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Abstract

This paper presents a robust and frugal Distributed Activation Energy Model to simulate10

pyrolysis of lignocellulosic biomass (spruce and poplar) over a wide range of temperature

and residence time. The learning database consists of dynamic TGA-DSC experiments

performed up to 800°C at four heating rates (1, 2, 5 and 10 K/min). By employing one

non-symmetrical distribution, three distributions and only 9 independent parameters were

needed to correctly fit the experimental data : a Gaussian distribution for hemicelluloses,15

a Gaussian function degenerated into a Dirac function for cellulose and a gamma function

degenerated into an exponential function for lignins.

The robustness of the model was successfully validated with 2-hours isothermal tests

(250°C to 500°C with increments of 50°C). The heats of reaction were determined using

the heat flux measured under fast dynamic conditions, thus reducing the crucial problem20

of baseline drift. The prediction potential of the model is highlighted by two examples:

pathway in the Van Krevelen’s diagram and control of the temperature rise to limit the

heat source due to reactions.

The model equations, the discretization and computational implementation, as well as the

complete set of model parameters are presented in great detail, so that the reader can use25

them for process modelling, including the crucial concern of thermal runaway occurring

in large particles or packed beds.
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1. Introduction

Biofuel derived from biomass is a source of renewable energy for transportation (Demir-30

bas, 2008). Technologies based on thermal processes are part of the conversion route from

biomass to biofuel and energy source, among which pyrolysis is often the first step before

combustion, gasification or grinding. During this process, biomass decomposes under inert

atmosphere in the form of gas, bio-oil and char.

Thermogravimetric analysis (TGA) is the most common analytical method for exper-35

imental investigation of biomass decomposition (Grønli et al., 1999; Antal et al., 1998;

White et al., 2011). TGA detects online the evolution of mass loss, a good indicator of the

alterations of biomass properties (Almeida et al., 2010). The earliest kinetics works were

performed at isothermal conditions and the decomposition rates were formulated over a

certain range of temperature and pre-heating conditions (Thurner and Mann, 1981; Ward40

and Braslaw, 1985; Wagenaar et al., 1993). Dynamic tests are, however, more widely-used

for their ability to investigate a wide range of temperature and to use analytical solutions

for kinetics determination. On the contrary, when analysed using analytical solutions,

isothermal kinetics suffered from the noticeable weight loss during warm-up time (Brachi

et al., 2015; Lv et al., 2012; Cai et al., 2013b).45

The earliest kinetics works have formulated the degradation kinetics of lignocellulosic

biomass or their components (cellulose, hemicelluloses and lignins) as a set of competitive

and/or consecutive reactions (Ramiah, 1970; Alves and Figueiredo, 1989; Varhegyi et al.,

1989, 1994; Di Blasi and Lanzetta, 1997; Fisher et al., 2002; Rousset et al., 2006).

Currently, Distributed Activation Energy Model (DAEM) became the standard mod-50

elling tools for thermal degradation of biomass. This concept was developed by Vand

(1943) to model pyrolysis of coal and was later applied to lignocellulosic biomass (Teng

and Wei, 1998; Shen et al., 2011; Cai et al., 2013a). This model represents the decompo-

sition process as a continuous series of independent and parallel reactions with different

activation energies which were further described by continuous distribution functions. An-55

alytical method were first derived to extract the distribution functions from experimental

data (Miura, 1995). In the case of biomass, the actual decomposition process involved
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complicated steps with different activation energy distributions. As multi-distribution

models are required, the common practice is to use a computational solution to solve a

full set of distributions of any shape.60

This kind of model is among the most comprehensive models for describing pyrolysis

kinetics of lignocellulosic biomass and its components (Cai et al., 2014; Xu et al., 2018)

and already proved its prediction potential for tests that were not include in the learning

database (Cavagnol et al., 2015). Recent DAEM developments include a whole set of works

using multiple normal distributed activation energy model. Depending on the experimental65

database, and probably also on the authors’ expectations, two (de Caprariis et al., 2015),

three (Chen et al., 2015, 2016) or even five (Lin et al., 2018) normal distributions are

proposed to get a good fit with the experimental data.

Many works were devoted to the refinement of the pre-exponential factor A (also

called the frequency factor). Some authors proposed this factor to depend on tempera-70

ture : A = A0T
n (Cai and Liu, 2008). Sfakiotakis and Vamvuka (2015) proposed this

factor to depend on the heating rate (HR). A linear relationship between the logarithm

of the pre-exponential factor A and the mean value of the activation energy distribution

was also introduced (Czajka et al., 2016; Xu et al., 2018). In all proposals, the authors

claimed, and proved, that this allows the quality of the fit to be improved. This is not so75

surprising as any additional degree of freedom in the inverse procedure necessarily reduces

the residues. Other improvements concerned the shape of the distribution functions. As

Gaussian distributions are still widely used, other shapes, such as Logistic, Uniform and

Weibull function have been proposed (Cai et al., 2014; Li et al., 2019).

However, the complexity of this approach, namely the number of degrees of freedom,80

together with the well-known compensation effect make it difficult to propose an unam-

biguous set of model parameters (Chornet and Roy, 1980; Soria-Verdugo et al., 2015).

Thus any kinetics model based on inverse analysis should include two steps : i) Pa-

rameters identification on a learning database and ii) Model validation using alternating

time-temperature pathways.85

Yet, to the best of our knowledge, we found only two works that includes the validation

step. Lin et al. (2019) used experimental data performed at 20 K/min as learning database
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and used the identified parameters to successfully predict tests performed at 15 K/min

and 25 K/min. In Li et al. (2019), the same team used the identified model to predict the

distribution of activation energies.90

Besides, the heats of reaction are of utmost importance to properly simulate the intri-

cate heat and mass coupling occurring during the thermo-chemical process, either inside

particles large enough for the fields to be non-uniform (Turner et al., 2010) or in a bed

of particles (Perré et al., 2013; Cavagnol et al., 2015). Unfortunatly, the literature re-

mains sparse regarding the heats of reaction, even though this information is of crucial95

importance to consider the thermal runaway that is likely to appear in industrial pro-

cesses. Former studies on the determination of reaction enthalpies encountered difficulties

like large errors in pyrolysis calculation (Reed and Gaur, 1997), uncertainty and unknown

accuracies (And and Brown, 2003). The lack of precision is often attributed to the exper-

imental conditions, which includes the sample size, the nature of the atmosphere, and the100

presence of impurities. To gain accuracy, differential scanning calorimetry (DSC) could to

be an effective way (Rath et al., 2003). Note however that, in this case, it is difficult to

rely the heat flux to the mass loss evolution, hence to determine reaction enthalpies. The

published reaction enthalpies range from -3800 to 418 kJ/kg for wood (Tinney, 1965; Kung

and Kalelkar, 1973; Ramiah, 1970; Rath et al., 2003), from -510 to 322 kJ/kg for cellulose105

