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Abstract

Current proposals for quantum compilers require the synthesis and optimiza-
tion of linear reversible circuits and among them CNOT circuits. Since these
circuits represent a significant part of the cost of running an entire quantum cir-
cuit, we aim at reducing their size. In this paper we present a new algorithm for
the synthesis of CNOT circuits based on the solution of the syndrome decod-
ing problem. Our method addresses the case of ideal hardware with an all-to-all
qubit connectivity and the case of near-term quantum devices with restricted
connectivity. For both cases, we present benchmarks showing that our algorithm
outperforms existing algorithms.

1 Introduction
�antum compilers transform a quantum algorithm into an optimized sequence of
instructions (elementary gates) directly executable by the hardware. The most com-
mon universal set of gates for this task is the Cli�ord+T gate set, used in many quan-
tum architectures [8].

For fault-tolerant computation, the T gate is considered to be the most costly gate
to implement fault-tolerantly (using for instance magic state distillation protocols
[7]) and many e�orts have been made to reduce their number in quantum circuits [16,
2, 21]. Yet, when implementing complex quantum algorithms it is estimated that the
total number of CNOT gates increases much more rapidly with the number of qubits
than the number of T gates, and it is likely that the global CNOT cost will not be
negligible on large sized registers [16, 24] compared to the global T cost.

For the moment, fault-tolerant quantum computers are not available. The cur-
rent devices are medium-sized chips (less than 100 qubits) called NISQ computers

∗This document is the author’s version of the corresponding research manuscript prior to formal peer
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(Noisy Intermediate Scale �antum) [29]. Those computers are prone to errors and
especially the two-qubit gates such as the CNOT gate have a much lower fidelity
compared to one-qubit gates, including the T gate (see, e.g., the results for Rige�i’s
Aspen-8 chip [30]). So, for NISQ processors it is a priority to minimize the number of
CNOT gates. Moreover, for some technologies like superconducting quantum com-
puters, the execution of the CNOT gates is subject to constraints. A physical qubit
on the hardware can only interact with its neighbors, restricting the 2-qubit gates
—such as CNOT— one can apply. Taking into account these constraints is a crucial
and di�icult task for the design of quantum algorithms and the optimization of the
corresponding quantum circuits. In particular, in the literature several works present
post-processing techniques to convert with minimum overhead a circuit designed for
an ideal hardware to a circuit designed for a specific architecture [9].

Overall the CNOT gate is a costly resource that has to be optimized, either for
NISQ or fault-tolerant computations, and the optimization may be subject to con-
straints making the task very challenging.

One way to optimize the CNOT count in quantum circuits is to focus on circuits
consisting solely of CNOT gates, also called linear reversible circuits. They repre-
sent a class of quantum circuits playing a fundamental role in quantum compilation.
They are part of the so-called Cli�ord circuits and the CNOT+T circuits, two classes
of circuits that have shown crucial utility in the design of e�icient quantum com-
pilers [16, 2] and error correcting codes [13, 7]. For instance the Tpar optimizer [2]
takes a Cli�ord+T circuit as input and decomposes it into a series of CNOT+T cir-
cuits separated by Hadamard gates. Then each CNOT+T circuit is optimized and
re-synthesized by successive syntheses of CNOT circuits and applications of T gates.

Hence the synthesis of CNOT circuits naturally occurs in general quantum com-
pilers and giving e�icient algorithms for optimizing CNOT circuits will then be of
u�ermost importance for both short-term and long-term applications.

Contribution and outline of the paper

In this paper we focus on the size optimization of linear reversible circuits. We present
a new method for the synthesis of CNOT circuits relying on solving a well-known
cryptographic problem: the syndrome decoding problem. Our algorithm transforms
the synthesis problem into a series of syndrome decoding problems and we propose
several methods to solve this particular subproblem. This method, initially designed
for a full qubit connectivity, is robust enough to be extended to partial connectivity.

The outline of the paper is the following: in Section 2 we present the basic notions
and the state of the art in the synthesis of linear reversible circuits. We first present
our algorithm in the case of an all-to-all connectivity in Section 3. Then we extend it
to the case of restricted connectivities in Section 4. Benchmarks and discussions are
given at the end of Sections 3 and 4.

This paper is an extended version of a paper published in the conference proceed-
ings of RC’20. [6].
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2 Background and state of the art
Synthesis of a linear reversible function Let F2 be the Galois field of two ele-
ments. A linear reversible function f on n qubits applies a linear Boolean function on
the inputs to each qubit. Given x ∈ F

n
2 as inputs, the output of qubit i is

fi (x) = α
i
⋅ x = α i1x1 ⊕ α

i
2x2 ⊕ ... ⊕ α inxn

where ⊕ is the bitwise XOR operation and the α i ’s are Boolean vectors also called
parities. The action of f can be represented as an n×n binary matrixAwithA[i , ∶] = α i

(using Matlab notation for row selection) and f (x) = Ax . In other words each row
of A corresponds to the parity held by the corresponding qubit a�er application of
A. By reversibility of f , A is also invertible in F2. The application of two successive
operators A and B is equivalent to the application of the operator product BA.

We are interested in synthesizing general linear reversible Boolean functions into
reversible circuits, i.e., series of elementary reversible gates that can be executed on
a suitable hardware. To that end we use the CNOT gate, it performs the following
2-qubit operation:

CNOT(x1, x2) = (x1, x1 ⊕ x2)

where x1, resp. x2, is the parity held by the control qubit, resp. the target qubit. If
applied a�er an operator A, the total operator (A + CNOT) is given from A by adding
the row of the control qubit to the row of the target qubit. Such row operations
are enough to reduce any invertible Boolean matrix to the identity matrix, so the
CNOT gate can be solely used to implement any linear reversible operator. Overall,
a CNOT-based circuit can be simulated e�iciently: starting from A = I the identity
operator, we read sequentially the gates in the circuit and apply the corresponding
row operations to A.

We use the size of the circuit, i.e., the number of CNOT gates in it to evaluate the
quality of our synthesis. The size of the circuit gives the total number of instructions
the hardware has to perform during its execution. Due to the presence of noise when
executing every logical gate, it is of interest to have the shortest circuit possible.

Connectivity constraints At the current time, for superconducting technologies,
full connectivity between the qubits cannot be achieved. The connections between
the qubits are given by a connectivity graph, i.e., an undirected, unweighted graph
where 2-qubit operations, such as the CNOT gate, can be performed only between
neighbors in the graph. Examples of connectivity graphs from current physical ar-
chitectures are given on Fig. 1.

LUdecomposition Given the matrix representationA of a generic linear reversible
operator, we can always perform an LU decomposition [12] such that there exists an
upper (resp. lower) triangular matrix U (resp. L) and a permutation matrix P such
that A = PLU . This decomposition is not unique, several choices of (P , L,U ) are pos-
sible. The invertibility of A ensures that the diagonal elements of L and U are all
equal to 1. In the remainder of this paper, the term “triangular operator” stands for
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Figure 1: Examples of qubit connectivity graphs from existing architectures

an operator whose corresponding matrix is either upper or lower triangular. The LU
decomposition is at the core of our synthesis of general linear reversible Boolean op-
erators: synthesizingU , L, P and concatenating the circuits gives an implementation
of A.

State of the art In the all-to-all connectivity case the best algorithm is the Patel-
Markov-Hayes (PMH) algorithm [26, Algo. 1]. It reaches an asymptotic optimum
and produces circuits of size (n2/ log2(n)). This algorithm is for instance used in the
Tpar and Gray-Synth algorithms [1, 2] so any improvement over [26, Algo. 1] will also
improve any quantum compiler that relies on it.

