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Abstract: In this paper, we propose to cluster responses in order to identify groups
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predicted by specific explanatory components. A response matrix is assumed to de-

pend on a set of explanatory variables, and a set of additional covariates. Explanatory

variables are supposed many and redundant, which implies some dimension reduction

and regularization. By contrast, additional covariates contain few selected variables

which are forced into the regression model, as they demand no regularization. The

response matrix is assumed partitioned into several unknown groups of responses.

We suppose that the responses in each group are predictable from an appropriate

number of specific orthogonal supervised components of explanatory variables. The

classification is based on a mixture model of the responses. To estimate the model,

we propose a criterion extending that of Supervised Component-based Generalized

Linear Regression, a Partial Least Squares-type method, and develop an algorithm

combining component-based model and Expectation Maximization estimation. This

new methodology is tested on simulated data and then applied to a floristic ecology

dataset.

Key words: EM algorithm; Response mixture; SCGLR; Supervised components;

Taxa classification

1 Introduction

The climate change produces many ecosystem imbalances which might involve large

extinctions of animal or plant taxa. In this context, the development of models

which allow to predict the future of the biodiversity has become a crucial issue. A

number of advances have been made, in particular by extending Species Distribution
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Models (SDM, Guisan and Thuiller, 2005), which treat the taxa separately, to Joint

Species Distribution Models (JSDM, Pollock et al., 2014). JSDM allow to formalize

the interdependence between taxa, and to understand its impact on the composition

of communities. Besides, modeling responses (here, the abundances of taxa) requires

taking into account a large set of possibly highly correlated explanatory covariates,

which is the case of climatic variables, so SDM as JSDM demand regularization. This

can be carried out by means of component-based dimension reduction. This consists

in assuming that there is a small number of common latent explanatory dimensions,

which we aim to capture through as many linear combinations of the explanatory

variables, named components. Moreover, the case where the explanatory variables

outnumber the observations (referred to as “high dimensional”) is likely to become

a new standard (Warton et al., 2015). In this paper, we aim to build components

which can be interpreted as new and relevant synthetic climatic variables.

Elaborating on the Iteratively Reweighted Partial Least Squares (IRPLS) devel-

oped by Marx (1996), Bry et al. (2013) proposed a methodology called Supervised

Component-based Generalized Linear Regression (SCGLR) which bridges the multi-

variate Generalized Linear Model (GLM) estimation, with the component-based di-

mension reduction of the explanatory space. Unlike methods as Partial Least Squares

(PLS, Wold et al., 1984) regression or Reduced Rank Vector Generalized Linear Model

(RRVGLM, Yee and Hastie, 2003), SCGLR optimizes a general and flexible trade-off

criterion between the Goodness-of-Fit (GoF) of the model and the Structural Rel-

evance (SR, Bry and Verron, 2015) of directions with respect to the explanatory

variables. This methodology allows both to find strong interpretable explanatory di-

rections modeled through components, and to produce regularized predictors in the

high-dimensional framework. Different extensions have recently been proposed to deal
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with data with a more complex structure (Chauvet et al., 2019; Bry et al., 2020a,b).

An package SCGLR is available at https://github.com/SCnext/SCGLR.

All the aforementioned extensions assume that all the responses are explained by

the same latent dimensions. In our context, this might well not be the case: the

responses are very different, and are thus likely to be modeled from explanatory

dimensions which are, to some extent, specific. To overcome the limitation of former

versions of SCGLR, we propose to extend it so as to identify groups of response

variables being modeled by the same specific explanatory dimensions. The clustering

models or techniques classically used in statistical literature to identify groups do

not consider the presence or abundance data as responses to explanatory variables

(Dufrêne and Legendre, 1997; De Cáceres et al., 2010). In order to take the modeling

of responses into account in the clustering, we propose to combine the SCGLR model

with a Finite Mixture Model (FMM) of responses (see McLachlan and Peel (2004)

for a reference book).

In a context of multiple and numerous response variables, we have to cluster them,

and not the statistical units as in the original and classical FMM approach. The

interest of response clustering has already been shown in several works, e.g. those

of Monni and Tadesse (2009); Ovaskainen and Soininen (2011); Pledger and Arnold

(2014); Mortier et al. (2015) and Hill et al. (2020). In our work, we use a modeling

approach based on Dunstan et al. (2011, 2013), which assumes that all responses

can be clustered into a small number of groups with respect to their responses to

environmental gradients. In their model, the responses within a group share the

same regression parameters with an intercept specific to each outcome. By contrast,

we propose to entitle responses to their own regression parameters, and to define a

https://github.com/SCnext/SCGLR
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group as a set of responses depending on the same common explanatory dimensions.

To help find these, the trade-off criterion of SCGLR had to be extended so as to

preclude response groups from depending on too close explanatory sub-spaces.

The paper is organized as follows. In Section 2, we recall the principle of the original

SCGLR. Section 3 presents the extension of SCGLR to a response FMM. Section 4

details two simulation studies that illustrate the interest of our work and the good

performances of the proposed algorithm, highlighting the importance of a relevant

selection of the hyper-parameters. Section 5 presents the results obtained on a floristic

ecology dataset. Finally, a conclusion and a discussion are proposed in Section 6.

2 The original SCGLR

In this part, we consider the situation where there exists only one group of responses.

For the sake of simplicity, we restrict ourselves to calculating a single component.

2.1 The SCGLR context

In the framework of a multivariate Generalized Linear Model (GLM) we consider

K response-vectors, encoded in a response matrix Y = [y1, . . . ,yK ] ∈ RN×K , to

be predicted through explanatory variables partitioned in two sets. The first one

A = [a1, . . . ,aQ] ∈ RN×Q is a set of covariates that are only few and weakly or not

redundant. These variables are a priori assumed to be interesting per se, and their

marginal effects have to be taken into account explicitly in the model. The second

group X = [x1, . . . ,xP ] ∈ RN×P is one of numerous and possibly highly redundant

covariates, considered as proxies to latent dimensions, which must be found and
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interpreted. Thus, the matrix X demands dimension reduction and regularization.

To achieve this, SCGLR searches for explanatory components in X jointly supervised

by the response set. A component f ∈ RN writes f = Xu, where u ∈ RP is a loading

vector. For a single component model, the linear predictor associated with response

yk is then given by:

ηk = (Xu) γk +Aδk,

where γk and δk are regression parameters. Component f is common to all the

responses, and for an identification purpose, we impose uTM−1u = 1, where M ∈

RP×P is a symmetric positive definite matrix. We assume that the responses are

independent conditional on the explanatory variables, and consequently on f .

2.2 Preliminary notations

The sequel contains mathematical developments which use notations listed hereafter:

• Let a, b ∈ RN be vectors and W ∈ RN×N be a symmetric positive definite

matrix. The Euclidean scalar product between a and b with respect to metric

W is given by 〈a, b〉W = aTWb. Likewise, cosW (a, b) =
〈a, b〉W
‖a‖W ‖b‖W

denotes

the cosine of the angle between a and b with respect to metric W .

• If a and b are centred and W = IN , the cosine defines Pearson’s correlation,

denoted ρ. In this paper, unless otherwise stated, the correlation refers to

Pearson’s correlation.

• A = [a1, . . . ,aP ] ∈ RN×P and B = [b1, . . . , bQ] ∈ RN×Q being matrices. The

space spanned by their column-vectors is denoted span[A,B].
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• Let wn be the weight of unit n, and W = diag(wn)n=1,...,N . Let RN be endowed

with metric W , and let A ∈ RN×P be a matrix. The W -orthogonal projector

onto span[A] is given by ΠW
span[A] = A

(
ATWA

)−1
ATW . Thus, the cosine of

the angle between a vector b ∈ RN and span[A] with respect to metric W is

given by cosW (b, span[A]) = cosW

(
b,ΠW

span[A]b
)

.

• Let A,B ∈ RN×P be two real matrices. The Frobenius product is computed

as 〈A,B〉Frob = Tr (A∗B), where Tr denotes the trace of a matrix and A∗ =

W−1ATW the adjoint of A. The unit orthogonal projector with respect to

the Frobenius norm is given by $W
span[A] = ΠW

span[A]/
√

rank (A).

2.3 Measuring the Goodness-of-Fit

For parameter estimation, we make use of the Fisher Scoring Algorithm (FSA) (refer

to McCullagh and Nelder (1989) for a complete overview of GLM methodologies). Let

wk be the working variable associated with the response yk, and W−1
k its variance

matrix. Contrary to Bastien et al. (2005), we weight the model based on components

by W−1
k . Indeed, in the spirit of Nelder and Wedderburn (1972), at iteration t, wk

can be viewed as the response in the linearized model:

w
(t)
k = (Xu) γk +Aδk + ζ

(t)
k ,

with E[ζ
(t)
k ] = 0 and V[ζ

(t)
k ] = W

−1(t)
k . Due to the product uγk, this linearized model

must be estimated through an alternated weighted least squares process, estimating

in turn {γk, δk} and u.

Let ΠWk

span[f,A] be the projection on span[f ,A] with respect to Wk. The loading
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vector u solution of the least squares minimization may alternatively be viewed as

the solution of the following optimization program:

max
u,uTM−1u=1

ψA(u) :=
K∑
k=1

αk ‖wk‖2Wk
cos2Wk

(
wk,Π

Wk

span[f,A]wk

)
,

where {α1, . . . , αK} is a weighting system reflecting the a priori relative importance

of working variables. ψA is merely a Goodness-of-Fit (GoF) measure, and maxi-

mizing it does not lead to strong and interpretable components. The GoF measure

must therefore be aptly combined with a measure of Structural Relevance (SR) to

extract dimensions that are both meaningful and predictive, and achieve satisfactory

regularization.

2.4 Measuring the Structural Relevance of components

Bry and Verron (2015) proposed the SR measure as a possible extension of the compo-

nent’s variance to measure the ability of a component to capture information in a set

of variables containing latent structures such as variable-bundles. Informally, a bundle

is a set of variables correlated “enough” to be viewed as produced by a common latent

dimension. We call W the weight matrix reflecting the a priori relative importance

of statistical units (typically, W = 1
N
IN ). Finally, consider component f = Xu,

where u is constrained by uTM−1u = 1. Most often, we can take M−1 = IP al-

though M−1 may take various forms according to the type of variables and structure

of data (Bry et al., 2020b). Assuming that X consists of P standardized numeric

variables, the associated SR measure φ is defined as the following generalized average
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of quadratic forms

φ(u) :=

(
1

P

P∑
p=1

〈Xu,xp〉2lW

)1/l

.

The locality of a bundle of correlated variables is defined by the within-bundle cor-

relation: the higher the correlation, the more local the bundle. The locality of the

bundles to be tracked by components is tuned through the hyper-parameter l ≥ 1.

Components will line up with a more or less local bundle depending on whether l is

greater or smaller, respectively. The main objective is to focus on the most inter-

pretable directions.