, from -455 to 79 kJ/kg for lignin and from -700 to 42 kJ/kg for hemicelluloses (Beall,

1971). Such large variations, ranging from endothermic to exothermic, point out the real

difficulty to determine these heats of reaction (Rath et al., 2003; Di Blasi, 2008). A value

of -850 kJ/kg was determined by inverse analysis for the degradation of hemicelluloses in

(Turner et al., 2010). This value was tuned to predict the correct thermal runaway in110

a coupled heat and mass transfer computational code. However, one must keep in mind

that this value is strongly tied to the kinetics model implemented in the code. Anyway,

the temperature overshot measured inside the macro-particle (Turner et al., 2010) or in

a packed-bed (Di Blasi et al., 2013; Cavagnol et al., 2015) proves that pyrolysis involves

exothermic reactions, which is in contradiction with other published works (Wang et al.,115

2017a; Mishra and Mohanty, 2018).

In the present paper, we propose a robust DAEM model to simulate pyrolysis of two
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types of lignocellulosic products (spruce and poplar) over a wide range of temperature

levels and treatment durations. The inspiration for this work is i) to find best compromise

between the sobriety of the number of parameters to be identified and the robustness of120

the model validated on very distinct experimental data and ii) to use to the DSC signal to

identify heats of reaction. The whole procedure is explained in detail to allow the reader

to implement the modelling strategy for its own needs. The full dataset is supplied for

poplar and spruce (kinetics parameters and reaction enthalpies), which can be used for

the simulation of biomass pyrolysis, including thermal runaway likely to occur in large125

particle or packed beds of particles.

2. Materials and methods

Poplar (Populus euramerican cv. I-214) was selected from a 17-year-old tree (cotton-

wood native black poplar in the Po Valley, female). The spruce tree (Picea abies) was

about 31-year-old and selected from the Brin forest, Champenoux, France. The choice of130

these species was motivated by two objectives: i) The selection of potential species for bio-

fuel production due to their availability ii) the scientific interest of comparing hardwoods

and softwoods in regard to their pyrolysis behaviour. Healthy trees with no apparent in-

jury were used. Stem disks were cut from each tree at 6 m above the ground. Small blocks

were selected from these disks avoiding the sapwood and the pith regions. All samples were135

milled by using a grinder (IKA M20 Universal mill) and subsequently sieved. The particle

size fraction from 0.063 to 0.08 mm was selected in order to neglect internal heat and mass

transfer limitations during pyrolysis. The ultimate analysis was conducted in elementary

analyzer (FLASH 2000 CHNS/O, Thermo Fisher Scientific) and proximate analysis was

based on standard methods of ASTM E1755 and E872, they were all calculated on a dry140

basis. For both wood species, all tests were preformed in triplicate and the mean values

were taken to ensure results accuracy and repeatability.

The experimental TGA apparatus was a thermogravimetric analyzer (STA 449 F3

Jupiter, NETZSCH) with a weighting sensitivity of 0.025 µg and a balance drift lower than

2 µg/hour. The TGA-DCS sample carrier was mounted for simultaneous measurement of145

mass loss and heat flux. All measurements were carried out under a nitrogen flow of 50
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mL/min and a protective gas flow of 20 mL/min. Dynamic tests started by heating the

sample up to 100 °C for a 30-minute plateau at this temperature to eliminate the residual

water, then the temperature increased to 800 °C with a constant heating rate (10, 5, 2 and

1 K/min). Static tests started by the same plateau at 100 °C, then followed by a heating150

phase at 10 K/min to the desired temperature (250 °C, 300 °C, 350 °C, 400 °C, 450 °C

and 500 °C) for a 2-hour plateau.

Blank experiments were conducted for all experimental protocols and each experiments

was repeated three times. In order to exclude buoyancy effects and effect of crucible mass

on heat capacity, each final result is the raw data calibrated by subtracting a blank test155

performed with the same protocol and the same crucible. The mass recorded at the end

of 100 °C plateau was considered as oven-dry mass (m0) for the determination of mass

loss. In equation 1, the dimensionless residual mass (DRM) is defined as the ratio of the

instantaneous sample mass (ms) over the oven-dry mass:

DRM(t) =
ms(t)

m0
(1)

The dimensionless mass loss (DML, equ. 2) is simply the complement to the unity:160

DML = 1−DRM (2)

3. Modeling

3.1. DAEM formulation

The DAEM formulation (equ. 3, Vand, 1943) assumes that the product degrades

through a large number of independent, parallel and irreversible first-order reactions i:

dVi

dt
= ki(V

∞
i − Vi) (3)

ki = Ai exp
(
− Ei

RT

)
(4)

In these equations, Vi represents the quantity of volatiles generated during reaction i,165

V ∞
i is the total quantity likely to be produced by this reaction. ki is the kinetic constant

for reaction i. Its thermal activation is assumed to obey an Arrhenius law (equ. 4), defined
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by an activation energy Ei and a pre-exponential factor Ai (kinetics constant at infinite

temperature).

