and Wehrens, 2007) in each group, to find the initial supervised components. In the component optimization phase, SCGLR is performed on each response group separately, each having specific components. This phase includes determining the best number of components for prediction by means of cross-validation.

A hyper-parameter calibration heuristic

The hyper-parameters are calibrated minimizing the Bayesian Information Criterion (BIC, [START_REF] Schwarz | Estimating the dimension of a model[END_REF], defined by BIC = -2l (Θ; Y ) + ln (N ) × (number of parameters) . [START_REF] Keribin | Consistent estimation of the order of mixture models[END_REF] shows the reliability of BIC in a context of mixture model. The hyperparameters are many (s, l, t, G, H 1 , . . . , H G ), so that using BIC to compare all their combinations on a cross-product grid is out of the question in practice. We choose instead to study the effects of varying the hyper-parameters following a heuristic.

Even if these parameters have different purposes, which can to some extent be dealt with sequentially, they are not completely independent. For instance: the higher s, In the simulation study, we use the Rand Index (RI, [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF]) and the Adjusted Rand Index (ARI, [START_REF] Hubert | Comparing partitions[END_REF] to assess the correctness of the classification decisions. In addition, to measure the quality of the latent variables recovery, we calculate the square correlation between the latent variable ξ and the components:

ρ 2 (ξ, .) = max g,h ρ ξ, f h g 2 ,
where f h g denotes the hth component of group g. The RI, ARI, square correlations and BIC are all given through mean values over a hundred samples.

Generation of the simulated data

The variables are simulated on N = 100 observations. Two latent variables ξ 1 and ξ 2 are simulated with a correlation ρ = 0.9, while two others, ξ 3 and ξ 4 , are simulated independent of any other. The X matrix consists in five blocks:

X = [X 1 , X 2 , X 3 , X 4 , X 5 ],
where

X 1 ∈ R N ×20 , X 2 ∈ R N ×20 , X 3 ∈ R N ×10 and X 4 ∈ R N ×10
are bundles of variables distributed about ξ 1 , ξ 2 , ξ 3 and ξ 4 respectively.

More formally, for all i = 1, . . . , 4, a variable x p is simulated as x p = ξ i + ε p , where 

ε p ∼ N N (0, 0.1I N ).
∀k = 1, . . . , 20, y k ∼ N N (µ = γ 1k ξ 1 + γ 2k ξ 3 , Σ = I N ) , ∀k = 21, . . . , 70, y k ∼ P (λ = exp [0.25γ 1k ξ 1 + 0.25γ 2k ξ 3 ]) , ∀k = 71, . . . , 80, y k ∼ N N (µ = γ 1k ξ 2 + γ 2k ξ 4 , Σ = I N ) , ∀k = 81, . . . , 100, y k ∼ B p = logit -1 [γ 1k ξ 2 + γ 2k ξ 4 ] ,
where for all k, γ 1k and γ 2k are uniformly generated, with

γ 1k ∈ [-4, 4] and γ 2k ∈ [-2, 2].
The purpose of this simulation scheme is to mix different types of response distributions, modeled through explanatory dimensions specific to response groups which must be recovered. Explanatory variables are many, and exhibit both bundles of Preprint 19 highly redundant variables and isolated variables. Such a data structure is often encountered in practice when no pre-selection of explanatory variables has been carried out, and causes difficulties in modeling and estimation, which our method intends to solve.

Results and interpretation

Table 1 sums up the heuristic performed to find the best component combination for s ∈ {0.1, 0.3, 0.5}. We observe that the three values of s lead to detect two groups of responses. In this simulation, taking a higher value of s is not recommended. Indeed, as s increases, the components get closer to the principal components (Bry et al., 2020a). Thus, for s > 0.5, the first component of each group being drawn towards the same first principal component, they tend to be similar. This similarity hinders the distinction between groups. Performing a forward selection step and opting for the minimal value of BIC, we see that only s = 0.1 and s = 0.3 lead to the right combination of components. However, s = 0.5 leads to identify the true overall number of directions central to the explanatory bundles. Thus, in the sequel, the analysis is done with combinations (H 1 , H 2 ) = (2, 2) for s = 0.1 and s = 0.3, while we set (H 1 , H 2 ) = (3, 1) for s = 0.5.

On the last step of the heuristic, summed up in Table 2, we can see the impact of the hyper-parameter t. For s = 0.1, the RI and the ARI increase as t goes from 0 to 0.4, and then decrease. Our criterion allows to distinguish two sub-spaces close to one another: for t = 0.4, the RI and the ARI values are respectively equal to 0.883 and 0.764 despite the high correlation between the first latent variables of the two groups. These observations are consistent with the BIC which decreases from Table 1: Mean values of BIC over a hundred samples, for a high correlation value (ρ = 0.9) between the latent variables ξ 1 and ξ 2 , for s ∈ {0.1, 0.3, 0.5} and different combinations of H 1 and H 2 . t = 0 to t = 0.4. When t is too high, the RI and the ARI decrease, while the BIC increases, as observed for t ≥ 0.5. In such cases, the weight of the separation subcriterion ϕ is too heavy, and prevents the first components of the two groups to be close enough, which precludes the correct identification of the latent variables, hence of the groups. As a result, the square correlations between the rank-1 components and the corresponding latent variables are lower than 0.9 for t ≥ 0.4. Moreover, when t ≥ 0.5, the correlations ρ 2 (ξ 3 , .) and ρ 2 (ξ 4 , .) are higher than ρ 2 (ξ 1 , .) and ρ 2 (ξ 2 , .).

s = 0.1 s = 0.3 s = 0.5 H 1 H 2 BIC H 1 H 2 BIC H 1 H 2 BIC 1 1 30802.
The reason for this is that for such a high value of t as 0.5, ξ 3 and ξ 4 are found before ξ 1 and ξ 2 , because they provide more separated explanatory spaces. For s = 0.3, we observe, likewise, that the best values of RI and ARI, corresponding to the minimal value of BIC, are reached for t = 0.2 but they are lower than that in the s = 0.1 case. As noticed by [START_REF] Chauvet | Component-Based Regularization of Multivariate Generalized Linear Mixed Models[END_REF], the thinner the bundles, the greater the value of s has to be, to recover the latent variables correctly. Here, indeed, the error variance being low (σ 2 = 0.1), the square correlations are, on the whole, greater for s = 0.3 than for s = 0.1. As in the case s = 0.1, ρ 2 (ξ 1 , .) and ρ 2 (ξ 2 , .) decrease with t.