For architectures with restricted connectivity, the first proposed approach has
been to transform the circuits given by an unrestricted algorithm with swap inser-
tion algorithms to match the connectivity constraints [23, 32, 27]. To produce more
e�icient circuits, two concomitant papers proposed a modification of the Gaussian
elimination algorithm [19, 25]. They synthesize the operator column by column simi-
larly to the Gaussian Elimination algorithm but they use Steiner trees to compute the
shortest sequence of CNOT gates for the synthesis of one column. In [19] the authors
compare their method based on Steiner trees against two compilers: Rige�i Comput-
ing’s �ilC and Cambridge �antum Computing’s t|ket⟩ that both produced state
of the art results on benchmarks published by IBM [10]. The benchmarks show a
consequent savings in the total number of CNOT gates in favor of the Steiner tree
method, so we consider that the work in [19] is state-of-the-art and we will compare
solely to their algorithm.

For other classes of reversible circuits various methods have been proposed, see
e.g. the use of genetic algorithms for the design of compressor trees [14].
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3 Algorithm for an all-to-all connectivity
In this section we present our algorithm in the case of a complete connectivity be-
tween the qubits. We focus on the synthesis of a lower triangular operator L ∈ F n×n2 .
What follows can be straightforwardly extended to the case of upper triangular op-
erators and to general operators using the LU decomposition. With an all-to-all con-
nectivity one can avoid to apply the permutation P by doing a post-processing of the
circuit that would transfer the permutation operation directly at the end of the total
circuit. This can be done without any overhead in the number of gates.

A circuit implementing L can solely consist of “oriented” CNOTs, whose con-
trolled qubit i and target qubit j satisfy i < j . The circuit given by the Gaussian
elimination algorithm is an example. For this particular kind of circuits, a CNOT ap-
plied to a qubit k does not have any influence on the operations performed on the
first k − 1 qubits: removing such a CNOT will not modify the result of the synthesis
of the first k − 1 parities. We use this property to design a new algorithm where we
synthesize L parity by parity and where we reuse all the information acquired during
the synthesis of the first k parities to synthesize parity k + 1.

Given Ln−1 = L[1:n − 1, 1:n − 1] (again using Matlab notation), a circuit C im-
plementing the operator (

Ln−1 0
0 1 )

and considering that we want to synthesize the
operator L = (

Ln−1 0
s 1 )

the core of our algorithm consists in adding a sequence of
CNOTs to C such that we also synthesize the parity s of the n-th qubit. During the
execution of C , applying a CNOT i → n will add the parity currently held by qubit i
to the parity of qubit n without impacting the synthesis of the first n − 1 parities. In
other words, if we store in memory all the parities that appeared on all n − 1 qubits
during the execution of the circuit C , we want to find the smallest subset of parities
such that their sum is equal to s . Then when a parity belonging to this subset appears
during the execution of C , on qubit i for instance, we insert in C a CNOT i → n. We
ultimately have a new circuit C ′ that implements L.

The problem of finding the smallest subset of parities whose sum equals s can be
recast as a classical cryptographic problem. Assuming that H ∈ F n−1×m2 is a Boolean
matrix whose columns correspond to the m available parities, any Boolean vector x
satisfying Hx = sT gives a solution to our problem and the Hamming weight of x ,
wt (x), gives the number of parities to add, i.e., the number of CNOTs to add to C .
We are therefore interested in an optimal solution of the problem

minimize
x∈Fm2

wt (x)

such that Hx = sT .

(1)

Problem 1 is an instance of the syndrome decoding problem, a well-known prob-
lem in cryptography. The link between CNOT circuit synthesis and the syndrome
decoding problem has already been established in [1], yet it was used in a di�er-
ent problem for proving complexity results (under the name of Maximum Likelihood
Decoding problem) and the authors did not pursue the optimization. The syndrome
decoding problem is presented in more details in Section 3.1.

To summarize, we propose the following algorithm to synthesize a triangular op-
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erator L. Starting from an empty circuit C , for i from 1 to n perform the three follow-
ing steps:

1. scan circuit C to compute all the parities available on a single matrix H ,

2. solve the syndrome decoding problem Hx = s with s the parity of qubit i ,

3. add the relevant CNOT gates to C depending on the solution obtained.

Provided that the size ofC remains polynomial in n, which will be the case, then steps
1 and 3 can be performed in polynomial time and in practice in a very short amount
of time. The core of the algorithm, both in terms of computational complexity and
final circuit complexity, lies in Step 2.

3.1 Syndrome decoding problem
In its general form, the syndrome decoding problem is known to be NP-Hard [4] and
cannot be approximated by a constant factor [3]. A good overview of how di�icult
the problem is can be found in [31].

We give two methods for solving the syndrome decoding problem. The first one
is an optimal one and uses integer programming solvers. The second one is a greedy
heuristic for providing sub-optimal results in a short amount of time.

3.1.1 Integer programming formulation

The equality Hx = s is a Boolean equality of n lines. For instance the first line corre-
sponds to

H1,1x1 ⊕ H1,2x2 ⊕ … ⊕ H1,mxm = s1 .

We transform it into an “integer-like” equality constraint. A standard way to do it is
to add an integer variable t and to create the constraint

H1,1x1 + H1,2x2 + … + H1,mxm − 2t = s1 .

If we write c = (1, ..., 1, 0, ..., 0)T ∈ ℕ
m+n and A = [H | − 2In] then the syndrome

decoding problem is equivalent to the integer linear programming problem

min
x∈Fm2 ,t∈ℕn

cT ⋅ [x ; t ]

such that A[x ; t ] = s .

(2)

3.1.2 A cost minimization heuristic

Although the integer programming approach gives optimal results, it is very unlikely
that it will scale up to a large number of qubits. Moreover, to our knowledge the other
existing algorithms proposed in the literature give exact results, they are complex to
implement and their time complexity remains exponential with the size of the prob-
lem. We therefore have to consider heuristics to compute an approximate solution in
a much shorter amount of time.
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We use a simple cost minimization approach: starting with the parity s we choose
at each iteration the parity v in H that minimizes the Hamming weight of v ⊕ s and
we pursue the algorithm with the new parity v ⊕ s . The presence of the canonical
vectors in H (as we start with the identity operator) is essential because they ensure
that this method will ultimately converge to a solution.

A simple way to improve our heuristic is to mimic path finding algorithms like
Real-Time A* [22]. Instead of directly choosing the parity that minimizes the Ham-
ming weight, we look up to a certain horizon and we make one step in the direction
of the most promising path. To control the combinatorial explosion of the number of
paths to browse, we only expand the most promising parities at each level. We set
the maximum width to m and the depth to k so that it represents at most mk paths
to explore. With suitable values of m and k we can control the total complexity of
the algorithm. A limitation of such a simple approach is that we can store the same
path but with di�erent parities order: we decided to ignore this limitation in order to
keep a simple implementation.

Lastly, we introduce some randomness by solving the problem PHx = P s for
several random change of basis matrices P . Repeating this several times for one syn-
drome decoding problem increases the chance to find an e�icient solution. This tech-
nique has been proven to be e�icient for a class of cryptographic algorithms called
Information Set Decoding [28], even though the complexity of these algorithms re-
mains exponential.

3.2 Benchmarks
All the code is wri�en in Julia and executed on a MacBook Air 1.8 GHz Intel Core i5.

We generate random operators by generating random circuits with randomly
placed CNOT gates. When the number of input gates is su�iciently large we em-
pirically note that the operators generated represent the worst case scenario.

We first generate an average complexity for di�erent problem sizes: for n = 1..150
we generated 20 random operators on n qubits with more than n2 gates to reach with
high probability the worst cases.

We present our results in three batches, one for each class of methods used for
solving the syndrome decoding problem:

• the cost minimization methods,

• the simplest cost minimization method with random changes of basis (the In-
formation Set Decoding strategy),

• the integer programming solver.

