
HAL Id: hal-03547117
https://hal.science/hal-03547117

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gaussian elimination versus Greedy methods for the
synthesis of linear reversible circuits

Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon
Martiel, Cyril Allouche

To cite this version:
Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, Cyril Allouche.
Gaussian elimination versus Greedy methods for the synthesis of linear reversible circuits. ACM
Transactions on Quantum Computing, 2021, 2 (3), pp.11. �10.1145/3474226�. �hal-03547117�

https://hal.science/hal-03547117
https://hal.archives-ouvertes.fr

Gaussian elimination versus greedy methods for the

synthesis of linear reversible circuits
∗

Timothée Goubault de Brugière
1,3

, Marc Baboulin
1
, Benoît Valiron

2
,

Simon Martiel
3

and Cyril Allouche
3

1Laboratoire de Recherche en Informatique, Université Paris-Saclay, Orsay, France

2Laboratoire de Recherche en Informatique, CentraleSupélec, Orsay, France

3Atos �antum Lab, Les Clayes-sous-Bois, France

Abstract

Linear reversible circuits represent a subclass of reversible circuits with many applications in

quantum computing. These circuits can be e�iciently simulated by classical computers and their

size is polynomially bounded by the number of qubits, making them a good candidate to deploy

e�icient methods to reduce computational costs. We propose a new algorithm for synthesizing

any linear reversible operator by using an optimized version of the Gaussian elimination algorithm

coupled with a tuned LU factorization. We also improve the scalability of purely greedy methods.

Overall, on random operators, our algorithms improve the state-of-the-art methods for specific

ranges of problem sizes: the custom Gaussian elimination algorithm provides the best results for

large problem sizes (n > 150) while the purely greedy methods provide quasi optimal results when

n < 30. On a benchmark of reversible functions, we manage to significantly reduce the CNOT

count and the depth of the circuit while keeping other metrics of importance (T-count, T-depth) as

low as possible.

1 Introduction
Progress in scientific computing in recent decades is as much about improvements in algorithms as

the increasing power of hardware. Some very active fields, such as machine learning, have benefited

from the considerable increase in the amount of data available and from the ever more e�icient

hardware capable of processing this data, whereas the first algorithms were invented well before.

This exponential increase in the power of our computers is o�en illustrated, now for 40 years, by

Moore’s second law [34], that predicts that the number of transistors in microprocessors doubles

every 2 years since its formulation in 1975. Behind this law hides a race for the miniaturization of

transistors. Today the transistors are only a few nanometers large, at this scale quantum e�ects such

as the tunnel e�ect interfere with the proper performance of the transistors so that it becomes more

and more complex to reduce their size.

New kind of computational models are developing in response to this future limitation of the so-

called “conventional” or “classical” computing. We can mention biological [14, 11], photonic [21], neu-

romorphic [33, 45] or quantum [37] computing, booming these recent years. These new paradigms

are promising because they perform the calculation at new scales and potentially overcome the limi-

tations of classical computing. For example, in quantum computing, elementary particles are directly

manipulated by exploiting their quantum properties to perform in polynomial time computations

that may require an exponential amount of operations on a conventional machine [41, 16].

Our paper concerns reversible computing, i.e., boolean operations that can be “undone” because

they consist in a bijection between the inputs and outputs of the system. Reversible computing is

∗
This document is the author’s version of the corresponding research manuscript prior to formal peer review. An updated

version is published in ACM Transactions on �antum Computing, Volume 2, Issue 3, Article 11. pp 1–26, 2021, 10.1145/3474226

1

ar
X

iv
:2

20
1.

06
50

8v
1

 [
qu

an
t-

ph
]

 1
7

Ja
n

20
22

https://doi.org/10.1145/3474226

a subclass of photonic and quantum computing, which motivates its study. A consequence of the

reversibility is that there is no loss of information during the calculation, resulting in lower energy

consumption because no energy is dissipated at the erasure of a bit [25]. Here we study reversible

circuits referred to as linear reversible circuits. These circuits have the particularity to be expressed

as circuits containing only one reversible logic gate: the Controlled-Not (CNOT) gate which performs

the operation NOT on a target qubit conditioned by the value of a control qubit. This class of circuits

is particularly useful in quantum computing in the synthesis of stabilizer circuits: canonical forms for

stabilizer circuits involving linear reversible circuits have been found and the size of stabilizer circuits

is dominated by the size of reversible linear circuits [1, 29] . Stabilizer circuits are for instance used for

error correction and are therefore essential for scaling up quantum computing [13], and so are linear

reversible circuits by extension. Linear reversible circuits are also involved in circuits called “CNOT +

T” (also called phase polynomials) whose optimization is the purpose of recent research [5, 31, 4, 17].

In the following we study the synthesis and optimization of linear reversible circuits. We are given

a linear reversible operator as a Boolean matrix and we seek a quantum circuit that implements it as

a series of elementary operations. Our contributions are the following :

• We propose GreedyGE: an optimized version of the Gaussian elimination algorithm for synthe-

sizing any linear reversible operator. When we zero out the subdiagonal entries of the matrix,

like in a standard Gaussian elimination, we perform the operations that minimize an ad-hoc

cost function, resulting in less operations for the synthesis. We study the theoretical worst case

behavior of our algorithm. Overall, our algorithm is asymptotically optimal with theoretical

and practical improvements over the state-of-the-art methods [38, Algo. 1] and the syndrome

decoding based method [9]. In terms of computational time our algorithm is faster than the

standard Gaussian elimination algorithm.

• We propose a new way to compute the LU decomposition of a linear reversible operator. This

provides us triangular operators L andU whose synthesis yield shorter circuits, especially when

the circuit is expected to be "small enough". We will detail this notion of "small enough" later

in the article. This optimization finds application in other synthesis methods relying on an

LU decomposition, for instance the recent method we designed using the syndrome decoding

problem [9].

• We show that cost minimization techniques are useful for finding circuits whose expected

size is "small enough". We briefly review the existing algorithm and we propose our own cost

function and implementation that increase the range of validity of this kind of technique.

• We provide benchmarks of our methods and compare them to state-of-the-art algorithms. First

we test our algorithms on random circuits of various sizes. Overall, with GreedyGE, we can

synthesize circuits with more than 150 qubits in a few seconds while giving circuits that are at

least 10% smaller in average than the current state of the art. With purely greedy methods, we

report quasi optimal results when n < 30. Then we include our methods into a more general

Cli�ord+T quantum compiler — the Tpar algorithm [5] — and we show that our algorithms are

also useful in practice: on a set of reversible functions we successfully reduce the total number

of CNOTs and the circuit depth while keeping other metrics of interest (T-count, T-depth) as

low as possible.

The plan of this paper is the following: in Section 2 we present the basic notions and state of the

art about the synthesis of linear reversible circuits. In Section 3 we describe the improved Gaussian

elimination algorithm on triangular operators. In Section 4 we extend our algorithm to treat any

general linear reversible operator. Notably we present optimization techniques for computing the LU

decomposition. We tackle the study of purely greedy methods in Section 5. Benchmarks are given in

Section 6. We conclude in Section 7.

2

2 Background and state of the art

2.1 Notion of linear reversible function.
Let F2 be the Galois field of two elements. A boolean function f ∶ F

n
2 → F2 is said to be linear if

f (x1 ⊕ x2) = f (x1) ⊕ f (x2)

for any x1, x2 ∈ F
n
2 where ⊕ is the bitwise XOR operation. Let ek be the k -th canonical vector of F

n
2 .

By linearity we can write for any x = ∑k αk ek (with αk ∈ {0, 1})

f (x) = f
(

∑

k

αk ek
)

= ∑

k

αk f (ek)

and the function f can be represented with a column vector c = [f (e1), ..., f (en)]
T

such that f (x) =

cT x . This expression easily extends to the n-inputs and m-outputs functions f ∶ F
n
2 → F

m
2 where f

is defined by an m × n boolean matrix A such that

f (x) = Ax .

In the case of reversible boolean functions we have n = m and the matrix A must be invertible.

The application of two successive operators A and B is equivalent to the application of the operator

product BA. There is a one-to-one correspondence between the linear reversible functions of arity

n and the invertible boolean matrices of size n. This was used for instance to count the number of

di�erent linear reversible functions of n inputs in [38].

2.2 LU decomposition.
Given the matrix representation A of a generic linear reversible operator, we can always perform an

LU decomposition [12] such that there exists an upper (resp. lower) triangular matrixU (resp. L) and

a permutation matrix P such that A = PLU . The invertibility of A ensures that the diagonal elements

of L andU are all equal to 1. In the remainder of this paper, the term “triangular operator” stands for

an operator whose corresponding matrix is either upper or lower triangular. The LU decomposition

is at the core of several synthesis of general linear reversible Boolean operators: synthesizingU , L, P

and concatenating the circuits gives an implementation of A.

2.3 Synthesis of linear reversible boolean functions.
We are interested in synthesizing a linear reversible boolean function into a reversible circuit, i.e.,

a series of elementary reversible gates that can be executed on suitable hardware. For instance in

quantum computing the CNOT gate is used for superconducting and photonic qubits and performs

the following 2-arity operation:

CNOT(x1, x2) = (x1, x1 ⊕ x2).

The CNOT gate is a linear reversible gate. It is also universal for linear reversible circuit synthesis,

i.e., any linear reversible function can be implemented by a reversible circuit containing only CNOT

gates [1]. In this paper we aim at producing CNOT-based reversible circuits for any linear reversible

functions.

In terms of matrices, a CNOT gate controlled by the line j acting on line i ≠ j can be wri�en

Ei j = I + e i j where I is the identity matrix and e i j the elementary matrix with all entries equal 0

but the entry (i , j) whose value is 1. Finding a CNOT circuit implementing an operator A is therefore

equivalent to finding a sequence of matrices (Eik jk)1≤ik ,jk≤n such that

∏

k=1…N

Eik ,jk = A.

3

Using the fact that E−1i j = Ei j , it is more convenient to rewrite the synthesis problem as a reduction

of A to the identity operator I

∏

k=N…1

Eik ,jkA = I

because we now show that the synthesis problem can be reformulated in terms of elementary oper-

ations applied on A. Given a CNOT with control j and target i applied on an operator A, the updated

operator Ei jA can be deduced from A with an elementary row operation:

ri ← ri ⊕ rj ,

writing rk for the k -th row of A. Therefore, if one can compute a sequence of row operations trans-

forming A into the identity operator then one can construct a circuit implementing A by concate-

nating the CNOT gates associated to each row operation. With a standard Gaussian elimination

algorithm it is always possible to reduce an invertible operator to the identity with row operations.

This gives a simple proof that the CNOT gate is universal for linear reversible circuit synthesis. In

some cases we will also authorize the use of column operations. A column operation cj ← ci ⊕ cj is

equivalent to right multiplying A by Ei j . Overall by combining row and column operations we get

∏

(i1,j1)

Ei1j1 × A × ∏

(i2,j2)

Ei2j2 = I

and finally

A = ∏

(i1,j1)

Ei1j1 ∏

(i2,j2)

Ei2j2

so we recover a CNOT circuit for the implementation of A.

Thus, synthesizing a linear reversible function into a CNOT-based reversible circuit is equivalent

to transforming an invertible Boolean matrix A to the identity by applying elementary row and col-

umn operations. From now on we will privilege this more abstract point of view because it gives more

freedom and o�en appears clearer for the design of algorithms. We note by Row(i , j) the elementary

row operation rj ← ri ⊕ rj and Col(i , j) the elementary column operation cj ← ci ⊕ cj .

We use the size of the circuit, i.e., the number of CNOT gates in it, to evaluate the quality of our

synthesis. The size of the circuit gives the total number of instructions the hardware has to perform

during its execution. Due to the presence of noise when executing every logical gate, it is of interest

to have the shortest circuit possible. Another metric of interest is the depth of the circuit which

is closely related to the number of time steps required to execute the circuit. In other words the

depth of a quantum circuit gives its execution time. Given that the physical qubits are subject to the

decoherence problem and that the total time available to perform a quantum algorithm is limited, it

is also very important to be able to produce shallow circuits.

We now review the main algorithms designed for the synthesis of CNOT circuits.

2.4 State of the art and contributions
We distinguish algorithms that assume that all qubits are connected and algorithms that take into

account a restricted connectivity between the qubits. The former usually give smaller and shallower

circuits while the la�er are adapted to real world hardware where row operations can be performed

only between qubits that are neighbors in the hardware. Studying ideal cases with full connectivity

is of interest for providing us with new solutions before transposing them to the restricted case.