2.5 The original SCGLR criterion

The SCGLR specific criterion, proposed by Bry et al. (2020b), introduced a hyper-

parameter s ∈ [0, 1] to tune the importance of the SR relative to the GoF. SCGLR

attempts a trade-off between φ and ψA by solving:

max
u,uTM−1u=1

s ln(φ(u)) + (1− s) ln(ψA(u)).

When s = 0, the criterion identifies with the GoF, while at the other end, taking

s = 1 makes it identify with the SR. Thus, increasing s intensifies both the focus of

components on “strong” dimensions, and the regularization.

This compound criterion is quite general. Indeed, the GoF measure adapts any

situation where a likelihood function is available for the model taking the components

and A as covariates. Generally, this likelihood involves a vector of parameters. The

maximization is carried out alternating two steps:
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(i) Given u, maximize the criterion with respect to the parameter vector. This

step is performed using a classical likelihood maximization algorithm relevant to the

situation.

(ii) Given the parameter vector, maximize the criterion with respect to u using a

dedicated algorithm: PING (for Projected Iterated Normed Gradient) recalled in

Supplementary Material (SM). PING is designed to maximize, at least locally, any

criterion on the unit sphere (Chauvet et al., 2019; Bry et al., 2020a,b). We shall

adapt the criterion and its maximization to the response-mixture model.

3 Response Mixture SCGLR

In this part, we formally express the combination of SCGLR with a FMM we use to

build and estimate our response mixture component-based model.

3.1 The response mixture model

Let Y = [y1, . . . ,yK ] ∈ RN×K be the response matrix. The responses are assumed

to be modeled through a finite mixture of regression models, comprising G groups.

The probability distribution function (pdf) of response yk is thus:

L(yk;θk) =
G∑

g=1

pg

N∏
n=1

dk(ynk;µnkg),

where the nth individual of the kth response of the gth group has a pdf dk belonging

to the exponential family, with expectation µnkg. θk denotes the vector of parameters,

including the regression parameters γkg and δkg, as defined in Section 2.1, and pg is
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the gth mixing probability with pg ∈ [0, 1] and
∑G

g=1 pg = 1. Denoting hk the kth

canonical link function, we assume:

hk(µnkg) = (xT
nug)γkg + aT

nδkg,

where ug is the loading vector of the (first) component of group g, and xn and an

are the vectors composed by the nth rows of matrices X and A respectively. Thus,

the responses in group g are predicted by component fg = Xug, together with A.

For each k = 1, . . . , K, dk and hk are chosen so as to suit the type of response yk

(e.g. binary, count, categorical, continuous etc.).

Conditional on the explanatory variables, the response variables are assumed inde-

pendent. The group memberships of the responses being unknown, the model log-

likelihood

l(Θ;Y ) =
K∑
k=1

ln (L(yk;θk)) ,

where the set of parameters is Θ = {θ1, . . . ,θK}, being difficult to maximize directly,

we shall adopt the Expectation Maximization (EM, Dempster et al., 1977) algorithm

to estimate the model parameters.

Let zkg be the latent indicator variable equal to 1 if the response yk belongs to the

gth group, and 0 otherwise. Let zk = (zkg ; g = 1, . . . , G) be the vector of group

membership indicators of response yk, and let Z = [zk ; k = 1, . . . , K] be a G × K

matrix. Conditional on zkg = 1, the pdf of response yk for unit n is dk(ynk;µnkg).

The model complete log-likelihood writes:

l(Θ;Y ,Z) =
K∑
k=1

G∑
g=1

zkg ln

(
pg

N∏
n=1

dk(ynk;µnkg)

)
.
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Step (i) in Section 2.5 boils down to maximizing the likelihood of the component-

based model. Owing to the latent variable Z, this step will be performed using the

EM algorithm. The expectation of the complete log-likelihood writes

E [l(Θ;Y ,Z)|Y ; Θ′] =
K∑
k=1

G∑
g=1

αkg ln

(
pg

N∏
n=1

dk(ynk;µnkg)

)
.

The posterior probability is computed as

αkg :=
pg
∏N

n=1 dk(ynk;µnkg)∑G
r=1 pr

∏N
n=1 dk(ynk;µnkr)

.

As a result, we use the algorithm presented in SM to estimate the parameters of the

response mixture model.

3.2 Calculating the components of the response groups

When clustering the responses according to their “common” SCGLR components, we

must ensure that the explanatory subspaces spanned by the components associated to

response clusters be reasonably separated (else, the algorithm may fail to converge).

To achieve that, when calculating a component explanatory of a response cluster, we

must prevent that it be too close to the explanatory subspaces of other clusters.

3.2.1 An additional sub-criterion to better separate explanatory sub-spaces

Let F−g = {f1, . . . ,fg−1,fg+1, . . . ,fG} be the set of components from which the

component of group g was removed. The space spanned by the component fg may

be uniquely represented by the orthogonal projector on it: $W
span[fg]

. With this in

mind, we propose to measure the separation of span[fg] from span[fr]’s, for all r 6= g,
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through the function of ug:

ϕF−g
(ug) = 1− 1

G− 1

∑
r 6=g

〈
$W

span[fg],$
W
span[fr]

〉
Frob

. (3.1)

Indeed, if for all r 6= g, span[fg] is orthogonal to span[fr] then the Frobenius product

will be 0, so that the criterion will be equal to 1. At the other end, if for all r 6= g,

span[fg] = span[fr], the Frobenius product will be equal to 1, and the criterion to 0.

The new program optimizing the combined criterion we propose for group g is thus:

max
ug ,uT

g M−1ug=1
s ln(φ(ug)) + t ln(ϕF−g

(ug)) + (1− s− t) ln(ψA(ug)), (3.2)

where s, t, (s+ t) ∈ [0, 1].

3.2.2 Rank-1 component

Let us address step (ii) of the combined criterion maximization. The GoF measure

applied to group g is given by

ψA(ug) =
K∑
k=1

αkg‖wkg‖2Wkg
cos2Wkg

(
wkg,Π

Wkg

span[fg,A]wkg

)
,

where the weights reflecting the degrees of membership to group g of responses are

the posterior probabilities {α1g, . . . , αKg}. The functions φ and ϕF−g
are respectively

given in Section 2.4 and Equation (3.1). The explicit expression of the criterion is

given in SM.
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3.2.3 Higher rank components

We shall henceforth calculate the higher rank components. Let fh
g = Xuh

g be the

hth component of group g, and let F h
g = [f1

g , . . . ,f
h
g ], where h ≤ Hg, be the matrix

of the first h components of group g. According to the local nesting principle (Bry

et al., 2012), the new component fh+1
g must best complement both the existing ones

and A, that is Ah
g := [F h

g ,A]. So fh+1
g has to be calculated using Ah

g as the new

set of additional covariates. Moreover, to avoid linear redundancy of components, we

impose that fh+1
g be orthogonal to F h

g , i.e. F hT
g Wfh+1

g = 0.

We calculate every new component as the solution of the optimization program (3.2),

with the additional constraint: ∆hT
g uh+1

g = 0, where ∆h
g = XTWF h

g , and loop

on g until overall convergence of the component system. Taking Ah
g = [F h

g ,A] and

F−g = {FH1
1 , . . . ,F

Hg−1

g−1 ,F
Hg+1

g+1 , . . . ,FHG
G }, the sub-criteria become

ψAh
g

(
uh+1

g

)
=

K∑
k=1

αkg‖wkg‖2Wkg
cos2Wkg

(
wkg,Π

Wkg

span[f
h+1
g ,Ah

g ]
wkg

)

and

ϕF−g

(
uh+1

g

)
= 1− 1

G− 1

∑
r 6=g

〈
$W

span[F
h+1
g ]

,$W
span[FHr

r ]

〉
Frob

.

For all g = 1, . . . , G, the rank-1 component of group g is calculated using the same

program with A0
g = A and ∆0

g = 0.

3.2.4 Optimizing the cluster-specific components

In order to identify the groups, one may have to put a heavy weight on the separation

sub-criterion. As a result, the supervised components output by the former maximiza-
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tion may be artificially too strongly separated between groups. So, this maximization

is used merely to identify groups having specific explanatory dimensions. Posterior

to that, we must optimize the group-specific components for prediction in a second

phase, performing classical SCGLR separately on each group.

3.3 The overall algorithm

The method comprising these two phases (clustering, and component optimization), is

named response mixture SCGLR (rmSCGLR). The overall algorithm of the clustering

phase, presented in SM, consists in alternating the following steps: (i) Given the

current set of components, estimate the mixture response parameters through the

EM algorithm; (ii) Given the current group memberships of responses, calculate all

the components of all the groups. To give our algorithm a good starting point,

namely well separated response clusters and strong initial components, we use the

ClustOfVar package (Chavent et al., 2012) to determine the G initial response

groups, and then, the pls package (Mevik and Wehrens, 2007) in each group, to find

the initial supervised components. In the component optimization phase, SCGLR is

performed on each response group separately, each having specific components. This

phase includes determining the best number of components for prediction by means

of cross-validation.
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3.4 A hyper-parameter calibration heuristic

The hyper-parameters are calibrated minimizing the Bayesian Information Criterion

(BIC, Schwarz, 1978), defined by

BIC = −2l (Θ;Y ) + ln (N)× (number of parameters) .

Keribin (2000) shows the reliability of BIC in a context of mixture model. The hyper-

parameters are many (s, l, t, G,H1, . . . , HG), so that using BIC to compare all their

combinations on a cross-product grid is out of the question in practice. We choose

instead to study the effects of varying the hyper-parameters following a heuristic.

Even if these parameters have different purposes, which can to some extent be dealt

with sequentially, they are not completely independent. For instance: the higher s,

the higher Hg is likely to be. In practice, we propose the following heuristic: first,

we perform an optimization on the hyper-parameters s and l with standard SCGLR

(e.g. without mixture) on a grid (s, l) ∈ {0.1, 0.3, 0.5}×{1, 2, 3, 4, 5}, calculating only

one component. In a second step, we chose the number of groups by varying G from

1 to 5, keeping s and l fixed to their previously optimized values, still calculating a

single component. The decision of distinguishing the groups only through their first

component is justified by the preliminary simulation study presented in SM. Next,

we implement forward selection to determine a suitable number of components in

each group. We add one component in each group alternatively, and then choose the

combination minimizing the BIC. We repeat that until the BIC rises. Finally, we

vary the hyper-parameter t in {0.1, 0.2 . . . , 0.9}, subject to the constraint s + t ≤ 1,

in order to better separate the components which might cause confusion between

groups.
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4 Simulation study

Two simulation studies have been implemented to assess the performance of rm-

SCGLR. The first one, presented in Section 4.1, focuses on the identification of groups

in a case of high correlations between latent variables spanning the explanatory spaces.