3.2.1 Greedy solvers comparison.

We first present the results of the cost minimization techniques. We compare the per-
formance of the greedy methods for di�erent values of the width and depth search.
For a fair comparison, the size of the search tree must be roughly the same in each
case, i.e., at widthdepth fixed. We benchmarked the following cases:
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• width=Inf, depth=1,

• width=60, depth=2,

• width=15, depth=3,

• width=8, depth=4,

• width=5, depth=5.

The results are given in Fig. 2. For clarity, instead of plo�ing the size of the circuits
we plot the ratio between the size of the circuits given by our algorithms and the state
of the art algorithm [26, Algo. 1]. We stopped the calculations when the running time
was too large for producing benchmarks in several hours.

Overall, it seems be�er to increase the depth of search than the width. Yet, for
a depth of 3 and more, the improvements are not as clear. Clearly the worst results
are for the depth 1 and depth 2 cases. Then it seems that the decreasing of the width
plays a role as the results for depth 5 are not as consistent as for depth 4. This might
be due to the fact that we store several times the same solutions: with small width
we increase the chances to store only a few di�erent solutions but with several vector
orders.

For problems smaller to 130 qubits we manage to outperform [26, Algo. 1] with
more than 30% of gain. Then, as the number of qubits increases our method performs
worse. We ran a few computations for much larger problems and the results are that
[26, Algo. 1] produces shorter circuits whenever n goes approximately beyond 400.
This raises the question of whether it is due to the method in itself or to the solution
of the syndrome decoding that becomes less and less optimal as the problem size
increases. We leave this question as a future work.

3.2.2 Greedy method + Information Set Decoding (ISD)

We now investigate the role of doing the cost minimization process but with repeated
random changes of basis. For computational reasons, we can only repeat the case
depth=1, the fastest by far, as repeating the others would take too much time. To in-
vestigate how the performance of the algorithm varies with the number of iterations,
we considered the following cases:

• with 50 iterations,

• with 100 iterations,

• with 500 iterations,

• with 1000 iterations,

• with 10000 iterations.

The results are given in Fig 3. We focused on the range n = 1...130. Given that the
greedy solver with depth=4 approximately provides the best results from the greedy
solvers category, and overall the best results, we plot the ratio between the circuit
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Figure 2: Average performance of the Syndrome Decoding based algorithms with
greedy solvers versus the state of the art [26, Algo. 1].

size returned by the ISD strategies and the circuit size returned by this new state-of-
the-art method.

Not surprisingly, increasing the number of iterations increases the chances to find
good solutions to the syndrome decoding problem, thus to find short circuits. What
is more surprising maybe is the e�iciency of such process. In terms of computational
time, the case niter=500 is roughly as costly as using a greedy solver with depth 4. So
for an equivalent amount of computational time, the ISD strategy outperforms our
greedy solvers with up to 8% of gain. With more iterations we reach up to 10% of
savings.

Overall, the ISD strategy works well until the search space is too large to be
e�iciently explored with a random method and so few tries. Inevitably, even with
niter=1000, the performance of the ISD strategy deteriorates and eventually the per-
formance of the solver is close to the initial greedy solver with only one try. Nonethe-
less, we believe this gives good insights on the question we asked above, whether the
bad performances of the syndrome decoding based methods on large instances are
due to the method in itself or in the quality of the solutions of the syndrome decoding
problems. When we increase the number of iterations we significantly improve the
performance of the method and the range of validity of the method. It seems to go
in the sense that it is di�icult to optimally solve the syndrome decoding problem and
that this has direct consequences on the final result.

3.2.3 Integer programming solvers comparison.

We are able to use an integer programming solver for problems up to 50 qubits. For
larger problems, the exponential scalability of such solvers make it impossible to use
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Figure 3: Average performance of the ISD strategy against the cost minimization
technique with depth=4.

them in a reasonable amount of time. Nonetheless, it is possible to use integer pro-
gramming solvers to "improve" a solution. Indeed, for some solvers we can ask them
to focus on a strategy that tries to find quickly a good solution. Then if we force the
solver to stop a�er a certain time limit, we can control the overall complexity of our
syndrome decoding solver. Given that we can give the solver an initial solution to the
problem, we are ensured that the solver will return a valid solution.

Unfortunately, the results are not significant. For problems on 50 qubits or less,
our results are identical to the ones obtained with the ISD strategy, proving that
this method can almost optimally solve the syndrome decoding problem on small
instances. For larger problems, we gave the solver the solution of the ISD strategy
with 500 iterations and we let the solver compute a be�er solution during 5 seconds.
Given that for an operator on n qubits we have to solve 2n instances of the syndrome
decoding problem, this represents a non negligible amount of extra time. Overall,
the savings are negligible (< 1%) compared to the ISD strategy with 500 iterations.
Increasing the number of iterations in the ISD strategy gives much be�er savings and
in a much shorter time, so overall integer programming solvers should not be the first
option to use.

3.2.4 Experiments on simpler operators

We now look at the performance of the algorithms on a specific number of qubits,
here n = 60, but for di�erent input circuit sizes. This experiment reveals how close
to optimal our algorithm is when we synthesize an operator for which we expect a
small output circuit. The results are given in Fig. 4. As the ISD method produces
the best results for this size of problem we only plot the results for this method. We
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also plot the line y = x that shows how far we still are from the optimal solution.
Again we outperform the best algorithm in the literature even for small input circuits
with more than 50% of savings when the input circuit is of size 100-300 gates, with a
maximum saving of 60% for approximately 200 gates.

Figure 4: Performance of the syndrome decoding based algorithm versus [26, Algo. 1]
on 60 qubits for di�erent input circuit sizes.

3.3 Discussion
We now propose some open questions on how to improve the syndrome decoding
based algorithm.

3.3.1 Theoretical complexity

Due to the use of heuristics, we cannot give a tight worst-case complexity of our algo-
rithm in terms of circuit size. Notably, we cannot prove that the circuits will be of size
O (n2/ log2(n)) in the worst case, as done in [26]. We can only guarantee a complexity
in O (n2). It would be interesting as a future work to use cryptographic tools in order
to prove theoretical guarantees, even in more restricted cases (for instance if we can
solve the syndrome decoding problem exactly).

3.3.2 A global solver

In the benchmarks presented in Section 3.2, we highlighted a strong correlation be-
tween the quality of a solver for the syndrome decoding problem and the quality of
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the overall CNOT synthesis algorithm. Although such correlation seems quite intu-
itive, it does not answer the following question: does solving optimally the syndrome
decoding problem provide an optimal synthesis algorithm for a triangular operator?

There may be cases where making some parities appearing on instances of the
syndrome decoding problem will help solve following syndrome decoding problems.
If this happens to be true, designing a global version of the syndrome decoding prob-
lem would be a challenging task. Notably the computational complexity of such algo-
rithm could be intractable. Can we design a cheap solver for the syndrome decoding
algorithm taking into account other future syndrome decoding problems?

3.3.3 An alternative formulation of the syndrome decoding problem

Navigating through the space of solutions with a generator matrix We pro-
pose an alternative formulation of the syndrome decoding problem using the prop-
erties of linear codes. A linear code C of length n and rank k , noted [n, k ], is a
k -dimensional subspace of the vector space F

n
2 . A linear code is characterized no-

tably by two matrices: the generator matrix G ∈ F
n×k
2 and the parity-check matrix

H ∈ F
(n−k )×n
2 . Any codeword y in C is generated by G , i.e., y = Gx for some x , and

for any codeword y we also have Hy = 0. When sending a codeword y through a
noisy channel, we may recover an altered word z such that z = y + e does not belong
to C anymore. e is the error done during the transmission and the decoding process
consists in finding which y in C is the closest to z . Equivalently we want to find e
with the minimum Hamming weight. Applying H to the received word and we have

Hz = H (y + e) = Hy + He = He .