Gaussian elimination based algorithm. In the literature, the first algorithm proposed is a Gaus-

sian elimination algorithm that produces circuits of size (n2) gates [1]. Later a lower bound of

(n2/ log2(n)) was established in [38] for the asymptotic optimal size of reversible circuits, with an

algorithm that reaches this lower bound. The algorithm consists in performing the Gaussian elimi-

nation algorithm on a chunk of m columns. The gain in the number of operations arises when two

words in Fm2 are equal and that one can be zeroed in one row operation. Choosing m = (log2(n))
leads to an optimal asymptotic complexity.

4

Syndrome decoding based algorithm Recently, we proposed a new method for the synthesis

of CNOT circuits [9]. We transformed the synthesis problem into a series of syndrome decoding

problems and gave several strategies to solve them (either optimal with an integer programming

solver or approximate with greedy methods). Our benchmarks reveal that our method outperforms

[38, Algo. 1] for operators on medium-sized registers (n < 400 qubits) but performs poorly as n gets

larger.

Other algorithms. In [40] a cost-minimization approach was used with promising results.

To our knowledge, [38, Algo. 1] is state-of-the-art and it is used in the Tpar and Gray-Synth

algorithms [4, 5]. Given that our recent results from [9] improve [38, Algo. 1] , we also have to take

them into consideration. Therefore, both [38, Algo. 1] and the syndrome decoding based algorithms

will be our state-of-the-art methods in this paper.

Related works. Recently an algorithm asymptotically tight for the depth was also proposed [19].

All the algorithms we mentioned so far assume that all qubits are connected. For special hardware

constraints, some variants have been designed. In the case of a Linear Nearest Neighbor (LNN)

architecture, the works in [27, 24] provide circuits with linear depth. For a generic qubit connectivity,

the works in [20, 36] propose an adaptation of the Gaussian elimination method using Steiner trees

and reach circuits of size (n2). The syndrome decoding based algorithm has also been extended to

arbitrary connectivities containing a Hamiltonian path [9].

Contributions. In this paper we focus on improving the size of the generated circuits when con-

sidering a full qubit connectivity. To our knowledge [38, Algo. 1] and the algorithm from [9] are

in this case the best algorithms. The former is polynomial in time and produces asymptotically op-

timal circuits size. The la�er is also polynomial in time if the algorithm for solving the syndrome

decoding problem has a polynomial complexity. Be�er results can be obtained with an exact — but

exponentially costly — solver but, in any case, the syndrome decoding based algorithm produces

shorter circuits for medium sized circuits, without any theoretical guarantee though.

Our method relies on an e�icient algorithm — GreedyGE — for synthesizing any triangular op-

erator: at any time during the synthesis the next row operation is chosen such that it minimizes a

custom cost function. Then we propose two extensions to be able to synthesize any generic opera-

tor. The first option is similar to [38, Algo. 1] : we slightly modify our algorithm such that it first

transforms A into an upper triangular operatorU and then we use our unmodified algorithm to syn-

thesize U . The second option is to rely on the LU decomposition of the operator to synthesize: given

A = PLU , the synthesis of A can be performed by synthesizing U , L and P and concatenating the

circuits. The permutation P can be synthesized by applying successive SWAP gates that requires 3

CNOTs each. Yet, one can avoid applying the permutation by doing a post-processing of the circuit

that would transfer the permutation operation directly at the end of the total circuit. In the case

of a full connectivity this can be done without any overhead in the gate count. Consequently for

that second option we do not consider the cost of implementing the permutation P and the cost of

synthesizing A is twice the cost of synthesizing a triangular operator.

Our algorithm improves [38, Algo. 1] and [9] in several ways :

• first we improve the worst case synthesis of triangular operators with theoretical guarantee.

Namely we show that the size of our circuits is upper bounded by n2/ log2(n) and that we

converge faster than [38, Algo. 1] to that asymptotic behavior.

• We propose a fast implementation of GreedyGE such that the running time is lower than the

standard Gaussian elimination algorithm.

• We propose a new way to compute LU decompositions such that we get triangular operators

whose synthesis leads to shorter circuits. This improvement can also be used in [9] as it also

relies on an LU decomposition.

5

Overall GreedyGE is suited to dense, worst case operators, or operators that act on several hun-

dred or thousands of qubits. For operators on a much smaller number of qubits, or when the structure

of the operator is such that we can expect the resulting circuit to be small (for instance if the operator

is sparse), GreedyGE does not particularly outperform other existing algorithms. Instead we show

that cost minimization techniques, like the one introduced in [40], produce much be�er results. We

review the work in [40] and we propose a new cost function that improves the range of validity of

such cost minimization method.

Finally we apply our new methods to real world circuits. Plugged into a global Cli�ord+T quantum

compiler, here the Tpar algorithm [5], we show that we can significantly improve the CNOT cost of

reversible functions without worsening other metrics like the T-depth.

3 GreedyGE: a Greedy Gaussian Elimination Algorithm for
Triangular Boolean Matrices

3.1 General Presentation of the Algorithm
Given a lower triangular operator L — the upper case can be treated similarly — the Gaussian elim-

ination algorithm can be summarized as follows: by applying elementary row operations Row(i , j)

with i < j we zero the sub-diagonal elements of L without changing its triangular shape. This pro-

cess is performed column by column, starting from the first one. This way one can easily see that if

the k first columns are treated, applying row operations Row(i , j) with k < i < j will not change the

treated columns as all their elements are 0. Since L is invertible, when zeroing the k -th column the

k -th row is necessarily equal to L[k , ∶] = eTk hence one can always add the row k to any row j > k to

zero the entry L[j , k]. This guarantees the good behavior of the algorithm for any input matrix.

Usually, a Gaussian elimination algorithm always performs the row operations Row(k , j) when

zeroing the k -th column. As one row operation ensures to zero only one element at a time, we need

at most
n(n−1)

2 row operations to zero every sub-diagonal elements of L, leading to a worst-case

complexity of O (n2) for the synthesis of a generic linear reversible operator.

A first straightforward improvement is to authorize any row operation Row(i , j), i < j . This was

exploited in [38, Algo. 1] : by partitioning the matrix of size n into blocks of size m, the authors

use the fact that there can only be at most 2m di�erent vectors in each block. So for n > 2m it is

possible to zero n − 2m full vectors of size m by applying one row operation for each vector. Using

this method some row operations can zero up to m entries at a time, diminishing the total number

of row operations. By choosing m = ⌊α log2(n)⌋ (for arbitrary 0 < α < 1) they reach an asymptotic

complexity of n2/(α log2(n)) in the worst case which meets the theoretical lower bound.

Our proposed algorithm can be seen as a direct improvement of [38, Algo. 1] . It comes from the

following simple observation: given a row i of our triangular operator and assuming that we follow

a standard Gaussian elimination process, an upper bound on the number of row operations that will

be applied to row i during the synthesis is given by

#CNOTs = i − min{j | L[i , j] = 1}. (1)

In other words, when zeroing the entries of a row, we have to focus first on the entries on the first

columns and this can be done by minimizing the cost function given by Eq. (1). Once an entry is

zeroed, we are sure that it is “treated” and will never be modified. Note on the other hand how zeroing

entries in the last columns do not give us the guarantee that they would not be modified again during

the synthesis. This simple observation is at the core of the Gaussian elimination algorithm: entries

are acted upon one by one. It is also at the core of [38, Algo. 1] which improves on regular Gaussian

elimination: entries are acted upon by fixed-size blocks. In this paper, we improve on [38, Algo. 1] by

allowing for varying-size blocks. In other words, we do not fix a block size but at each iteration we

let the greedy component of our algorithm choose the largest suitable block size.

Therefore we propose the following 3-step method:

1. choose among the rows with entries "1" in the le�-most columns the two rows i and j that have

the largest number of common le�-non-zero-elements,

6

2. apply the row operation Row(min(i , j),max(i , j)),

3. repeat the first two steps until L is the identity.

The pseudo-code of the algorithm is given in Algorithm 1. The time complexity of the algorithm

mostly depends on step 1, i.e., the function SelectRowOperation. Actually, this step can be easily

implemented iteratively on the columns :

• We start with the set of all the rows and, during the k -th step, we have in memory a set of rows

having the same first k − 1 entries.

• Then we separate those rows into two sets: those which have the k -th entry respectively equal

to 0 and 1, corresponding respectively to the sets set0 and set1 in Algorithm 1. The rows in

either set0 or set1 have the same first k entries.

• We want to zero the maximum of 1 in priority so if set1 contains 2 or more rows we continue

with this set, otherwise we choose set0 and go to step k+1.

By this process, the size of our set of lines always remains greater than 2 until we have only two lines:

these are the two lines on which to do our row operation. Clearly, the algorithm is polynomial in the

size of the matrix.

Algorithm 1: GreedyGE : Greedy Gaussian Elimination of a triangular operator L.

Input: n ≥ 0, L ∈ F
n×n
2 lower triangular

Output: C is a CNOT-circuit implementing L

Function Synthesis(L, n)
C ← []

while L ≠ In do
set ← SelectRowOperation(L, n)

i0 ← min(set[1], set[2])
j0 ← max(set[1], set[2])
C.append(CNOT(i0, j0))

L[j0, ∶] ← L[i0, ∶] ⊕ L[j0, ∶]

end while
return reverse(C)

Function SelectRowOperation(L, n)
set ← [[1, n]]
j ← 1
while |set| > 2 do

set0 ← {i ∈ set | L[i , j] = 0}
set1 ← {i ∈ set | L[i , j] = 1}
if |set1| < 2 then

set ← set0

else
set ← set1

end if
j ← j + 1

end while
return set

Our algorithm belongs to the same family as the Gaussian elimination method and [38, Algo. 1]

because we synthesize the operator column by column. However, this is an improvement over [38,

Algo. 1] because we do not work with a fixed block size. At each step, we somewhat choose the

largest block size possible to zero the largest number of elements in one row operation. We are then

ensured that these entries will not be modified anymore. Thus this is also an improvement over

cost minimization methods [40] that can take as cost function the number of ones in the matrix for

7

instance. With such greedy methods, it may be possible that in one step more elements are zeroed

but it is not guaranteed that theses elements will be le� untouched therea�er. We keep a structure

in the synthesis which enforces the convergence of our greedy algorithm.

3.2 Improving the Time Complexity
When executing Algorithm 1 we find at each iteration the next row operation by selecting the rows

according to their number of common first elements. As a first approach, we keep the set of the most

promising rows until the size of the set is equal to 2. With a li�le more work we can in fact order

all the rows in one run and get the whole set of row operations required to zero the sub-diagonal

elements of the current column. It is more e�icient than redoing the sorting work a�er each new

row operation because the selection algorithm will repeat the same calculations again and again but

without the presence of the modified rows. The new pseudo-code for a more e�icient version of our

method is given Algorithm 2.

Algorithm 2: FastGreedyGE : Greedy Gaussian Elimination of a triangular operator L.

Input: n ≥ 0, L ∈ F
n×n
2 lower triangular

Output: C is a CNOT-circuit implementing L

Function OptimizedSynthesis(L, n)
C ← []

for j = 1 to n-1 do
set ← {i ∈ [j , ..., n] | L[i , j] = 1}
pairs, set = SelectAllRowOperations(L, j+1, set)

for pair = pairs do
i0 ← min(pair[1], pair[2])
j0 ← max(pair[1], pair[2])
C.append(CNOT(i0, j0))

L[j0, ∶] ← L[i0, ∶] ⊕ L[j0, ∶]

end for
end for
return reverse(C)

Function SelectAllRowOperations(L, j, set)
if |set| < 2 then

return ∅, set

end if
set0 ← {i ∈ set | L[i , j] = 0}
set1 ← {i ∈ set | L[i , j] = 1}
pairs0, set0 ← SelectAllRowOperations(L, j + 1, set0)

pairs1, set1 ← SelectAllRowOperations(L, j + 1, set1)

pairs ← [pairs0, pairs1]

if |set0| > 0 and |set1| > 0 then
i0 ← set0[1]
i1 ← set1[1]
pairs ← [pairs, [min(i0, i1),max(i0, i1)]]
set ← min(i0, i1)

else
if |set0| > 0 then

set ← set0[1]
else

set ← set1[1]
end if

end if
return pairs, set

8

The new version of SelectRowOperation, the function SelectAllRowOperations, is based on the

idea that row operations should always be done, if possible, between rows belonging to the same

sets. We implement this idea recursively on the columns: first, we only select the rows with a "1"

entry in the first column. Then, a�er the creation of set0 and set1, we call recursively SelectAllRow-

Operations on both sets: we have two sets of row operations that treat separately the rows with first

entries "10" and "11". A�er the execution of SelectAllRowOperations, both set0 and set1 contains the

unmodified rows. In both cases, there can be at most one row unmodified. If both sets have one row

unmodified then we add another row operation Row(min(set0[1], set1[1]),max(set0[1], set1[1])) and

the set returned contains min(set0[1], set1[1]). If only one set has an unmodified row then the set

returned contains that row. We illustrate the behavior of our algorithm with the example given in

Fig 1.