A time integration of equation (3) allows the time evolution of Vi to be derived as:170

V ∞
i − Vi(t) = V ∞

i exp

(

−
∫ t

t0

ki(T (t))dt

)

(5)

In practice, a continuous function is used instead of equation (5) to represent a large

number of reactions. This function F (E) represents the fraction of volatiles produced by

all reactions which have an activation energy smaller than E. The derivative of function

F over the activation energy is a distribution function f(E) which represents the potential

of volatile production related to each energy value E:175

dV ∞ = V ∞f(E)dE (6)

Assuming the pre-exponential factor to be the same for all reactions (Ai = A ∀i), a

combination of equations (5) and (6) yields equation (7):

1− V (t)

V ∞
=

∫ ∞

−∞

exp

(

−
∫ t

t0

Ae−E/RT (t)dt

)

f(E)dE (7)

Obviously, the whole set (continuous or discrete) of reactions should represent the

entire product. Hence the integration over the entire range of activation energy gives the

total potential of volatiles (equ. 8) that can be produced by the product:180

+∞∑

i=−∞

V ∞
i = V ∞ or

∫ +∞

−∞

dV ∞ = V ∞ (8)

The norm of function f therefore equals the unit (equ. 9):

∫ +∞

−∞

f(E)dE = 1 (9)

3.2. Gaussian distributions

A common practice is to adopt a Gaussian function for this distribution (or a combi-

nation of Gaussian functions). Function f is then defined by the average energy E0 and

its standard deviation σ (equ. 10) . The factor 1
σ
√
2π

ensures the unit norm:185

f(E) =
1

σ
√
2π

exp

(

−(E − E0)
2

2σ2

)

(10)
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In order to use such a function in a computational code, the domain of this function,

defined from −∞ to +∞, has to be restricted to a finite interval and, inside this interval,

the continuous function should be approximated by a set of discrete values. As a Gaussian

function is well defined by its standard deviation σ, it is reasonable to limit its domain

over a certain number k of σ : [E0 − kσ,E0 + kσ] and, inside each interval of length σ,

approximate the function by m increments dE of equal length, as expressed in equation

(11):

Ei = E0 − nσ + (i− 0.5)dE, i = 1, 2km

with dE = σ/m (11)

Equation (12) depicts the corresponding discrete weighting factors of the Gaussian

distribution:

fi = f(Ei) =
1

σ
√
2π

exp
(
− (Ei − E0)

2

2σ2

)
(12)

For the discretized function to correctly represent the continuous function, k has to be

equal or greater than 3 (with k = 3, the area under the curve is 99.7% of the total area,

against 95.4% for k = 2). Preliminary simulations have shown that a typical m value of190

10 allows a precise restitution of the kinetics (Fig. 1).

3.3. Gamma distributions

In the present work, we used gamma distributions as non-symmetrical distributions.

The function f is defined by a minimum energy value Emin and two independent param-

eters, for example, the shape parameter α and the rate parameter β:

f(E) = Gamma(
E − Emin

Emin
, α, β)

where Gamma(x, α, β) =
βαxα−1e−xβ

Γ(α)
(13)

Where Γ is the gamma function defined as Γ (z) =
∫∞

0 xz−1e−xdx, (z > 0).

To sample equation (13) for modeling purposes, the domain of the gamma distribution

is restricted to a finite interval [0, xmax], where xmax is n times the expected value (α/β).

Function f is therefore approached on the interval [Emin, Emax], with Emax = Emin(1 +
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Figure 1: a) Sampling the Gaussian curve to get the discrete values fi of function f . These values are

proportional to the number of points i within each segment of length σ), b) The diversity of shapes that

could be obtained with gamma distributions and its sampling obtained using 100 points over the interval

[Emin, Emin(1 + nα/β)].
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nα/β). Inside this interval, the function f is discretized in m increments dE of equal

length (equ. 14):

Ei = Emin + (i− 0.5)dE, i = 1,m

with dE = (Emax − Emin)/m (14)

In this work, the gamma distributions were sampled with n = 5 and m = 100, which

insures an accurate representation of the continuous function.195

3.4. Computational implementation

Thanks to this discrete approximation, the kinetics of volatiles production is easily

deduced from equation (3). Equations (15) and (16) summarise the set of equation to be

computed:

dV

dt
=

2km∑

i=1

dVi

dt
=

2km∑

i=1

ki(V
∞
i − Vi(t)) (15)

200

ki = A exp
(
− Ei

RT (t)

)
; V ∞

i = fiV
∞ ; Vi(t = 0) = 0 (16)

In the simulation code, the values of Ei and fi are computed just once during the

initialization procedure. On the contrary, all values of Vi have to be stored and updated

along the simulation. Last refinement, the increments update along the time step of

the kinetics defined by equation (15) is a first order approximation. However, due to

thermal activation, former works (Rousset et al., 2006; Turner et al., 2010) told us that205

the combination of high temperature level and wide range of activation energy in DAEM

might result in very small characteristic times (the factor τ in the time function exp(−t/τ),

i.e. the inverse of ki in equation 5). To ensure accuracy, an exact formulation of the

increment of the chemical reactions during time step dt has been implemented (equ. 17)

. This involves an exponential factor in the time increment expression:210

dVi = {1− exp(−kidt)}(V ∞
i − Vi(t)) (17)

As several distributions are often required to correctly represent the kinetics (we will

use three distributions in the present work), equation (15) should be summed over all

distributions. As each distribution n has its own sampling, the discrete coefficients should
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be indexed by the distribution number (fn
i ). Similarly, the total volatile substances likely

to be produced by the distribution n is called V n,∞.215

The final formulation for a computational solution of the DAEM model with three

distributions is summarized as the change dV n of total volatiles produced over the time

step n, which represents the time interval [tn, tn+1] with tn+1 = tn + dt:

dV n =
N∑

n=1

2km∑

i=1

dV n
i =

N∑

n

2km∑

i

{1− exp(−kni dt)}(V n,∞
i − V n

i (t)) (18)

kni = An exp

(

− En
i

RT (t)

)

; V n,∞
i = fn

i V
n,∞ ; V n

i (t = 0) = 0 (19)

DML(tN ) =
N−1∑

n=0

dV n

DRM(tN ) = 1−DML(tN ) (20)

The incremental DAEM formulation (equ. 18-20) allows any pathway time-temperature220

to be simulated. In the following, all simulations will be performed with the actual tem-

perature, as recorded for each test by the TGA device.