Se�ing s = Hz and we recover the syndrome decoding problem. In this case any
solution of the syndrome decoding problem can be wri�en

{x0 + Gx | x ∈ F
k
2}

where x0 is any solution of the problem. In some sense, the generator matrix G is
related to the pseudo-inverse of H . There is a simple way to compute G from H and

vice-versa: if G =
(

Ik
P )

for some matrix P then H = (In−k PT ) and reciprocally.

In our case, the length of our linear code is given by the number of parities avail-
able m and the dimension of our code is k = m − n (n is the number of qubits on
which the parities are encoded). One can easily check that H ∈ F

m−k×k
2 . Given that

we always have H = (Im−k P) (the canonical vectors are always in H as the first
parities available) then the computation of G is straightforward. Contrary to our ini-
tial formulation of the syndrome decoding problem, we can navigate directly in the
space of the solutions of the problem in order to find the best one. Can we exploit
this to have a more e�icient algorithm for the syndrome decoding problem?

A graph-oriented formulation In this paper, we give a complementary graph-
oriented approach to this problem. This will provide new understandings on the
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structure of the problem and notably this will show a new way to compute the gen-
erator matrix G . When we scan a circuit to compute the available parities, each new
parity is obtained because we apply a CNOT gate that sums two rows of the current
linear reversible operator. So, when we gather the di�erent parities in a matrix H , if
the gathering is done chronologically, each new column of H can be wri�en as a sum
of two previous columns of H . We can create a parity graph where each node is a
parity and, given three nodes v1, v2, v3 corresponding to three parities p1, p2, p3, we
add two edges v1 → v3, v2 → v3 if p3 = p1⊕p2. We call such a three-node structure a
triangle. Each node except the first n ones have two in-edges. There is no restriction
on the number of out-edges though. A solution to the syndrome decoding problem
is given by a subset of nodes: those nodes are considered active. Given such a subset,
we can switch to another solution by considering one triangle and taking the com-
plementary in terms of active/inactive nodes. We can then navigate in the space of
all the solutions in search of the one with the fewest active nodes: this is the optimal
solution of the syndrome decoding problem. One can show that we can always reach
the optimal solution with only the elementary operation "take the complementary of
a triangle" because whatever the set of active nodes, we can always reach a canonical
form where the active nodes are solely among the first n nodes. This problem gives
a new formulation of the G matrix where each column has only three nonzero ele-
ments. The problem is illustrated on 4 qubits in Fig 5. Does there exist an e�icient
way to solve it?

4 Extension to an arbitrary connectivity
In this section we extend the algorithm to the case where the connectivity is not com-
plete. First we present how to adapt our algorithm based on the syndrome decoding
for the synthesis of triangular operators, then we extend our method to the synthesis
of any general operator.

4.1 Synthesis of a triangular operator
LetG be a qubit connectivity graph and L the lower triangular operator to synthesize.
We require an ordering on the nodes of G such that the subgraphs containing only
the first k nodes, for k = 1..n, are connected. As we need to synthesize both L and U
we need in fact this property to be true for an ordering of the qubits and the reverse
ordering. An Hamiltonian path in G is enough to have this property so for simplicity
we assume that the ordering follows an Hamiltonian path in G .

Even though the native CNOTs in the hardware are CNOTs between neighbor
qubits in the connectivity graph, it is possible to perform an arbitrary CNOT gate
but this requires more local CNOT gates. Given a target qubit qt and a qubit control
qc and assuming we have a path (qc , q1, ..., qk , qt ) in the graph connecting the two
nodes (such path always exists with the assumption we made above), it is possible to
perform the CNOT qc → qt with max(1, 4k ) CNOTs. An example for 4 qubits (with
k = 2) is given in Fig 6.

Hence, it is still possible to perform the synthesis parity by parity but we have to
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H =


1 0 0 0 1 1 1 0 0
0 1 0 0 1 1 0 1 1
0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 1 1 0
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p1 p2 p3 p4

p5

p6

p7

p8

p9

(a) CNOT circuit

(b) Parity table

(c) Parity graph

(d) The generator matrix

G =



1 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 0 0 0
0 1 0 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1



Figure 5: An example of a CNOT circuit, the parities that appear in it, the associated
parity graph and the generator matrix G associated to the linear code.

|xc〉

|x1〉

|x2〉

|xt〉

|xc〉

|x1〉

|x2〉

|xc ⊕ xt〉

Figure 6: CNOT in LNN architecture
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be more careful in the se�ing and in the solution of the syndrome decoding problem.
Not all parities have the same cost, depending on the qubit holding the parity and its
position on the hardware.

Therefore we have to solve a weighted version of the syndrome decoding problem.
Namely once we have a set of parities in a matrix H and a cost vector c ∈ ℕ

m , we
look for the solution of the optimization problem

minimize
x∈Fm2

cT ⋅ x

such that Hx = sT .

(3)

Problem 3 can be recasted again as an integer linear programming problem: we
only have to change the value of c. We also propose a greedy heuristic for solving
quickly and approximately the problem: we define the “basis cost” of implementing
s as the sum of the costs of each canonical vector whose component in s is nonzero.
Let bc(s) be this cost. Our greedy approach consists in finding among the parities of
H the parity v (column i of H ) that minimizes the cost

c[i ] + bc(s ⊕ v ).

This approach gives a good trade-o� between zeroing the most costly components
of s and applying parities at a very high cost. Again we can repeat the algorithm with
random changes of basis to find a be�er solution. Especially we focused on computing
bases for which the canonical vectors have the lowest possible costs. In other words,
the new canonical vectors correspond to parities hold by qubits that are as close as
possible to the target qubit.

Nonetheless, compared to the all-to-all case, solving the weighted syndrome de-
coding problem is not the only computational core for controlling both the quality of
the solution and the computational time. Another key task lies in the enumeration
of the available parities. As we will see, it is possible to generate more parities for one
syndrome decoding problem instance and this increases the chances to get a low-cost
solution.

4.1.1 Listing the parities available.

Until now we set the weighted syndrome decoding instances by computing the par-
ities appearing during the synthesis and by using the template in Fig. 6 to estimate
their costs. This is in fact ine�icient because it ignores some specificities of the prob-
lem:

• It is possible to add multiple parities in one shot using the template in Fig. 6.

• There is not necessarily one unique path in G between the control qubit and
the target qubit.

More precisely, the template shown in Fig. 6 is the best to our knowledge, in terms
of size, to apply solely the parity on qubit qc to qubit qt . However it is possible to
apply any parity

qt ← qt ⊕ qc ⊕
k
i=1 αiqi (4)
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Figure 7: Fan in CNOT in LNN architecture

with αi ∈ {0, 1} using less CNOTs than required for applying only qc . In fact the less
costly linear combination of parities is the complete combination qc ⊕ q1 ⊕ ... ⊕ qk ,
for which 2k + 1 CNOTs are enough. Removing any parity from this combination
requires 2 additional CNOTs per parity except for the qubit qk that needs only one
extra CNOT. An explanatory template on 6 qubits (k = 4) is given on Fig. 7. For
any parity at a distance k of the target qubit, there is at most 2k−1 di�erent linear
combinations possible and just as many new parities to consider. Moreover the path
between the control qubit and the target qubit ma�ers as a di�erent path will result
in di�erent linear combinations of parities. A slight modification of the A* algorithm
is enough to compute all the shortest paths between two nodes in a graph.