3.3 Bounding the CNOT Count
We denote with C (n) the number of CNOTs required to synthesize a triangular operator L of size n

with Algorithm 1. Given 1 ≤ k ≤ n, we consider c(n, k) the number of row operations required to

synthesize the first k columns.

Once the first k columns are synthesized the n × k block matrix L[∶, 1 ∶ k] is equal to the matrix

(

Ik
0)

and we are le� with the sub-matrix L[k + 1 ∶ end , k + 1 ∶ end] to synthesize. Then we have

∀k ≥ 1, C (n) ≤ c(n, k) + C (n − k)

and the total number of row operations to synthesize L is upper bounded by

C (n) ≤

m

∑

i=1

c
(

n −
i−1

∑

j=1

k j , k i
)

(2)

where k1, k2, ..., km can represent any partition of L into m sub-blocks, i.e., m positive integers such

that ∑
m
i=1 k i = n. By considering the worst-case scenario for each block we do not take into consider-

ation the side e�ects of the row operations that were applied on the first blocks and that could have

an impact on the remaining matrix. Especially when looking strictly at one block, one can easily see

that some row operations will only zero one element at a time in a block — the rightmost elements

— but will certainly have an impact on the next block: by not considering this e�ect, we weaken our

upper bound but the proof of the inequality (2) is straightforward.

We now turn to an estimation of an upper bound of c(n, k). Considering a block of size (n, k) and

assuming that k < log2(n), the algorithm process is the following :

• as there can be at most 2k di�erent bitstrings of k bits, n − 2k row operations at most will be

used to zero the duplicate rows.

• We are le� with a rectangular block of size (2k , k). Using a similar argument we can zero k − 1
bits of 2k−1 di�erent rows by using one row operation for each, then the remaining bit on these

rows can be zeroed with one row operation. We are now le� with a block of size (2k−1, k), we

zero k − 2 bits of 2k−2 rows with one row operation each and the two remaining bits on these

rows can be zeroed with two row operations. Repeating this process until the whole block has

been reduced to

(

I

0)
, we perform at most

2k−1 × (1 + 1) + 2k−2 × (1 + 2) + 2k−3 × (1 + 3)... = 2k+1 ×
k+1

∑

j=2

j /2j ≤ 3 × 2k

row operations. We can save some row operations because the right upper triangular part of

the block is already zeroed (as L is triangular) but we neglect them for simplicity.

9

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 1 0 0 1 1 0 0 0
1 0 1 1 1 0 0 1 0 0
1 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

set1 = [1, 2, 3, 4, 6, 7, 8, 9]column 1

column 2

column 3

set0 = [1, 8, 9] set1 = [2, 3, 4, 6, 7]

set0 = [1, 9] set1 = [8] set0 = [2, 6] set1 = [3, 4, 7]

column 4

column 5

column 6

column 5

column 4

column 3

column 2

column 1

set0 = [1, 9]

set0 = [1, 9]

set0 = [1] set1 = [9]

set1 = []

set1 = []

set0 = [1]

set0 = [1]

set0 = [1]

set0 = [1]

set1 = [8]

set0 = [2] set1 = [6]

set1 = []

set1 = []

+ CNOT(1,9)

+ CNOT(1,8)

set0 = [2] set1 = [6]

set0 = [2]

+ CNOT(2,6)

+ CNOT(2,3)

set1 = [2]

+ CNOT(1,2)

set1 = [1]

set1 = [4]set0 = [3, 7]

set0 = [3] set1 = [7]

set0 = [3] set1 = [7]

+ CNOT(3,7)

set0 = [3] set1 = [4]

set1 = [3]

+ CNOT(3,4)

Row Operations : [(1,9), (1,8), (2,6), (3,7), (3,4), (2,3), (1,2)]

Figure 1: Illustration of the SelectAllRowOperations function on a specific example.

10

So we have the estimation

c(n, k) ≤ n + 2k+1 . (3)

From this we can derive an upper bound for C (n). We replace Eq. (3) in Eq. (2) :

C (n) ≤
m

∑

i=1 (
n −

i−1

∑

j=1

k j + 2k i+1
)

.

As n −∑
i−1
j=1 k j = ∑

m
j=i k j for any i we rewrite the upper bound

C (n) ≤
m

∑

i=1 (
2k i+1 +

m

∑

j=i

k j
)

C (n) ≤
m

∑

i=1
(2
k i+1

+ i k i) . (4)

For simplicity we assume that k1 = k2 = ... = km−1 = k . We also assume that km = n−∑m−1
i=1 k i = k

and m = n/k because it does not a�ect the results.

Replacing in Eq. (4):

C (n) ≤ m2k+1 + k
m(m + 1)

2
=

n2

2k
+

n

k
2k+1 +

n

2
(5)

We now prove two things:

1. we show that our upper bound is be�er than the one given in [38].

2. we prove that the asymptotic complexity is at most n2/ log2(n).

1. Taking k = α log2(n) with 0 < α < 1, we have

2 × C (n) <
n2

α log2(n)
+

4n1+α

α log2(n)
+ n . (6)

where the multiplication by 2 gives an upper bound for the synthesis of a generic operator. This is a

direct improvement over the upper bound in [38] given by

total row op. [38] ≤

n2

α log2(n)
+ 2n1+α + negligible terms (7)

provided
4

α log2(n)
< 2 which is the case if n is su�iciently large. For instance, with α = 1/2 then n > 16

is su�icient.

2. The coe�icient of the leading term in Eq (6) is 1/α , yet taking the limit α → 1 in Eq. (6) leads to a

complexity of 5n2/ log2(n). Instead, taking k = log2(n) − p for some p, we have

2 × C (n) <
n2

log2(n)
×

1

1 − p/ log2(n)
×
(
1 +

4

2p)
+ n .

By choosing carefully p, for instance p =

√

log2(n), we get

2 × C (n) < a(n) ×
n2

log2(n)
+ n

with a(n) = 1
1−1/

√

log2(n)
×
(
1 + 4

2
√

log2(n))
. As a(n) → 1 this proves that the asymptotic complexity is

n2/ log2(n).

11

We improve the upper bound Eq. (7) in two ways: we ensure that the coe�icient of the leading

term is 1 and we avoid other terms that distort the real complexity. Especially if one wants to have

the best asymptotic complexity with [38, Algo. 1] by choosing α arbitrarily close to 1, the term n1+α

becomes arbitrarily close to n2 and its impact is not negligible until very large values of n. Even with

intermediate values of n, for example n = 1000, then a(n) ≈ 2.12. To have the same leading term we

have to choose α = 1/2.12. With these values we now have

2n1+α + n2/(α log2(n))

n2/(α log2(n))
≈ 1.25

which means that the term 2n1+α increases the upper bound by 25%.

Discussion. The main result we want to emphasize is that the upper bound in Eq. (4) is true for

any partitioning of the matrix L. This means it performs be�er than any partitioning method unless

a more e�icient method for synthesizing one block is found. Notably, given k1 = k2 = ... = km−1 = k

the size of the block used for [38, Algo. 1] , it is clear that the row operations done in [38, Algo. 1] to

zero an entire k-bit row will also be performed by our algorithm. Then we are le� with a sub-matrix

to synthesize for which [38, Algo. 1] will use a Gaussian Elimination method whereas our algorithm

will perform recursively by first zeroing the bitstrings of size k − 1. In the worst case our algorithm

will only zero one element at a time like the Gaussian elimination algorithm.

This gives insights about the advantage of GreedyGE over [38, Algo. 1] . When [38, Algo. 1]

performs a standard Gaussian elimination process to zero some elements, we somewhat perform

[38, Algo. 1] on a smaller sub-matrix. Thus, at these steps of the algorithm, we expect to have the

same gain in the number of row operations than [38, Algo. 1] has compared to the classical Gaussian

elimination algorithm. Consequently, although we cannot theoretically claim that our algorithm

always generates shorter circuits than [38, Algo. 1] — as we cannot claim that [38, Algo. 1] always

performs be�er than standard Gaussian elimination — we have strong confidence that our algorithm

provides be�er results most of the time — for the same reasons that [38, Algo. 1] gives most of the

time be�er results than the Gaussian elimination algorithm. This assertion is empirically verified in

our benchmarks, see Chapter 6.

4 Extending GreedyGE to General Operators
So far we have presented an algorithm for the synthesis of triangular operators. To extend this to

generic linear reversible operators A we give two strategies:

• we can modify our algorithm for triangular operators such that it transforms A into an upper

triangular operator U on which we apply our unmodified algorithm,

• we can rely on an LU decomposition to factorize A into the product of two triangular operators.

Then the concatenation of the circuits implementing U and L yields a circuit implementing A.

4.1 Modification of FastGreedyGE
Algorithm 2 works even if the input operator is not lower triangular. In the outer for-loop, during

the j -th iteration the algorithm will zero the sub-diagonal elements of the j -th column provided that

the element A[j , j] is equal to 1. So all we need to do is adding an extra row operation to make sure

that A[j , j] = 1 is satisfied. If A[j , j] = 1 then we do nothing otherwise we choose among the rows

[[j + 1, n]] whose j -th element is 1 the one that zeroes the largest number of right elements of the j-th

row so that when executing FastGreedyGE on the future U operator we save some row operations.

Overall this increases the CNOT count by at most n so it is negligible in the derivation of the upper

bound above.

12

4.2 Optimizing the Choice of L and U
An LU decomposition provides a way to decompose an operator into two simpler sub-operators.

Ideally, the path from the identity to the target operator given by the concatenation of the paths

of two sub-operators would be close to the optimal path. In our case, it is very unlikely that an LU

decomposition would give such an ideal decomposition because the structure of triangular operators

is too specific. Nonetheless, the matrices L and U in the LU decomposition are not unique and we

can optimize the factorization by choosing appropriate L andU operators such that we minimize the

overall complexity of the final reversible circuit. In this section, we report several strategies to choose

the matrices L and U.

If we allow row and column permutations, we can compute the LU decomposition of an operator

A following this algorithm:

1. Choose a row vector v = A[i , ∶] and a column j for which A[i , j] = 1.

2. Set the first line of U to v and set the first column of L to A[∶, j].

3. Update the matrix A, first by le�-applying the gate SWAP(i , 1) and right-applying the gate

SWAP(j , 1). Then add the vector v to every row A[k , ∶] where A[k , 1] = 1. Finally we are le�

with a matrix A with zeroed first column and first row.

4. Repeat the algorithm on this updated A until we obtain the null matrix.

At the end of the algorithm we have the relation

P1AP2 = LU

where P1, P2 are permutation matrices. P1 is the concatenation of the SWAP gates that were le�-

applied to A and P2 is the concatenation of the SWAP gates that were right-applied to A. A�er the

synthesis of L and U we can commute the gates with P2 and have

A = P−11 P−12 L′U ′

and we transfer the permutation matrix P−11 P−12 to the end of the total circuit. L′ andU ′
are triangular

operators up to a permutation of their rows and columns.

At each step of the algorithm, we have several choices for the row and column vectors. We aim

to construct L and U such that their synthesis will give short circuits. To do so we tried di�erent

strategies :

• First, if we believe that sparse L and U matrices can be implemented with shorter circuits, a

first approach consists in choosing the row and column with smallest Hamming weights: this

is the “sparse” approach.

• Secondly, we can adopt a "minimizing cost" approach. If the updated matrix A′ minimizes a

cost function then the synthesis of A′ will require a shorter circuit. We choose the cost function

to be the number of ones and we choose among all the possible rows and columns the pair that

minimizes the number of ones in A′ .

These decompositions transform a general operator A into two operators L,U with specific struc-

tures. Triangular operators are easier to synthesize but this also limits the optimality of the solution.

Because we force the algorithm to synthesize two matrices with a specific structure, it is very un-

likely that we can perform an optimized synthesis by going through this forced path. This also gives

insights into the question about the global optimality of our algorithm: even if we use an optimal

algorithm for synthesizing a triangular operator it is very unlikely that we can get an optimal solution

for the whole synthesis. Our algorithm gives asymptotic optimal results in the worst case but will be

suboptimal for specific operators. Notably, if the operators can indeed be synthesized with a small

circuit, direct greedy methods have shown encouraging results. In the next section, we will review

the greedy method used in the literature and propose an extension of this framework to improve the

scalability of this kind of algorithms.

13

5 Pathfinding Based Algorithms
The problem of linear reversible circuit synthesis can fit into a more generic problem called "pathfind-

ing". In a pathfinding problem, we are generally given a starting state, a target state, and a set of

operators that dictates the reachable states from a specific state. Then the goal is to find a path from

the starting state to the goal state and the shorter the path is, the be�er it is. The reformulation of

linear reversible circuit synthesis into a pathfinding problem is straightforward: the starting state

is the operator A we want to implement, the goal state is the identity operator and the available

operators are all the elementary row and column operations.