In this simulation, we first present the components combination found by the pre-

vious heuristic for s ∈ {0.1, 0.3, 0.5}. Then we study the determination of the best

value of hyper-parameter t. In the SM, we present a preliminary simulation, in which

we study the recovering of the true numbers of components, in a context of low cor-

relation between the latent variables. In both simulations, we set l = 4 in order

to facilitate the interpretation of components. For more information on the effects

of hyper-parameters s and l, we refer the reader to Chauvet et al. (2019) and Bry

et al. (2020a,b). The package rmSCGLR and the simulation codes are available

at https://github.com/julien-gibaud/rmSCGLR.

In the simulation study, we use the Rand Index (RI, Rand, 1971) and the Adjusted

Rand Index (ARI, Hubert and Arabie, 1985) to assess the correctness of the classifi-

cation decisions. In addition, to measure the quality of the latent variables recovery,

we calculate the square correlation between the latent variable ξ and the components:

ρ2(ξ, .) = max
g,h

ρ
(
ξ,fh

g

)2
,

where fh
g denotes the hth component of group g. The RI, ARI, square correlations

and BIC are all given through mean values over a hundred samples.

https://github.com/julien-gibaud/rmSCGLR
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4.1 Generation of the simulated data

The variables are simulated on N = 100 observations. Two latent variables ξ1

and ξ2 are simulated with a correlation ρ = 0.9, while two others, ξ3 and ξ4,

are simulated independent of any other. The X matrix consists in five blocks:

X = [X1,X2,X3,X4,X5], where X1 ∈ RN×20, X2 ∈ RN×20, X3 ∈ RN×10 and

X4 ∈ RN×10 are bundles of variables distributed about ξ1, ξ2, ξ3 and ξ4 respectively.

More formally, for all i = 1, . . . , 4, a variable xp is simulated as xp = ξi + εp, where

εp ∼ NN(0, 0.1IN ). The X5 block contains only 40 unstructured noise variables con-

structed as xp ∼ NN(0, IN ). The response matrix Y is partitioned into two groups

of responses only distinguished by their explanatory latent variables. The first group

consists of Poisson and Gaussian responses whose linear predictors are combinations

of ξ1 and ξ3, while the second group gathers Gaussian and binary responses with

linear predictors combining ξ2 and ξ4. The matrix Y is generated as:

∀k = 1, . . . , 20, yk ∼ NN (µ = γ1kξ1 + γ2kξ3,Σ = IN ) ,

∀k = 21, . . . , 70, yk ∼ P (λ = exp [0.25γ1kξ1 + 0.25γ2kξ3]) ,

∀k = 71, . . . , 80, yk ∼ NN (µ = γ1kξ2 + γ2kξ4,Σ = IN ) ,

∀k = 81, . . . , 100, yk ∼ B
(
p = logit−1 [γ1kξ2 + γ2kξ4]

)
,

where for all k, γ1k and γ2k are uniformly generated, with γ1k ∈ [−4, 4] and γ2k ∈

[−2, 2].

The purpose of this simulation scheme is to mix different types of response distri-

butions, modeled through explanatory dimensions specific to response groups which

must be recovered. Explanatory variables are many, and exhibit both bundles of
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highly redundant variables and isolated variables. Such a data structure is often en-

countered in practice when no pre-selection of explanatory variables has been carried

out, and causes difficulties in modeling and estimation, which our method intends to

solve.

4.2 Results and interpretation

Table 1 sums up the heuristic performed to find the best component combination for

s ∈ {0.1, 0.3, 0.5}. We observe that the three values of s lead to detect two groups of

responses. In this simulation, taking a higher value of s is not recommended. Indeed,

as s increases, the components get closer to the principal components (Bry et al.,

2020a). Thus, for s > 0.5, the first component of each group being drawn towards

the same first principal component, they tend to be similar. This similarity hinders

the distinction between groups. Performing a forward selection step and opting for

the minimal value of BIC, we see that only s = 0.1 and s = 0.3 lead to the right

combination of components. However, s = 0.5 leads to identify the true overall

number of directions central to the explanatory bundles. Thus, in the sequel, the

analysis is done with combinations (H1, H2) = (2, 2) for s = 0.1 and s = 0.3, while

we set (H1, H2) = (3, 1) for s = 0.5.

On the last step of the heuristic, summed up in Table 2, we can see the impact of

the hyper-parameter t. For s = 0.1, the RI and the ARI increase as t goes from 0

to 0.4, and then decrease. Our criterion allows to distinguish two sub-spaces close

to one another: for t = 0.4, the RI and the ARI values are respectively equal to

0.883 and 0.764 despite the high correlation between the first latent variables of the

two groups. These observations are consistent with the BIC which decreases from
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Table 1: Mean values of BIC over a hundred samples, for a high correlation value
(ρ = 0.9) between the latent variables ξ1 and ξ2, for s ∈ {0.1, 0.3, 0.5} and different
combinations of H1 and H2.

s = 0.1 s = 0.3 s = 0.5
H1 H2 BIC H1 H2 BIC H1 H2 BIC
1 1 30802.37 1 1 31281.99 1 1 31862.52
2 1 29577.02 2 1 29896.88 2 1 30416.06
1 2 29538.69 1 2 29821.90 1 2 30431.90
2 2 29091.21 2 2 29549.27 3 1 29593.27
1 3 29513.46 1 3 29561.49 2 2 29811.69
3 2 30030.12 3 2 30296.23 4 1 30054.50
2 3 30108.98 2 3 30292.89 3 2 30450.21

t = 0 to t = 0.4. When t is too high, the RI and the ARI decrease, while the BIC

increases, as observed for t ≥ 0.5. In such cases, the weight of the separation sub-

criterion ϕ is too heavy, and prevents the first components of the two groups to be

close enough, which precludes the correct identification of the latent variables, hence

of the groups. As a result, the square correlations between the rank-1 components

and the corresponding latent variables are lower than 0.9 for t ≥ 0.4. Moreover, when

t ≥ 0.5, the correlations ρ2(ξ3, .) and ρ2(ξ4, .) are higher than ρ2(ξ1, .) and ρ2(ξ2, .).

The reason for this is that for such a high value of t as 0.5, ξ3 and ξ4 are found before

ξ1 and ξ2, because they provide more separated explanatory spaces. For s = 0.3, we

observe, likewise, that the best values of RI and ARI, corresponding to the minimal

value of BIC, are reached for t = 0.2 but they are lower than that in the s = 0.1

case. As noticed by Chauvet et al. (2019), the thinner the bundles, the greater the

value of s has to be, to recover the latent variables correctly. Here, indeed, the error

variance being low (σ2 = 0.1), the square correlations are, on the whole, greater for

s = 0.3 than for s = 0.1. As in the case s = 0.1, ρ2(ξ1, .) and ρ2(ξ2, .) decrease with t.

However, contrary to the case s = 0.1, the increase of the square correlations ρ2(ξ3, .)

and ρ2(ξ4, .) could not be observed, since t could not exceed 0.6. In the s = 0.5 case,
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we observe the dramatic effect of taking too many components in a group. For all

values of t, the RI and the ARI are respectively close to 0.5 and 0. This indicates

that for s = 0.5 and (H1, H2) = (3, 1), the obtained classification is not better than a

random one.

Table 2: Mean values of RI, ARI, square correlation and BIC over a hundred samples,
for a high correlation value (ρ = 0.9) between the latent variables ξ1 and ξ2, for
s ∈ {0.1, 0.3, 0.5}, the optimized combination of components and t ranging from 0 to
0.8.

group 1 group 2
s t RI ARI ρ2(ξ1, .) ρ2(ξ3, .) ρ2(ξ2, .) ρ2(ξ4, .) BIC

0.1

0 0.860 0.718 0.971 0.950 0.963 0.927 29095.04
0.1 0.861 0.721 0.970 0.951 0.955 0.907 29085.84
0.2 0.865 0.729 0.966 0.939 0.938 0.888 28963.32
0.3 0.870 0.738 0.931 0.889 0.913 0.878 28955.93
0.4 0.883 0.764 0.899 0.889 0.893 0.874 28950.69
0.5 0.873 0.745 0.857 0.878 0.858 0.847 29531.91
0.6 0.853 0.705 0.835 0.859 0.856 0.861 29705.92
0.7 0.844 0.684 0.841 0.907 0.853 0.881 30302.17
0.8 0.693 0.378 0.788 0.934 0.865 0.900 31805.47

0.3

0 0.799 0.595 0.958 0.967 0.957 0.927 29497.32
0.1 0.814 0.626 0.956 0.967 0.956 0.939 29493.86
0.2 0.815 0.629 0.957 0.956 0.965 0.970 29489.26
0.3 0.812 0.623 0.957 0.958 0.955 0.959 29518.38
0.4 0.796 0.591 0.951 0.958 0.950 0.951 29519.18
0.5 0.794 0.589 0.919 0.915 0.917 0.911 29528.79
0.6 0.792 0.582 0.813 0.795 0.814 0.815 29532.73

0.5

0 0.560 0.039 0.948 0.918 0.948 0.911 29581.08
0.1 0.572 0.054 0.945 0.896 0.951 0.897 29518.82
0.2 0.562 0.044 0.943 0.872 0.949 0.883 29541.87
0.3 0.556 0.033 0.945 0.902 0.947 0.902 29531.97
0.4 0.551 0.025 0.945 0.938 0.945 0.910 29606.57

For the sake of visualization, Figure 1 shows the correlation scatterplots of plane

(1, 2) for each group. We can see that the components f are well aligned with the

corresponding simulated latent variables ξ, except for f2
2 , which slightly deviates from

ξ4. Due to the high correlation between ξ1 and ξ2, the bundles X1 (in red) and X2

(in blue) are both well aligned with the first component of each group.
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Figure 1: Correlation scatterplot of plane (1,2) for the two groups obtained by the
rmSCGLR algorithm with s = 0.1 and t = 0.4. The red arrows represent the bundles
X1 and X3 which explain the first group. The blue ones represent the bundles X2

and X4 which explain the second group. The percentage of inertia captured by each
component is given in parentheses.

Finally, keeping the response groups obtained with the hyper-parameter values min-

imizing the BIC (s = 0.1 and t = 0.4), we go through the component optimization

phase by performing SCGLR on each group separately. The square correlations of

these final components with the latent variables are the following: ρ2(ξ1, .) = 0.971,

ρ2(ξ2, .) = 0.976, ρ2(ξ3, .) = 0.957 and ρ2(ξ4, .) = 0.948. As expected, the recovery of

the latent variables is much better.

As reference values for comparison, we calculated the RI and ARI of the partitions

output by, on the one hand, the package ClustOfVar, employed to initialize our

algorithm, and, on the other hand, the package ecomix implementing the approach

proposed by Dunstan et al. (2011, 2013). The computation time in seconds of the

three packages is also mentioned. However, ecomix not allowing to consider differ-

ent distribution families for the responses, we restricted the comparison to the case

of Gaussian responses. Thus, with the previous generated data, we have twenty re-
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sponses in the first group and ten in the second one. Table 3 presents the results.