3.5. Identification

The distribution parameters were determined by inverse analysis. The identification

process minimises the objective function based on the difference between the experimental225

and calculated DRM values, computed in the sense of the mean-square error over a time

interval ranging from the end of the drying plateau (time indice iini) to the end of the

experiment (time indice ifin). Moreover, in order to benefit from all the experimental

information, this objective function Fobj is computed over several tests simultaneously

(the 4 dynamic tests simultaneously in the present work):230

Fobj =
1

Ntests

Ntests∑

ℓ=1




1

(ifin − iini + 1)

ifin∑

i=iini

(DRMℓ,exp
i −DRMℓ,cal

i )2



 (21)

In equation (21), the experimental dimensionless residual mass DRM ℓ,exp
i is obtained

by equation (1) and the calculated dimensionless residual mass is tied to the DEAM

model (equ. 18) through to total, dimensionless, mass of volatiles produced at time t

(DRMℓ,cal
i = 1− V ℓ(ti)).
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The kinetic model is solved using an in-house software written in Fortran 95 by Patrick235

Perré. This code solves equation (18) with the actual furnace temperature of each test,

as collected by the TGA device, for each time ti. The objective function is minimized

using the Nelder-Mead algorithm (Nelder and Mead, 1965). As all experiments are treated

simultaneously, all experimental conditions are computed for each increment of the Nelder-

Mead algorithm, using the current set of parameters, to evaluate the objective function.240

The computational engine is embedded in a graphical library Winteracter to create a

Windows application, with fields for parameter input/output and curve plot for visual

check. It can be used either to simulate desired configurations or to identified parameters

values from a set of experimental data.

It is important to notice that the identification procedure is not straightforward as245

many local minima exist: the initial parameter guess is therefore important for the algo-

rithm to converge towards the global minimum. The in-house graphical application allows

the free parameters, the experimental tests under interest and the active time interval of

each test to be chosen. In order to tune the initial guess, we usually proceed stepwise

: the first distributions are optimized over a reduced range of temperatures (namely by250

selecting a subset of the experimental times) and additional distributions are added along

with additional experimental information. Finally, all tests are optimized with the full set

of parameters to refine the solution. This is restarted several times with a large initial

simplex, to check that the solution is the global minimum. The graphical output of the

application and the display of residues greatly ease the procedure.255

3.6. Enthalpy of reaction

The enthalpies of reaction are of utmost importance at the industrial scale to control

thermal runaway and to evaluate the energetic yield over the whole transformation chain

of biomass. Consequently, these values need to be included in the enthalpy balance to

compute the source/sink terms due to degradation reactions. This is crucial to predict the260

temperature field, hence the kinetic activation at the scale of one macroscopic particle or

at a level of bed of particles (Turner et al., 2010; Perré et al., 2013). Yet, the literature is

still sparse in values of reaction enthalpies.
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A first sight, the best way to measure enthalpies of reaction is to use isothermal

tests, during which the heat capacity of sample and crucible is not involved. However, as265

pyrolysis reactions are quite slow, the total reaction enthalpies spread over long duration

and produce in a very low signal. In such conditions (small heat flux and large durations)

the drift of the heat flux baseline turns out to be larger than the signal. Instead, in the

present work, we used dynamic tests, together with the robust, validated, DAEM model,

to get a quite good accuracy of the identified reactions enthalpies, using the whole piece270

of information available with a ATG-DSC device : heat flux, temperature and mass loss.

It is important to note that such an analysis would not have been possible with a simple

DSC which is not able to give the mass evolution, in spite of the much better accuracy of

such devices regarding heat flux.

To that purpose, the energy balance should to be properly formulated (equ. 22). In275

particular, the change of mass over time needs to be considered to evaluate the heat

required to change the sample temperature. As the transformation occurs at constant

pressure, we write the enthalpy conservation of the system (sample + crucible) between

time t and time t+ dt.

mchs +mshs
︸ ︷︷ ︸

Time t

= Q̇dt+ Ṡdt+mc(hs + dhc) + (ms − dm)(hs + dhs) + dmhv
︸ ︷︷ ︸

Time t+dt

(22)

Where h are the specific enthalpies, Q̇ the heat flux provided to the system, Ṡ the280

source term due to chemical reactions and dm the quantity of volatiles formed during the

time interval dt. Indices c, s and v stand for crucible, sample and volatiles respectively.

Rearranging equation (22) in terms of derivatives truncated at the first order yields

equation (23):

−Q̇ = mc
dhc
dt

+ms
dhs
dt

+ Ṡ +
dm

dt
(hv − hs) (23)

The fourth term of the right-hand side of equation (23) represents the enthalpy of285

volatilisation (Frederick Jr and Mentzer, 1975; Suwardie and Artiaga, 2000). In the fol-

lowing, the two last terms of the right-hand side are considered lumped together to form

the production of pyrolysis enthalpy Ḣpyro. As the blank tests are performed with the
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same crucible, the thermal inertia of the crucible is canceled after blank correction. The

final equation for the blank corrected test is obtained by introducing the heat capacity of290

the sample (equ. 24):

−Q̇ = ms(t)cp,s
dT

dt
+ Ḣpyro (24)

In the result section, the pyrolysis enthalpy Ḣpyro will be identified for the predicted

heat flux (right-hand side of equation 24 : sum of enthalpy production and sensible heat) to

match the heat flux measured by the TGA-DSC device (−Q̇). In this calculation, we will

assume that the reaction enthalpy, ∆Hn, is the same for all reactions involved in a given295

distribution n. This is a quite strong assumption, but was required for the identification

to be realistic. The enthalpy production (equ. 25) reads then as follows:

Ḣpyro =

N∑

n=1

2km∑

i=1

∆HndV
n
i

dt
(25)

Keeping in mind that V (t) is the dimensionless production of enthalpy, the final equa-

tion (equ. 26) used in the identification becomes:

−Q̇ = m0(1− V (t))cp,s
dT

dt
+

N∑

n=1

∆Hn

(
2km∑

i=1

kni (V
n,∞
i − V n

i (t))

)

(26)

4. Identification and validation300

4.1. Identification of DAEM parameters

Dynamic experiments were used to identify the parameters of the DAEM model. It

is important to remind here that the four dynamic tests were used simultaneously (equ.