This field of research in AI has been very active for the last decades and we can rely on many algo-

rithms to solve our problem. The most famous one is probably the A* algorithm and all its derivatives

(IDA* [22], Weighted A* [23], Anytime A* [26], etc.). These algorithms have been successfully used

to solve toy problems (Rubik’s cube, Tile puzzles, Hanoi towers, Top Spin puzzle) but also concrete

problems in video games [2], robotics [26, 2], genomics [46, 15, 44, 18], planning [7, 15], etc. Yet we

are quickly faced with some crucial limitations :

• First the size of the search space grows much faster in our case than in any of the cases men-

tioned above. To give an order of magnitude, in [43] they compare greedy search algorithms -

a subclass of pathfinding algorithms known for providing suboptimal solutions very quickly -

and they highlight time and memory limitations of some algorithms especially on the largest

problem they ran on: the 48-puzzle. The 48-puzzle and its variations (8-puzzle, 15-puzzle) are

sliding puzzles. In the case of the 48-puzzle, 48 tiles are arranged in a 7 × 7 square with one

tile missing. The goal of the puzzle is to order the tiles by moving the empty space around.

For this specific problem the authors of [43] show that the computational time for most of the

pathfinding algorithms they consider increases substantially while providing solutions of poor

quality. The number of di�erent positions in the 48-puzzle is equal to 49!/2 ≈ 3 × 1062. This

is less than the number of linear reversible functions on 15 qubits. As we expect to be able to

synthesize circuits on 50 qubits and even more, it is clear that we cannot use all the pathfinding

algorithms in the literature.

• Secondly we need a function that will evaluate the distance between the current state and the

target state. The properties of this function, usually called the heuristic, will deeply influence

the performance of the pathfinding algorithms. Its goal is to guide the search by giving pri-

ority to more promising states and prune a whole part of the search space. More generally

there are two sources of improvement for a pathfinding algorithm: the accuracy of the heuris-

tic function and the management of the path discovery, i.e., what strategy do you employ to

explore the search space. If the la�er can be quite independent of the problem, the former is

very problem-specific and unfortunately to our knowledge no good heuristics exist that sat-

isfy good theoretical properties. For instance, for A* to provide an optimal solution we need

the heuristic to be admissible and consistent, i.e., it must always underestimate the length of

the optimal path and the value of the heuristic should always decrease of at most one a�er

the application of one elementary operation. By taking a function that always returns 0 we

have an admissible and consistent heuristic but the search will result in a brute-force search.

Generally to obtain an admissible heuristic we can consider a simpler version of our problem

and the optimal solution of this problem gives an underestimation of the distance to the target

state. In the case of linear reversible circuits, the closest simplified subproblem we found is

the Shortest Linear Straight-Line Program [8] but this problem is also NP-hard and cannot be

approximated exactly by a polynomial algorithm.

For all these reasons, we believe that using the standard A* algorithm or its derivatives is a dead

end. Instead of that, we focused our work on greedy best-first search algorithms that can be seen as

a cost minimization/discrete gradient descent approach. It has been shown that the heuristics that

are e�icient for this kind of search are di�erent than the ones for A* algorithms [42], so we expect

that we can exploit the properties of the matrix A of our operator to guide our search.

To our knowledge, the cost minimization approach for linear reversible circuits synthesis has only

been investigated in [40]. Yet, with their methods, the authors can only synthesize circuits on at most

14

25 qubits. More crucially, they did not investigate the behavior of their methods when the resulting

circuits are supposed to be small. According to us, this is a behavior that has to be considered because

as we will see the results of the methods drastically change depending on the size of the optimal

circuits.

We consider two di�erent heuristic functions to guide our search. The first one, already used in

[40], is the function

hsum(A) = ∑

i ,j

ai ,j

that is to say the number of ones in the matrix A. We also propose a new cost function to solve this

problem, it is defined by

hpr od (A) =
n

∑

i=1

log
(

n

∑

j=1

ai ,j
)

which corresponds to the log of the product of the number of ones on each row. These two cost

functions reach their minimum when A is a permutation matrix, motivating their use in a cost mini-

mization process. If the cost function hsum seems the first natural choice, we propose the cost function

hpr od because it gives priority to "almost done" rows. Namely, if one row has only a few nonzero en-

tries, the minimization process with hpr od will treat this row in priority and then it will not modify

it anymore. This enables to avoid a problem which one meets with the cost function hsum where one

ends up with a very sparse matrix but where the rows and columns have few nonzero common en-

tries. This type of matrix represents a local minimum from which it can be di�icult to escape. With

this new cost function, as we put an additional priority on the rows with few remaining nonzero

entries, we avoid this pitfall.

An important improvement given in [40] is to add the value of the cost function applied to the

inverse as well, i.e.,

Hsum(A) = hsum(A) + hsum(A
−1
),

Hpr od (A) = hpr od (A) + hpr od (A
−1
).

Again, these two new cost functions are minimum whenA is a permutation. As we will see adding the

cost value of the inverse tightens the possible paths and can improve the results because we escape

more easily from local minima during the search.

We now give a few details on our implementation. We directly work on a cost matrix that stores

the impact of each possible CNOT on the cost function. Namely let M be such matrix, then M [i , j] =

h(Ei jA) − h(A) where h ∈ {hsum , hpr od}. We can define similar cost matrices for A−1 and for column

operations. Overall we have four matrices MA,row,MA,col
,MA−1,row

,MA−1,col
. Note that (Ei jA)

−1
=

A−1Ei j so a row operation Row(i , j) on A is a column operation Col(j , i) on A−1. The cost minimization

algorithm is simple if we work with such matrices: at each iteration we look for the pair (i , j) that

minimizes min(MA,row[i , j] + MA−1,col
[j , i],MA,col

[i , j] + MA−1,row
[j , i]), we update A and A−1 and we

pursue the algorithm until A is a permutation matrix. The advantage of working on cost matrices

rather than directly on A is that the update of theM ’s is cheaper than updating A and computing the

costs. For instance, suppose we apply Row(i , j) toA, then if h = hsum the impact on the cost function of

any row operation that does not involve row j will be the same than before the application of Row(i , j).

This means that we only need to update MA,Row[i , j],MA,Row[j , i],MA−1,Col
[i , j],MA−1,Col

[j , i] for i =

1..n. The updates of MA,Col
and MA−1,Row

are also simpler because only one element of each column

of A has been modified. However, for our new cost function the updates are not that simple and it

will have an impact on the computational time.

With cost minimization techniques it is not rare to fall into local minima. In that case we simply

select among the best operations a random one and pursue the search. If the number of iterations

exceeds a certain number then we consider that the algorithm is stuck in a local minimum and we

stop it.

6 Benchmarks
This section presents our experimental results. We have the following algorithms to benchmark:

15

• GreedyGE from Sections 3 and 4,

• cost minimization techniques from Section 5,

The state-of-the-art algorithms are the following:

• The PMH algorithm [38, Algo. 1] ,

• The algorithm based on the syndrome decoding problem from [9].

Two kinds of datasets are used to benchmark our algorithms:

• First, a set of random operators. The test on random operators gives an overview of the aver-

age performance of our algorithm. We generate random operators by creating random CNOT

circuits. Our routine takes two inputs: the number of qubit n and the number of CNOT gates

k in the random circuit. Each CNOT is randomly placed by selecting a random control and a

random target and the simulation of the circuit gives a random operator. Empirically we no-

ticed that when k is su�iciently large — k = n2 is enough — then the operators generated have

strong probability to represent the worst case scenarii.

• Secondly, a set of reversible functions, given as circuits, taken from Ma�hew Amy’s github

repository [3]. This experiment shows how our algorithms can optimize useful quantum al-

gorithms in the literature like the Galois Field multipliers, integer addition, Hamming coding

functions, the hidden weighted bit functions, etc.

To evaluate the performance of our algorithms for the random set, two types of experiments are

conducted:

1. a worst-case asymptotic experiment, namely for increasing problem sizes n we generate cir-

cuits with n2 gates and we compute the average number of gates for each problem size. This

experiment reveals the asymptotic behavior of the algorithms and gives insights about strict

upper bounds on their performance.

2. a close-to-optimal experiment, namely for one specific problem size we generate operators

with di�erent number of gates to show how close to optimal our algorithms are if the optimal

circuits are expected to be smaller than the worst case.

All our algorithms are implemented in Julia [6] and executed on the ATOS QLM (�antum Learn-

ing Machine) whose processor is an Intel Xeon(R) E7-8890 v4 at 2.4 GHz.

6.1 Random Operators
6.1.1 GreedyGE

First, we present the worst-case asymptotic experiment with the following algorithms:

• GreedyGE with standard LU decomposition,

• Syndrome decoding with the cost minimization heuristic with unlimited width and depth 1,

• Syndrome decoding with the integer programming solver (Coin-or branch and cut solver),

• Syndrome decoding with the cost minimization heuristic (width=Inf, depth=1) and 50 random

changes of basis, the “Information Set Decoding” (ISD) case.

• Syndrome decoding with the cost minimization heuristic with width 60 and depth 2,

• Syndrome decoding with the cost minimization heuristic with width 15 and depth 3,

16

Figure 2: Average performance of GreedyGE and the Syndrome Decoding based algorithms versus

the PMH algorithm.

Table 1: Computational time of GreedyGE vs PMH and standard Gaussian elimination algorithms.

Algorithm

Average computational time (s)

n = 10 n = 100 n = 500 n = 1000 n = 5000

Gaussian elimination 0.00004 0.00125 0.14 1.2 140

PMH algorithm 0.00015 0.006 0.75 7 980

GreedyGE 0.00015 0.0035 0.1 0.6 45

The results are given in Fig 2. For the sake of clarity, instead of showing the circuit size we plot the

ratio between the circuit size given by our method and the circuit size given by the PMH algorithm.

So if the ratio is below 1 this means that we outperform the state-of-the art method [38, Algo. 1] . We

also have a be�er view of which algorithm is be�er in which qubit range. We stopped the calculations

when the running time was too large for producing benchmarks within several hours.

Overall, for the considered range of qubits, GreedyGE outperforms [38, Algo. 1] . As the number

of qubits increases the syndrome decoding based algorithm performs worse and GreedyGE eventu-

ally produces the shortest circuits when n > 120. Notably, the average gain over the PMH algorithm

stabilizes around 25%. On the other hand the syndrome decoding based algorithms performances de-

teriorate as n increases or the algorithm cannot terminate when the heuristic is too costly. Therefore,

for large n, GreedyGE is the best method so far. GreedyGE is also fast: we compare the computa-

tional time of GreedyGE against the standard Gaussian elimination and the PMH algorithm. The

results are given in Table 1. Not only GreedyGE produces the smallest circuits but in addition it is

the fastest method to our knowledge.

Next, we show the impact of the choice of the LU decomposition. We provide results with

GreedyGE considering it can be directly transposed to the syndrome decoding based algorithms

as well. We perform the close-to-optimal experiment with the GreedyGE and three di�erent LU

decompositions:

• a standard LU decomposition for matrix in F2, taken from the Julia package Nemo [10],

• the LU decomposition algorithm with the "sparse" strategy,

• the LU decomposition algorithm with the "cost minimization" strategy.

17

Figure 3: Performance of GreedyGE with di�erent LU decompositions vs Syndrome Decoding on 60

qubits for di�erent input circuit sizes.

The experiment is done on 60 qubits. We also add the best method for this problem size: the

syndrome decoding based algorithm with the "Information Set Decoding" strategy. The results are

given in Fig 3. Computing more e�icient LU decompositions has almost no e�ect on the worst-case

results but provides some improvements when the input circuits are smaller. There is no significant

di�erence between the two strategies "sparse" and "cost minimization" in terms of circuit sizes but

the running time is much lower for the sparse approach so we would privilege it. This improvement

also benefits the syndrome decoding based method as it also relies on an LU decomposition. On

the other hand we also see that there is no obvious advantage of using GreedyGE instead of the

syndrome decoding based methods when the optimal circuit is expected to be small.

6.1.2 Path Finding Methods

We now evaluate the performance of purely greedy methods. We remind that we have four cost

functions to study:

• hsum(A) = ∑i ,j ai ,j ,

• hpr od (A) = ∑
n
i=1 log (∑

n
j=1 ai ,j),

• Hsum(A) = hsum(A) + hsum(A
−1
),

• Hpr od (A) = hpr od (A) + hpr od (A
−1
).

First, we show the asymptotic behavior of those four methods. The results are given in Fig 4. The

first graph in Fig 4a shows that the cost function hsum does not scale well with the number of qubits

so we decide to remove it for clarity. The new graph is given in Fig 4b. We notice two things: first,

the cost function Hpr od always underperforms hpr od , secondly both Hsum and hpr od outperform our

syndrome decoding based algorithm for small problem sizes (n < 30) but with an advantage for Hsum

when n < 25. There is a thin window — between 25 and 30 qubits — where it is preferable to use

hpr od instead of Hsum .