As expected, in a context of component-based model, the ecomix classification does

not outperform the random classification. The classification output by ClustOfVar is

slightly better, but only provides a good starting point for rmSCGLR, which leads to

high values of RI and ARI. We may note that rmSCGLR offers a greater classification

performance than in the case of mixed distribution families. Even through rmSCGLR

gives the best classification decisions, it is the slowest package followed by ecomix and

ClustOfVar.

Table 3: Mean values and standard deviations (in parentheses) of RI, ARI and com-
putation time over a hundred samples for the packages rmSCGLR, ClustOfVar
and ecomix.

rmSCGLR ClustOfVar ecomix
RI 0.964 (0.101) RI 0.538 (0.070) RI 0.507 (0.037)

ARI 0.929 (0.195) ARI 0.104 (0.121) ARI 0.045 (0.061)
Time 5.110 (2.359) Time 0.192 (0.028) Time 1.107 (0.197)

5 Analysis of a floristic ecology dataset

5.1 Data description

We apply rmSCGLR to the CoForTaxa dataset available on demand at

http://dx.doi.org/10.18167/DVN1/UCNCA7. The sample we consider gives the

abundances of K = 193 floristic taxa in the Congo basin rainforest over a N = 1571

10×10-km2 grid cells across central Africa. To predict abundances, we have P = 24

climatic variables and Q = 3 non-climatic additional variables gathered in matricesX

and A respectively. The list of the taxa used in this study and the description of the

explanatory variables are given in SM. Figure 2 shows the correlation plot given by

http://dx.doi.org/10.18167/DVN1/UCNCA7
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the Principal Component Analysis (PCA) of the climatic variables. Since it appears

that the explanatory variables exhibit a clear bundle structure, a methodology such

as SCGLR is necessary to regularize the model estimation and reduce the dimension

of the explanatory space. The response variables are assumed to be Poisson random

variables, independent conditional on X and A. For more information about the

CoForTaxa dataset, we refer the reader to Réjou-Méchain et al. (2021).
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Figure 2: Component plane (1,2) of the explanatory climatic variables obtained
through PCA. The percentage of inertia captured by each component is given in
parentheses.

5.2 Hyper-parameter calibration

We present the results obtained when following the parameter-varying scheme pre-

sented in Section 3.4. As noticed by Réjou-Méchain et al. (2021), the tuning parame-

ters s = 0.1 and l = 1 allow to optimize SCGLR on CoForTaxa dataset. Here, thanks

to the heuristic, G = 3 groups are retained to carry on with the analysis, using the

previously found values of the tuning parameters. Starting with one component per

group, we increment the number of components by one in each group alternately.
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Only adding one in the third group improves the criterion. When Réjou-Méchain

et al. (2021) applied the basic SCGLR (without response mixture) to these data,

three relevant components were found. The combination H = (1, 1, 2) thus does not

seem irrelevant. To get a refined model with this combination of components, the

tuning parameter t needs to be raised to 0.5 to allow to better distinguish the groups,

and minimize the BIC.

5.3 Results and interpretation

The clustering phase of rmSCGLR led to three groups of taxa. Two of them were as-

sociated with a single explanatory component, and the last one with two components.

The groups respectively comprise 44, 67 and 82 taxa. The contents of the groups are

given in SM. Let us first try to interpret the groups and components output by the

clustering phase of rmSCGLR. We sum up the first two groups in Table 4, stating the

explanatory variables most correlated with the components. Table 4 does not deal

with the third group, as this one appears in the sequel to be something of a “junk”

group with no homogeneous interpretation.

Table 4: Lists of explanatory variables most correlated with the component in each
of the first two groups. Only correlations over 0.8 in absolute value are given.

Groups Explanatory variables Correlation
1 C7, sumCWD, MCWD, maxCWD, 0.956, 0.955, 0.885, 0.880
2 C2, meanET0, C18, C19 0.930, 0.929, 0.925, 0.862

The component of the first group is highly correlated with the variable “C7” (differ-

ence between the maximum of temperature of the warmest month and the minimum of

temperature of the coldest month), and with the three climatic water deficit variables:

“sumCWD”, “MCWD” and “maxCWD”. Thus, the abundances of taxa composing

the first group would be linked to a gradient of temperature, and sensitive to a water
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deficit. The component of the second group is highly correlated with “C2” (the mean

diurnal range), “meanET0” (the mean monthly evapotranspiration) and with “C18”

and “C19” (the precipitations of the warmest quarter and the coldest quarter, re-

spectively). This component is very similar to the first component found if we apply

SCGLR on all the responses (ρ = −0.965). According to Réjou-Méchain et al. (2021),

this component is highly related to a regional floristic gradient contrasting areas with

a cool and light-deficient dry season (coastal Gabon) and areas with high evapotran-

spiration rates (northern limit of the central African forests). The components of

the third group fail to be aligned with any bundle of variables. The corresponding

scatterplot is given in SM. As mentioned by Réjou-Méchain et al. (2021), a majority

of taxon abundances may relate with climate only by chance. Thus, by contrast to

the first and second group, where the abundances are linked to water deficit or pre-

cipitation, the taxa composing the third group are not connected with any specific

gradient but with various combinations of climatic variables.

In the optimization phase, SCGLR is performed separately on each group. In the first

group, SCGLR finds a single component, highly correlated (ρ = 0.960) with f1
1 of

the clustering phase. Three components are calculated by SCGLR to best predict the

second group. However, on Figure 3a, we can see that all the linear predictors of the

taxa’s abundances composing the second group are highly correlated with the bundle

found by f1
2 of the clustering phase. The second and third components only provide

a secondary improvement in predicting the abundances. The correlation between the

first SCGLR-component of the second group and f1
2 is equal to -0.991. As expected

for the third group of taxa, Figure 3b shows no particular correlation pattern between

the linear predictors and any bundle, which highlights the absence of specific climatic

gradient in this group’s explanatory space. The planes spanned by the higher rank
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components are given in SM.

C2

C
3

C4

C
6

C7

C
8

C9

C
11

C14

C15

C
17

C18

C19

meanET0

sumCW
D

m
axC

W
D

M
C

W
D

Allanblackia_spp.

Alstonia_spp.

Angylocalyx_spp.

Anisophyllea_spp.

Antiaris_toxicaria

Aubrevillea_platycarpa

Aucoumea_klaineana

Autranella_congolensis

Baillonella_toxisperma

Bikinia_spp.

Blighia_spp.

Breviea_sericea

Canarium_schweinfurthii

Coelocaryon_spp.

Corynanthe_pachyceras

Cylicodiscus_gabunensis

Dacryodes_spp.

Daniellia_spp.

Dasylepis_seretiiDesplatsia_spp.

Diospyros_crassiflora

Distemonanthus_benthamianus

Entandrophragma_angolense

Entandrophragma_candollei

Entandrophragma_cylindricum

Entandrophragma_utile

Erismadelphus_exsul

Fernandoa_adolfi_friderici

Ficus_spp.Gilbertiodendron_spp.

Gymnanthes_inopinata

Irvingia_grandifolia

Lepidobotrys_staudtii

Macaranga_spp.

Maesopsis_eminii

Manilkara_spp.

Margaritaria_discoideaMilicia_excelsa

Morus_mesozygia
Musanga_cecropioides

Nauclea_spp.

Nesogordonia_spp.

Newtonia_spp.

Oldfieldia_africana

Oncoba_spp.

Parinari_spp.

Pentaclethra_eetveldeana

Plagiostyles_africana

Pteleopsis_hylodendron
Pterocarpus_spp.

Rinorea_spp.

Santiria_spp.

Schrebera_arborea

Scyphocephalium_mannii

Sorindeia_spp.

Symphonia_globulifera
Synsepalum_spp.

Testulea_gabonensis
Tetraberlinia_bifoliolata

Tetrorchidium_didymostemon

Tieghemella_africana

Treculia_spp.

Trichilia_spp.

Trichoscypha_spp.

Tridesmostemon_omphalocarpoides

Trilepisium_madagascariense
Trillesanthus_excelsus

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

SC1 (34.57%)

S
C

2 
(3

2.
74

%
)

(a) Component plane (1, 2) for the group 2

C
1

C2

C3

C4

C
6

C
8

C9

C
10

C
11

C13

C14

C15

C17

C18

meanET0

Am
phim

as_spp.

A
nnickia_spp.

Anonidium_mannii

Anthostema_aubryanum

A
nt

ro
ca

ry
on

_s
pp

.

Berlinia_spp.

Bob
gu

nn
ia_

fis
tu

loi
de

s

Br
ac

hy
st

eg
ia

_s
pp

.

B
re

na
ni

a_
br

ie
yi

B
rid

el
ia

_s
pp

.

Calpocalyx_spp. Copaifera_spp.

Coula_edulis

C
ro

to
n_

sp
p.

Cryptosepalum
_spp.

D
iogoa_zenkeri

D
iospyros_spp.

Dracaena_spp.

Dry
pe

te
s_

sp
p.

Erythrophleum_spp.

Eryt
hrox

ylu
m_mannii

Eurypetalum_spp.

Fillaeopsis_discophora

Fu
nt

um
ia

_s
pp

.

Garcinia_spp.

Gilbertiodendron_dewevrei

G
re

w
ia

_s
pp

.

Homaliu
m_sp

p.

Hylo
dendron_gabunense

Hym
enostegia_spp.
Irvingia_spp.

Julbernardia_spp.

Keayodendron_bridelioides

Leplaea_spp.

Letestua_durissima

M
aranthes_spp.

Markhamia_spp.

M
ille

tti
a_

sp
p.

M
or

in
da

_l
uc

id
aNeochevalierodendron_stephanii

Ochna_spp.

O
chthocosm

us_spp.

Omphaloca
rpum_sp

p.

Pachyelasma_tessmannii

Panda_oleosa

Pericopsis_elata

Petersianthus_m
acrocarpus

Pi
pt

ad
en

ia
st

ru
m

_a
fri

ca
nu

m

Polyalthia_suaveolens

Prioria_spp.

Pse
udosp

ondias_
sp

p.

Pycnanthus_angolensis

Rauvo
lfia

_sp
p.

Rothmannia_spp.

Sapium_sp
p.

S
co

ro
do

ph
lo

eu
s_

ze
nk

er
i

S
co

tte
lli

a_
sp

p.

Scytopetalum_klaineanum

Spathodea_campanulata

Stachyothyrsus_staudtii

Staudtia_kam
erunensis

Stemonocoleus_micranthus

Strephonema_spp.

Ta
be

rn
ae

m
on

ta
na

_s
pp

.