21) for each species. The importance of this feature was reported in Soria-Verdugo et al.

(2015). Note however that our learning database includes a wider range of heating rates305

(from 1 to 10 K/min) than in this reference. For a Gaussian distribution, E0 is the

mean activation energy, which informs on the global resilience to decomposition: pseudo-

components with smaller value of E0 are prone to decompose more easily than those with

high E0. The standard deviation of the Gaussian distribution σ quantifies the width of

activation energy values around the mean value. A distribution with a large standard310
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deviation means that the corresponding pseudo-component decomposes over a large tem-

perature range (or a large range of characteristic times) around the average value. The

pre-exponential factor A controls the overall reaction rates. The weighting factor V n,∞

represents the total proportion of the initial biomass that can produce volatiles.

315

During the identification procedure, several distributions were required to correctly

represent the evolution of DRM over the whole range of experimental conditions. As our

strategy was to limit the number of degrees of freedom, we tried to limit the number of

distributions. Two Gaussian distributions were able to capture the behaviors for moderate

temperature levels. However, the symmetry of Gaussian functions is a strong constraint320

regarding the behaviour of thermo-activation: with a symmetrical distribution, it is not

possible to spread the kinetics over high temperature levels without spreading also the

kinetics over low temperatures. This fact was already observed and led scientists to use

non-symmetrical distributions (Cai et al., 2014; Li et al., 2019). The third distribution,

devoted to the behavior up to 800 °C, was therefore set as a gamma distribution. This325

choice was crucial to obtain a good representation with three distributions. During the

optimisation procedure, the need of asymmetry for this third distribution was so strong

that the minimum value of residues was obtained with a value of α less than one, with

induces an infinite value at zero. Such a function becomes very tricky to represent by

discrete values : the parameters values depend on the sampling density, which is very330

difficult to reproduce. To avoid this side effect, we added the constraint α > 1. The

inverse procedure eventually gives α = 1, which limits the gamma distribution to the

subset of exponential functions and reduced by one the degrees of freedom.

As the learning database includes the asymptotic behavior (temperature level and

duration enough to approach equilibrium), the sum of the weighting factors of all dis-335

tributions is smaller than the unit. The complement of this sum to the unity therefore

represents the asymptotic value of Dimensionless Residual Mass at infinite time.

In spite of slight differences, the parameters values identified for spruce and poplar

depict the same trends (Table 1). In both cases, the second distribution has the largest

weighting factor, indicating the largest portion of pseudo-components described by this340
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distribution. For both species, the standard deviation of the second distribution is very

small. No kinetics difference was observed for σ → 0. This results in a unique activation

energy, 183.3 kJ/mol for spruce and 181.4 kJ/mol for poplar, in good agreement with the

value 185 kJ/mol obtained in Sonobe and Worasuwannarak (2008). The second distri-

bution is basically reduced to a simple first-order reaction (a Dirac distribution), which345

decreases the number of degrees of freedom by one. This is explained by the sudden and

large mass loss arising at around 300 °C. Finally, the third distribution acts after the

second one in terms of temperature level and its action lasts over a large range of high

temperatures. Finally, the proposed DAEM model comprises three different distributions:

• a Gaussian distribution for hemicelluloses,350

• a Gaussian function degenerated into a Dirac function for cellulose,

• a gamma function degenerated into an exponential function for lignins.

Table 1: DAEM parameters of spruce and poplar identified on dynamic pyrolysis experiments. Parameters

in red represent meaningless parameters related to the degeneration of distribution functions (Gaussian to

Dirac and gamma to exponential).

Biomass Distribution Vmax E0 σ, α or β A

(kJ ·mol−1) (kJ ·mol−1,−,−) (s−1)

Spruce

1 (Gaussian) 0.2344 168.5 σ = 7.51

9.67× 10122 (Gaussian) 0.4927 183.3 σ = 0.089

3 (gamma) 0.1563 182.8 β = 2.812;α = 1

Poplar

1 (Gaussian) 0.2584 163.6 σ = 6.62

7.03× 10122 (Gaussian) 0.4928 181.4 σ = 0.128

3 (gamma) 0.1630 181.3 β = 2.205;α = 1

For both species, the 3-distribution DAEM model is in excellent agreement with the

experimental results (Fig. 2). This proves the ability of model to describe the pyrolysis

behavior over a large range of temperatures and heating rates although we were frugal355

in the number of independent parameters. This qualitative assessment is confirmed by
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objective criteria (Table 2). The standard deviation is around or less than 0.5% and the

maximum deviation, a very severe criterion, is around 1 to 1.5 %, except for spruce at 10 °C

per minute, for which a slightly larger difference (2.27%) is observed at the end of the test.

This difference is not obvious on the graph as the maximum deviation is obtained during360

the rapid mass decrease, where the curve slopes are very large. These excellent results are

obtained by assuming a constant pre-exponential factor A, identical for all distributions

(∀n,An = A). This is in contradiction with the latest published works in which authors

propose the pre-exponential factor to be a function of temperature, heating rate or average

activation energy (Cai and Liu, 2008; Sonobe and Worasuwannarak, 2008; Sfakiotakis365

and Vamvuka, 2015; Czajka et al., 2016; Xu et al., 2018). Even with our experimental

datasets that include a large range of temperature levels and residence times, it was not

necessary to use such functions, neither to obtain a small residues nor to successfully

validate the mode against distinct time-temperature pathways. We can therefore affirm

that a constant value of A is perfectly able to reproduce the kinetics behavior over a wide370

range of temperature levels and heating rates. We owe this success to the strategy to

identify one single set of parameters simultaneously on the entire series of tests, together

with the highly asymmetrical shape of the third distribution.
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Figure 2: TG curves for dynamic experiments at different heating rates (10 K/min, 5 K/min, 2 K/min and

1 K/min) and corresponding DAEM curves based on identified parameters and temperature evolutions.

Time origin is at the end of the 30-minute 100°C plateau.