The results given in Fig 4 are mainly there to discredit two of the four cost functions: hsum and

Hpr od . The result that really interests us is that of the close-to-optimal experiment, here on 50 qubits

and given in Fig 5. For this problem size on the worst case the syndrome decoding based algorithm

outperforms our greedy methods. But when we are not in the worst case the results are completely

di�erent: the greedy methods follow more faithfully the bound y = x than the syndrome decoding

18

(a) Average performance of {hsum , hpr od ,Hsum ,Hpr od } vs Syndrome decoding (Information Set Decoding).

(b) Same graph as in Fig 4a without hsum .

Figure 4: Average performance of Cost minimization techniques vs Syndrome decoding (Information

Set Decoding).

19

Figure 5: Performance of Cost minimization techniques vs Syndrome Decoding on 50 qubits for dif-

ferent input circuit sizes.

based algorithm. We have to wait input circuits of size 300 for the syndrome decoding algorithm to

be be�er. The greedy algorithm based on the cost function hpr od produces much more stable results

than the one with the cost function Hsum . For the cost function Hsum the variance is extremely large

because the method struggles finding a global minimum. However, it is Hsum that produces the best

results most of the time in the range of size 0 − 300. Again there is a thin window where it may be

relevant to use hpr od instead of Hsum .

6.1.3 Conclusion: Combining the Methods

Each method has its own range of validity:

• GreedyGE is suited when the number of qubits exceeds 120, it outperforms the PMH algorithm

and our other algorithms in both circuit size and computational time.

• The syndrome decoding based algorithms must be used for intermediate problem sizes (30 <

n < 120) with the best possible solver of the syndrome decoding problem (in order: integer pro-

gramming, Information Set Decoding if n < 70, maximum depth otherwise). Both GreedyGE

and the family of syndrome decoding based algorithms are state of the art in a worst case

scenario.

• When the output circuit is expected to be small, or when n < 30, then direct greedy meth-

ods have shown to produce the best results. The proposal of a new cost function paid o� as

this o�ers a more scalable direct greedy search. However, the moment when our new custom

function outperforms the one proposed in [40] coincides with the moment when the syndrome

decoding based algorithm also outperforms the direct greedy search. More investigation needs

to be done to clarify which cost function should be preferred and when.

Given the variety of methods, each providing the best results in particular cases, the best method

when trying to synthesize an operator would be simply to test each method and to keep the best

result. Except for the direct greedy methods, the computational time of each method is well under-

stood. Given a specific problem size, it is easy to know which method can be used and how long it

will take. It is more delicate with the direct greedy methods, we have to set a limit in the maximum

number of iterations before considering that the search will not converge to a solution.

20

6.2 Benchmarks on Reversible Functions
We apply our CNOT circuit synthesis to the optimization of quantum algorithms. A library to evalu-

ate the quality of a quantum compiler is a library of reversible functions consisting of adders, Ham-

ming coding functions, multipliers, etc. This library is a standard benchmark for circuit optimization

algorithms and is used in recent articles about quantum circuit optimization [17, 5, 4, 35]. However,

we must be aware that our results can only be compared to those using the same methodology. There

are many other methods for the synthesis and optimization of reversible circuits [39], notably for the

synthesis of oracles [30, 32], which we do not take into account here. The aim of this section is to

show that our methods can bring promising results on specific circuits and that it will be interesting

to apply it on other classes of circuits, but it will also be necessary to put it in perspective with other

methods.

The original circuits are from Ma�hew Amy’s github Feynman repository [3].

Recent quantum compilers mainly focused on the T-count or T-depth optimization of quantum

circuits but these optimizations o�en lead to an increased CNOT count [17, 5]. Although it is exper-

imentally more costly to implement a T gate, the total number of CNOT gates in a quantum circuits

should not be too large otherwise the CNOT cost of the total circuit will not be negligible. In practice

it may even be possible that the CNOT cost represents the most costly part of a quantum circuit [28]

and it cannot be neglected.

In [4] the algorithm Gray-Synth for the optimization of the CNOT count in CNOT+T circuits

is proposed. It e�iciently reduces the total number of CNOT gates but it comes at the price of an

increased T-depth. Here we show that, using our methods for CNOT circuit synthesis, one can reduce

significantly the CNOT count without paying the price of increasing the T depth. We used the C++

implementation of Ma�hew Amy’s Tpar algorithm to produce optimized circuits with low T-count

and T-depth. We post process the circuits by re-synthesizing any chunk of purely CNOT circuits. It

is possible to further optimize the synthesis of the CNOT+T circuits, using for instance the TODD

optimizer [17] but as we are concerned about showing the impact of our method on the CNOT count

and the T-depth we did not pursue the optimization to have a lower T-count so that we can directly

compare against the results from [4].

The results are given in Table 2. For each reversible function we provide the results (T-count, T-

depth, Total depth) of di�erent methods implementing it. Namely, the original circuits, the circuits

optimized solely with the Tpar algorithm and GraySynth as the state-of-the-art methods and the

circuits optimized with the Tpar method and our own method, i.e., a mix of GreedyGE, the syndrome

decoding based methods and the purely greedy methods. For each CNOT circuit we keep the best

result encountered. To generate the Gray-Synth results we used the Haskell implementation, still

from [3]. The savings given always compare against the circuits given by solely the Tpar algorithm.

We notice several interesting points:

• we cannot decrease the CNOT count as much as with GraySynth, but we still manage to de-

crease the CNOT count consistently and above all we do not modify the T-depth. Our circuits

therefore represent a tradeo� between the T-cost the CNOT-cost.

• We also considerably reduce the total depth of the circuits, making their execution faster on

NISQ architectures. This is explained by the fact that most of the CNOT circuits involved in

those reversible functions are elementary operators, requiring only a few CNOTs to be imple-

mented. Therefore the size and the depth are very close and greedy methods find close-to-

optimal implementations.

To illustrate our last statement, we kept track of the best algorithm that was used to compute

each CNOT sub-circuit that appeared in the synthesis of one reversible function. The results are

given in Table 3. Most of the time, both purely greedy methods and the syndrome decoding based

methods provide the best results. According to us, this highlights the simplicity of the operators to

synthesize otherwise there would be many more cases where we would observe a di�erence of even

one CNOT. Overall, for this library of reversible functions, the use of methods other than the pure

greedy methods is useless. This is not surprising as the number of qubits never exceeds 40 except for

three operators. For such small problem sizes, we saw that pure greedy methods always outperform

21

the other methods, in addition to the fact that we have strong suspicions that the majority of the

operators encountered are easy to synthesize. We note the interest of using the cost function h
prod

as an alternative because in some cases it allows to synthesize operators more e�iciently.

7 Conclusion
We presented the simple algorithm GreedyGE for the synthesis of linear reversible circuits. We im-

proved state-of-the-art algorithms by adding a greedy feature in the Gaussian elimination algorithm

while keeping an overall structure in the synthesis process for triangular operators. We combined

this method with a practical LU decomposition that improves the results for input circuits of small

sizes. Overall our method is fast and provides the best results when n is su�iciently large (n > 150).

For operators acting on a small number of qubits (n < 30) or when we expect the operators to be syn-

thesized with a small circuit, then purely greedy methods have shown to give quasi optimal results.

We also managed to significantly reduce the CNOT count and, surprisingly, the depth of well-known

reversible functions while keeping the T-count and the T-depth as low as possible, as given by other

optimization algorithms [5].

Theoretically, GreedyGE worst case complexity is guaranteed to be at most asymptotically equal

to n2/ log2(n), which is still a factor of 2 larger than the theoretical lower bound. We will investigate

in future work if this theoretical lower bound can be reached. Another main issue will be to extend

this algorithm to the case where the qubits connectivity follows a restricted topology. It would also

be interesting to look at the performance of GreedyGE for the synthesis of CNOT+T circuits. It is

known that the synthesis of a CNOT+T circuit can be performed by manipulating a rectangular parity

table via row operations [4]. Although the goal is not exactly to reduce the parity table to an identity

operator, it involves to reduce the Hamming weight of the columns to 1 and to remove them from

the table until the table is empty. Given that GreedyGE, at each step, reduces the Hamming weight

of a column to 1, it can be used to CNOT+T circuits synthesis as well.

Acknowledgment
This work was supported in part by the French National Research Agency (ANR) under the research

project So�QPRO ANR-17-CE25-0009-02, and by the DGE of the French Ministry of Industry under

the research project PIA-GDN/�antEx P163746-484124.

22

T
a
b

l
e

2
:

C
N

O
T

o
p

t
i
m

i
z
a
t
i
o

n
o

f
a

l
i
b

r
a
r
y

o
f

r
e
v
e
r
s
i
b

l
e

f
u

n
c
t
i
o

n
s

w
i
t
h

s
e
v
e
r
a
l

C
N

O
T

c
i
r
c
u

i
t
s

s
y

n
t
h

e
s
i
s

m
e
t
h

o
d

s
.

F
u

n
c
t
i
o

n
#
n

O
r
i
g
i
n

a
l

T
p

a
r

T
p

a
r

+
G

r
a
y

S
y

n
t
h

T
p

a
r

+
C

N
O

T
s
i
z
e

o
p

t
.

T
-
c
o

u
n

t
T
-
d

e
p

t
h

C
N

O
T

c
o

u
n

t
D

e
p

t
h

T
-
c
o

u
n

t
T
-
d

e
p

t
h

C
N

O
T

c
o

u
n

t
D

e
p

t
h

T
-
c
o

u
n

t
T
-
d

e
p

t
h

C
N

O
T

c
o

u
n

t
D

e
p

t
h

T
-
c
o

u
n

t
T
-
d

e
p

t
h

C
N

O
T

c
o

u
n

t
D

e
p

t
h

A
d

d
e
r
_
8

24
39

9
69

46
6

22
3

21
3

30
74

1
30

2
21

5
74

(
14

7%
)

39
9

(
−
46
%

)
25

7
(
−
15
%

)
21

3
30

49
1

(
−
34
%

)
20

4
(

-
3
2
%

)

b
a
r
e
n

c
o

_
t
o

f
_
1
0

19
22

4
96

22
4

28
8

10
0

43
33

2
27

2
10

0
81

(
88
%

)
14

6
(
−
56
%

)
26

4
(
−
3%

)
10

0
43

18
8

(
−
43
%

)
21

7
(

-
2
0
%

)

b
a
r
e
n

c
o

_
t
o

f
_
3

5
28

12
28

36
16

8
52

60
16

16
(
10

0%
)

20
(
−
62
%

)
40

(
−
33
%

)
16

8
26

(
−
50
%

)
34

(
-
4
3
%

)

b
a
r
e
n

c
o

_
t
o

f
_
4

7
56

24
56

72
28

13
96

96
28

26
(
10

0%
)

38
(
−
60
%

)
64

(
−
33
%

)
28

13
50

(
−
48
%

)
61

(
-
3
6
%

)

b
a
r
e
n

c
o

_
t
o

f
_
5

9
84

36
84

10
8

40
18

13
4

12
3

40
34

(
89
%

)
56

(
−
58
%

)
88

(
−
28
%

)
40

18
73

(
−
46
%

)
89

(
-
2
8
%

)

c
s
l
a
_
m

u
x
_
3

15
70

21
90

67
62

8
37

9
21

0
62

28
(
25

0%
)

11
5

(
−
70
%

)
91

(
−
57
%

)
62

8
18

7
(
−
51
%

)
81

(
-
6
1
%

)

c
s
u

m
_
m

u
x
_
9

30
19

6
18

19
6

59
84

6
36

6
15

3
84

16
(
16

7%
)

16
0

(
−
56
%

)
78

(
−
49
%

)
84

6
17

9
(
−
51
%

)
70

(
-
5
4
%

)

c
y
c
l
e
_
1
7
_
3

35
47

39
20

01
47

42
59

74
19

44
56

2
66

08
52

31
19

55
18

57
(
23

0%
)

30
40

(
−
54
%

)
56

98
(
9%

)
19

44
56

2
42

67
(
−
35
%

)
42

29
(

-
1
9
%

)

G
F

(
21

0
)
_
m

u
l
t

30
70

0
10

8
70

9
29

0
41

0
16

22
06

10
26

41
0

10
9

(
58

1%
)

64
8

(
−
71
%

)
32

4
(
−
68
%

)
41

0
16

95
5

(
−
57
%

)
30

7
(

-
7
0
%

)