Te
ss

m
an

nia
_s

pp
.

Tetraberlinia_polyphylla

Xylopia_aethiopica

Xylopia_quintasii

Zanthoxy
lum_sp

p.

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

SC1 (33.35%)

S
C

2 
(2

9.
27

%
)

(b) Component plane (1, 2) for the group 3

Figure 3: Correlation scatterplots of plane (1,2) with linear predictors for the second
and third separated groups obtained by the SCGLR algorithm. The black arrows
represent the covariates. The red ones are the linear predictors of the responses.
The plot displays only variables having a cosine over 0.75. The percentage of inertia
captured by each component is given in parentheses.

Let us evaluate the benefits obtained in the prediction by taking into account the clus-

tering found by rmSCGLR. In Réjou-Méchain et al. (2021), the quality of prediction

was given by the mean of ten-fold cross-validation Mean Squared Prediction Errors

(MSPE), and we shall use the same index for comparison. We shall thus compare:

(i) the prediction error we get with SCGLR on all taxa, named MSPEall, (ii) the pre-

diction error obtained with SCGLR on the three groups separately, named MSPE1,

MSPE2 and MSPE3 respectively, with their weighted mean named MSPEmean, and

(iii) the mean of the prediction error on random partitions into three groups of

taxa, obtained over a hundred samples, named MSPErandom. The prediction error

of SCGLR on all taxa was calculated by Réjou-Méchain et al. (2021), and found

to be MSPEall = 3.23 (1.13). SCGLR, performed separately on the first and second

groups, gave the following prediction errors: MSPE1 = 3.07 (0.87) and MSPE2 = 2.94
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(1.07) respectively, which indicates an improved quality of prediction. However, the

prediction error of the third group rises to MSPE3 = 3.41 (0.99), which indicates that

group 3 is composed by taxa the abundances of which are poorly predictable from

the sheer observed climatic variables. Finally, the mean prediction error of SCGLR

accounting for the partition is MSPEmean = 3.17 (0.99). The mean prediction error

accounting for a random three-group partition is: MSPErandom = 3.20 (1.09). This

shows that rmSCGLR was able to, if only slightly, better capture the explanatory

structure of the floristic data. It should be noted that prediction of taxa abundances

from merely such climatic variables is usually poor (Beale et al., 2008).

6 Conclusion and discussion

In the context we address, we have multiple responses to be modeled through many

covariates. All responses may not depend on the same explanatory dimensions, cap-

tured by components. Therefore, we both need to model the responses and to clus-

ter them with respect to their common explanatory components. Unfortunately,

no available method jointly performs response clustering and search for explanatory

components. Among the methods searching for common explanatory components,

the original SCGLR was designed to regularize GLM estimation and reduce the ex-

planatory space through components, so as to decompose the linear predictor in an

interpretable way. It allowed to find strong and interpretable supervised components

common to response variables, by achieving a trade-off between Goodness-of-Fit and

a Structural Relevance measure. Methods as proposed by Dunstan et al. (2011, 2013)

or Mortier et al. (2015) cluster responses by imposing that the regression coefficients
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of the covariates be the same within each cluster, which does not allow to model

responses in a flexible enough manner. Moreover, their modeling is not based on

strong dimensions as components. The response mixture SCGLR extends SCGLR in

two major ways: (i) Through a mixture model on the response variables, it identifies

groups of responses that can be predicted from group-specific components. Doing

so, this method improves both the prediction quality of the response groups, and

the interpretation of what explains the responses. In our ecological framework, we

detected communities of taxa sensitive to specific gradients of climate variables. (ii)

It extends the criterion to be maximized by introducing a separation sub-criterion,

which allows to specify sub-spaces which components had better keep away from. In

the context of response mixture, this sub-criterion helped distinguish the groups by

better separating their explanatory sub-spaces.

In our simulation study, rmSCGLR proved to behave as expected regarding groups.

In a context of very close explanatory sub-spaces, it recovered the original groups,

and provided components aligned with the latent variables. On the floristic ecology

dataset, we found three communities of taxa. The first one is linked to a gradient

of temperature, while the second one is connected to a regional floristic gradient

contrasting two main areas. The third group gathers the taxa related to no spe-

cific gradient, but to many combinations of the observed climatic variables. More

predictive climatic components could likely be generated after removing these taxa.

Our method still has some limitations. Just as the original SCGLR, it does not

allow to deal with a thematic partition of the explanatory variables. To overcome

this limitation, we could extend THEME-SCGLR (Bry et al., 2020b) to a response

mixture. For instance, the temperature and precipitation variables would be seen as
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pertaining to two distinct themes and each community of taxa would be predicted

by common components in each theme. Another way of extending our model would

be to create sparse components, in the spirit of Durif et al. (2018), with intent to

select relevant climatic variables. Another limitation is that the heuristic presented

in Section 3.4 does not guarantee to find the best values of the hyper-parameters.

Several parameter-varying schemes could be implemented and the results compared.

Hutter et al. (2015) propose a review of works allowing to best optimize the hyper-

parameters.
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Supplementary Materials

1 The PING algorithm
The Projected Iterated Normed Gradient (PING) algorithm is an extension of the Power
Iteration algorithm. To find the hth component, we use the PING algorithm which aims at
solving any optimization program of the form:{

max
u

Jh(u),
s.t. uTM−1u = 1 and ∆T

hu = 0,
(1)

where Jh is a function of u to maximize and ∆h an additional constraint matrix. In the
SCGLR context, Jh(u) is the specific criterion and ∆h the orthogonal constraint matrix.
We rewrite this optimization program by posing v = M−1/2u, Gh(v) = Jh(M1/2v) and
Eh = M1/2∆h. {

max
v

Gh(v),
s.t. vTv = 1 and ET

h v = 0.
(2)

To solve (2), we must equate to zero the gradient of the following Lagrangian:

L(v, λ, η) = Gh(v)− λ(vTv − 1)− ηTET
h v.

Setting Γh(v) = ∇vGh(v), we have

∇vL(v, λ, η) = 0⇔ Γh(v)− 2λv − Ehη = 0 (3)

⇔ v = 1
2λ (Γh(v)− Ehη) . (4)

Multiplying (3) by ET
h :

2λET
h v︸ ︷︷ ︸

=0

= ET
h Γh(v)− ET

hEhη ⇔ ET
h Γh(v) = ET

hEhη

⇔ η =
(
ET
hEh

)−1
ET
h Γh(v). (5)

Substituting (5) in (4), we get:

v = 1
2λ

(
Γh(v)− Eh

(
ET
hEh

)−1
ET
h Γh(v)

)
= 1

2λ

(
I − Eh

(
ET
hEh

)−1
ET
h

)
Γh(v)

= 1
2λΠspan[Eh]⊥Γh(v),

where Πspan[Eh]⊥ = I − Eh
(
ET
hEh

)−1
ET
h . Finally, the constraint ‖v‖2 = 1 gives

v =
1

2λΠspan[Eh]⊥Γh(v)∥∥∥ 1
2λΠspan[Eh]⊥Γh(v)

∥∥∥ =
Πspan[Eh]⊥Γh(v)∥∥∥Πspan[Eh]⊥Γh(v)

∥∥∥ ,

1



which suggests the basic iteration of the PING algorithm:

v(t+1) =
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ . (6)

Let us show that the basic iteration of the PING algorithm follows a direction of ascent.
One way to do this is to show that the direction given by the arc (v(t), v(t+1)) is a direction
of ascent. In other words, show that:〈

v(t+1) − v(t),Γh
(
v(t)

)〉
≥ 0.

By construction, we know that on every iteration t of the algorithm, v(t) is orthogonal to
span[Eh]. Thus, since for all t, v(t) = Πspan[Eh]⊥v

(t), we have〈
v(t+1) − v(t),Γh

(
v(t)

)〉
=
〈
Πspan[Eh]⊥

(
v(t+1) − v(t)

)
,Γh

(
v(t)

)〉
=
〈
v(t+1) − v(t),Πspan[Eh]⊥Γh

(
v(t)

)〉
.

Now, the equation (6) implies that

Πspan[Eh]⊥Γh(v(t)) = v(t+1)
∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ .
So,

sgn
(〈
v(t+1) − v(t),Γh

(
v(t)

)〉)
= sgn

(〈
v(t+1) − v(t), v(t+1)

〉)
= sgn

(∥∥∥v(t+1)
∥∥∥2
−
〈
v(t), v(t+1)

〉)
= sgn

(
1− cos

(
v(t), v(t+1)

))
.

Finally, 〈
v(t+1) − v(t),Γh

(
v(t)

)〉
≥ 0.

Although iteration (6) follows a direction of ascent, it does not guarantee that function G
actually increases on every step. Indeed, we may go too far in such a direction, and overshoot
the maximum. However, let us consider

κ(t) =
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥ .
Staying close enough to the current starting point on the arc (v(t), κ(t)) ensures that function
G increases on every iteration. With this aim in mind, let $ be the plane tangent to the
unit sphere on v(t) and let w denote the unit–vector tangent to arc (v(t), κ(t)) on v(t). Then,
there exists τ > 0 such that, w = τΠ$κ

(t), and〈
w, κ(t)

〉
= τ

〈
Π$κ

(t), κ(t)
〉

= τ cos2(κ(t), $) > 0.

Although staying close enough to the current starting point on the arc (v(t), κ(t)) ensures
the increase of function G, staying too close can impact the convergence speed of the algo-
rithm to reach the maximum. On the other hand, going too far from the starting point can
cause the divergence of the algorithm. Therefore, we propose two possible generic iterations
for the PING algorithm, which deal with this problem. Algorithm 1 and Algorithm 2 present
these alternatives. The first one should be preferred, but is less easy to program.

2



Algorithm 1: PING algorithm
while not convergence do

κ(t) ←
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥
Use a Newton-Raphson unidimensional maximization procedure to find the
maximum of Gh(v) on the arc (v(t), κ(t)) and take it as v(t+1)

t← t+ 1
end

Algorithm 2: Alternative PING algorithm
while not convergence do

m←
Πspan[Eh]⊥Γh(v(t))∥∥∥Πspan[Eh]⊥Γh(v(t))

∥∥∥
while Gh(m) < Gh(v(t)) do

m← v(t) +m

‖v(t) +m‖
end

v(t+1) ← m

t← t+ 1
end

3



2 The EM algorithm
Owing to the latent variable Z, this step will be performed using the EM algorithm. The M
step of the EM algorithm consists in maximizing with respect to Θ the conditional expec-
tation of the complete log-likelihood E [l(Θ;Y, Z)|Y ; Θ′]. The solution replaces then Θ′, and
the conditional expectation is updated in the E step.

2.1 The expectation (E) step
The expectation of the complete log-likelihood writes

E [l(Θ;Y, Z)|Y ; Θ′] =
K∑
k=1

G∑
g=1

αkg ln
(
pg

N∏
n=1

dk (ynk;µnkg)
)
.