The temperature response of the three distributions together with these respective

weighting factors confirm well-accepted trends in the pyrolysis behavior of lignocelluloses375

(Chen et al., 2015; Cordero et al., 1990). The first distribution accounts for the degrada-

tion of hemicelluloses, the most prone to thermal degradation. Hemicelluloses are linear

branched polymers made by different types of monosaccharide units (Xu et al., 2013)

and it decomposes in the range 225-325°C. Poplar hemicelluloses are mainly composed of
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xylan, whereas spruce hemicellulose are mainly composed of glucomannan(Wang et al.,380

2017b). In agreement with published results (Prins et al., 2006; Cavagnol et al., 2013),

this explains that spruce is more thermally stable than poplar at moderate temperatures:

E0 of the first distribution is smaller for poplar than for spruce.

As can be seen from the Vmax values, the second distribution affects roughly half of the

production of volatile substances with rapid degradation above 300 °C. This is undoubtedly385

the signature of cellulose, which represents ca. 50% of the total mass and is very resilient

to degradation in crystalline state, but with a rapid thermal decomposition once melt (Lv

et al., 2015). Cellulose has macromolecular structures which are constructed by semi-

crystalline array of β−1, 4 glucan chains and it decomposes at 325-385°C (Chen and Kuo,

2010; Shafizadeh, 1985). For Gaussian distributions 1 and 2, the present results depict390

similar trends as those proposed by Chen et al. (2016). However, our third distribution is

very different from the very wide Gaussian distribution proposed in (Chen et al., 2016) :

the gamma distribution captures nicely the degradation of the most reluctant part of the

biomass, which can be attributed mostly to lignins (Poletto et al., 2012). Lignins present

a highly branched three-dimensional phenolic structure made of C6C3 units, namely, p-395

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, in various proportions depending

on the species. Lignins present a large range of decomposition temperature from 250 °C

to over 500 °C. Hardwood lignins are composed of S and G units, together with trace

amounts of H units. Softwood lignins consist mainly of G units and low levels of H units

(Boerjan et al., 2003; Whetten et al., 1998). Consequently, spruce lignins contain fewer400

β-O-4 bonds and more 5-5 branching structures than poplar lignins. As β-O-4 bonds are

the main targets of thermal degradation (Rousset et al., 2009; Assor et al., 2009), it is not

surprising to obtain a minimum activation energy E0 for the gamma distribution slightly

smaller for poplar.

As a summary, hemicelluloses are the first components to be altered by temperature,405

cellulose, ca. half the cell wall mass, is very resilient before melting, but depicts a rapid

degradation after melting (with a melting temperature around 300 °C) and lignins is the

part of the cell wall the most resilient to degrade. This simple correspondence between

the distributions and the components of the cell wall is certainly related to the absence of
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significant interaction between these components during pysolysis (Navarro et al., 2009;410

Cavagnol et al., 2013).

Table 2: Learning procedure on dynamic tests : quality of the model with the best fit of parameters for

each temperature level assessed as the standard deviation and the maximum error.

Heating rate Standard deviation Maximum deviation

(K/min) (% DRM) (% DRM)

Spruce

10 0.45 2.27

5 0.43 1.22

2 0.35 1.57

1 0.58 1.56

Poplar

10 0.53 1.43

5 0.43 1.09

2 0.55 1.31

1 0.50 1.00

4.2. Validation on static experiments

So far, we proved the ability of the kinetic model to represent a quite large pyrolysis

database with a moderate number of identified parameters. In this section, the model will

be tested on a completely different experimental database, the set of static tests. The415

experimental and predicted DRM curves are depicted in figure 3. It is worth mentioning

that this is a true validation test : the parameters used in the model are the parameters

derived from the dynamic tests of Table 1, without any further identification.

Overall, the predictions are in very good agreement, even with the static tests at

moderate temperature (250 °C, 300 °C). These tests are severe due to their slow kinetics,420

without asymptotic behavior. Such good predictions obtained for this demanding valida-

tion confirm the resilience of the DAEM formulation in comparison with a set of simple

chemical reactions occurring simultaneously or in cascade (Rousset et al., 2006; Cavagnol

et al., 2015). The good agreement is confirmed by the computed residues (Table 3). This

is an additional proof regarding the assumption of constant and common value for the425
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pre-exponential factor A.
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Figure 3: Model validation using a set of static experiments at different plateau temperatures (250 °C,

300 °C, 350 °C, 400 °C and 500 °C).
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Table 3: Validation step on static tests : quality of prediction with the parameters fitted on the learning

database for each plateau temperature assessed as the standard deviation and the maximum error.

Temperature Standard deviation Maximum deviation

(◦C) (% DRM) (% DRM)

Spruce

250 0.39 1.22

300 1.62 2.87

350 1.48 1.92

400 0.42 2.14

450 0.44 2.18

500 0.51 2.17

Poplar

250 0.32 0.53

300 1.21 1.64

350 0.96 1.33

400 0.33 1.66

450 0.83 1.93

500 0.55 1.49

The rate of decomposition, the first derivative of the differential thermogravimetry

(DTG) curves, depicts more detail during the decomposition process as it is more affected

by slight changes during the reactions. Comparing experiment and model prediction in

terms of derivative is very challenging as it is likely to reveal any differences between the430

curves. For the sake of example, the results obtained for poplar are shown in figure 4. One

might observe that the experimental derivative is noisy, which is a classical effect when

deriving an experimental curve. Yet, the DAEM model perfectly predicts the degradation

rate, both in terms of position and intensity, over the wide range of temperatures of these

static tests. This is an additional and convincing proof of validation. The test at 250 °C435

depicts a very small DTG peak at 20 hours, due to the partial degradation of hemicelluloses

occurring at this temperature level. The peak significantly increases at 300 °C and spreads

over slightly longer times. For tests at 350 °C, the shape clearly depicts a double peak by
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its shoulder on the left side due to the degradation of hemicelluloses followed, at around

350 °C, by the deep and narrow peak formed by the sudden degradation of cellulose. As440

the degradation of these two components is almost complete at 350 °C, the shape and

maximum amplitude are no longer affected at higher temperature values.
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Figure 4: Model validation : experimental (black circles) and corresponding simulation (red lines) of the

derivative of DML for the set of static tests Case of poplar.