G
F

(
21

6
)
_
m

u
l
t

48
17

92
18

0
18

37
48

9
10

40
24

67
24

25
51

10
40

58
5

(
23

38
%

)
16

91
(
−
75
%

)
14

88
(
−
42
%

)
10

40
24

25
42

(
−
62
%

)
67

8
(

-
7
3
%

)

G
F

(
23

2
)
_
m

u
l
t

96
71

68
37

2
72

92
10

01
41

28
47

34
24

4
11

52
0

41
28

21
90

(
45

60
%

)
66

36
(
−
81
%

)
53

91
(
−
53
%

)
41

28
47

10
95

3
(
−
68
%

)
21

13
(

-
8
2
%

)

G
F

(
24

)
_
m

u
l
t

12
11

2
36

11
5

99
68

6
30

7
17

3
68

39
(
55

0%
)

10
6

(
−
65
%

)
11

7
(
−
32
%

)
68

6
13

5
(
−
56
%

)
80

(
-
5
4
%

)

G
F

(
25

)
_
m

u
l
t

15
17

5
48

17
9

13
0

11
5

9
50

2
25

9
11

5
51

(
46

7%
)

16
6

(
−
67
%

)
15

2
(
−
41
%

)
11

5
9

20
9

(
−
58
%

)
10

7
(

-
5
9
%

)

G
F

(
26

)
_
m

u
l
t

18
25

2
60

25
7

16
3

15
0

9
66

0
35

0
15

0
63

(
60

0%
)

23
5

(
−
64
%

)
18

9
(
−
46
%

)
15

0
9

31
0

(
−
53
%

)
13

7
(

-
6
1
%

)

G
F

(
27

)
_
m

u
l
t

21
34

3
72

34
9

19
5

21
7

12
99

6
49

0
21

7
75

(
52

5%
)

31
9

(
−
68
%

)
22

4
(
−
54
%

)
21

7
12

44
2

(
−
56
%

)
18

4
(

-
6
2
%

)

G
F

(
28

)
_
m

u
l
t

24
44

8
84

46
9

23
3

26
4

13
12

54
61

9
26

4
87

(
56

9%
)

42
8

(
−
66
%

)
26

6
(
−
57
%

)
26

4
13

58
8

(
−
53
%

)
22

4
(

-
6
4
%

)

G
F

(
29

)
_
m

u
l
t

27
56

7
96

57
5

25
8

35
1

15
17

12
81

0
35

1
95

(
53

3%
)

52
6

(
−
69
%

)
28

3
(
−
65
%

)
35

1
15

75
3

(
−
56
%

)
26

6
(

-
6
7
%

)

g
r
o
v
e
r
_
5

9
33

6
14

4
33

6
45

7
15

4
51

49
9

47
7

15
4

13
0

(
15

5%
)

23
2

(
−
54
%

)
44

0
(
−
8%

)
15

4
51

33
1

(
−
34
%

)
38

4
(

-
1
9
%

)

h
a
m

1
5
-
h

i
g
h

20
24

57
99

6
25

00
30

26
10

19
38

0
34

27
29

56
10

19
83

9
(
12

1%
)

15
88

(
−
54
%

)
25

83
(
−
13
%

)
10

19
38

0
21

83
(
−
36
%

)
22

26
(

-
2
5
%

)

h
a
m

1
5
-
l
o
w

17
16

1
69

25
9

26
3

97
33

47
1

36
0

97
83

(
15

2%
)

22
1

(
−
53
%

)
27

1
(
−
25
%

)
97

33
28

0
(
−
41
%

)
22

3
(

-
3
8
%

)

h
a
m

1
5
-
m

e
d

17
57

4
24

0
61

6
75

0
23

0
84

75
9

68
2

23
0

19
4

(
13

1%
)

36
8

(
−
52
%

)
62

2
(
−
9%

)
23

0
84

48
1

(
−
37
%

)
50

6
(

-
2
6
%

)

h
w

b
6

7
10

5
45

13
1

15
2

75
24

27
0

24
8

75
63

(
16

2%
)

11
1

(
−
59
%

)
18

8
(
−
24
%

)
75

24
17

2
(
−
36
%

)
16

4
(

-
3
4
%

)

h
w

b
8

12
58

87
21

39
79

70
79

56
35

31
86

0
22

67
0

15
83

8
35

31
27

52
(
22

0%
)

68
41

(
−
70
%

)
93

38
(
−
41
%

)
35

31
86

0
13

35
3

(
−
41
%

)
92

61
(

-
4
2
%

)

m
o

d
5
_
4

5
28

12
32

41
16

6
48

57
16

15
(
15

0%
)

28
(
−
42
%

)
51

(
−
11
%

)
16

6
32

(
−
33
%

)
39

(
-
3
2
%

)

m
o

d
_
a
d

d
e
r
_
1
0
2
4

28
19

95
83

1
20

05
25

03
10

11
25

8
36

50
25

60
10

11
86

4
(
23

5%
)

13
90

(
−
62
%

)
24

74
(
−
3%

)
10

11
25

8
23

69
(
−
35
%

)
19

13
(

-
2
5
%

)

m
o

d
_
a
d

d
e
r
_
1
0
4
8
5
7
6

58
17

29
0

72
92

17
31

0
21

80
7

72
98

19
27

29
79

4
19

97
5

73
23

65
77

(
24

1%
)

11
08

0
(
−
63
%

)
20

08
9

(
1%

)
72

98
19

27
19

12
2

(
−
36
%

)
15

28
6

(
-
2
3
%

)

m
o

d
_
m

u
l
t
_
5
5

9
49

15
55

50
35

7
10

6
75

35
20

(
18

6%
)

40
(
−
62
%

)
52

(
−
31
%

)
35

7
73

(
−
31
%

)
61

(
-
1
9
%

)

m
o

d
_
r
e
d

_
2
1

11
11

9
48

12
2

15
8

73
25

22
3

20
7

73
59

(
13

6%
)

10
2

(
−
54
%

)
17

9
(
−
14
%

)
73

25
13

6
(
−
39
%

)
14

4
(

-
3
0
%

)

q
c
l
a
_
a
d

d
e
r
_
1
0

36
23

8
24

26
7

73
16

2
13

64
8

19
5

16
2

33
(
15

4%
)

22
5

(
−
65
%

)
94

(
−
52
%

)
16

2
13

36
2

(
−
44
%

)
86

(
-
5
6
%

)

q
c
l
a
_
c
o

m
_
7

24
20

3
27

21
5

81
94

12
37

1
15

4
94

31
(
15

8%
)

15
0

(
−
60
%

)
89

(
−
42
%

)
94

12
20

2
(
−
46
%

)
76

(
-
5
1
%

)

q
c
l
a
_
m

o
d

_
7

26
41

3
66

44
1

19
7

23
1

28
81

3
29

6
23

7
67

(
13

9%
)

38
6

(
−
53
%

)
21

2
(
−
28
%

)
23

1
28

47
9

(
−
41
%

)
18

8
(

-
3
6
%

)

q
�

_
4

5
69

48
48

14
2

67
44

96
18

5
67

60
(
36
%

)
48

(
−
50
%

)
16

3
(
−
12
%

)
67

44
56

(
−
42
%

)
15

0
(

-
1
9
%

)

r
c
_
a
d

d
e
r
_
6

14
77

33
10

4
10

4
47

22
16

5
15

7
47

39
(
77
%

)
79

(
−
52
%

)
11

1
(
−
29
%

)
47

22
10

0
(
−
39
%

)
10

3
(

-
3
4
%

)

t
o

f
_
1
0

19
11

9
51

11
9

15
3

71
27

23
6

19
0

71
61

(
12

6%
)

86
(
−
64
%

)
17

2
(
−
9%

)
71

27
13

0
(
−
45
%

)
14

3
(

-
2
5
%

)

t
o

f
_
3

5
21

9
21

27
15

6
35

46
15

12
(
10

0%
)

16
(
−
54
%

)
32

(
−
30
%

)
15

6
21

(
−
40
%

)
31

(
-
3
3
%

)

t
o

f
_
4

7
35

15
35

45
23

9
63

71
23

18
(
10

0%
)

26
(
−
59
%

)
51

(
−
28
%

)
23

9
37

(
−
41
%

)
49

(
-
3
1
%

)

t
o

f
_
5

9
49

21
49

63
31

12
97

10
4

31
24

(
10

0%
)

36
(
−
63
%

)
70

(
−
33
%

)
31

12
50

(
−
48
%

)
67

(
-
3
6
%

)

v
b

e
_
a
d

d
e
r
_
3

10
70

24
80

79
24

9
12

0
88

24
18

(
10

0%
)

54
(
−
55
%

)
71

(
−
19
%

)
24

8
61

(
−
49
%

)
45

(
-
4
9
%

)

M
e
a
n

s
a
v
i
n

g
s

(
c
o

m
p

a
r
e
d

t
o

T
p

a
r
)

+
3
9
1
.3

9
%

-
6
0
.2

1
%

-
2
9
.6

6
%

-
4
5
.0

3
%

-
4
1
.2

6
%

M
a
x
i
m

u
m

s
a
v
i
n

g
s

(
c
o

m
p

a
r
e
d

t
o

T
p

a
r
)

+
3
6
%

-
8
1
%

-
6
8
%

-
6
8
%

-
8
2
%

M
i
n

i
m

u
m

s
a
v
i
n

g
s

(
c
o

m
p

a
r
e
d

t
o

T
p

a
r
)

+
4
5
6
0
%

-
4
2
%

+
9
%

-
3
1
%

-
1
9
%

23

T
a
b

l
e

3
:

F
r
e
q

u
e
n

c
y

o
f

b
e
s
t

p
e
r
f
o

r
m

a
n

c
e

o
f

e
a
c
h

a
l
g
o

r
i
t
h

m
d

u
r
i
n

g
t
h

e
o

p
t
i
m

i
z
a
t
i
o

n
o

f
r
e
v
e
r
s
i
b

l
e

c
i
r
c
u

i
t
s
.

F
o

r
e
a
c
h

a
l
g
o

r
i
t
h

m
,
t
h

e
f
i
r
s
t

c
o

l
u

m
n

g
i
v
e
s

t
h

e
n

u
m

b
e
r

o
f

t
i
m

e
s

i
t

h
a
s

r
e
t
u

r
n

e
d

t
h

e
b

e
s
t

r
e
s
u

l
t

(
p

o
s
s
i
b

l
y

o
t
h

e
r

a
l
g
o

r
i
t
h

m
s

r
e
t
u

r
n

e
d

c
i
r
c
u

i
t
s

o
f

s
a
m

e
s
i
z
e
)
.

T
h

e
s
e
c
o

n
d

c
o

l
u

m
n

r
e
p

o
r
t
s

t
h

e
n

u
m

b
e
r

o
f

t
i
m

e
s

i
t

w
a
s

t
h

e
o

n
l
y

o
n

e
t
o

p
r
o
v
i
d

e
t
h

e
b

e
s
t

p
o

s
s
i
b

l
e

c
i
r
c
u

i
t
.