The posterior probability is computed as

αkg := P(zk = g|yk; θk) = pg
∏N
n=1 dk(ynk;µnkg)∑G

r=1 pr
∏N
n=1 dk(ynk;µnkr)

,

with zk = g meaning that the gth coordinate of the vector zk equals 1. As noticed by Dunstan
et al. (2013), the αkg’s are likely to be very close to either 0 or 1, and this polarization grows
with the number of observations. In this case, the EM algorithm is liable to get stuck and
does not provide a satisfactory exploration of the parameter space. We thus shrank the
αkg’s, for five iterations of the EM algorithm only, using

α∗kg = 2ταkg − τ + 1
2τ − τG+G

where τ = 1− 0.8G
0.8(2−G)− 1 .

The previous formula prevents any α∗kg from being greater than 0.8 or lower than (1 −
0.8)/(G− 1), while maintaining the sum-to-one constraint.

2.2 The maximization (M) step
The maximization step maximizes the conditional expectation of the complete log-likelihood
with respect to Θ, subject to the constraint ∑G

g=1 pg = 1. The maximization with respect to
pg yields:

p̂g = 1
K

K∑
k=1

αkg.

The estimates of the regression parameters γkg and δkg are obtained as the solutions of:

∇(γkg ,δkg)

N∑
n=1

ln(dk(ynk;µnkg)) = 0.

This equation characterizes the maximum likelihood estimate of the GLM of yk in each
group g. This estimate can be obtained as the fixed point of the FSA.

Assuming the response variable yk belongs to the gth group, the working variable asso-
ciated with ynk is calculated as:

wnkg = hk (µnkg) + (ynk − µnkg)h′k (µnkg) = ηnkg + ζnkg,

4



where
ζnkg = (ynk − µnkg)h′k (µnkg) .

In view of the conditional independence assumption, the variance matrix for wnkg is

V [wkg] = W−1
kg = diag

(
ank(φk)vk (µnkg)h′k (µnkg)2

)
n=1,...,N

,

where ank and vk are known functions and φk is the dispersion parameter of yk. Thus,
to optimize the regression parameters, we perform a generalized least square step on the
linearized model defined by:

wkg = (Xug) γkg + Aδkg + ζkg,

with E(ζkg) = 0 and V(ζkg) = W−1
kg .

As a result of the aforementioned developments, we shall use the following algorithm to
estimate the parameters of the response mixture model.

Algorithm 3: The EM algorithm adapted to the response mixture
Input : Ag := [fg, A]
while not convergence do

Expectation step
for k = 1, . . . , K do

for g = 1, . . . , G do

α
(t+1)
kg =

p(t)
g

∏N
n=1 dk(ynk;µ

(t)
nkg)∑G

r=1 p
(t)
r
∏N
n=1 dk(ynk;µ

(t)
nkr)

end
end
Maximization step
for g = 1, . . . , G do

p(t+1)
g = 1

K

∑K
k=1 α

(t+1)
kg

for k = 1, . . . , K do(
γ

(t+1)
kg , δ

(t+1)T
kg

)T
=
(
ATgW

(t)
kg Ag

)−1
ATgW

(t)
kg w

(t)
kg

η
(t+1)
kg = fgγ

(t+1)
kg + Aδ

(t+1)
kg

µ
(t+1)
nkg = h−1

k

(
η

(t+1)
nkg

)
, ∀n = 1, . . . , N

w
(t+1)
nkg = η

(t+1)
nkg + h′k

(
µ

(t+1)
nkg

) (
ynk − µ(t+1)

nkg

)
, ∀n = 1, . . . , N

W
(t+1)
kg = diag

([
ank(φk)vk

(
µ

(t+1)
nkg

)
h′k
(
µ

(t+1)
nkg

)2
]−1

)
n=1,...,N

end
end
t← t+ 1

end
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3 Analytical expression of the specific criterion
The specific criterion which SCGLR maximizes to compute the (h+1)th loading-vector uh+1

writes
J(u) = φ(u)sϕ(u)tψAh(u)1−s−t,

with 

φ(u) =
 p∑
j=1

ωj(uTNju)l
1/l

ϕ(u) = 1− 1
G

G∑
g=1

〈
$W

[Fh,Xu], $
W
Eg

〉
ψAh(u) =

K∑
k=1
‖wk‖2

Wk
cos2

Wk

(
wk, span[Xu,Ah]

)
,

(7)

where F h = [Xu1, . . . , Xuh] and Ah = [F h, A].

To facilitate the computation of the loading-vector, we hereafter give an analytical expression
of each sub-criterion and of its gradient.

3.1 The structural relevance measure
The general form of the structural relevance (SR) is φ(u) written in (7). However, in practice,
we take either the variance component (VC) or the variable power inertia (VPI). In the first
case, the SR and its gradient are easily given by

φ(u) = ‖Xu‖2
W and ∇uφ(u) = 2XTWXu.

The explicit expression of VPI is

φ(u) =
1
p

p∑
j=1
〈Xu, xj〉2lW

1/l

.

To calculate the gradient we use the classical rules of derivation:

∇uφ(u) = 1
l

∇u

1
p

p∑
j=1
〈Xu, xj〉2lW

1
p

p∑
j=1
〈Xu, xj〉2lW

1/l−1

= 1
l

1
p

p∑
j=1

2lXTWxj 〈Xu, xj〉2l−1
W

φ(u)1−l

= 2
p
φ(u)1−lXTW

p∑
j=1
〈Xu, xj〉2l−1

W xj.

3.2 The goodness of fit measure
We aim at expressing ψAh

(u) as a function of quadratic forms. To achieve that, we decompose
the projection on the regression space as follows:

span[Xu,Ah] = span[X h
k u,Ah] with X h

k = ΠWk

span[Ah]⊥X.

6



Since span[X h
k ] is orthogonal to span[Ah],

ΠWk

span[Xu,Ah] = ΠWk

span[Xh
k
u,Ah] = ΠWk

span[Xh
k
u] + ΠWk

span[Ah].

Consequently, by classical Euclidean derivations, we have

cos2
Wk

(wk, span[Xu,Ah]) = cosWk
(wk, span[Xu,Ah]) cosWk

(wk, span[Xu,Ah])

=


∥∥∥ΠWk

span[Xu,Ah]wk
∥∥∥
Wk

‖wk‖Wk




〈
wk,ΠWk

span[Xu,Ah]wk
〉
Wk

‖wk‖Wk

∥∥∥ΠWk

span[Xu,Ah]wk
∥∥∥
Wk



=

〈
wk,

(
ΠWk

span[Xh
k
u] + ΠWk

span[Ah]

)
wk

〉
Wk

‖wk‖2
Wk

=

〈
wk,ΠWk

span[Xh
k
u]wk

〉
Wk

‖wk‖2
Wk

+

〈
wk,ΠWk

span[Ah]wk
〉
Wk

‖wk‖2
Wk

.

The goodness of fit measure ψAh
(u) then writes more explicitly

ψAh
(u) =

K∑
k=1
‖wk‖2

Wk
cos2

Wk
(wk, span[Xu,Ah])

=
K∑
k=1

(〈
wk,ΠWk

span[Xh
k
u]wk

〉
Wk

+
〈
wk,ΠWk

span[Ah]wk
〉
Wk

)
.

Now, 〈
wk,ΠWk

span[Xh
k
u]wk

〉
Wk

= wTkWkΠWk

span[Xh
k
u]wk

= wTkWkX h
k u

(
uTX hT

k WkX h
k u
)−1

uTX hT
k Wkwk

= uTX hT
k Wkwkw

T
kWkX h

k u

uTX hT
k WkX h

k u
.

Let,

ak := X hT
k Wkwkw

T
kWkX h

k , bk := X hT
k WkX h

k and ck :=
〈
wk,ΠWk

span[Ah]wk
〉
Wk

.

Finally,

ψAh
(u) =

K∑
k=1

(
uTaku

uT bku
+ ck

)
and ∇uψAh

(u) = 2
K∑
k=1

(
uT bku

)
aku−

(
uTaku

)
bku

(uT bku)2 .

3.3 The separation sub-criterion
The general form of the separation sub-criterion is ϕ(uh+1

g ) given in (7). We apply this
formula to the G explanatory spaces FH1

1 , . . . , FHG
G of sizes H1, . . . , HG respectively. We

7



want to separate Fg of Fr for all r 6= g. The sub-criterion becomes :

ϕF−g(uh+1
g ) = 1− 1

G− 1
∑
r 6=g

〈
$W

span[Fh
g ,Xu

h+1
g ], $

W
span[FHr

r ]

〉
Frob

= 1− 1
G− 1

∑
r 6=g

〈ΠW
span[Fh

g ,Xu
h+1
g ]√

h+ 1
,
ΠW

span[FHr
r ]√

Hr

〉
Frob

= 1− 1
G− 1

∑
r 6=g

1√
Hr(h+ 1)

Tr
{

ΠW
span[Fh

g ,Xu
h+1
g ]Π

W
span[FHr

r ]

}
.

Since span[F h
g , Xu

h+1
g ] = span[f 1

g , . . . , f
h+1
g ] and span[FHr

r ] = span[f 1
r , . . . , f

Hr
r ], we have

Tr
{

ΠW
span[Fh

g ,Xu
h+1
g ]Π

W
span[FHr

r ]

}
=

Tr
{[
f 1
g , . . . , f

h+1
g

] ([
f 1
g , . . . , f

h+1
g

]T
W
[
f 1
g , . . . , f

h+1
g

])−1 [
f 1
g , . . . , f

h+1
g

]T
W

[
f 1
r , . . . , f

Hr
r

] ([
f 1
r , . . . , f

Hr
r

]T
W
[
f 1
r , . . . , f

Hr
r

])−1 [
f 1
r , . . . , f

Hr
r

]T
W

}
.

Now, thanks to the orthogonality between the components, we obtain

Tr
{

ΠW
span[Fh

g ,Xu
h+1
g ]Π

W
span[FHr

r ]

}

= Tr


[

f 1
g

‖f 1
g ‖W

, . . . ,
fh+1
g

‖fh+1
g ‖W

] [
f 1
g

‖f 1
g ‖W

, . . . ,
fh+1
g

‖fh+1
g ‖W

]T
W

[
f 1
r

‖f 1
r ‖W

, . . . ,
fHr
r

‖fHr
r ‖W

] [
f 1
r

‖f 1
r ‖W

, . . . ,
fHr
r

‖fHr
r ‖W

]T
W


= Tr


[

f 1
g

‖f 1
g ‖W

, . . . ,
fh+1
g

‖fh+1
g ‖W

]T
W

[
f 1
r

‖f 1
r ‖W

, . . . ,
fHr
r

‖fHr
r ‖W

]
[

f 1
r

‖f 1
r ‖W

, . . . ,
fHr
r

‖fHr
r ‖W

]T
W

[
f 1
g

‖f 1
g ‖W

, . . . ,
fh+1
g

‖fh+1
g ‖W

]
= Tr{ATA},

where Aij =

〈
f ir, f

j
g

〉
W

‖f ir‖W
∥∥∥f jg∥∥∥

W

, with (i, j) ∈ {1, . . . , Hr} × {1, . . . , h + 1}. This development

leads to the explicit expression of ϕF−g :

ϕF−g(uh+1
g ) = 1− 1

G− 1
∑
r 6=g

1√
Hr(h+ 1)

Hr∑
i=1

h+1∑
j=1

〈
Xuir, Xu

j
g

〉2

W

‖Xuir‖
2
W

∥∥∥Xujg∥∥∥2

W

.