However, contrary to the case s = 0.1, the increase of the square correlations ρ 2 (ξ 3 , .)

and ρ 2 (ξ 4 , .) could not be observed, since t could not exceed 0.6. In the s = 0.5 case, Preprint 21 we observe the dramatic effect of taking too many components in a group. For all values of t, the RI and the ARI are respectively close to 0.5 and 0. This indicates that for s = 0.5 and (H 1 , H 2 ) = (3, 1), the obtained classification is not better than a random one. For the sake of visualization, Figure 1 shows the correlation scatterplots of plane

(1, 2) for each group. We can see that the components f are well aligned with the corresponding simulated latent variables ξ, except for f 2 2 , which slightly deviates from ξ 4 . Due to the high correlation between ξ 1 and ξ 2 , the bundles X 1 (in red) and X 2 (in blue) are both well aligned with the first component of each group. 

Hyper-parameter calibration

We present the results obtained when following the parameter-varying scheme presented in Section 3. To get a refined model with this combination of components, the tuning parameter t needs to be raised to 0.5 to allow to better distinguish the groups, and minimize the BIC.

Results and interpretation

The clustering phase of rmSCGLR led to three groups of taxa. Two of them were associated with a single explanatory component, and the last one with two components.

The groups respectively comprise 44, 67 and 82 taxa. The contents of the groups are given in SM. Let us first try to interpret the groups and components output by the clustering phase of rmSCGLR. We sum up the first two groups in Table 4, stating the explanatory variables most correlated with the components. Table 4 does not deal with the third group, as this one appears in the sequel to be something of a "junk" group with no homogeneous interpretation. The component of the first group is highly correlated with the variable "C7" (difference between the maximum of temperature of the warmest month and the minimum of temperature of the coldest month), and with the three climatic water deficit variables:

"sumCWD", "MCWD" and "maxCWD". Thus, the abundances of taxa composing the first group would be linked to a gradient of temperature, and sensitive to a water deficit. The component of the second group is highly correlated with "C2" (the mean diurnal range), "meanET0" (the mean monthly evapotranspiration) and with "C18"

and "C19" (the precipitations of the warmest quarter and the coldest quarter, respectively). This component is very similar to the first component found if we apply SCGLR on all the responses (ρ = -0. (1.07) respectively, which indicates an improved quality of prediction. However, the prediction error of the third group rises to MSPE 3 = 3.41 (0.99), which indicates that group 3 is composed by taxa the abundances of which are poorly predictable from the sheer observed climatic variables. Finally, the mean prediction error of SCGLR accounting for the partition is MSPE mean = 3.17 (0.99). The mean prediction error accounting for a random three-group partition is: MSPE random = 3.20 (1.09). This

shows that rmSCGLR was able to, if only slightly, better capture the explanatory structure of the floristic data. It should be noted that prediction of taxa abundances from merely such climatic variables is usually poor [START_REF] Beale | Opening the climate envelope reveals no macroscale associations with climate in European birds[END_REF].

Conclusion and discussion

In the context we address, we have multiple responses to be modeled through many covariates. All responses may not depend on the same explanatory dimensions, captured by components. Therefore, we both need to model the responses and to cluster them with respect to their common explanatory components. Unfortunately, no available method jointly performs response clustering and search for explanatory components. Among the methods searching for common explanatory components, the original SCGLR was designed to regularize GLM estimation and reduce the explanatory space through components, so as to decompose the linear predictor in an interpretable way. It allowed to find strong and interpretable supervised components common to response variables, by achieving a trade-off between Goodness-of-Fit and a Structural Relevance measure. Methods as proposed by [START_REF] Dunstan | Model based grouping of species across environmental gradients[END_REF]Dunstan et al. ( , 2013) ) or [START_REF] Mortier | Mixture of inhomogeneous matrix models for species-rich ecosystems[END_REF] cluster responses by imposing that the regression coefficients Preprint 29 of the covariates be the same within each cluster, which does not allow to model responses in a flexible enough manner. Moreover, their modeling is not based on strong dimensions as components. The response mixture SCGLR extends SCGLR in two major ways: (i) Through a mixture model on the response variables, it identifies groups of responses that can be predicted from group-specific components. Doing so, this method improves both the prediction quality of the response groups, and the interpretation of what explains the responses. In our ecological framework, we detected communities of taxa sensitive to specific gradients of climate variables. (ii)

It extends the criterion to be maximized by introducing a separation sub-criterion, which allows to specify sub-spaces which components had better keep away from. In the context of response mixture, this sub-criterion helped distinguish the groups by better separating their explanatory sub-spaces.

In our simulation study, rmSCGLR proved to behave as expected regarding groups.

In a context of very close explanatory sub-spaces, it recovered the original groups, and provided components aligned with the latent variables. On the floristic ecology dataset, we found three communities of taxa. The first one is linked to a gradient of temperature, while the second one is connected to a regional floristic gradient contrasting two main areas. The third group gathers the taxa related to no specific gradient, but to many combinations of the observed climatic variables. More predictive climatic components could likely be generated after removing these taxa.

Our method still has some limitations. Just as the original SCGLR, it does not allow to deal with a thematic partition of the explanatory variables. To overcome this limitation, we could extend THEME-SCGLR [START_REF] Bry | Component-based regularization of a multivariate GLM with a thematic partitioning of the explanatory variables[END_REF] to a response mixture. For instance, the temperature and precipitation variables would be seen as

Supplementary Materials 1 The PING algorithm

The Projected Iterated Normed Gradient (PING) algorithm is an extension of the Power Iteration algorithm. To find the hth component, we use the PING algorithm which aims at solving any optimization program of the form:

max u J h (u), s.t. u T M -1 u = 1 and ∆ T h u = 0, (1) 
where J h is a function of u to maximize and ∆ h an additional constraint matrix. In the SCGLR context, J h (u) is the specific criterion and ∆ h the orthogonal constraint matrix.

We rewrite this optimization program by posing

v = M -1/2 u, G h (v) = J h (M 1/2 v) and E h = M 1/2 ∆ h . max v G h (v), s.t. v T v = 1 and E T h v = 0.
(2)

To solve (2), we must equate to zero the gradient of the following Lagrangian:

L(v, λ, η) = G h (v) -λ(v T v -1) -η T E T h v. Setting Γ h (v) = ∇ v G h (v), we have ∇ v L(v, λ, η) = 0 ⇔ Γ h (v) -2λv -E h η = 0 (3) ⇔ v = 1 2λ (Γ h (v) -E h η) . ( 4 
)
Multiplying ( 3) by E T h :

2λ E T h v =0 = E T h Γ h (v) -E T h E h η ⇔ E T h Γ h (v) = E T h E h η ⇔ η = E T h E h -1 E T h Γ h (v).
(5) Substituting ( 5) in (4), we get:

v = 1 2λ Γ h (v) -E h E T h E h -1 E T h Γ h (v) = 1 2λ I -E h E T h E h -1 E T h Γ h (v) = 1 2λ Π span[E h ] ⊥ Γ h (v), where Π span[E h ] ⊥ = I -E h E T h E h -1 E T h . Finally, the constraint v 2 = 1 gives v = 1 2λ Π span[E h ] ⊥ Γ h (v) 1 2λ Π span[E h ] ⊥ Γ h (v) = Π span[E h ] ⊥ Γ h (v) Π span[E h ] ⊥ Γ h (v) ,
which suggests the basic iteration of the PING algorithm:

v (t+1) = Π span[E h ] ⊥ Γ h (v (t) ) Π span[E h ] ⊥ Γ h (v (t) ) . ( 6 
)
Let us show that the basic iteration of the PING algorithm follows a direction of ascent. One way to do this is to show that the direction given by the arc (v (t) , v (t+1) ) is a direction of ascent. In other words, show that:

v (t+1) -v (t) , Γ h v (t) ≥ 0.
By construction, we know that on every iteration t of the algorithm, v (t) is orthogonal to span (t) . Now, the equation ( 6) implies that

