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André Hirschowitz1 , Tom Hirschowitz2� , Ambroise Lafont3 , and Marco
Maggesi4
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Abstract. By abstracting over well-known properties of De Bruijn’s
representation with nameless dummies, we design a new theory of syntax
with variable binding and capture-avoiding substitution. We propose it
as a simpler alternative to Fiore, Plotkin, and Turi’s approach, with
which we establish a strong formal link. We also show that our theory
easily incorporates simple types and equations between terms.
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1 Introduction

There is a standard notion of signature for syntax with variable binding called
binding signature. Such a signature consists of a set of operation symbols, to-
gether with, for each of them, a binding arity. A binding arity is a list (n1, . . . ,np)

of natural numbers, whose meaning is that the considered operation has p ar-
guments, with ni variables bound in the ith argument, for all i ∈ {1, . . . , p}.

Example 1.

– λ-abstraction has binding arity (1) (one argument, with one bound variable);
– application has binding arity (0,0) (two arguments, with no bound variable);
– unary explicit substitution e[x 7→ f ] has binding arity (1,0) (two arguments,

with one variable bound in the first and none in the second).

There are several possible representations of the syntax specified by a bind-
ing signature, most of them benefiting from good semantical understanding.
The traditional, nominal representation has been nicely framed within nominal
sets [12]. The representation by De Bruijn levels, a.k.a. nested datatypes [5,1],
is well-understood thanks to presheaf models [11], as is higher-order abstract
syntax [19]. However, one of the oldest representations, using De Bruijn’s idea
of modelling variables with nameless dummies, does not benefit from any se-
mantical framework. This may be related to the fact that it is often perceived

http://orcid.org/0000-0003-2523-1481
http://orcid.org/0000-0002-7220-4067
http://orcid.org/0000-0002-9299-641X
http://orcid.org/0000-0003-4380-7691


2 A. Hirschowitz et al.

as low-level and error-prone [4]. Our goal in this paper is to equip De Bruijn’s
representation with a suitable semantical framework.

Let us start by stressing some of the features of this representation, for some
fixed binding signature S.

Inductive definition The set DBS of terms is the least fixed point of a suitable
endofunctor on sets, derived from S. In particular, there is a variables map
v : N→ DBS and, for each operation o in S with binding arity (n1, . . . ,np), a
map oDBS : DB

p
S
→ DBS.

Substitution DBS is equipped with a (parallel) substitution map

−[−] : DBS ×DBN
S → DBS,

which satisfies three standard substitution lemmas (associativity, left and
right unitality).
Furthermore, substitution is compatible with operations, in the sense that
it satisfies the following crucial binding conditions: for each operation o
with binding arity (n1, . . . ,np), e1, . . . , ep ∈ DBS, and f : N→ DBS,

oDBS (e1, . . . , ep)[ f ] = oDBS (e1[⇑
n1 f ], . . . , ep[⇑np f ]), (1)

where ⇑ is a unary operation defined on DBN
S by

(⇑ σ)(0) = v(0)
(⇑ σ)(n + 1) = σ(n)[p 7→ v(p + 1)].

In the present work, by abstracting over these properties, we propose a simple
theory for syntax with variable binding, which we summarise as follows.

De Bruijn monad (§2) A De Bruijn monad consists of a set X, equipped with
variables and substitution maps, say v : N → X and −[−] : X × XN → X,
satisfying the abstract counterparts of the above substitution lemmas.

De Bruijn S-algebra A De Bruijn S-algebra5 is a De Bruijn monad (X,−[−], v)
equipped with operations from the signature S, satisfying the abstract coun-
terpart of the above binding condition.

The term De Bruijn S-algebra We define the set DBS by an abstract coun-
terpart of the above inductive definition. The substitution map −[−] : DBS ×

DBN
S → DBS is then the unique map satisfying left unitality and the binding

conditions. Furthermore, it satisfies both other substitution lemmas, hence
upgrades DBS into a De Bruijn S-algebra.

Category of De Bruijn S-algebras (§3) De Bruijn S-algebras are the ob-
jects of a category S -DBAlg, whose morphisms are all maps between under-
lying sets that commute with variables, substitution, and operations.

Initial-algebra Semantics Finally, DBS is initial in S -DBAlg, which provides
a relevant induction/recursion principle.

5 There is a slightly different notion of De Bruijn algebra in the literature, see the
related work section.
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We thus propose a theory for syntax with substitution, which is an alterna-
tive to the mainstream initial-algebra semantics of Fiore et al.’s [11]. We have
experienced the simplicity of our theory by formalising it not only in Coq, but
also in HOL Light, which does not support dependent types.

Our theory is similar to the mainstream theory [11], in the following aspects.

– Our and their basic definitions of syntax can be recast using relative monads:
De Bruijn monads are monads relative to the functor 1 → Set selecting N,
while Fiore et al.’s substitution monoids are monads relative to the full and
faithful embedding into Set of the category of finite ordinals and arbitrary
maps between them.

– We find (Theorem 3, §4) that both approaches, in their own ways, include
exotic models, and that when freed from them, our category of De Bruijn
S-algebras and their category of S-models become equivalent. In this sense,
both semantics differ only marginally.

– In §5, we show how De Bruijn S-algebras can be defined by resorting to (a
slight generalisation [6] of) pointed strong endofunctors, in the spirit of [11].

– Their framework accomodates simple types and equations [7]; we also provide
such extensions of our theory in §6 and §7.

Related work

Abstract frameworks for variable binding One of the mainstream such frame-
works is [11]. This has been our main reference and in §5 we establish a strong
link between this framework and our proposal. This link could probably be ex-
tended to variants such as [17,18,3].