Even for a small number of qubits the number of parities becomes quickly in-
tractable. The number of linear combinations along a path increases exponentially
with the length of the path as the number of paths for most of the architectures —
a grid for instance. In practice we control the total number of parities by favoring
paths over the choices in the linear combinations. This option is empirically justified
but a more detailed analysis could be made. For one path we only consider the less
costly linear combination, i.e., the one that adds all the parities on the way. On the
other hand if possible we go through all the shortest paths between one control qubit
and one target qubit.

4.1.2 A faster heuristic

For large problem sizes, even with the minimum number of paths and linear combi-
nations possible, the number of parities can quickly become intractable because one
CNOT gate can still introduce up to n − 2 new parities. Indeed, in a straight line for
instance given by a path q1 → q2 → … → qn , modifying qubit qn−1 will add all pos-
sible linear combinations ∑

n−1
i=k qi for k = 1...n − 1. This potential factor of n quickly

becomes a non negligible computational overhead.
We propose therefore a simpler but faster heuristic. Instead of considering linear

combinations, we simply consider the parities carried by each qubit as in a complete
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connectivity case. The trick is to order the parities in terms of distance to the target
qubit (depending on which qubit they appear) and find a change of basis such that
each canonical vector is at the minimum possible distance from the target qubit. In
other words, the parities at distance 1 from the target qubit form a subspace of Fn2
of rank k1 for some k1 and we can choose k1 such parities as new canonical vectors
(as long as they are linearly independent). Then the parities at distance 2 will add
k2 new dimensions, adding k2 new canonical vectors, etc., until the whole space F

n
2

is spanned with a new basis. Now, in this new basis, we consider the components
I ⊂ [[1, n]] of the parity to synthesize that correspond to the farthest canonical vec-
tors. By construction, such components can only be zeroed by adding parities from
those farthest qubits. Furthermore, adding supplementary parities on the way will
not modify the values the components I . So our proposal therefore is to remove such
distant components by greedily choosing the parities that minimize at each iteration
the number of nonzero components from I . To add such parity we choose to use
the template in Fig. 7 with the full linear combination as we said that the interme-
diate parities do not modify the components I . Once the components I are zeroed,
we repeat the process with the new farthest components until the whole parity is
synthesized.

4.2 Synthesis of a general operator
The extension of the synthesis from triangular to general operator is not as straight-
forward as in the all-to-all connectivity case. We cannot simply write A = PLU and
concatenate the circuits synthesizing L and U and ultimately permuting the qubits.
If we want to use this algorithm as a sub-task of a global circuit optimizer for NISQ
architectures we cannot a�ord to swap the qubits because it could break the opti-
mizations done in the rest of the circuit.

To avoid the permutation of the qubits we have to transform the matrix A by
applying a pre-circuit C such that CA = LU . Then the concatenation of C−1 and the
circuits synthesizing L and U gives a valid implementation of A.

4.2.1 Computation of C

If A is invertible, which is always the case, then it admits an LU factorization if and
only if all its leading principal minors are nonzero. We propose an algorithm for
computing C exploiting this property while trying to optimize the final size of C .
We successively transform A such that every submatrix A[1:i, 1:i] is invertible. By
construction when trying to make A[1 ∶ k , 1 ∶ k ] invertible for some k we have
A[1:k − 1, 1:k − 1] invertible. If A[1 ∶ k , 1 ∶ k ] is invertible then we do nothing,
otherwise we look in the parities A[k + 1:n,1:k ] those who, added to A[k , 1 ∶ k ],
make A[1 ∶ k , 1 ∶ k ] invertible. By assumption A is invertible so there is at least
one such row that verifies this property. Then among the valid parities we choose
the closest one to qubit k in G . We can add all the parities along the path because by
assumption they belong to the span of the first k − 1 rows of A[1 ∶ k , 1 ∶ k ] so it has
no e�ect on the rank of A[1 ∶ k , 1 ∶ k ].
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4.2.2 Choice of the qubit ordering

We can further optimize our algorithm by changing the qubits ordering. The algo-
rithm we have presented for synthesizing a triangular operator is still valid up to row
and column permutations. Thus, given a permutation P of the qubits, one can syn-
thesize P−1LP by applying our algorithm with the order given by P . Then, instead
of computing a circuit C such that CA = LU we search for a circuit C satisfying
P−1CAP = LU and

CA = PLP−1PUP−1 = L′U ′

where L′ and U ′ can be synthesized using our algorithm. Searching for such C can
be done using our algorithm on A[P , P ] (in Matlab notation, i.e., the reordering of A
along the vector P ).

This means that we can choose P such that the synthesis of L and U will yield
shorter circuits. Empirically we noticed that when synthesizing the k th parity of L
it is preferable to have access to the parities appearing on qubits k − 1, k − 2, etc.,
in priority for two reasons: first because they can modify more bits on the k th par-
ity and secondly because it is likely that there will be much more parities available,
increasing the chance to have an inexpensive solution to the weighted syndrome de-
coding problem. Intuitively we want the ordering of the qubits to follow at least an
Hamiltonian path in G = (V , E ) which would match the previous restriction on the
ordering we formulated at the beginning of the section.

In practice, we found empirically orderings that provide good results and in fact
they are simple. For instance, for any architecture similar to a grid, the ordering we
chose is the one starting from the top le� qubit, follows the first line, then contin-
ues below on the second line, etc., giving a "snake" structure to the ordering in the
architecture. See Fig. 1 for an illustration on several architectures.

Finding a good qubit ordering does not have, strictly speaking, to be automatized
because it can be done once for all for a given architecture. Still, it would be interest-
ing to be able to find good algorithms for this problem, especially in order to deal with
more complex architectures than the ones we consider in this paper. Some proposals
and discussions are given in Section 4.4 to tackle this problem.

4.2.3 Exploit the symmetries of the architectures

Lastly, it is possible to use the symmetries of the architectures to obtain other qubit
orderings that are as valid as the one initially chosen. For instance, for a grid, starting
from one of the three other corners or following a path along the columns instead of
the rows gives other qubit orderings that can potentially lead to a be�er result. We
cannot know in advance which ordering will be the most suited for one particular
operator, so the only solution is to try all possibilities (8 in the case of a grid) and
keep the best result.
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4.3 Benchmarks
4.3.1 Fine tuning of the method

By the heuristic nature of our algorithm, its global performance depends on several
parameters:

• the maximum number of shortest paths between two qubits, noted SPmax,

• the number of linear combination we authorize along a certain path, noted
LCmax,

• the method to solve the syndrome decoding problem,

• the number of times we solve the syndrome decoding problem (with random
changes of basis), noted Nitersyndrome,

• the number of times we repeat the synthesis of one triangular operator, noted
Niter,

• the ordering of the qubits.

The role of each individual parameter is di�icult to quantify, but it is even harder
to quantify the interdependent roles of all parameters together. A�er some numerical
experiments, we have observed that the results have a high variance. Notably, the
correlation between the quality of the solutions of the syndrome decoding problem
and the quality of the overall synthesis algorithm is much weaker than in the all-to-all
connectivity case.

It seems that the mean performance of the algorithm cannot be changed sig-
nificantly but we can act on the value of the variance of the results: the larger the
variance is, the more likely we will find very good solutions (among very bad ones).
To increase the variance, we insist on the parameters that add randomness in the
results.

Overall, here are our current conclusions on the role of each parameter:

Niter This parameter is probably the most important one. Being able to repeat the
experiment a large number of times increases our chance to find a good solution.

Nitersyndrome This parameter improves the solution of the syndrome decoding
problem, but has li�le e�ect on the global quality of the results. In fact, it tends
to deteriorate the global performance of our algorithm. This might be due to the fact
that there is less variance in the results, thus less chances to reach a good solution.