Let, 
drgi := 2

〈
Xuir, Xu

h+1
g

〉
W
‖Xuh+1

g ‖2
WX

TWXuir

ergi := 2
〈
Xuir, Xu

h+1
g

〉2

W
XTWXuh+1

g

frgi :=
(∥∥∥Xuh+1

g

∥∥∥2

W

)2 ∥∥∥Xuir∥∥∥2

W

8



The gradient of the quotient becomes:

∇uh+1
g


〈
Xuir, Xu

h+1
g

〉2

W

‖Xuir‖
2
W

∥∥∥Xuh+1
g

∥∥∥2

W

 = drgi − ergi
frgi

Then, we compute the gradient of ϕF−g :

∇uh+1
g
ϕF−g(uh+1

g ) = −1
G− 1

∑
r 6=g

1√
Hr(h+ 1)

Hr∑
i=1

drgi − ergi
frgi

.
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4 The clustering phase algorithm

Algorithm 4: Clustering phase algorithm
while not convergence do

Update mixture parameters with the EM algorithm

Θ(n+1) = arg max
Θ

l(Θ(n);Y, Z)

Update loading vectors with the PING algorithm
for g = 1, . . . , G do

for h = 1, . . . , Hg do

u
h (n+1)
g = max

uh T
g M−1uh

g = 1
∆h−1 T

g uh
g = 0

s ln
(
φ
(
uhg

))
+t ln

(
ϕF−g

(
uhg

))
+(1−s−t) ln

(
ψA
(
uhg

))
end

end
n← n+ 1

end
At the end, we can classify the responses according to their posterior probabilities.
A response yk is assigned to cluster g if

α
(nmax)
kg > α

(nmax)
kr ,∀r 6= g.
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5 Preliminary simulation study
This simulation is devoted to recovering the true numbers of components, in a context of
low correlation between the latent variables spanning the explanatory spaces. We assume
unrealistically that the number of groups is known. s is fixed to 0.1, in order to study the
behavior of the results when we vary the number of components per group and the weight t
of the separation sub-criterion ϕ.

5.1 Varying the numbers of components
Three latent variables ξ1, ξ3 and ξ5 are simulated with a pairwise correlation ρ = 0.5. Two
more latent variables ξ2 and ξ4 are independently simulated. The X matrix consists in
six blocks X = [X1, X2, X3, X4, X5, X6], where X1 ∈ RN×50, X2 ∈ RN×40, X3 ∈ RN×30,
X4 ∈ RN×20 and X5 ∈ RN×10 are bundles aligned with ξ1, ξ2, ξ3, ξ4 and ξ5, respectively.
The X6 block contains a set of 50 unstructured noise variables. The response matrix Y is
partitioned into three groups of responses. The first group is composed of Gaussian responses,
the expectations of which are linear combinations of ξ1 and ξ4. The second group gathers
Poisson responses whose linear predictors are combinations of ξ2 and ξ5. The third group is
made of binary responses depending only on ξ3. The matrix Y is generated as:

∀k = 1, . . . , 20, yk ∼ NN (µ = γ1kξ1 + γ2kξ4,Σ = IN) ,
∀k = 21, . . . , 70, yk ∼ P (λ = exp [0.25γ1kξ2 + 0.25γ2kξ5]) ,
∀k = 71, . . . , 100, yk ∼ B

(
p = logit−1 [γ1kξ3]

)
,

where for all k, γ1k and γ2k are uniformly simulated such that |γ1k| ∈ [2, 4] and |γ2k| ∈ [1, 2].

5.2 Results and interpretation
The results of rmSCGLR on this preliminary simulation are given in Table 1. Hg denotes
the number of components calculated in group g, and several triplets H = (H1, H2, H3) are
tried. For none of these do we observe a clear difference of the RI and ARI across values
of t. This was expected, for in this simulation, the explanatory subspaces are only weakly
redundant. So, the separation sub-criterion ϕ proves almost useless here, and has practically
no impact on the results.

For (H1, H2, H3) = (1, 1, 1), the lowest values of RI and ARI are respectively 0.980 and
0.958, without the help of rank h > 1 components. The first component of each group
perfectly recovers the latent explanatory variable which has the largest effect in the linear
predictor of its responses. No component is aligned with the latent variable ξ4. The latent
variable ξ5 having a correlation of 0.5 with ξ1 and ξ3, we find that

√
ρ2(ξ5, .) ' 0.5 for all

values of t.
Taking (H1, H2, H3) = (2, 2, 1) does not improve the RI and ARI. We notice that the

latent variable ξ5 is not as well recovered as the other latent variables, owing to the small
size of the X5 bundle. However, the BIC is considerably reduced, which illustrates the
importance of taking the right number of components to correctly predict the responses.

The last case, where (H1, H2, H3) = (1, 3, 1) highlights the importance of getting a truly
explanatory and strong first component in each group, and of not calculating too many
components in a group. Like in the former cases, the third group is perfectly recovered using
the true number of explanatory components H3 = 1. But some confusion arises between

11



the first two groups. Indeed, the extra component f 3
2 of the second group is drawn towards

the heaviest bundle X1. Then, the responses predictable from X1 tend to be scattered
between the first and the second groups instead of being assigned to the first one, which
causes a decrease of RI and ARI. Furthermore, owing to the correlation between ξ1 and ξ5,
the components of the second group cannot be properly aligned with these latent variables.
When t = 0.8 the weight on the separation criterion ϕ is heavy enough to recover ξ1, ξ2 and
ξ5 in the second group, and ξ4 in the first group.

To sum up this simulation, we observe that the part played by the first component in
recovering the groups is crucial. Indeed, in the first case, the groups are determined by
the first component only. In the second case, their prediction is completed by further rank
components. However, in the third case, we see that calculating too many components may
lead to impede group recovery.

Table 1: Mean values of RI and square correlations between latent variables and supervised
components, over a hundred samples, for a weak pairwise correlation value (ρ = 0.5) between
the latent variables ξ1, ξ3 and ξ5, and for various numbers Hg of components per group.

group 1 group 2 group 3
H t RI ARI ρ2(ξ1, .) ρ2(ξ4, .) ρ2(ξ2, .) ρ2(ξ5, .) ρ2(ξ3, .) BIC

0 0.992 0.983 0.971 0.030 0.980 0.309 0.976 33525.56
0.1 0.986 0.970 0.962 0.037 0.978 0.303 0.969 33580.84
0.2 0.985 0.967 0.965 0.033 0.976 0.317 0.972 33435.54

1 0.3 0.987 0.972 0.968 0.037 0.978 0.314 0.973 33577.05
1 0.4 0.991 0.980 0.971 0.032 0.980 0.297 0.975 33435.80
1 0.5 0.980 0.958 0.960 0.036 0.974 0.298 0.961 33612.22

0.6 0.992 0.983 0.960 0.043 0.979 0.295 0.974 33631.08
0.7 0.994 0.987 0.954 0.046 0.983 0.295 0.975 33837.14
0.8 0.992 0.983 0.944 0.044 0.979 0.298 0.964 34304.05
0 0.984 0.966 0.968 0.921 0.975 0.816 0.966 29945.48

0.1 0.983 0.964 0.971 0.938 0.977 0.809 0.971 29878,00
0.2 0.989 0.977 0.974 0.951 0.979 0.835 0.975 29838.60

2 0.3 0.994 0.988 0.974 0.952 0.981 0.865 0.978 29783.77
2 0.4 0.993 0.984 0.968 0.946 0.981 0.876 0.975 29936.19
1 0.5 0.991 0.981 0.957 0.934 0.981 0.856 0.972 30150.95

0.6 0.984 0.966 0.944 0.928 0.976 0.844 0.960 30348.66
0.7 0.997 0.993 0.932 0.946 0.983 0.864 0.976 30733.32
0.8 0.983 0.965 0.916 0.925 0.973 0.827 0.971 31131.42
0 0.878 0.750 0.871 0.264 0.945 0.514 0.978 30483.70

0.1 0.874 0.742 0.856 0.214 0.956 0.506 0.965 30245.37
0.2 0.859 0.712 0.858 0.230 0.970 0.555 0.932 30020.63

1 0.3 0.871 0.776 0.853 0.242 0.969 0.545 0.946 31090.38
3 0.4 0.868 0.724 0.839 0.370 0.961 0.580 0.980 30052.19
1 0.5 0.876 0.748 0.804 0.308 0.977 0.585 0.977 30322.50

0.6 0.891 0.774 0.806 0.320 0.976 0.656 0.977 30815.20
0.7 0.882 0.759 0.732 0.353 0.975 0.657 0.974 30572.94
0.8 0.790 0.592 0.877 0.772 0.956 0.614 0.963 33790.50

Figure 1 shows the correlation scatterplots in the component planes (1, 2) for the first
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two groups. As for the first simulation, the components are almost perfectly aligned with
the explanatory bundles. Because of the weak correlation between ξ1, ξ3 and ξ5, the three
bundles X1, X3 and X5 are visible on the same component for each of the two groups.
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X
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X5
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Component plane (1,2) for the first group

X
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X
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X
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0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

SC1 ( 18.95 % )
S

C
2 

( 
9.

16
 %

 )

Component plane (1,2) for the second group

Figure 1: Correlation scatterplots of plane (1,2) for the first two groups of the second sim-
ulation, with (H1, H2, H3) = (2, 2, 1), obtained by rmSCGLR. The red arrows represent the
bundles X1 and X4, explanatory of the first group. The blue ones represent the bundles X2
and X5, explanatory of the second group. The green bundle X3 is explanatory of the third
group. The percentage of inertia captured by each component is given in parentheses.
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6 Groups of taxa

Table 2: Here is the list of the taxa used in this study (the family classification follows
Angiosperm Phylogeny Group III).