[E h ]. Thus, since for all t, v (t) = Π span[E h ] ⊥ v (t) , we have v (t+1) -v (t) , Γ h v (t) = Π span[E h ] ⊥ v (t+1) -v (t) , Γ h v (t) = v (t+1) -v (t) , Π span[E h ] ⊥ Γ h v
Π span[E h ] ⊥ Γ h (v (t) ) = v (t+1) Π span[E h ] ⊥ Γ h (v (t) ) . So, sgn v (t+1) -v (t) , Γ h v (t) = sgn v (t+1) -v (t) , v (t+1) = sgn v (t+1) 2 -v (t) , v (t+1)
= sgn 1 -cos v (t) , v (t+1) .

Finally, v (t+1) -v (t) , Γ h v (t) ≥ 0.
Although iteration (6) follows a direction of ascent, it does not guarantee that function G actually increases on every step. Indeed, we may go too far in such a direction, and overshoot the maximum. However, let us consider t) ) .

κ (t) = Π span[E h ] ⊥ Γ h (v (t) ) Π span[E h ] ⊥ Γ h (v (
Staying close enough to the current starting point on the arc (v (t) , κ (t) ) ensures that function G increases on every iteration. With this aim in mind, let be the plane tangent to the unit sphere on v (t) and let w denote the unit-vector tangent to arc (v (t) , κ (t) ) on v (t) . Then, there exists τ > 0 such that, w = τ Π κ (t) , and

w, κ (t) = τ Π κ (t) , κ (t) = τ cos 2 (κ (t) , ) > 0.
Although staying close enough to the current starting point on the arc (v (t) , κ (t) ) ensures the increase of function G, staying too close can impact the convergence speed of the algorithm to reach the maximum. On the other hand, going too far from the starting point can cause the divergence of the algorithm. Therefore, we propose two possible generic iterations for the PING algorithm, which deal with this problem. Algorithm 1 and Algorithm 2 present these alternatives. The first one should be preferred, but is less easy to program.

Algorithm 1: PING algorithm while not convergence do

κ (t) ← Π span[E h ] ⊥ Γ h (v (t) ) Π span[E h ] ⊥ Γ h (v (t) )
Use a Newton-Raphson unidimensional maximization procedure to find the maximum of G h (v) on the arc (v (t) , κ (t) ) and take it as v (t+1)

t ← t + 1 end Algorithm 2: Alternative PING algorithm while not convergence do m ← Π span[E h ] ⊥ Γ h (v (t) ) Π span[E h ] ⊥ Γ h (v (t) ) while G h (m) < G h (v (t) ) do m ← v (t) + m v (t) + m end v (t+1) ← m t ← t + 1 end

The EM algorithm

Owing to the latent variable Z, this step will be performed using the EM algorithm. The M step of the EM algorithm consists in maximizing with respect to Θ the conditional expectation of the complete log-likelihood E [l(Θ; Y, Z)|Y ; Θ ]. The solution replaces then Θ , and the conditional expectation is updated in the E step.

The expectation (E) step

The expectation of the complete log-likelihood writes

E [l(Θ; Y, Z)|Y ; Θ ] = K k=1 G g=1 α kg ln p g N n=1 d k (y nk ; µ nkg ) .
The posterior probability is computed as

α kg := P(z k = g|y k ; θ k ) = p g N n=1 d k (y nk ; µ nkg ) G r=1 p r N n=1 d k (y nk ; µ nkr )
, with z k = g meaning that the gth coordinate of the vector z k equals 1. As noticed by Dunstan et al. (2013), the α kg 's are likely to be very close to either 0 or 1, and this polarization grows with the number of observations. In this case, the EM algorithm is liable to get stuck and does not provide a satisfactory exploration of the parameter space.

We thus shrank the α kg 's, for five iterations of the EM algorithm only, using

α * kg = 2τ α kg -τ + 1 2τ -τ G + G where τ = 1 -0.8G 0.8(2 -G) -1 .
The previous formula prevents any α * kg from being greater than 0.8 or lower than (1 -0.8)/(G -1), while maintaining the sum-to-one constraint.

The maximization (M) step

The maximization step maximizes the conditional expectation of the complete loglikelihood with respect to Θ, subject to the constraint G g=1 p g = 1. The maximization with respect to p g yields:

pg = 1 K K k=1 α kg .
The estimates of the regression parameters γ kg and δ kg are obtained as the solutions of:

∇ (γ kg ,δ kg ) N n=1 ln(d k (y nk ; µ nkg )) = 0.
This equation characterizes the maximum likelihood estimate of the GLM of y k in each group g. This estimate can be obtained as the fixed point of the FSA.

Assuming the response variable y k belongs to the gth group, the working variable associated with y nk is calculated as:

w nkg = h k (µ nkg ) + (y nk -µ nkg ) h k (µ nkg ) = η nkg + ζ nkg , where ζ nkg = (y nk -µ nkg ) h k (µ nkg ) .
In view of the conditional independence assumption, the variance matrix for w nkg is

V [w kg ] = W -1 kg = diag a nk (φ k )v k (µ nkg ) h k (µ nkg ) 2 n=1,...,N
, where a nk and v k are known functions and φ k is the dispersion parameter of y k . Thus, to optimize the regression parameters, we perform a generalized least square step on the linearized model defined by:

w kg = (Xu g ) γ kg + Aδ kg + ζ kg , with E(ζ kg ) = 0 and V(ζ kg ) = W -1 kg .
As a result of the aforementioned developments, we shall use the following algorithm to estimate the parameters of the response mixture model.