The method to solve the syndrome decoding Using an integer programming
solver o�ers almost no variance in the results. We noticed that the best results were
obtained with the greedy heuristic. When the size of the problem is large, it is prefer-
able to use the faster heuristic notably due to the computational time.
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LCmax This parameter has li�le e�ect on the results. Furthermore the computa-
tional complexity becomes quickly intractable if we increase LCmax: allowing to re-
move one parity from the linear combination given by Eq. (4) adds (

k
1) = k parities

where k is the length of the path considered, removing two parities adds (

k
2) ≈ k 2/2

parities, etc. Moreover, those additional parities have a larger cost and are unlikely
to be used in the solution of the syndrome decoding problem.

SPmax This parameter has a significant e�ect on the results. Contrary to the pa-
rameter LCmax, this one has to be maximized if possible. It introduces more parities
(but this time with identical cost), hence more variance in the results.

The ordering of the qubits The ordering has a critical impact on the performance
of the algorithm. With some experiments we come up with some good orderings that
give in average the best results. Exploiting the symmetries also has a non negligible
impact as we increase the chances to find be�er solutions. More details will be given
in the discussions in Section 4.4.

4.3.2 Numerical results

We compare our method against the best algorithm in the literature [19] whose
source code is available on the PyZX Github repository [20]. For each architecture
considered in their implementation we generate a set of 50 random operators and
perform the synthesis using the Steiner trees. Their algorithm provides an optimiza-
tion using genetic algorithms but this implements the circuit up to a permutation of
the qubits. We first consider exact synthesis so in this case we considered their al-
gorithm without this extra optimization. Then we propose the same experiment but
where the synthesis can be done up to a final permutation of the qubits, in this case
we added the genetic algorithm optimization in the Steiner tree based algorithm.

Our own algorithm is implemented in Julia. We set a time limit of 10 minutes for
the synthesis of an operator. The values of the parameters for each architecture are
summarized in Table 1. Overall, we solely focused on the number of iterations, the
number of paths and the method to solve the syndrome decoding problem. When
the number of qubits is small enough (n ≤ 25) we can maximize the number of paths
considered and the number of iterations with the standard greedy method. For large
problem sizes (n ≥ 64), only the fast heuristic can provide results in a reasonable
amount of time and we modulate the computational time and the performance of
our algorithm with the number of iterations. For intermediate sizes, namely n = 36
and n = 49, the heuristic nature of our algorithm makes it nontrivial to determine the
best set of parameters. From our observations, we noticed it was best to have a large
number of iterations for the square architectures. However, when adding diagonal
connections between the qubits, having a good tradeo� between the number of paths
and the number of iterations gives be�er results.

Exact synthesis Results for exact synthesis are summarized in Table 2. Columns
3 and 4 give the average size of the generated circuits for the method using Steiner

20



Table 1: Values of the parameters of the syndrome algorithm tuned for di�erent ar-
chitectures.

Architecture # Niter Nitersyndrome Syndrome solver LCmax SPmax �bit ordering

9q square 9 100 1 Greedy 1 Inf See Fig 1
Rige�i 16q 16 100 1 Greedy 1 Inf See Fig 1
IBM QX 5 16 100 1 Greedy 1 Inf See Fig 1
16q Square 16 100 1 Greedy 1 Inf See Fig 1

19q Line 19 100 1 Greedy 1 Inf Natural ordering
IBM Q20 Tokyo 20 100 1 Greedy 1 Inf See Fig 1

25q Square 25 100 1 Greedy 1 Inf See Fig 1
25q Sq. + diag. 25 100 1 Greedy 1 Inf See Fig 1

36q Square 36 100 1 Greedy 1 1 See Fig 1
36q Sq. + diag. 36 50 1 Greedy 1 10 See Fig 1

49q Square 49 100 1 Fast 1 1 See Fig 1
49q Sq. + diag. 49 10 1 Greedy 1 10 See Fig 1

64q Square 64 50 1 Fast 1 1 See Fig 1
81q Square 81 25 1 Fast 1 1 See Fig 1

trees in [19] and our algorithm based on syndrome decoding. The next columns detail
the savings: the mean saving, the minimum saving (negative saving means that our
algorithm performs worse), the maximum saving and the proportion of operators
for which our circuit is actually shorter than the one provided by the state-of-the-
art method. The last two columns give the average time required to perform the
synthesis of one operator (all iterations included for our algorithm).

We can expect our algorithm to behave be�er if there are more connections be-
tween the qubits. When the connectivity is as limited as possible, for instance with an
LNN architecture, our algorithm does not outperform the algorithm based on Steiner
trees. The average performance of both algorithms are almost identical and the nat-
ural distribution of the relative savings are probably only due to the variance of the
results. Similarly, as the Rige�i architecture is close to a straight line, we outperform
the state of the art but with less savings compared to the other architectures: 10% of
savings in average but with almost no savings in some cases.

For the remaining architectures the results are more promising. In the case of the
9-qubit square there is a lot of variance in the results: depending on the operator we
can have a gain of almost 40% or almost no savings at all. Overall we still manage to
produce a shorter circuit for every circuit with an average gain of 23%.

For larger architectures, we outperform the state-of-the-art algorithm consis-
tently with at least 17% of savings. First, the more connected the architecture, the
be�er the results. This is particularly visible if we add diagonal connections in the
square architectures: both algorithms provide much shorter circuits but we manage
to take more advantage of it, improving our relative savings. We also have almost
30% savings in average on the IBM-Tokyo chip.

Despite the use of the simpler heuristic for large problems, we still manage to get
at least 17% of savings in average. This is less than for smaller architectures for which
more optimal techniques are used but the method is more scalable.
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Table 2: Exact synthesis: performance of our Syndrome Decoding based algorithm vs
Steiner trees algorithm [19] for several architectures

Architecture #
Steiner

Syndrome
Saving

tSt (s) tSy (s)
[19] Mean Min. Max. Positive

9q Square 9 61 46 23.2% 2.33% 37.14% 100% 0.013 0.785

Rige�i 16q 16 271 245 9.4% 0.8% 18.84% 100% 0.045 6.879

IBM QX 5 16 245 181 25.6% 13.08% 37.35% 100% 0.027 13.96

16q Square 16 206 155 24.8% 10.53% 35.78% 100% 0.019 14.106

19q Line 19 453 454 -0.3% -6.96% 10.29% 40% 0.035 9.185

IBM Q20 Tokyo 20 294 211 28.1% 22.02% 35.14% 100% 0.025 10.385

25q Square 25 516 397 22.9% 17.01% 27.61% 100% 0.064 213.24

25q Square + diag. 25 411 299 27.3% 20.16% 32.95% 100% 0.042 78.147

36q Square 36 1066 865 18.8% 15.46% 23.18% 100% 0.101 277.886

36q Square + diag. 36 861 645 25.0% 20.8% 29.1% 100% 0.162 328.48

49q Square 49 1978 1633 17.5% 13.76% 20.21% 100% 0.407 275.378

49q Square + diag. 49 1605 1230 23.3% 21.36% 26.23% 100% 0.358 350.625

64q Square 64 3368 2771 17.7% 15.22% 19.69% 100% 1.043 414.579

81q Square 81 5372 4398 18.1% 16.7% 20.09% 100% 2.06 577.091

Synthesis up to a permutation In [19] the authors propose to synthesize the op-
erator up to row and column permutations in order to reduce the total number of
CNOT gates and they use a genetic algorithm to find suitable permutations. Al-
though allowing to permute the rows and the columns of the operator indeed helps
finding shorter circuits, it cannot be used directly in a peep-hole optimization process
for global circuit optimization.