F
u

n
c
t
i
o
n

#
n

#
C

N
O

T

s
u

b
-
c
i
r
c
u

i
t
s

P
M

H
G

r
e
e
d

y
G

E
S

y
n

d
r
o
m

e
(
I
n

f
o
r
m

a
t
i
o
n

S
e
t

D
e
c
o

d
i
n

g
)

S
y

n
d

r
o
m

e
(
D

e
p

t
h

3
)

S
y

n
d

r
o
m

e
(
I
P

)
G

r
e
e
d

y
O

n
e
s

(
H

s
u

m
)

G
r
e
e
d

y
L

o
g

(
h

l
o
g
)

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

B
e
s
t

c
h

o
i
c
e

O
n

l
y

C
h

o
i
c
e

A
d

d
e
r
_
8

24
6
0

1
2

(
2
0
%

)
0

(
0
)

1
3

(
2
2
%

)
0

(
0
%

)
4
2

(
7
0
%

)
0

(
0
%

)
4
2

(
7
0
%

)
0

(
0
%

)
4
2

(
7
0
%

)
0

(
0
%

)
6
0

(
1
0
0
%

)
2

(
3
%

)
5
8

(
9
7
%

)
0

(
0
%

)

b
a
r
e
n

c
o
_
t
o
f
_
1
0

19
9
9

2
9

(
2
9
%

)
0

(
0
)

3
3

(
3
3
%

)
0

(
0
%

)
8
3

(
8
4
%

)
0

(
0
%

)
8
3

(
8
4
%

)
0

(
0
%

)
8
3

(
8
4
%

)
0

(
0
%

)
9
9

(
1
0
0
%

)
0

(
0
%

)
9
9

(
1
0
0
%

)
0

(
0
%

)

b
a
r
e
n

c
o
_
t
o
f
_
3

5
1
4

8
(
5
7
%

)
0

(
0
)

8
(
5
7
%

)
0

(
0
%

)
1
2

(
8
6
%

)
0

(
0
%

)
1
2

(
8
6
%

)
0

(
0
%

)
1
2

(
8
6
%

)
0

(
0
%

)
1
3

(
9
3
%

)
0

(
0
%

)
1
3

(
9
3
%

)
0

(
0
%

)

b
a
r
e
n

c
o
_
t
o
f
_
4

7
2
7

1
2

(
4
4
%

)
0

(
0
)

1
2

(
4
4
%

)
0

(
0
%

)
2
4

(
8
9
%

)
0

(
0
%

)
2
4

(
8
9
%

)
0

(
0
%

)
2
4

(
8
9
%

)
0

(
0
%

)
2
6

(
9
6
%

)
0

(
0
%

)
2
6

(
9
6
%

)
0

(
0
%

)

b
a
r
e
n

c
o
_
t
o
f
_
5

9
3
9

1
6

(
4
1
%

)
0

(
0
)

1
6

(
4
1
%

)
0

(
0
%

)
3
2

(
8
2
%

)
0

(
0
%

)
3
2

(
8
2
%

)
0

(
0
%

)
3
2

(
8
2
%

)
0

(
0
%

)
3
8

(
9
7
%

)
0

(
0
%

)
3
8

(
9
7
%

)
0

(
0
%

)

c
s
l
a
_
m

u
x
_
3

15
1
5

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
8

(
5
3
%

)
0

(
0
%

)
8

(
5
3
%

)
0

(
0
%

)
8

(
5
3
%

)
0

(
0
%

)
1
5

(
1
0
0
%

)
2

(
1
3
%

)
1
0

(
6
7
%

)
0

(
0
%

)

c
s
u

m
_
m

u
x
_
9

30
1
4

1
(
7
%

)
0

(
0
)

1
(
7
%

)
0

(
0
%

)
6

(
4
3
%

)
0

(
0
%

)
6

(
4
3
%

)
0

(
0
%

)
6

(
4
3
%

)
0

(
0
%

)
1
3

(
9
3
%

)
4

(
2
9
%

)
9

(
6
4
%

)
0

(
0
%

)

c
y
c
l
e
_
1
7
_
3

35
1
4
3
6

2
1
9

(
1
5
%

)
0

(
0
)

3
3
0

(
2
3
%

)
0

(
0
%

)
1
0
9
4

(
7
6
%

)
0

(
0
%

)
1
0
9
4

(
7
6
%

)
0

(
0
%

)
1
0
9
4

(
7
6
%

)
0

(
0
%

)
1
4
2
9

(
1
0
0
%

)
2
3

(
2
%

)
1
4
1
2

(
9
8
%

)
6

(
0
%

)

G
F

(
21

0
)
_
m

u
l
t

30
2
0

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
1

(
5
%

)
0

(
0
%

)
1

(
5
%

)
0

(
0
%

)
1

(
5
%

)
0

(
0
%

)
1
6

(
8
0
%

)
1
3

(
6
5
%

)
6

(
3
0
%

)
3

(
1
5
%

)

G
F

(
21

6
)
_
m

u
l
t

48
2
8

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
2

(
7
%

)
0

(
0
%

)
2

(
7
%

)
0

(
0
%

)
2

(
7
%

)
0

(
0
%

)
1
8

(
6
4
%

)
1
5

(
5
4
%

)
1
1

(
3
9
%

)
8

(
2
9
%

)

G
F

(
23

2
)
_
m

u
l
t

96
5
1

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
2

(
4
%

)
0

(
0
%

)
2

(
4
%

)
0

(
0
%

)
2

(
4
%

)
0

(
0
%

)
3
0

(
5
9
%

)
2
8

(
5
5
%

)
2
1

(
4
1
%

)
1
9

(
3
7
%

)

G
F

(
24

)
_
m

u
l
t

12
1
0

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
3

(
3
0
%

)
0

(
0
%

)
3

(
3
0
%

)
0

(
0
%

)
3

(
3
0
%

)
0

(
0
%

)
9

(
9
0
%

)
3

(
3
0
%

)
6

(
6
0
%

)
0

(
0
%

)

G
F

(
25

)
_
m

u
l
t

15
1
3

1
(
8
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
3

(
2
3
%

)
0

(
0
%

)
3

(
2
3
%

)
0

(
0
%

)
3

(
2
3
%

)
0

(
0
%

)
1
0

(
7
7
%

)
6

(
4
6
%

)
6

(
4
6
%

)
2

(
1
5
%

)

G
F

(
26

)
_
m

u
l
t

18
1
3

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
2

(
1
5
%

)
0

(
0
%

)
2

(
1
5
%

)
0

(
0
%

)
2

(
1
5
%

)
0

(
0
%

)
9

(
6
9
%

)
7

(
5
4
%

)
5

(
3
8
%

)
3

(
2
3
%

)

G
F

(
27

)
_
m

u
l
t

21
1
6

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
3

(
1
9
%

)
0

(
0
%

)
3

(
1
9
%

)
0

(
0
%

)
3

(
1
9
%

)
0

(
0
%

)
1
2

(
7
5
%

)
7

(
4
4
%

)
8

(
5
0
%

)
3

(
1
9
%

)

G
F

(
28

)
_
m

u
l
t

24
1
7

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
2

(
1
2
%

)
0

(
0
%

)
2

(
1
2
%

)
0

(
0
%

)
2

(
1
2
%

)
0

(
0
%

)
1
5

(
8
8
%

)
1
0

(
5
9
%

)
6

(
3
5
%

)
1

(
6
%

)

G
F

(
29

)
_
m

u
l
t

27
1
9

0
(
0
%

)
0

(
0
)

0
(
0
%

)
0

(
0
%

)
4

(
2
1
%

)
0

(
0
%

)
4

(
2
1
%

)
0

(
0
%

)
4

(
2
1
%

)
0

(
0
%

)
1
4

(
7
4
%

)
1
0

(
5
3
%

)
8

(
4
2
%

)
4

(
2
1
%

)

g
r
o
v
e
r
_
5

9
1
2
3

3
9

(
3
2
%

)
0

(
0
)

3
9

(
3
2
%

)
0

(
0
%

)
1
1
0

(
8
9
%

)
0

(
0
%

)
1
1
0

(
8
9
%

)
0

(
0
%

)
1
1
0

(
8
9
%

)
0

(
0
%

)
1
2
2

(
9
9
%

)
0

(
0
%

)
1
2
1

(
9
8
%

)
0

(
0
%

)

h
a
m

1
5
-
h

i
g
h

20
8
5
2

2
2
0

(
2
6
%

)
0

(
0
)

2
5
6

(
3
0
%

)
0

(
0
%

)
6
9
8

(
8
2
%

)
0

(
0
%

)
6
9
8

(
8
2
%

)
0

(
0
%

)
6
9
8

(
8
2
%

)
0

(
0
%

)
8
5
2

(
1
0
0
%

)
3

(
0
%

)
8
4
9

(
1
0
0
%

)
0

(
0
%

)

h
a
m

1
5
-
l
o
w

17
6
9

2
1

(
3
0
%

)
0

(
0
)

1
8

(
2
6
%

)
0

(
0
%

)
5
7

(
8
3
%

)
0

(
0
%

)
5
7

(
8
3
%

)
0

(
0
%

)
5
7

(
8
3
%

)
0

(
0
%

)
6
9

(
1
0
0
%

)
2

(
3
%

)
6
6

(
9
6
%

)
0

(
0
%

)

h
a
m

1
5
-
m

e
d

17
1
8
9

5
6

(
3
0
%

)
0

(
0
)

6
3

(
3
3
%

)
0

(
0
%

)
1
6
7

(
8
8
%

)
0

(
0
%

)
1
6
7

(
8
8
%

)
0

(
0
%

)
1
6
7

(
8
8
%

)
0

(
0
%

)
1
8
9

(
1
0
0
%

)
1

(
1
%

)
1
8
8

(
9
9
%

)
0

(
0
%

)

h
w

b
6

7
4
8

1
1

(
2
3
%

)
0

(
0
)

1
2

(
2
5
%

)
0

(
0
%

)
4
0

(
8
3
%

)
0

(
0
%

)
4
0

(
8
3
%

)
0

(
0
%

)
4
0

(
8
3
%

)
0

(
0
%

)
4
7

(
9
8
%

)
0

(
0
%

)
4
7

(
9
8
%

)
0

(
0
%

)

h
w

b
8

12
2
1
3
0

2
7
0

(
1
3
%

)
0

(
0
)

3
4
3

(
1
6
%

)
0

(
0
%

)
1
2
4
8

(
5
9
%

)
0

(
0
%

)
1
2
4
5

(
5
8
%

)
0

(
0
%

)
1
2
4
7

(
5
9
%

)
0

(
0
%

)
2
1
1
5

(
9
9
%

)
1
5
9

(
7
%

)
1
9
3
8

(
9
1
%

)
1
0

(
0
%

)

m
o

d
5
_
4

5
1
4

8
(
5
7
%

)
0

(
0
)

8
(
5
7
%

)
0

(
0
%

)
1
3

(
9
3
%

)
0

(
0
%

)
1
3

(
9
3
%

)
0

(
0
%

)
1
3

(
9
3
%

)
0

(
0
%

)
1
4

(
1
0
0
%

)
0

(
0
%

)
1
4

(
1
0
0
%

)
0

(
0
%

)

m
o

d
_
a
d

d
e
r
_
1
0
2
4

28
7
1
6

1
7
3

(
2
4
%

)
0

(
0
)

2
1
4

(
3
0
%

)
0

(
0
%

)
5
6
4

(
7
9
%

)
0

(
0
%

)
5
6
4

(
7
9
%

)
0

(
0
%

)
5
6
4

(
7
9
%

)
0

(
0
%

)
7
1
6

(
1
0
0
%

)
2
8

(
4
%

)
6
8
8

(
9
6
%

)
0

(
0
%

)

m
o

d
_
a
d

d
e
r
_
1
0
4
8
5
7
6

58
5
6
1
5

8
5
7

(
1
5
%

)
0

(
0
)

1
3
3
5

(
2
4
%

)
0

(
0
%

)
4
2
7
5

(
7
6
%

)
0

(
0
%

)
4
2
7
6

(
7
6
%

)
0

(
0
%

)
4
2
7
6

(
7
6
%

)
0

(
0
%

)
5
5
9
3

(
1
0
0
%

)
1
1
4

(
2
%

)
5
5
0
0

(
9
8
%

)
2
1

(
0
%

)

m
o

d
_
m

u
l
t
_
5
5

9
1
4

4
(
2
9
%

)
0

(
0
)

4
(
2
9
%

)
0

(
0
%

)
9

(
6
4
%

)
0

(
0
%

)
9

(
6
4
%

)
0

(
0
%

)
9

(
6
4
%

)
0

(
0
%

)
1
4

(
1
0
0
%

)
0

(
0
%

)
1
4

(
1
0
0
%

)
0

(
0
%

)

m
o

d
_
r
e
d

_
2
1

11
4
6

1
9

(
4
1
%

)
0

(
0
)

1
9

(
4
1
%

)
0

(
0
%

)
4
0

(
8
7
%

)
0

(
0
%

)
4
0

(
8
7
%

)
0

(
0
%

)
4
0

(
8
7
%

)
0

(
0
%

)
4
5

(
9
8
%

)
0

(
0
%

)
4
4

(
9
6
%

)
0

(
0
%

)

q
c
l
a
_
a
d

d
e
r
_
1
0

36
2
4

3
(
1
2
%

)
0

(
0
)

4
(
1
7
%

)
0

(
0
%

)
1
7

(
7
1
%

)
0

(
0
%

)
1
7

(
7
1
%

)
0

(
0
%

)
1
7

(
7
1
%

)
0

(
0
%

)
2
3

(
9
6
%

)
2

(
8
%

)
2
0

(
8
3
%

)
0

(
0
%

)

q
c
l
a
_
c
o
m

_
7

24
2
6

4
(
1
5
%

)
0

(
0
)

4
(
1
5
%

)
0

(
0
%

)
1
5

(
5
8
%

)
0

(
0
%

)
1
5

(
5
8
%

)
0

(
0
%

)
1
5

(
5
8
%

)
0

(
0
%

)
2
6

(
1
0
0
%

)
0

(
0
%

)
2
6

(
1
0
0
%

)
0

(
0
%

)

q
c
l
a
_
m

o
d

_
7

26
5
2

5
(
1
0
%

)
0

(
0
)

5
(
1
0
%

)
0

(
0
%

)
3
5

(
6
7
%

)
0

(
0
%

)
3
5

(
6
7
%

)
0

(
0
%

)
3
5

(
6
7
%

)
0

(
0
%

)
5
1

(
9
8
%

)
2

(
4
%

)
4
8

(
9
2
%

)
0

(
0
%

)

q
�

_
4

5
2
9

9
(
3
1
%

)
0

(
0
)