Algorithm 3: The EM algorithm adapted to the response mixture Input :

A g := [f g , A]
while not convergence do Expectation step

for k = 1, . . . , K do for g = 1, . . . , G do α (t+1) kg = p (t) g N n=1 d k (y nk ; µ (t) nkg ) G r=1 p (t) r N n=1 d k (y nk ; µ (t) nkr ) end end Maximization step for g = 1, . . . , G do p (t+1) g = 1 K K k=1 α (t+1) kg for k = 1, . . . , K do γ (t+1) kg , δ (t+1) T kg T = A T g W (t) kg A g -1 A T g W (t) kg w (t) kg η (t+1) kg = f g γ (t+1) kg + Aδ (t+1) kg µ (t+1) nkg = h -1 k η (t+1) nkg , ∀n = 1, . . . , N w (t+1) nkg = η (t+1) nkg + h k µ (t+1) nkg y nk -µ (t+1) nkg , ∀n = 1, . . . , N W (t+1) kg = diag a nk (φ k )v k µ (t+1) nkg h k µ (t+1) nkg 2 -1 n=1,...,N end end t ← t + 1 end

Analytical expression of the specific criterion

The specific criterion which SCGLR maximizes to compute the (h + 1)th loading-vector

u h+1 writes J(u) = φ(u) s ϕ(u) t ψ A h (u) 1-s-t , with                          φ(u) =   p j=1 ω j (u T N j u) l   1/l ϕ(u) = 1 - 1 G G g=1 W [F h ,Xu] , W Eg ψ A h (u) = K k=1 w k 2 W k cos 2 W k w k , span[Xu, A h ] , (7) 
where

F h = [Xu 1 , . . . , Xu h ] and A h = [F h , A].
To facilitate the computation of the loading-vector, we hereafter give an analytical expression of each sub-criterion and of its gradient.

The structural relevance measure

The general form of the structural relevance (SR) is φ(u) written in (7). However, in practice, we take either the variance component (VC) or the variable power inertia (VPI).

In the first case, the SR and its gradient are easily given by

φ(u) = Xu 2 W and ∇ u φ(u) = 2X T W Xu.
The explicit expression of VPI is

φ(u) =   1 p p j=1 Xu, x j 2l W   1/l .
To calculate the gradient we use the classical rules of derivation:

∇ u φ(u) = 1 l   ∇ u   1 p p j=1 Xu, x j 2l W       1 p p j=1 Xu, x j 2l W   1/l-1 = 1 l   1 p p j=1 2lX T W x j Xu, x j 2l-1 W   φ(u) 1-l = 2 p φ(u) 1-l X T W p j=1 Xu, x j 2l-1 W x j .

The goodness of fit measure

We aim at expressing ψ A h (u) as a function of quadratic forms. To achieve that, we decompose the projection on the regression space as follows:

span[Xu, A h ] = span[X h k u, A h ] with X h k = Π W k span[A h ] ⊥ X. Since span[X h k ] is orthogonal to span[A h ], Π W k span[Xu,A h ] = Π W k span[X h k u,A h ] = Π W k span[X h k u] + Π W k span[A h ] .
Consequently, by classical Euclidean derivations, we have

cos 2 W k (w k , span[Xu, A h ]) = cos W k (w k , span[Xu, A h ]) cos W k (w k , span[Xu, A h ]) =    Π W k span[Xu,A h ] w k W k w k W k       w k , Π W k span[Xu,A h ] w k W k w k W k Π W k span[Xu,A h ] w k W k    = w k , Π W k span[X h k u] + Π W k span[A h ] w k W k w k 2 W k = w k , Π W k span[X h k u] w k W k w k 2 W k + w k , Π W k span[A h ] w k W k w k 2 W k .
The goodness of fit measure ψ A h (u) then writes more explicitly

ψ A h (u) = K k=1 w k 2 W k cos 2 W k (w k , span[Xu, A h ]) = K k=1 w k , Π W k span[X h k u] w k W k + w k , Π W k span[A h ] w k W k . Now, w k , Π W k span[X h k u] w k W k = w T k W k Π W k span[X h k u] w k = w T k W k X h k u u T X h T k W k X h k u -1 u T X h T k W k w k = u T X h T k W k w k w T k W k X h k u u T X h T k W k X h k u .
Let,

a k := X h T k W k w k w T k W k X h k , b k := X h T k W k X h k and c k := w k , Π W k span[A h ] w k W k .
Finally,

ψ A h (u) = K k=1 u T a k u u T b k u + c k and ∇ u ψ A h (u) = 2 K k=1 u T b k u a k u -u T a k u b k u (u T b k u) 2 .

The separation sub-criterion

The general form of the separation sub-criterion is ϕ(u h+1 g ) given in (7). We apply this formula to the G explanatory spaces

F H 1 1 , . . . , F H G G
of sizes H 1 , . . . , H G respectively. We want to separate F g of F r for all r = g. The sub-criterion becomes :

ϕ F -g (u h+1 g ) = 1 - 1 G -1 r =g W span[F h g ,Xu h+1 g ] , W span[F Hr r ] Frob = 1 - 1 G -1 r =g Π W span[F h g ,Xu h+1 g ] √ h + 1 , Π W span[F Hr r ] √ H r Frob = 1 - 1 G -1 r =g 1 H r (h + 1) Tr Π W span[F h g ,Xu h+1 g ] Π W span[F Hr r ] . Since span[F h g , Xu h+1 g ] = span[f 1 g , . . . , f h+1 g ] and span[F Hr r ] = span[f 1 r , . . . , f Hr r ], we have Tr Π W span[F h g ,Xu h+1 g ] Π W span[F Hr r ] = Tr f 1 g , . . . , f h+1 g f 1 g , . . . , f h+1 g T W f 1 g , . . . , f h+1 g -1 f 1 g , . . . , f h+1 g T W f 1 r , . . . , f Hr r f 1 r , . . . , f Hr r T W f 1 r , . . . , f Hr r -1 f 1 r , . . . , f Hr r T W .
Now, thanks to the orthogonality between the components, we obtain

Tr Π W span[F h g ,Xu h+1 g ] Π W span[F Hr r ] = Tr    f 1 g f 1 g W , . . . , f h+1 g f h+1 g W f 1 g f 1 g W , . . . , f h+1 g f h+1 g W T W f 1 r f 1 r W , . . . , f Hr r f Hr r W f 1 r f 1 r W , . . . , f Hr r f Hr r W T W    = Tr    f 1 g f 1 g W , . . . , f h+1 g f h+1 g W T W f 1 r f 1 r W , . . . , f Hr r f Hr r W f 1 r f 1 r W , . . . , f Hr r f Hr r W T W f 1 g f 1 g W , . . . , f h+1 g f h+1 g W    = Tr{A T A}, where A ij = f i r , f j g W f i r W f j g W
, with (i, j) ∈ {1, . . . , H r } × {1, . . . , h + 1}. This development leads to the explicit expression of ϕ F -g :

ϕ F -g (u h+1 g ) = 1 - 1 G -1 r =g 1 H r (h + 1) Hr i=1 h+1 j=1 Xu i r , Xu j g 2 W Xu i r 2 W Xu j g 2 W .
Let,

           d rgi := 2 Xu i r , Xu h+1 g W Xu h+1 g 2 W X T W Xu i r e rgi := 2 Xu i r , Xu h+1 g 2 W X T W Xu h+1 g f rgi := Xu h+1 g 2 W 2 Xu i r 2 W
The gradient of the quotient becomes:

∇ u h+1 g    Xu i r , Xu h+1 g 2 W Xu i r 2 W Xu h+1 g 2 W    = d rgi -e rgi f rgi
Then, we compute the gradient of ϕ F -g : = max

∇ u h+1 g ϕ F -g (u h+1 g ) = -1 G -1 r =g 1 H r (h + 1)
u h T g M -1 u h g = 1 ∆ h-1 T g u h g = 0 s ln φ u h g + t ln ϕ F -g u h g + (1 -s -t) ln ψ A u h g end end n ← n + 1 end
At the end, we can classify the responses according to their posterior probabilities. A response y k is assigned to cluster g if

α (nmax) kg > α (nmax) kr
, ∀r = g.