Group Family Genus Species
1 Huaceae Afrostyrax lepidophyllus
1 Fabaceae Afzelia spp.
1 Fabaceae Albizia ferruginea
1 Fabaceae Albizia spp.
1 Gentianaceae Anthocleista spp.
1 Fabaceae Anthonotha spp.
1 Phyllanthaceae Antidesma spp.
1 Fabaceae Aphanocalyx spp.
1 Fabaceae Aubrevillea kerstingii
1 Zygophyllaceae Balanites wilsoniana
1 Passifloraceae Barteria spp.
1 Lauraceae Beilschmiedia spp.
1 Malvaceae Bombax spp.
1 Malvaceae Ceiba pentandra
1 Cannabaceae Celtis spp.
1 Sapotaceae Chrysophyllum spp.
1 Annonaceae Cleistopholis spp.
1 Malvaceae Cola spp.
1 Boraginaceae Cordia spp.
1 Fabaceae Detarium macrocarpum
1 Fabaceae Dialium spp.
1 Euphorbiaceae Discoglypremna caloneura
1 Malvaceae Duboscia spp.
1 Arecaceae Elaeis guineensis
1 Malvaceae Eribroma oblongum
1 Hypericaceae Harungana madagascariensis
1 Annonaceae Hexalobus spp.
1 Ulmaceae Holoptelea grandis
1 Meliaceae Khaya spp.
1 Irvingiaceae Klainedoxa spp.
1 Meliaceae Lovoa trichilioides
1 Malvaceae Mansonia altissima
1 Urticaceae Myrianthus arboreus
1 Apocynaceae Picralima nitida
1 Sapotaceae Pouteria spp.
1 Malvaceae Pterygota spp.
1 Euphorbiaceae Ricinodendron heudelotii
1 Malvaceae Sterculia spp.
1 Olacaceae Strombosiopsis spp.
1 Myrtaceae Syzygium spp.
1 Combretaceae Terminalia superba

Continued on next page
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Continued from previous page
Group Family Genus Species
1 Fabaceae Tetrapleura tetraptera
1 Malvaceae Triplochiton scleroxylon
1 Lamiaceae Vitex spp.

2 Clusiaceae Allanblackia spp.
2 Apocynaceae Alstonia spp.
2 Fabaceae Angylocalyx spp.
2 Anisophylleaceae Anisophyllea spp.
2 Moraceae Antiaris toxicaria
2 Fabaceae Aubrevillea platycarpa
2 Burseraceae Aucoumea klaineana
2 Sapotaceae Autranella congolensis
2 Sapotaceae Baillonella toxisperma
2 Fabaceae Bikinia spp.
2 Sapindaceae Blighia spp.
2 Sapotaceae Breviea sericea
2 Burseraceae Canarium schweinfurthii
2 Myristicaceae Coelocaryon spp.
2 Rubiaceae Corynanthe pachyceras
2 Fabaceae Cylicodiscus gabunensis
2 Burseraceae Dacryodes spp.
2 Fabaceae Daniellia spp.
2 Achariaceae Dasylepis seretii
2 Malvaceae Desplatsia spp.
2 Ebenaceae Diospyros crassiflora
2 Fabaceae Distemonanthus benthamianus
2 Meliaceae Entandrophragma angolense
2 Meliaceae Entandrophragma candollei
2 Meliaceae Entandrophragma cylindricum
2 Meliaceae Entandrophragma utile
2 Vochysiaceae Erismadelphus exsul
2 Bignoniaceae Fernandoa adolfi
2 Moraceae Ficus spp.
2 Fabaceae Gilbertiodendron spp.
2 Euphorbiaceae Gymnanthes inopinata
2 Irvingiaceae Irvingia grandifolia
2 Lepidobotryaceae Lepidobotrys staudtii
2 Euphorbiaceae Macaranga spp.
2 Rhamnaceae Maesopsis eminii
2 Sapotaceae Manilkara spp.
2 Phyllanthaceae Margaritaria discoidea
2 Moraceae Milicia excelsa
2 Moraceae Morus mesozygia
2 Urticaceae Musanga cecropioides
2 Rubiaceae Nauclea spp.

Continued on next page
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Continued from previous page
Group Family Genus Species
2 Malvaceae Nesogordonia spp.
2 Fabaceae Newtonia spp.
2 Picrodendraceae Oldfieldia africana
2 Salicaceae Oncoba spp.
2 Chrysobalanaceae Parinari spp.
2 Fabaceae Pentaclethra eetveldeana
2 Euphorbiaceae Plagiostyles africana
2 Combretaceae Pteleopsis hylodendron
2 Fabaceae Pterocarpus spp.
2 Violaceae Rinorea spp.
2 Burseraceae Santiria spp.
2 Oleaceae Schrebera arborea
2 Myristicaceae Scyphocephalium mannii
2 Anacardiaceae Sorindeia spp.
2 Clusiaceae Symphonia globulifera
2 Sapotaceae Synsepalum spp.
2 Ochnaceae Testulea gabonensis
2 Fabaceae Tetraberlinia bifoliolata
2 Euphorbiaceae Tetrorchidium didymostemon
2 Sapotaceae Tieghemella africana
2 Moraceae Treculia spp.
2 Meliaceae Trichilia spp.
2 Anacardiaceae Trichoscypha spp.
2 Sapotaceae Tridesmostemon omphalocarpoides
2 Moraceae Trilepisium madagascariense
2 Dipterocarpaceae Trillesanthus excelsus

3 Fabaceae Amphimas spp.
3 Annonaceae Annickia spp.
3 Annonaceae Anonidium mannii
3 Rhizophoraceae Anopyxis klaineana
3 Euphorbiaceae Anthostema aubryanum
3 Anacardiaceae Antrocaryon spp.
3 Fabaceae Berlinia spp.
3 Fabaceae Bobgunnia fistuloides
3 Fabaceae Brachystegia spp.
3 Rubiaceae Brenania brieyi
3 Phyllanthaceae Bridelia spp.
3 Fabaceae Calpocalyx spp.
3 Meliaceae Carapa spp.
3 Sapotaceae Chrysophyllum lacourtianum
3 Fabaceae Copaifera spp.
3 Olacaceae Coula edulis
3 Euphorbiaceae Croton spp.
3 Fabaceae Cryptosepalum spp.

Continued on next page
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Continued from previous page
Group Family Genus Species
3 Olacaceae Diogoa zenkeri
3 Ebenaceae Diospyros spp.
3 Asparagaceae Dracaena spp.
3 Putranjivaceae Drypetes spp.
3 Annonaceae Duguetia spp.
3 Fabaceae Erythrophleum spp.
3 Erythroxylaceae Erythroxylum mannii
3 Fabaceae Eurypetalum spp.
3 Fabaceae Fillaeopsis discophora
3 Apocynaceae Funtumia spp.
3 Clusiaceae Garcinia spp.
3 Fabaceae Gilbertiodendron dewevrei
3 Malvaceae Grewia spp.
3 Salicaceae Homalium spp.
3 Fabaceae Hylodendron gabunense
3 Fabaceae Hymenostegia spp.
3 Irvingiaceae Irvingia spp.
3 Fabaceae Julbernardia spp.
3 Phyllanthaceae Keayodendron bridelioides
3 Meliaceae Leplaea spp.
3 Sapotaceae Letestua durissima
3 Ochnaceae Lophira alata
3 Calophyllaceae Mammea africana
3 Chrysobalanaceae Maranthes spp.
3 Bignoniaceae Markhamia spp.
3 Fabaceae Millettia spp.
3 Rubiaceae Morinda lucida
3 Fabaceae Neochevalierodendron stephanii
3 Ochnaceae Ochna spp.
3 Ixonanthaceae Ochthocosmus spp.
3 Sapotaceae Omphalocarpum spp.
3 Olacaceae Ongokea gore
3 Fabaceae Pachyelasma tessmannii
3 Pandaceae Panda oleosa
3 Rubiaceae Pausinystalia spp.
3 Fabaceae Pentaclethra macrophylla
3 Fabaceae Pericopsis elata
3 Lecythidaceae Petersianthus macrocarpus
3 Fabaceae Piptadeniastrum africanum
3 Annonaceae Polyalthia suaveolens
3 Fabaceae Prioria spp.
3 Anacardiaceae Pseudospondias spp.
3 Myristicaceae Pycnanthus angolensis
3 Simaroubaceae Quassia spp.
3 Apocynaceae Rauvolfia spp.

Continued on next page
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Continued from previous page
Group Family Genus Species
3 Rubiaceae Rothmannia spp.
3 Euphorbiaceae Sapium spp.
3 Fabaceae Scorodophloeus zenkeri
3 Achariaceae Scottellia spp.
3 Lecythidaceae Scytopetalum klaineanum
3 Bignoniaceae Spathodea campanulata
3 Fabaceae Stachyothyrsus staudtii
3 Myristicaceae Staudtia kamerunensis
3 Fabaceae Stemonocoleus micranthus
3 Combretaceae Strephonema spp.
3 Olacaceae Strombosia spp.
3 Apocynaceae Tabernaemontana spp.
3 Fabaceae Tessmannia spp.
3 Fabaceae Tetraberlinia polyphylla
3 Phyllanthaceae Uapaca spp.
3 Annonaceae Xylopia aethiopica
3 Annonaceae Xylopia hypolampra
3 Annonaceae Xylopia quintasii
3 Rutaceae Zanthoxylum spp.
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7 List of the explanatory variables
The matrix X consists of all the P = 24 climatic variables

• Eleven temperature variables coded “C1”,...,“C11”

• Eight precipitation variables coded “C12”,...,“C19”

• Three climatic water deficit variables coded “sumCWD”, “maxCWD” and “MCWD”
respectively

• One climatic water balance coded “meanCWB”

• One evapotranspiration variable coded “meanET0”

Besides, the Q = 3 non-climatic variables, are few and weakly correlated with the climatic
variables in X as well as between themselves, and interesting per se. We shall then consider
them as additional explanatory variables. The matrix A is thus composed by

• The soil type (Harmonized World Soil Database , “HWSD”)

• The human-induced forest-disturbance intensity index (“Anthr2”)

• The logarithm of the previous index to account for nonlinear effects (“logAnthr2”)

Moreover, the variable corresponding to the number of plots within each grid cell is taken
as the offset of the Poisson regression.
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8 Correlation plot of the third group
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Figure 2: Component plane (1,2) of group 3 output by rmSCGLR on the CoForTaxa dataset,
with optimal hyper-parameter (s, l, t) = (0.1, 1, 0.5). The plot displays only variables having
cosine greater than 0.75. The percentage of inertia captured by each component is given in
parentheses.
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9 Higher rank correlation plot
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(b) Component plane (2, 3) of the group 2
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(c) Component plane (1, 3) of the group 3
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(d) Component plane (2, 3) of the group 3

Figure 3: Correlation scatterplots of planes (1,3) and (2,3) with linear predictors obtained
by applying SCGLR to the second and third groups separately. The blacks arrows represent
the covariates. The red ones represent the linear predictors. The plot displays only variables
having a cosine greater than 0.75 with the plane. The percentage of inertia captured by each
component is given in parentheses.
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