Still, there are cases where permuting the rows and columns may be allowed.
Given an operator A, permuting the columns of A is equivalent to applying a per-
mutation matrix on the right: this corresponds in a change of the initial layout of
the logical qubits in the hardware. Modifying the layout of the logical qubits can
only be done once, at the beginning of the optimization. Hence such operation is not
available for all linear reversible operators in the global circuit. Permuting the rows
of A is equivalent to applying a permutation matrix on its le�, this means that the
qubits carry the good parities but are permuted in the hardware. In a context where
we want to optimize on the fly a bigger quantum circuit, this will have an impact
on the remaining circuit to optimize but the optimization process continues. There-
fore permuting the rows might be preferable over permuting the columns as it can
be integrated more easily in a global optimization algorithm.

We recall that our syndrome decoding based algorithm for restricted connectivi-
ties consists in two parts:

• First, we compute a short circuit C such that CA = LU ,

• Then we synthesize L,U and overall A = C−1LU .
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Table 3: Synthesis up to a permutation: performance of our Syndrome Decoding
based algorithm vs Steiner trees algorithm [19] for several architectures

Architecture #
Genetic Steiner

Syndrome
Saving

tSt (s) tSy (s)
[19] Mean Min. Max. Positive

9q Square 9 42 42 0.2% -24.32% 16.33% 54% 1.033 0.709

Rige�i 16q 16 231 232 -0.4% -11.37% 11.21% 42% 6.794 5.955

IBM QX 5 16 194 169 12.5% 0.0% 23.41% 98% 12.786 13.814

16q Square 16 167 144 13.3% 4.52% 23.12% 100% 14.961 15.662

19q Line 19 393 434 -10.7% -18.25% -1.72% 0% 15.795 9.114

IBM Q20 Tokyo 20 250 199 20.3% 12.07% 25.77% 100% 12.61 12.046

25q Square 25 453 381 16.0% 12.16% 20.69% 100% 244.247 211.785

25q Square + diag. 25 358 284 20.5% 14.75% 25.96% 100% 67.086 75.212

36q Square 36 983 839 14.6% 12.15% 16.9% 100% 497.191 277.083

36q Square + diag. 36 789 623 21.0% 18.37% 23.18% 100% 349.002 256.034

49q Square 49 1878 1597 15.0% 13.51% 16.91% 100% 356.147 275.2

49q Square + diag. 49 1512 1199 20.7% 18.33% 22.68% 100% 422.83 292.891

64q Square 64 3243 2725 16.0% 14.79% 17.25% 100% 560.246 434.613

81q Square 81 5223 4334 17.0% 15.94% 17.79% 100% 588.478 555.365

We know that we can always write A = PLU for some permutation matrix P ,
so if we authorize ourselves to permute the rows of A we can simply replace C by a
permutation matrix and save the cost of implementing C .

We repeated the experiments done for an exact synthesis but with the rows per-
mutations. The results are in Table 3. We kept the default values of the parameters
of the genetic algorithms given in PyZX. We only modified the number of iterations
to ensure that the computational times of our method and the Steiner tree based
method are approximately the same. Some finer tuning on the genetic algorithm
parameters can be done and this is a limitation in our comparison. Note also that
their code optimizes both rows and columns permutations, while our algorithm only
allows rows permutations. This is another limitation for a fair comparison.

Overall, we still manage to outperform [19] for all but three architectures but the
savings are not as good as in the exact synthesis case. Notably for sparse or small
architectures our results are worse (for the 19 qubits line) or equal (for Rige�i’s chip
or the 9 qubits square). For the other architectures, the savings range from 12% for
the IBM QX5 chip to 20% for the most connected architectures. Note that the gap
we noticed between the small and large architectures, which was due to the change
of the heuristic for solving the syndrome decoding problem, disappear in this new
experiment. We think this is due to the quality of the genetic algorithm that struggles
optimizing e�iciently the rows and columns permutation when the problem size is
too large. This compensates the loss of quality of our own heuristic.
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Experiments with more connected architectures The architectures currently
available have a sparse qubit connectivity, making it costly to implement CNOT cir-
cuits. Even though full qubit connectivity will not be technologically feasible anytime
soon, we can hope that more connected architectures will be designed in a near fu-
ture. Will this favor our algorithm? In our experiments, we highlighted the fact that
the more connected the architecture, the be�er the savings over the Steiner tree based
algorithm. Besides, the closer we get to a full connectivity the more our algorithm
will perform similarly to our original syndrome decoding based algorithm while the
Steiner tree based will eventually consist in a standard Gaussian elimination. This
is another argument in favor of an increasing outperformance of our algorithm over
the state of the art. We propose two experiments to confirm or infirm this behavior.

The first experiment is based on an experimental model that can already be found
in certain technologies such as some using Rydberg atoms [15]. Starting from a grid
layout, we consider that each qubit has a fixed interaction radius and can interact
with the qubits within its reach. Here the radius is computed with the L2 norm in
a plane. So for instance se�ing the radius to 1 and we have the standard square
architecture. Se�ing the radius to

√

2 and we recover the square architecture with
diagonal connections.

For a 25-qubit square, one can show that the number of interactions increases for
the following values of the radius:

1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

17,
√

18,
√

20, 5,
√

32

and for each of these radius we computed the average CNOT count of both our al-
gorithm and the state of the art with a sample of 50 operators. The results are given
in Fig. 8. The behavior of the two algorithms is similar: the CNOT count decreases
exponentially with the interaction radius. This is very promising because it shows
that only a small improvement in the interaction radius can lead to consequent sav-
ings in the cost of CNOT circuits. Interestingly, the di�erence between the CNOT
counts of the two algorithms is approximately constant. Necessarily this results in
an increasing relative gain of our algorithm against the state-of-the-art method.

The second experiment aims at showing that the advantage of our algorithm in
more connected architectures is still true even in an unstructured architecture. Start-
ing from a 20-qubit LNN architecture, we iteratively randomly add 15 edges to our
architecture for a total of 12 increasingly connected architectures. For each new ar-
chitecture we synthesize 50 random operators and we store the average CNOT count.
The results are given in Fig 9. We get similar results to the experiment with the grid
and the increasing interaction radius.

4.4 Discussion
We now discuss a crucial problem for the performance of the syndrome decoding
algorithm: the choice of the qubit ordering. Indeed, we noticed empirically that a
good qubit ordering has a non negligible impact on the overall performance of our
algorithm. Unfortunately, the role of the qubit ordering is quite opaque. We propose
intuitive mathematical formulations of the best qubit ordering and we discuss their
validity.
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Figure 8: Average CNOT count for the synthesis of CNOT circuits in a 5x5 grid with
increasing interaction radius.

Figure 9: Average CNOT count for the synthesis of CNOT circuits in increasingly
connected random 20-qubit architectures.
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We define an ordering as a map π ∶ V → [[1, n]], and the distance between two
qubits u, v ∈ V in the ordering is given by | π(u) − π(v )|. We also note d(u, v ) the
distance between qubits u and v in the hardware.

In Section 4.2.2, we defined a good qubit ordering as an order of the qubits such
that each qubit is the closest possible in the hardware to its predecessors and suc-
cessors in the ordering. In other words, we want at least two successive qubits in
the ordering to be neighbors in the hardware. �bits at distance 2 in the ordering
should also be at distance 2 or less in the hardware, etc. A Hamiltonian path in the
hardware guarantees that d(u, v ) ≤ ‖π(u) − π(v )‖, but among the Hamiltonian paths
in the hardware, some may be be�er than others.