Preliminary simulation study

This simulation is devoted to recovering the true numbers of components, in a context of low correlation between the latent variables spanning the explanatory spaces. We assume unrealistically that the number of groups is known. s is fixed to 0.1, in order to study the behavior of the results when we vary the number of components per group and the weight t of the separation sub-criterion ϕ.

Varying the numbers of components

Three latent variables ξ 1 , ξ 3 and ξ 5 are simulated with a pairwise correlation ρ = 0.5. Two more latent variables ξ 2 and ξ 4 are independently simulated. The X matrix consists in six blocks

X = [X 1 , X 2 , X 3 , X 4 , X 5 , X 6 ],
where 

X 1 ∈ R N ×50 , X 2 ∈ R N ×40 , X 3 ∈ R N ×30 , X 4 ∈ R N ×20 and X 5 ∈ R N ×10

Results and interpretation

The results of rmSCGLR on this preliminary simulation are given in Table 1. H g denotes the number of components calculated in group g, and several triplets H = (H 1 , H 2 , H 3 ) are tried. For none of these do we observe a clear difference of the RI and ARI across values of t. This was expected, for in this simulation, the explanatory subspaces are only weakly redundant. So, the separation sub-criterion ϕ proves almost useless here, and has practically no impact on the results.

For (H 1 , H 2 , H 3 ) = (1, 1, 1), the lowest values of RI and ARI are respectively 0.980 and 0.958, without the help of rank h > 1 components. The first component of each group perfectly recovers the latent explanatory variable which has the largest effect in the linear predictor of its responses. No component is aligned with the latent variable ξ 4 . The latent variable ξ 5 having a correlation of 0.5 with ξ 1 and ξ 3 , we find that ρ 2 (ξ 5 , .) 0.5 for all values of t.

Taking (H 1 , H 2 , H 3 ) = (2, 2, 1) does not improve the RI and ARI. We notice that the latent variable ξ 5 is not as well recovered as the other latent variables, owing to the small size of the X 5 bundle. However, the BIC is considerably reduced, which illustrates the importance of taking the right number of components to correctly predict the responses.

The last case, where (H 1 , H 2 , H 3 ) = (1, 3, 1) highlights the importance of getting a truly explanatory and strong first component in each group, and of not calculating too many components in a group. Like in the former cases, the third group is perfectly recovered using the true number of explanatory components H 3 = 1. But some confusion arises between the first two groups. Indeed, the extra component f 3 2 of the second group is drawn towards the heaviest bundle X 1 . Then, the responses predictable from X 1 tend to be scattered between the first and the second groups instead of being assigned to the first one, which causes a decrease of RI and ARI. Furthermore, owing to the correlation between ξ 1 and ξ 5 , the components of the second group cannot be properly aligned with these latent variables. When t = 0.8 the weight on the separation criterion ϕ is heavy enough to recover ξ 1 , ξ 2 and ξ 5 in the second group, and ξ 4 in the first group.

To sum up this simulation, we observe that the part played by the first component in recovering the groups is crucial. Indeed, in the first case, the groups are determined by the first component only. In the second case, their prediction is completed by further rank components. However, in the third case, we see that calculating too many components may lead to impede group recovery. Figure 1 shows the correlation scatterplots in the component planes (1, 2) for the first two groups. As for the first simulation, the components are almost perfectly aligned with the explanatory bundles. Because of the weak correlation between ξ 1 , ξ 3 and ξ 5 , the three bundles X 1 , X 3 and X 5 are visible on the same component for each of the two groups. 

List of the explanatory variables

The matrix X consists of all the P = 24 climatic variables

• Eleven temperature variables coded "C1",...,"C11"

• Eight precipitation variables coded "C12",...,"C19"

• Three climatic water deficit variables coded "sumCWD", "maxCWD" and "MCWD" respectively

• One climatic water balance coded "meanCWB"

• One evapotranspiration variable coded "meanET0"

Besides, the Q = 3 non-climatic variables, are few and weakly correlated with the climatic variables in X as well as between themselves, and interesting per se. We shall then consider them as additional explanatory variables. The matrix A is thus composed by

• The soil type (Harmonized World Soil Database , "HWSD")

• The human-induced forest-disturbance intensity index ("Anthr2")

• The logarithm of the previous index to account for nonlinear effects ("logAnthr2")

Moreover, the variable corresponding to the number of plots within each grid cell is taken as the offset of the Poisson regression.

8 Correlation plot of the third group 
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 7 . The space spanned by their column-vectors is denoted span[A, B].Preprint Let w n be the weight of unit n, and W = diag(w n ) n=1,...,N . Let R N be endowed with metric W , and let A ∈ R N ×P be a matrix. The W -orthogonal projector onto span[A] is given by ΠW span[A] = A A T W A -1 A T W .Thus, the cosine of the angle between a vector b ∈ R N and span[A] with respect to metric W is given by cos W (b, span[A]) = cos W b, Π W span[A] b . • Let A, B ∈ R N ×P be two real matrices. The Frobenius product is computed as A, B Frob = Tr (A * B), where Tr denotes the trace of a matrix and A * = W -1 A T W the adjoint of A. The unit orthogonal projector with respect to the Frobenius norm is given by W span[A] = Π W span[A] / rank (A).
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  span[fg] . With this in mind, we propose to measure the separation of span[f g ] from span[f r ]'s, for all r = g, Preprint 13

  the higher H g is likely to be. In practice, we propose the following heuristic: first, we perform an optimization on the hyper-parameters s and l with standard SCGLR (e.g. without mixture) on a grid (s, l) ∈ {0.1, 0.3, 0.5} × {1, 2, 3, 4, 5}, calculating only one component. In a second step, we chose the number of groups by varying G from 1 to 5, keeping s and l fixed to their previously optimized values, still calculating a single component. The decision of distinguishing the groups only through their first component is justified by the preliminary simulation study presented in SM. Next, we implement forward selection to determine a suitable number of components in each group. We add one component in each group alternatively, and then choose the combination minimizing the BIC. We repeat that until the BIC rises. Finally, we vary the hyper-parameter t in {0.1, 0.2 . . . , 0.9}, subject to the constraint s + t ≤ 1, in order to better separate the components which might cause confusion between groups.Two simulation studies have been implemented to assess the performance of rm-SCGLR. The first one, presented in Section 4.1, focuses on the identification of groups in a case of high correlations between latent variables spanning the explanatory spaces.In this simulation, we first present the components combination found by the previous heuristic for s ∈ {0.1, 0.3, 0.5}. Then we study the determination of the best value of hyper-parameter t. In the SM, we present a preliminary simulation, in which we study the recovering of the true numbers of components, in a context of low correlation between the latent variables. In both simulations, we set l = 4 in order to facilitate the interpretation of components. For more information on the effects of hyper-parameters s and l, we refer the reader to Chauvet et al. (2019) and Bry et al. (2020a,b). The package rmSCGLR and the simulation codes are available at https://github.com/julien-gibaud/rmSCGLR.