4.3. Reaction enthalpies

The DSC signal of two types of wood have been analysed to determine the reaction

enthalpies. In order to reduce the problem of baseline drift and thanks to the confidence445
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in the DAEM model provided by the validation step, the dynamic tests at 5 K/min were

used to identified the reaction enthalpies using the formulation presented in section 3.4

(equ. 26). The test at 10 K/min was likely to present an even lower baseline shift, but

has been discarded due to its noise level.

Figure 5 shows the experimental DSC signal for spruce and poplar as red lines. The450

model prediction, as computed using equation (26) and after parameter indetification,

appears in these figures as blue dashed lines. Note that positive DSC values represent an

exothermic behavior (heat removed from the sample) and negative values an endothermic

behavior (heat provided to the sample).

During the drying period (plateau at 100°C), the heat flux needed to water evaporation455

appears on the experimental curve. This is not present in the model as evaporation is not

included in equation 26. At the end of this plateau, the temperature is constant and

evaporation stops : consistently, the experimental and simulated heat fluxes are equal to

zero. After this plateau, the temperature increases linearly in time, which required the

sensible heat to be supplied to the sample. The experimental overshoot is due to the control460

of the furnace temperature. It can be nicely reproduced by the model as the actual furnace

temperature is included in equation (26). While the temperature remains low, no thermal

degradations occur : this range is suitable for the determination of the heat capacity. A

first exothermic effect can be observed for both species between 60 and 70 minutes (which

correspond to the temperature range 250 °C to 300 °C). This peak can be captured by the465

reaction enthalpy of the first distribution. It is probably due to the charing reaction of

hemicellulose, as solid char forms during the primary decomposition at 200-400 °C (Kan

et al., 2016; Yang et al., 2007). At 80 minutes (ca. 350 °C) an important endothermic

peak is evidenced. This corresponds to the rapid and important mass loss observed during

this period. This large endothermic peak is tied to the decomposition of cellulose, which470

has the highest percentage in biomass and has endothermic pyrolysis characteristic, at

this temperature most portion of cellulose decomposes. Afterward, the decomposition of

lignin together with secondary reactions including charring and aromatization result in

the last and important exothermic peak of the DSC curves (Kifani-Sahban et al., 1997;

Haykiri-Acma et al., 2010). To some extent, the decomposition and phase transformations475
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Figure 5: Using the experimental DSC curves to determine reaction enthalpies of spruce and poplar using

the dynamic experiments at 5 K/min.
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of inorganic matters in ash might also be involved (Vassilev et al., 2013; Febrero et al.,

2014).

The difference peaks and troughs of the DSC curves found in our measurements are

in good agreement with the analysis performed on the different components of wood

(Chen and Kuo, 2011). The enthalpy values determined for both spruce and poplar are480

summarised in table 4. The identified heat capacity is similar for spruce and poplar. These

values are a bit low compared to published values (Guo et al., 2013). Prior to the tests,

the device was calibrated using sapphire as reference material and, up to 873 K, the values

were in a ±5% agreement with published data (Ditmars et al., 1982). A slight production

of heat by thermal degradation is likely to explain the obtained values.485

The heats of reaction related to the first Gaussian distribution are slightly exothermic.

They allows the first heat flux increase at the beginning of mass loss to be obtained (-140

and -120 kJ/kg for spruce and poplar, respectively). The values obtained for the second

Gaussian distribution are definitely endothermic (+339 and +338 kJ/kg for spruce and

poplar, respectively). These values were needed to explain the deep decrease of the heat490

flux during the phase of rapid mass loss, tied to the degradation of cellulose. Finally, very

large exothermic values are needed for the third distribution to explain the spectacular

increase of heat flux just after the trough of the curve. This heat production should be

obtained with a very limited additional mass loss, which explains the high value as the

unit for the enthalpy of reaction is in kJ per kg. Note that these values are in agreement495

with the values obtained by Rath et al. (2003) in the reaction branch producing char and

gas. Contrary to all other data that were similar for spruce and poplar, this third reaction

enthalpy has a much higher absolute value for poplar (-4300 kJ/kg to be compared to

-1900 kJ/kg for spruce). This is consistent with the peak of the heat flux values, much

larger for poplar than for spruce. The same trends were observed for all tests, whatever500

the heating rate (not show here).

At the highest temperature levels, the predicted curves differs from the experimental

curves. This is likely to be due to the change of radiative properties between the empty

crucible and the crucible with the degraded sample (Rath et al., 2003). To address this

problem, we performed tests with a lid, but, as the presence of a lid changes the mass loss,505
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the DAEM model was not valid any more.

Table 4: Enthalpy for decomposition reactions obtained for spruce and poplar by adjustment on the

5 K/min dynamic tests. Positive value indicates endothermic reaction, and negative value exothermic

reaction.

Biomass Cp(J/(kg ·K)) ∆H1(kJ/kg) ∆H2(kJ/kg) ∆H3(kJ/kg)

Spruce 720 −140 +339 −1900

Poplar 650 −120 +308 −4300

5. Use of the model

In the previous section, the DAEM parameters has been identified on the learning

database. The proposed choice of distributions required only 9 independent parameters :

3 activation energy E0(n), 3 weighting factor V n,∞, 1 standard deviation σ(1), β and the510

pre-exponential factor A. The DAEM model was then successfully validated using very

different temperature-time routes. Thanks to this success, the model was be further used

to determine the enthalpies of reaction. In this section, the model is used for prediction

purposes : prediction of the pathway in the Van Krevelen’s diagram and the control of

the temperature rise to limit the released energy.515

5.1. Elemental analysis

The results of ultimate and proximate analysis for untreated spruce and poplar are

summarized in table 5. The nitrogen content was lower than 0.1% for native samples and

lower than 0.3% for treated samples. Sulphur was not detected in any sample. These

values are, at best, of the order of the experimental accuracy and were therefore not520

reported in this table.
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Table 5: Ultimate and proximate analysis of native spruce and poplar.