1
2

(
4
1
%

)
0

(
0
%

)
2
8

(
9
7
%

)
0

(
0
%

)
2
8

(
9
7
%

)
0

(
0
%

)
2
8

(
9
7
%

)
0

(
0
%

)
2
9

(
1
0
0
%

)
0

(
0
%

)
2
9

(
1
0
0
%

)
0

(
0
%

)

r
c
_
a
d

d
e
r
_
6

14
4
9

3
3

(
6
7
%

)
0

(
0
)

3
4

(
6
9
%

)
0

(
0
%

)
4
3

(
8
8
%

)
0

(
0
%

)
4
3

(
8
8
%

)
0

(
0
%

)
4
3

(
8
8
%

)
0

(
0
%

)
4
8

(
9
8
%

)
0

(
0
%

)
4
8

(
9
8
%

)
0

(
0
%

)

t
o
f
_
1
0

19
5
2

2
1

(
4
0
%

)
0

(
0
)

2
1

(
4
0
%

)
0

(
0
%

)
4
8

(
9
2
%

)
0

(
0
%

)
4
8

(
9
2
%

)
0

(
0
%

)
4
8

(
9
2
%

)
0

(
0
%

)
5
1

(
9
8
%

)
0

(
0
%

)
5
0

(
9
6
%

)
0

(
0
%

)

t
o
f
_
3

5
1
2

7
(
5
8
%

)
0

(
0
)

8
(
6
7
%

)
0

(
0
%

)
1
1

(
9
2
%

)
0

(
0
%

)
1
1

(
9
2
%

)
0

(
0
%

)
1
1

(
9
2
%

)
0

(
0
%

)
1
1

(
9
2
%

)
0

(
0
%

)
1
1

(
9
2
%

)
0

(
0
%

)

t
o
f
_
4

7
1
7

1
0

(
5
9
%

)
0

(
0
)

1
1

(
6
5
%

)
0

(
0
%

)
1
6

(
9
4
%

)
0

(
0
%

)
1
6

(
9
4
%

)
0

(
0
%

)
1
6

(
9
4
%

)
0

(
0
%

)
1
6

(
9
4
%

)
0

(
0
%

)
1
6

(
9
4
%

)
0

(
0
%

)

t
o
f
_
5

9
2
2

1
1

(
5
0
%

)
0

(
0
)

1
1

(
5
0
%

)
0

(
0
%

)
1
8

(
8
2
%

)
0

(
0
%

)
1
8

(
8
2
%

)
0

(
0
%

)
1
8

(
8
2
%

)
0

(
0
%

)
2
1

(
9
5
%

)
0

(
0
%

)
2
1

(
9
5
%

)
0

(
0
%

)

v
b

e
_
a
d

d
e
r
_
3

10
1
9

4
(
2
1
%

)
0

(
0
)

4
(
2
1
%

)
0

(
0
%

)
1
8

(
9
5
%

)
0

(
0
%

)
1
8

(
9
5
%

)
0

(
0
%

)
1
8

(
9
5
%

)
0

(
0
%

)
1
8

(
9
5
%

)
0

(
0
%

)
1
8

(
9
5
%

)
0

(
0
%

)

24

References
[1] Aaronson, S., and Gottesman, D. Improved simulation of stabilizer circuits. Physical Review A

70, 5 (2004), 052328.

[2] Algfoor, Z. A., Sunar, M. S., and Kolivand, H. A comprehensive study on pathfinding tech-

niques for robotics and video games. Int. J. Comput. Games Technol. 2015 (2015), 736138:1–

736138:11.

[3] Amy, M. Ma�hew Amy’s Github. https://github.com/meamy.

[4] Amy, M., Azimzadeh, P., and Mosca, M. On the controlled-NOT complexity of controlled-NOT-

phase circuits. �antum Science and Technology 4, 1 (2018), 015002.

[5] Amy, M., Maslov, D., and Mosca, M. Polynomial-time T-depth optimization of Cli�ord+T cir-

cuits via matroid partitioning. IEEE Trans. on CAD of Integrated Circuits and Systems 33, 10

(2014), 1476–1489.

[6] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. Julia: A fresh approach to numerical

computing. SIAM review 59, 1 (2017), 65–98.

[7] Bonet, B., and Geffner, H. Planning as heuristic search. Artif. Intell. 129, 1-2 (2001), 5–33.

[8] Boyar, J., Matthews, P., and Peralta, R. Logic minimization techniques with applications to

cryptology. J. Cryptology 26, 2 (2013), 280–312.

[9] de Brugière, T. G., Baboulin, M., Valiron, B., Martiel, S., and Allouche, C. �antum CNOT

circuits synthesis for NISQ architectures using the syndrome decoding problem. In Reversible
Computation - 12th International Conference, RC 2020, Oslo, Norway, July 9-10, 2020, Proceedings
(2020), I. Lanese and M. Rawski, Eds., vol. 12227 of Lecture Notes in Computer Science, Springer,

pp. 189–205.

[10] Fieker, C., Hart, W., Hofmann, T., and Johansson, F. Nemo/hecke: Computer algebra and

number theory packages for the Julia programming language. In Proceedings of the 2017 ACM
on International Symposium on Symbolic and Algebraic Computation (New York, NY, USA, 2017),

ISSAC ’17, ACM, pp. 157–164.

[11] Gander, M. W., Vrana, J. D., Voje, W. E., Carothers, J. M., and Klavins, E. Digital logic circuits

in yeast with CRISPR-dCas9 NOR gates. Nature communications 8 (2017), 15459.

[12] Golub, G. H., and Van Loan, C. F. Matrix Computations. The Johns Hopkins University Press,

Baltimore, 1996. Third edition.

[13] Gottesman, D. Stabilizer codes and quantum error correction. PhD thesis, Caltech, 1997.

[14] Guet, C. C., Elowitz, M. B., Hsing, W., and Leibler, S. Combinatorial synthesis of genetic

networks. Science 296, 5572 (2002), 1466–1470.

[15] Hansen, E. A., and Zhou, R. Anytime heuristic search. J. Artif. Intell. Res. 28 (2007), 267–297.

[16] Harrow, A. W., Hassidim, A., and Lloyd, S. �antum algorithm for linear systems of equations.

Phys. Rev. Le�. 103 (2009), 150502.

[17] Heyfron, L. E., and Campbell, E. T. An e�icient quantum compiler that reduces T count. �an-
tum Science and Technology 4, 1 (2019), 015004.

[18] Ikeda, T., and Imai, H. Enhanced A* algorithms for multiple alignments: Optimal alignments for

several sequences and k-opt approximate alignments for large cases. Theor. Comput. Sci. 210, 2

(1999), 341–374.

25

https://github.com/meamy

[19] Jiang, J., Sun, X., Teng, S., Wu, B., Wu, K., and Zhang, J. Optimal space-depth trade-o� of

CNOT circuits in quantum logic synthesis. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020 (2020), S. Chawla,

Ed., SIAM, pp. 213–229.

[20] Kissinger, A., and de Griend, A. M. CNOT circuit extraction for topologically-constrained

quantum memories. �antum Inf. Comput. 20, 7&8 (2020), 581–596.

[21] Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P., andMilburn, G. J. Linear optical

quantum computing with photonic qubits. Reviews of Modern Physics 79 (Jan 2007), 135–174.

[22] Korf, R. E. Depth-first iterative-deepening: An optimal admissible tree search. Artificial intelli-
gence 27, 1 (1985), 97–109.

[23] Korf, R. E. Artificial intelligence search algorithms. 1996.

[24] Kutin, S. A., Moulton, D. P., and Smithline, L. Computation at a distance. Chicago J. Theor.
Comput. Sci. 2007 (2007).

[25] Landauer, R. Irreversibility and heat generation in the computing process. IBM journal of
research and development 5, 3 (1961), 183–191.

[26] Likhachev, M., Gordon, G. J., and Thrun, S. ARA*: Anytime A* with provable bounds on sub-

optimality. In Advances in neural information processing systems (2004), pp. 767–774.

[27] Maslov, D. Linear depth stabilizer and quantum Fourier transformation circuits with no auxil-

iary qubits in finite-neighbor quantum architectures. Physical Review A 76, 5 (2007), 052310.

[28] Maslov, D. Optimal and asymptotically optimal NCT reversible circuits by the gate types.

�antum Information & Computation 16, 13&14 (2016), 1096–1112.

[29] Maslov, D., and Roetteler, M. Shorter stabilizer circuits via Bruhat decomposition and quan-

tum circuit transformations. IEEE Trans. Inf. Theory 64, 7 (2018), 4729–4738.

[30] Meuli, G., Soeken, M., Campbell, E., Roetteler, M., and Micheli, G. D. The role of multiplica-

tive complexity in compiling low t-count oracle circuits. In Proceedings of the International
Conference on Computer-Aided Design, ICCAD 2019, Westminster, CO, USA, November 4-7, 2019
(2019), D. Z. Pan, Ed., ACM, pp. 1–8.

[31] Meuli, G., Soeken, M., and De Micheli, G. SAT-based {CNOT, T} quantum circuit synthesis.

In International Conference on Reversible Computation (2018), Springer, pp. 175–188.

[32] Meuli, G., Soeken, M., Roetteler, M., and Micheli, G. D. ROS: resource-constrained oracle

synthesis for quantum computers. CoRR abs/2005.00211 (2020).

[33] Monroe, D. Neuromorphic computing gets ready for the (really) big time, 2014.

[34] Moore, G. E., et al. Progress in digital integrated electronics. In Electron Devices Meeting (1975),

vol. 21, pp. 11–13.

[35] Nam, Y., Ross, N. J., Su, Y., Childs, A. M., and Maslov, D. Automated optimization of large

quantum circuits with continuous parameters. npj �antum Information 4, 1 (2018), 23.

[36] Nash, B., Gheorghiu, V., andMosca, M. �antum circuit optimizations for NISQ architectures.

�antum Science and Technology 5, 2 (2020), 025010.

[37] Nielsen, M. A., and Chuang, I. L. �antum Computation and �antum Information. Cambridge

University Press, 2011.

[38] Patel, K. N., Markov, I. L., and Hayes, J. P. Optimal synthesis of linear reversible circuits.

�antum Information & Computation 8, 3 (2008), 282–294.

26

[39] Saeedi, M., and Markov, I. L. Synthesis and optimization of reversible circuits—a survey. ACM
Computing Surveys (CSUR) 45, 2 (2013), 1–34.

[40] Schaeffer, B., and Perkowski, M. A cost minimization approach to synthesis of linear reversible

circuits. arXiv preprint arXiv:1407.0070 (2014).

[41] Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM review 41, 2 (1999), 303–332.

[42] Wilt, C., and Ruml, W. E�ective heuristics for suboptimal best-first search. Journal of Artificial
Intelligence Research 57 (2016), 273–306.

[43] Wilt, C. M., Thayer, J. T., and Ruml, W. A comparison of greedy search algorithms. In third
annual symposium on combinatorial search (2010).

[44] Yoshizumi, T., Miura, T., and Ishida, T. A
*

with partial expansion for large branching factor

problems. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twel�h Conference on on Innovative Applications of Artificial Intelligence, July 30 - August 3, 2000,
Austin, Texas, USA (2000), H. A. Kautz and B. W. Porter, Eds., AAAI Press / The MIT Press, pp. 923–

929.

[45] Zhao, W., Agnus, G., Derycke, V., Filoramo, A., Bourgoin, J., and Gamrat, C. Nanotube devices

based crossbar architecture: toward neuromorphic computing. Nanotechnology 21, 17 (2010),

175202.

[46] Zhou, R., andHansen, E. A. Multiple sequence alignment using anytime A
*
. In Proceedings of the

Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative
Applications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada (2002),

R. Dechter, M. J. Kearns, and R. S. Su�on, Eds., AAAI Press / The MIT Press, pp. 975–977.

27

	1 Introduction
	2 Background and state of the art
	2.1 Notion of linear reversible function.
	2.2 LU decomposition.
	2.3 Synthesis of linear reversible boolean functions.
	2.4 State of the art and contributions

	3 GreedyGE: a Greedy Gaussian Elimination Algorithm for Triangular Boolean Matrices
	3.1 General Presentation of the Algorithm
	3.2 Improving the Time Complexity
	3.3 Bounding the CNOT Count

	4 Extending GreedyGE to General Operators
	4.1 Modification of FastGreedyGE
	4.2 Optimizing the Choice of L and U

	5 Pathfinding Based Algorithms
	6 Benchmarks
	6.1 Random Operators
	6.1.1 GreedyGE
	6.1.2 Path Finding Methods
	6.1.3 Conclusion: Combining the Methods

	6.2 Benchmarks on Reversible Functions

	7 Conclusion