  The X 5 block contains only 40 unstructured noise variables constructed as x p ∼ N N (0, I N ). The response matrix Y is partitioned into two groups of responses only distinguished by their explanatory latent variables. The first group consists of Poisson and Gaussian responses whose linear predictors are combinations of ξ 1 and ξ 3 , while the second group gathers Gaussian and binary responses with linear predictors combining ξ 2 and ξ 4 . The matrix Y is generated as:

  Figure1: Correlation scatterplot of plane (1,2) for the two groups obtained by the rmSCGLR algorithm with s = 0.1 and t = 0.4. The red arrows represent the bundles X 1 and X 3 which explain the first group. The blue ones represent the bundles X 2 and X 4 which explain the second group. The percentage of inertia captured by each component is given in parentheses.

  037) ARI 0.929 (0.195) ARI 0.104 (0.121) ARI 0.045 (0.061) Time 5.110 (2.359) Time 0.192 (0.028) Time 1.107 (0.197) 5 Analysis of a floristic ecology dataset 5.1 Data description We apply rmSCGLR to the CoForTaxa dataset available on demand at http://dx.doi.org/10.18167/DVN1/UCNCA7. The sample we consider gives the abundances of K = 193 floristic taxa in the Congo basin rainforest over a N = 1571 10×10-km 2 grid cells across central Africa. To predict abundances, we have P = 24 climatic variables and Q = 3 non-climatic additional variables gathered in matrices X and A respectively. The list of the taxa used in this study and the description of the explanatory variables are given in SM. Figure 2 shows the correlation plot given by the Principal Component Analysis (PCA) of the climatic variables. Since it appears that the explanatory variables exhibit a clear bundle structure, a methodology such as SCGLR is necessary to regularize the model estimation and reduce the dimension of the explanatory space. The response variables are assumed to be Poisson random variables, independent conditional on X and A. For more information about the CoForTaxa dataset, we refer the reader to Réjou-Méchain et al. (2021).

Figure 2 :

 2 Figure 2: Component plane (1,2) of the explanatory climatic variables obtained through PCA. The percentage of inertia captured by each component is given in parentheses.

  4. As noticed by Réjou-Méchain et al. (2021), the tuning parameters s = 0.1 and l = 1 allow to optimize SCGLR on CoForTaxa dataset. Here, thanks to the heuristic, G = 3 groups are retained to carry on with the analysis, using the previously found values of the tuning parameters. Starting with one component per group, we increment the number of components by one in each group alternately. Preprint 25 Only adding one in the third group improves the criterion. When Réjou-Méchain et al. (2021) applied the basic SCGLR (without response mixture) to these data, three relevant components were found. The combination H = (1, 1, 2) thus does not seem irrelevant.

Figure 3 :

 3 Figure 3: Correlation scatterplots of plane (1,2) with linear predictors for the second and third separated groups obtained by the SCGLR algorithm. The black arrows represent the covariates. The red ones are the linear predictors of the responses. The plot displays only variables having a cosine over 0.75. The percentage of inertia captured by each component is given in parentheses.

Figure

  Figure1: Correlation scatterplots of plane (1,2) for the first two groups of the second simulation, with (H 1 , H 2 , H 3 ) = (2, 2, 1), obtained by rmSCGLR. The red arrows represent the bundles X 1 and X 4 , explanatory of the first group. The blue ones represent the bundles X 2 and X 5 , explanatory of the second group. The green bundle X 3 is explanatory of the third group. The percentage of inertia captured by each component is given in parentheses.
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 23 Figure2: Component plane (1,2) of group 3 output by rmSCGLR on the CoForTaxa dataset, with optimal hyper-parameter (s, l, t) = (0.1, 1, 0.5). The plot displays only variables having cosine greater than 0.75. The percentage of inertia captured by each component is given in parentheses.

Table 2 :

 2 Mean values of RI, ARI, square correlation and BIC over a hundred samples, for a high correlation value (ρ = 0.9) between the latent variables ξ 1 and ξ 2 , for

	s ∈ {0.1, 0.3, 0.5}, the optimized combination of components and t ranging from 0 to
	0.8.						
					group 1	group 2
	s	t	RI	ARI ρ 2 (ξ 1 , .) ρ 2 (ξ 3 , .) ρ 2 (ξ 2 , .) ρ 2 (ξ 4 , .)	BIC
		0	0.860 0.718	0.971	0.950	0.963	0.927	29095.04
		0.1 0.861 0.721	0.970	0.951	0.955	0.907	29085.84
		0.2 0.865 0.729	0.966	0.939	0.938	0.888	28963.32
		0.3 0.870 0.738	0.931	0.889	0.913	0.878	28955.93
	0.1	0.4 0.883 0.764 0.899	0.889	0.893	0.874 28950.69
		0.5 0.873 0.745	0.857	0.878	0.858	0.847	29531.91
		0.6 0.853 0.705	0.835	0.859	0.856	0.861	29705.92
		0.7 0.844 0.684	0.841	0.907	0.853	0.881	30302.17
		0.8 0.693 0.378	0.788	0.934	0.865	0.900	31805.47
		0	0.799 0.595	0.958	0.967	0.957	0.927	29497.32
		0.1 0.814 0.626	0.956	0.967	0.956	0.939	29493.86
		0.2 0.815 0.629 0.957	0.956	0.965	0.970 29489.26
	0.3	0.3 0.812 0.623	0.957	0.958	0.955	0.959	29518.38
		0.4 0.796 0.591	0.951	0.958	0.950	0.951	29519.18
		0.5 0.794 0.589	0.919	0.915	0.917	0.911	29528.79
		0.6 0.792 0.582	0.813	0.795	0.814	0.815	29532.73
		0	0.560 0.039	0.948	0.918	0.948	0.911	29581.08
		0.1 0.572 0.054	0.945	0.896	0.951	0.897	29518.82
	0.5	0.2 0.562 0.044	0.943	0.872	0.949	0.883	29541.87
		0.3 0.556 0.033	0.945	0.902	0.947	0.902	29531.97
		0.4 0.551 0.025	0.945	0.938	0.945	0.910	29606.57

Table 3 :

 3 Table 3 presents the results.As expected, in a context of component-based model, the ecomix classification does not outperform the random classification. The classification output by ClustOfVar is slightly better, but only provides a good starting point for rmSCGLR, which leads to high values of RI and ARI. We may note that rmSCGLR offers a greater classification performance than in the case of mixed distribution families. Even through rmSCGLR gives the best classification decisions, it is the slowest package followed by ecomix and ClustOfVar.

		rmSCGLR		ClustOfVar		ecomix
	RI	0.964 (0.101)	RI	0.538 (0.070)	RI	0.507 (0.