The minLA problem In [6], we initially formulated the best ordering π ∶ V →

[[1, n]] as a solution of the Minimum Linear Arrangement problem

minimize
π

∑

(u,v )∈E

wuv |π(u) − π(v )| (5)

wherewuv is the weight of the edge connecting u and v in the graph. The idea is that
we want to give priority to neighbors in the hardware: the nodes must be as close
as possible in the hardware if their “numbers” are also close. A way to do so is to
solve the MinLA problem, not in the hardware graph, but in the complete graph with
suitable weights. Namely wi j must be large when i , j are neighbors in the hardware
andwi j must be smaller if i , j are at distance 2, and even smaller for larger distances.
The MinLA problem has already been used for qubit routing [27] and the problem
is in general NP-Hard [11]. One way to solve exactly this problem is to encode it in
an integer linear program. For conciseness, we will not detail the formulation of the
problem but is uses standard encoding techniques. The important result is that, with
a time limit given to our integer programming solver, we are able to find solutions
quickly, although those solutions are not proven to be optimal.

Unfortunately, the solutions are in fact quite deceiving, some of them not even
being a Hamiltonian path of the hardware graph. We believe this is not because
the solver did not find optimal solutions, but rather because the minLA problem is
in fact not the most suitable problem to encode what we want. The reason is the
following: the minimum value of |π(u)−π(v )| = 1 can only be assigned to n−1 possible
combinations of the (u, v )s. On the other hand, large weights are given to every pair
of neighbor nodes in the hardware and there are as many as there are edges in the
hardware graph. Even for sparse architectures, like a square, there are approximately
four times more maximum weightswi j than minimum possible assignments of |π(u)−
π(v )|. In other words, most of the cost to minimize will consist in the portion

cste × ∑

u,v neighbors
|π(u) − π(v )|. (6)

Given that we sum over a large number of terms, some of the |π(u) − π(v )| will
not be equal to 1 but rather 2, 3 or even more. In these circumstances, as long as
the total sum is minimized, the optimizer will not necessarily find a solution where
|π(u) − π(v )| = 1 will necessarily correspond to neighbor qubits (u, v ). We illustrate
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this with the example given in Table 4. We give two di�erent orderings for which
Eq. (6) is minimized but one of them do not correspond to a Hamiltonian path. The
two orderings have the same cost for any weights (wuv )uv and one can show that this
cost is minimal for interesting values of the weights (for instance wuv = 1/(10)d(u,v )).

Anonlinear integer programming formulation. As a response to the limitation
of the minLA problem, we propose a new way to encode our problem of qubit ordering
by changing the cost function. To emphasize the role of the small |π(i ) − π(j )| terms,
we have to use a nonlinear function. We set

wuv = d(u, v )

and the function to minimize is now

∑

uv

wuv e
−|π(u)−π(v )|

. (7)

With this cost function, we can see that the terms that have to be minimized in
priority are the cases where |π(u) −π(v )| = 1 so they will have to correspond to qubits
(u, v ) that correspond to small wuv . In other words, for neighbor qubits (u, v ) we will
have |π(u) − π(v )| = 1. And the logic is the same for qubits that are at distant 2, 3, etc.

This problem can be similarly cast into a nonlinear integer programming. Unfor-
tunately, the solvers at our disposal struggle finding solutions. We have to use an
heuristic. We propose this very simple algorithm: we choose a starting permutation
and at each iteration we switch two elements of our permutation. We choose one pair
among the ones that minimize the cost function and we stop when a local minimum
is found. Finally we repeat this process with di�erent random starting permutations.
An example of ordering obtained with this method for the 16-qubit square is given
in Fig. 10. In theory such ordering seems be�er suited than the standard "snake"
we used in our benchmarks. If we check, the cost function is indeed smaller for this
ordering than for the snake. It makes sense because of the winding pa�ern of the
ordering. However, in practice, this does not improve our results (165 CNOT in av-
erage against 155). We do not really have an explanation, it is probably due to the
fact that our initial definition of a good ordering, i.e., an order of the qubits such that
each qubit is the closest possible in the hardware to its predecessors and successors
in the ordering, does not catch the whole complexity of the problem. Does there exist
a be�er formulation of the perfect qubit ordering?

5 Conclusion
We have presented a new framework for the synthesis of linear reversible circuits.
We exploit the specific structure of triangular operators to transform the synthe-
sis into a series of syndrome decoding problems, which are well-known problems in
cryptography. Using an LU decomposition we can synthesize any quantum operator
in the case of an all-to-all connectivity. Benchmarks show that we outperform the
state-of-the-art algorithm for intermediate sized problems (n < 400). Our heuristics
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Solver Empirical MinLA + Integer Programming

Ordering

1 2

56

7

4

3

8 9

1 2

5 6

7

4

3

8 9

∑

u,v
d(u,v )=1

|π(u) − π(v )| |1 − 2| + |1 − 6| + |2 − 3| + |2 − 5| + |3 − 4| + |4 − 5|+ |1 − 2| + |1 − 4| + |2 − 3| + |2 − 5| + |3 − 6| + |4 − 5|+

|4 − 9| + |5 − 6| + |5 − 8| + |6 − 7| + |7 − 8| + |8 − 9| = 24 |4 − 7| + |5 − 6| + |5 − 8| + |6 − 9| + |7 − 8| + |8 − 9| = 24

∑

u,v
d(u,v )=2

|π(u) − π(v )|
|1 − 3| + |1 − 5| + |1 − 7| + |2 − 4| + |2 − 6| + |2 − 8|+ |1 − 3| + |1 − 5| + |1 − 7| + |2 − 4| + |2 − 6| + |2 − 8|+

|3 − 5| + |3 − 9| + |4 − 6| + |4 − 8| + |5 − 7| + |5 − 9|+ |3 − 5| + |3 − 9| + |4 − 6| + |4 − 8| + |5 − 7| + |5 − 9|

|6 − 8| + |7 − 9| = 48 |6 − 8| + |7 − 9| = 48

∑

u,v
d(u,v )=3

|π(u) − π(v )| |1 − 4| + |1 − 8| + |2 − 7| + |2 − 9| + |3 − 6| + |3 − 8|+ |1 − 6| + |1 − 8| + |2 − 7| + |2 − 9| + |3 − 4| + |3 − 8|+

|4 − 7| + |6 − 9| = 36 |4 − 9| + |6 − 7| = 36

∑

u,v
d(u,v )=4

|π(u) − π(v )| |1 − 9| + |3 − 7| = 12 |1 − 9| + |3 − 7| = 12

Total cost 12w[1] + 48w[2] + 36w[3] + 12w[4] 12w[1] + 48w[2] + 36w[3] + 12w[4]

Table 4: Ordering given empirically versus a solution of the minLA problem. Both
orderings have the minimal possible cost but one is not a Hamiltonian path.

12

56

7

43

8 9 10

1112

13 14

1516

Figure 10: Ordering given by our heuristic minimizing Eq. (7).
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for solving the syndrome decoding problem are e�icient but could still be improved,
both in circuit size and computational time. For instance, some quantum algorithms
have been proposed for solving the syndrome decoding problem via the Information
Set Decoding algorithm [5, 17, 18], which gives the possibility of designing a hybrid
quantum/classical compiler for this particular synthesis problem.

Then we have highlighted the robustness of our framework by extending it to
an arbitrary connectivity graph having a Hamiltonian path. With a suitable pre-
processing of the matrix we transform the problem into a series of weighted syn-
drome decoding problems. Except for the LNN architecture whose connectivity is
too sparse, we consistently outperform existing algorithms. As a future work, we can
study how to extend our method to the case where the connectivity graph does not
have a Hamiltonian path, similarly to [19]. For the moment we only have studied the
behavior of our algorithm on random CNOT circuits, but large-scale CNOT circuits
are not common. It would be interesting to extend our framework in order to deal
with quantum circuits implementing real algorithms, e.g., quantum chemistry-based
circuits or arithmetic functions. Besides, with specific quantum circuits instead of
random CNOT circuits, the outperformance of direct synthesis methods is not guar-
anteed and a more in-depth study of various methods (direct synthesis, SWAP inser-
tions, etc.) will be necessary.
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