Biomass type

Proximate analysis Ultimate analysis

(wt.%) (wt.%)

VM Ash FC C H O

Spruce 84.93 0.29 14.77 47.07 5.97 43.65

Poplar 86.29 0.37 13.34 48.06 5.95 43.76

The remaining biomass char of each static test has been collected to determine char

yield and to perform elemental analysis (Table 6). For both spruce and poplar the H/C

and O/C ratios decrease simultaneously, indicating a pathway towards pure carbon. This

is a classical finding in heat treatment of biomass : H and O contents decrease due to525

the volatilization of organic components into gas with low molecular mass. Figure 6 plots

the O/C and H/C ratios found for the different plateau temperatures in a Van Krevelen’s

diagram (McKendry, 2002). At increasing temperature levels, the positions of char in this

diagram move towards the down-left corner which represents highly carbonized material.

The difference between spruce and poplar observed at low temperature is not visible on530

this diagram. On the contrary, char from poplar stands beneath that of spruce for the

most severe conditions, indicating that poplar has more prone to charring than spruce for

severe pyrolysis.

The difference between the two species is however quite low when plotted as a function

of Dimensionless Mass Loss (DML). This allowed us to propose a single set of equations535

fitted to predict the O/C and H/C ratios as a function of DML:

O/C = 1.134− 0.219× exp(1.815 DML)

H/C = 0.1534− 0.0268× exp(1.783 DML) (27)

Obviously, for prediction purpose, the DML value can be predicted by the validated

DAEM model for any time-temperature pathway using equations 18-20.
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Table 6: Char yield and ultimate analysis of pyrolysis char from spruce and poplar powder in static tests

Temperature(◦C)
C

(wt.%)

H

(wt.%)

O

(wt.%)

Char yield

(wt.%)

Spruce

250 50.77 5.7 39.69 76.67

300 65.26 4.27 24.53 27.87

350 71.01 3.09 19.19 24.70

400 74.28 3.05 15.24 21.54

450 79.22 3.11 12.42 19.45

500 82.67 2.88 9.49 17.42

Poplar

250 50.30 5.65 40.1 76.55

300 62.28 4.75 28.32 32.94

350 70.90 3.23 19.99 21.57

400 74.44 2.86 16.44 18.94

450 77.11 2.87 13.21 16.91

500 81.50 2.63 9.62 15.73
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Figure 6: a) O/C and H/C ratios from char of spruce powder and poplar powder and corresponding

biomass, b) O/C (open markers) and H/C (plain markers) ratios as a function of dimensionless mass loss

(DML). Experimental data and fitted curves.

5.2. Process control

All the kinetic parameters as well as the reaction enthalpies confer a predictive potential540

to the code. Its eventual purpose is to be implemented in a multi-scale macroscopic particle

model, able to deal with the non-uniform variable fields within the particle (Turner et al.,

2010) or with a packed-bed (Perré et al., 2013; Perre, 2019). Such a work is in progress

in our team. Even at the micro-particle scale, the prediction potential of the model
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can be tested. For example, limiting the heat flux due to reactions might be important545

to minimize the temperature perturbation during ATG tests. Figure 7 compared two

different temperature pathway :

1. A linear temperature increase from 100 °C to 650 °C in 200 minutes

2. An optimised control : the temperature increase is controlled to limit the heat flux

in the range [−0.5mW,+0.5mW ] for a sample of 10mg as initial mass.550

For case 2), a simple PD (proportional, derivative) control was implemented, which

explains the small oscillations. However, it is obvious that the obtained temperature in-

crease allows the same temperature range to be investigated over the experiment duration

(200 minutes), while avoiding the heat flux peaks. One can see that the constraint reduces

the temperature increase when the kinetics produces high values of heat flux. In order to555

give an in-depth view of the DAEM model, we plotted the evolution of the three distribu-

tion in the case of the optimised control (Fig. 7). The first Gaussian distribution is wide

with low activation energy. Consequently, this is the first one to be affected by heat. It

gradually disappears, starting to the left-hand side, which represents the lowest activation

energies. This peak completely disappears after ca; 50 minutes. The second peak is very560

narrow and no difference of kinetics may be observed over the, very small, distribution

energy. Following the rapid mass loss depicted by all the previous curves, its degradation

lasts over a short time interval and disappears completely very soon after the first distri-

bution. Finally, the last distribution is non-symmetrical and depicts a very wide range of

activation energies. Again, the kinetics affects the left-hand side of the distribution. After565

200 minutes, most of the large values from the left-hand sides disappeared (one has to

remember that the initial shape is an exponential curve). However, the right-hand side,

which contains very large values of activation energy (above 200 kJ/mol) are not degraded

yet. This is consistent with the lignin behaviour, whose degradation spreads over a very

large temperature range.570
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perature profile. Bottom) Evolution of the residual parts of each distribution for the optimised temperature
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6. Conclusion

A robust three-distribution DAEM model was derived to simulate two types of ligno-

cellulosic products over a wide range of treatment time and temperatures. The compre-

hensive approach includes i) parameters identification using a learning database (dynamic

tests with different heating rates), validation with static tests ranging from 250 °C to 500575

°C and iii) the use of the measured heat flux to determine the heats of reaction. The

potential of the model has been highlighted by two application examples : the prediction

of the biomass pathway in the Van Krevelen’s diagram and the use of the heats of reaction

to control the process at the micro-particle level. The main outcomes of this work are as

follows :580

• The kinetics and heat flux formulation are presented in detail, as well as the com-

putational strategy to correctly solve these equations, which is intended to serve as

a guide for the reader,

• To use of a gamma distribution allows the model to include only 9 independent

parameters,585

• In spite of its sparcity, the model perfectly predicts the kinetics over a large range

of temperature and duration, for dynamic and static tests

• Heats of reactions were determined using the experimental DSC signal

• The model has a great prediction potential, including as local model to be included

in a multiscale approach590

In the near future, this reaction model will be embedded in a comprehensive heat and

mass transfer computational code to model the process at the level of a large particle or

of a packed-bed of particles. One specific point to be addressed is the crucial question

of thermal runaway. Such simulations will be compared to experimental results to check

whether or not the heats of reaction identified on powders, with or without lid, remain595

pertinent for large particles. To the best of our knowledge, this is still an open question

that deserves consideration.
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7. Notations

The notations are summarized in tables (7 to 9)610
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Ṡ heat source due to reactions J−1

T temperature K or ◦C

V volatiles produced by a reaction kg

35
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