Mean values and standard deviations (in parentheses) of RI, ARI and computation time over a hundred samples for the packages rmSCGLR, ClustOfVar and ecomix.

Table 4 :

 4 Lists of explanatory variables most correlated with the component in each of the first two groups. Only correlations over 0.8 in absolute value are given.

	Groups	Explanatory variables	Correlation
	1	C7, sumCWD, MCWD, maxCWD, 0.956, 0.955, 0.885, 0.880
	2	C2, meanET0, C18, C19	0.930, 0.929, 0.925, 0.862

  are bundles aligned with ξ 1 , ξ 2 , ξ 3 , ξ 4 and ξ 5 , respectively. The X 6 block contains a set of 50 unstructured noise variables. The response matrix Y is partitioned into three groups of responses. The first group is composed of Gaussian responses, the expectations of which are linear combinations of ξ 1 and ξ 4 . The second group gathers Poisson responses whose linear predictors are combinations of ξ 2 and ξ 5 . The third group is made of binary responses depending only on ξ 3 . The matrix Y is generated as:∀k = 1, . . . , 20, y k ∼ N N (µ = γ 1k ξ 1 + γ 2k ξ 4 , Σ = I N ) , ∀k = 21, . . . , 70, y k ∼ P (λ = exp [0.25γ 1k ξ 2 + 0.25γ 2k ξ 5 ]) , ∀k = 71, . . . , 100, y k ∼ B p = logit -1 [γ 1k ξ 3 ] ,where for all k, γ 1k and γ 2k are uniformly simulated such that |γ 1k | ∈ [2, 4] and |γ 2k | ∈ [1, 2].

Table 1 :

 1 Mean values of RI and square correlations between latent variables and supervised components, over a hundred samples, for a weak pairwise correlation value (ρ = 0.5) between the latent variables ξ 1 , ξ 3 and ξ 5 , and for various numbers H g of components per group.

				group 1	group 2	group 3
	H	t	RI	ARI ρ 2 (ξ 1 , .) ρ 2 (ξ 4 , .) ρ 2 (ξ 2 , .) ρ 2 (ξ 5 , .) ρ 2 (ξ 3 , .)	BIC
		0 0.992 0.983 0.971	0.030	0.980	0.309	0.976	33525.56
		0.1 0.986 0.970 0.962	0.037	0.978	0.303	0.969	33580.84
		0.2 0.985 0.967 0.965	0.033	0.976	0.317	0.972	33435.54
	1 0.3 0.987 0.972 0.968	0.037	0.978	0.314	0.973	33577.05
	1 0.4 0.991 0.980 0.971	0.032	0.980	0.297	0.975	33435.80
	1 0.5 0.980 0.958 0.960	0.036	0.974	0.298	0.961	33612.22
		0.6 0.992 0.983 0.960	0.043	0.979	0.295	0.974	33631.08
		0.7 0.994 0.987 0.954	0.046	0.983	0.295	0.975	33837.14
		0.8 0.992 0.983 0.944	0.044	0.979	0.298	0.964	34304.05
		0 0.984 0.966 0.968	0.921	0.975	0.816	0.966	29945.48
		0.1 0.983 0.964 0.971	0.938	0.977	0.809	0.971	29878,00
		0.2 0.989 0.977 0.974	0.951	0.979	0.835	0.975	29838.60
	2 0.3 0.994 0.988 0.974	0.952	0.981	0.865	0.978	29783.77
	2 0.4 0.993 0.984 0.968	0.946	0.981	0.876	0.975	29936.19
	1 0.5 0.991 0.981 0.957	0.934	0.981	0.856	0.972	30150.95
		0.6 0.984 0.966 0.944	0.928	0.976	0.844	0.960	30348.66
		0.7 0.997 0.993 0.932	0.946	0.983	0.864	0.976	30733.32
		0.8 0.983 0.965 0.916	0.925	0.973	0.827	0.971	31131.42
		0 0.878 0.750 0.871	0.264	0.945	0.514	0.978	30483.70
		0.1 0.874 0.742 0.856	0.214	0.956	0.506	0.965	30245.37
		0.2 0.859 0.712 0.858	0.230	0.970	0.555	0.932	30020.63
	1 0.3 0.871 0.776 0.853	0.242	0.969	0.545	0.946	31090.38
	3 0.4 0.868 0.724 0.839	0.370	0.961	0.580	0.980	30052.19
	1 0.5 0.876 0.748 0.804	0.308	0.977	0.585	0.977	30322.50
		0.6 0.891 0.774 0.806	0.320	0.976	0.656	0.977	30815.20
		0.7 0.882 0.759 0.732	0.353	0.975	0.657	0.974	30572.94
		0.8 0.790 0.592 0.877	0.772	0.956	0.614	0.963	33790.50

  1: Correlation scatterplots of plane (1,2) for the first two groups of the second simulation, with (H 1 , H 2 , H 3 ) = (2, 2, 1), obtained by rmSCGLR. The red arrows represent the bundles X 1 and X 4 , explanatory of the first group. The blue ones represent the bundles X 2 and X 5 , explanatory of the second group. The green bundle X 3 is explanatory of the third group. The percentage of inertia captured by each component is given in parentheses.
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	Group Family Group Family Group Family Group Family	Genus Genus Genus Genus	Species Species Species Species
	2 3 3	Euphorbiaceae Apocynaceae Fabaceae	Plagiostyles Funtumia Tessmannia	africana spp. spp.
	2 2 3 3	Clusiaceae Combretaceae Clusiaceae Fabaceae	Allanblackia Pteleopsis Garcinia Tetraberlinia	spp. hylodendron spp. polyphylla
	2 2 3 3	Apocynaceae Fabaceae Fabaceae Phyllanthaceae	Alstonia Pterocarpus Gilbertiodendron Uapaca	spp. spp. dewevrei spp.
	2 2 3 3	Fabaceae Violaceae Malvaceae Annonaceae	Angylocalyx Rinorea Grewia Xylopia	spp. spp. spp. aethiopica
	2 2 3 3	Anisophylleaceae Anisophyllea Burseraceae Santiria Salicaceae Homalium Annonaceae Xylopia	spp. spp. spp. hypolampra
	2 2 3 3	Moraceae Oleaceae Fabaceae Annonaceae	Antiaris Schrebera Hylodendron Xylopia	toxicaria arborea gabunense quintasii
	2 2 3 3	Fabaceae Myristicaceae Fabaceae Rutaceae	Aubrevillea Scyphocephalium Hymenostegia Zanthoxylum	platycarpa mannii spp. spp.
	2 2 3	Burseraceae Anacardiaceae Irvingiaceae	Aucoumea Sorindeia Irvingia	klaineana spp. spp.
	2 2 3	Sapotaceae Clusiaceae Fabaceae	Autranella Symphonia Julbernardia	congolensis globulifera spp.
	2 2 3	Sapotaceae Sapotaceae Phyllanthaceae	Baillonella Synsepalum Keayodendron	toxisperma spp. bridelioides
	2 2 3	Fabaceae Ochnaceae Meliaceae	Bikinia Testulea Leplaea	spp. gabonensis spp.
	2 2 3	Sapindaceae Fabaceae Sapotaceae	Blighia Tetraberlinia Letestua	spp. bifoliolata durissima
	2 2 3	Sapotaceae Euphorbiaceae Ochnaceae	Breviea Tetrorchidium Lophira	sericea didymostemon alata
	2 2 3	Burseraceae Sapotaceae Calophyllaceae	Canarium Tieghemella Mammea	schweinfurthii africana africana
	2 2 3	Myristicaceae Moraceae Chrysobalanaceae Maranthes Coelocaryon Treculia	spp. spp. spp.
	2 2 3	Rubiaceae Meliaceae Bignoniaceae	Corynanthe Trichilia Markhamia	pachyceras spp. spp.
	2 2 3	Fabaceae Anacardiaceae Fabaceae	Cylicodiscus Trichoscypha Millettia	gabunensis spp. spp.
	2 2 3	Burseraceae Sapotaceae Rubiaceae	Dacryodes Tridesmostemon Morinda	spp. omphalocarpoides lucida
	2 2 3	Fabaceae Moraceae Fabaceae	Daniellia Trilepisium Neochevalierodendron stephanii spp. madagascariense
	2 2 3	Achariaceae Dipterocarpaceae Trillesanthus Dasylepis Ochnaceae Ochna	seretii excelsus spp.
	2 3	Malvaceae Ixonanthaceae	Desplatsia Ochthocosmus	spp. spp.
	2 3 3	Ebenaceae Fabaceae Sapotaceae	Diospyros Amphimas Omphalocarpum	crassiflora spp. spp.
	2 3 3	Fabaceae Annonaceae Olacaceae	Distemonanthus Annickia Ongokea	benthamianus spp. gore
	2 3 3	Meliaceae Annonaceae Fabaceae	Entandrophragma Anonidium Pachyelasma	angolense mannii tessmannii
	2 3 3	Meliaceae Rhizophoraceae Pandaceae	Entandrophragma Anopyxis Panda	candollei klaineana oleosa
	2 3 3	Meliaceae Euphorbiaceae Rubiaceae	Entandrophragma Anthostema Pausinystalia	cylindricum aubryanum spp.
	2 3 3	Meliaceae Anacardiaceae Fabaceae	Entandrophragma Antrocaryon Pentaclethra	utile spp. macrophylla
	2 3 3	Vochysiaceae Fabaceae Fabaceae	Erismadelphus Berlinia Pericopsis	exsul spp. elata
	2 3 3	Bignoniaceae Fabaceae Lecythidaceae	Fernandoa Bobgunnia Petersianthus	adolfi fistuloides macrocarpus
	2 3 3	Moraceae Fabaceae Fabaceae	Ficus Brachystegia Piptadeniastrum	spp. spp. africanum
	2 3 3	Fabaceae Rubiaceae Annonaceae	Gilbertiodendron Brenania Polyalthia	spp. brieyi suaveolens
	2 3 3	Euphorbiaceae Phyllanthaceae Fabaceae	Gymnanthes Bridelia Prioria	inopinata spp. spp.
	2 3 3	Irvingiaceae Fabaceae Anacardiaceae	Irvingia Calpocalyx Pseudospondias	grandifolia spp. spp.
	2 3 3	Lepidobotryaceae Lepidobotrys Meliaceae Carapa Myristicaceae Pycnanthus	staudtii spp. angolensis
	2 3 3	Euphorbiaceae Sapotaceae Simaroubaceae	Macaranga Chrysophyllum Quassia	spp. lacourtianum spp.
	2 3 3	Rhamnaceae Fabaceae Apocynaceae	Maesopsis Copaifera Rauvolfia	eminii spp. spp.
	2 3 3	Sapotaceae Olacaceae Rubiaceae	Manilkara Coula Rothmannia	spp. edulis spp.
	2 3 3	Phyllanthaceae Euphorbiaceae Euphorbiaceae	Margaritaria Croton Sapium	discoidea spp. spp.
	2 3 3	Moraceae Fabaceae Fabaceae	Milicia Cryptosepalum Scorodophloeus	excelsa spp. zenkeri
	2 3 3	Moraceae Olacaceae Achariaceae	Morus Diogoa Scottellia	mesozygia zenkeri spp.
	2 3 3	Urticaceae Ebenaceae Lecythidaceae	Musanga Diospyros Scytopetalum	cecropioides spp. klaineanum
	2 3 3	Rubiaceae Asparagaceae Bignoniaceae	Nauclea Dracaena Spathodea	spp. spp. campanulata
	2 3 3	Malvaceae Putranjivaceae Fabaceae	Nesogordonia Drypetes Stachyothyrsus	spp. spp. staudtii
	2 3 3	Fabaceae Annonaceae Myristicaceae	Newtonia Duguetia Staudtia	spp. spp. kamerunensis
	2 3 3	Picrodendraceae Fabaceae Fabaceae	Oldfieldia Erythrophleum Stemonocoleus	africana spp. micranthus
	2 3 3	Salicaceae Erythroxylaceae Combretaceae	Oncoba Erythroxylum Strephonema	spp. mannii spp.
	2 3 3	Chrysobalanaceae Parinari Fabaceae Eurypetalum Olacaceae Strombosia	spp. spp. spp.
	2 3 3	Fabaceae Fabaceae Apocynaceae	Pentaclethra Fillaeopsis Tabernaemontana	eetveldeana discophora spp.
				Continued on next page Continued on next page Continued on next page
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Julien Gibaud et al. pertaining to two distinct themes and each community of taxa would be predicted by common components in each theme. Another way of extending our model would be to create sparse components, in the spirit of [START_REF] Durif | High dimensional classification with combined adaptive sparse PLS and logistic regression[END_REF], with intent to select relevant climatic variables. Another limitation is that the heuristic presented in Section 3.4 does not guarantee to find the best values of the hyper-parameters.

Several parameter-varying schemes could be implemented and the results compared. [START_REF] Hutter | Beyond manual tuning of hyperparameters[END_REF] propose a review of works allowing to best optimize the hyperparameters. 

Groups of taxa