In a more recent work, Allais et al. [1] introduce a universe of syntaxes,
which essentially corresponds to a simply-typed version of binding signatures.
Their framework is designed to facilitate the definition of so-called traversals,
i.e., functions defined by structural induction, “traversing” their argument. We
leave for future work the task of adapting our approach to such traversals.

In a similar spirit, let us mention the recent work of Gheri and Popescu [13],
which presents a theory of syntax with binding, mechanised in Isabelle/HOL.
Potential links with our approach remain unclear to us at the time of writing.

Finally, the categories of well-behaved objects obtained in §4 are technically
very close to nominal sets [12]: finite supports appear in the action-based presen-
tation of nominal sets, while pullback preservation appears in their sheaf-based
presentation. And indeed, any well-behaved presheaf yields a nominal set, and so
does any well-behaved De Bruijn monad. However, these links are not entirely
satisfactory, because they do not account for substitution. The reason is that
the only categorical theory of substitution that we know of for nominal sets, by
Power [24], is operadic rather than monadic, so we do not immediately see how
to extend the correspondence.

Proof assistant libraries Allais et al. [1] mechanise their approach in Agda. In
the same spirit, the presheaf-based approach was recently formalised [9].
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De Bruijn representation benefits from well-developed proof assistant li-
braries, in particular Autosubst [26,27]. They introduce a notion of De Bruijn
algebra, and design a sound and complete decision procedure for their equational
theory, which they furthermore implement for Coq.

Our notion of De Bruijn algebra differs from theirs, notably in that their
substitutions are finitely generated. Our approach makes the theoretical devel-
opment significantly simpler, but of course finite generation is crucial for their
main purpose, namely decidability.

General notation

We denote by A∗ =
∑

n∈N An the set of finite sequences of elements of A, for
any set A. In any category C, we tend to write [C,D] for the hom-set C(C,D)
between any two objects C and D. Finally, for any endofunctor F, F - alg denotes
the usual category of F-algebras and morphisms between them.

2 De Bruijn monads

In this section, we start by introducing De Bruijn monads. Then, we define lifting
of assignments, the binding conditions, and the models of a binding signature S
in De Bruijn monads, De Bruijn S-algebras. Finally, we construct the term De
Bruijn S-algebra.

2.1 Definition of De Bruijn monads

We start by fixing some terminology and notation, and then give the definition.

Definition 1. Given a set X, an X-assignment is a map N → X. We some-
times merely use “assignment” when X is clear from context.

Notation 21. Consider any map s : X × YN → Z.

– For all x ∈ X and g : N→ Y , we write x[g]s for s(x,g), or even x[g] when s
is clear from context.

– Furthermore, s gives rise to the map

XN × YN → ZN

( f ,g) 7→ n 7→ s( f (n),g).

We use similar notation for this map, i.e., f [g](n) := f (n)[g]s.

Definition 2. A De Bruijn monad is a set X, equipped with

– a substitution map s : X × XN → X, which takes an element x ∈ X and an
assignment f : N→ X, and returns an element x[ f ], and

– a variables map v : N→ X,

satisfying, for all x ∈ X, and f ,g : N→ X:
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– associativity: x[ f ][g] = x[ f [g]],
– left unitality: v(n)[ f ] = f (n), and
– right unitality: x[v] = x.

Example 2. The set N itself is clearly a De Bruijn monad, with variables given
by the identity and substitution N×NN → N given by evaluation. This is in fact
the initial De Bruijn monad, as should be clear from the development below.

Example 3. The set Λ := µX .N+X+X2 of λ-terms forms a De Bruijn monad. The
variables map N→ Λ is the obvious one, while the substitution map Λ×ΛN → Λ

is less obvious but standard. In Example 5, as an application of Theorem 2, we
will characterise this De Bruijn monad by a universal property.

2.2 Lifting assignments

Given a De Bruijn monad M, we define an operation called lifting on its set of
assignments N→ M. It is convenient to stress that only part of the structure of
De Bruijn monad is needed for this definition.

Definition 3. Consider any set M, equipped with maps s : M × MN → M and
v : N→ M. For any assignment σ : N→ M, we define the assignment ⇑ σ : N→
M by (⇑ σ)(0) = v(0)

(⇑ σ)(n + 1) = σ(n)[↑],
where ↑ : N→ X maps any n to v(n + 1).

Remark 1. Both ⇑ and ↑ depend on M and (part of) (s, v). Here, and in other
similar situations below, we abuse notation and omit such dependencies for read-
ability.

Of course we may iterate lifting:

Definition 4. Let ⇑0 A = A, and ⇑n+1 A =⇑ (⇑n A).

2.3 Binding arities and binding conditions

Our treatment of binding arities reflects the separation between the first-order
part of the arity, namely its length, which concerns the syntax, and the binding
information, namely the binding numbers, which concerns the compatibility with
substitution.

Definition 5.

– A first-order arity is a natural number.
– A binding arity is a sequence (n1, . . . ,np) of natural numbers, i.e., an ele-

ment of N∗.
– The first-order arity |a| associated with a binding arity a = (n1, . . . ,np) is its

length p.

Let us now axiomatise what we call an operation of a given binding arity.
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Definition 6. Let a = (n1, . . . ,np) be any binding arity, M be any set, s : M ×
MN → M, and v : N→ M be any maps. An operation of binding arity a is a
map o : Mp → M satisfying the following a-binding condition w.r.t. (s, v):

∀σ : N→ M, x1, . . . , xp ∈ M, o(x1, . . . , xp)[σ] = o(x1[⇑n1 σ], . . . , xp[⇑np σ]).
(2)

Remark 2. Let us emphasise the dependency of this definition on v and s – which
is hidden in the notations for substitution and lifting.

2.4 Binding signatures and algebras

In this section, we recall the standard notions of first-order (resp. binding) sig-
natures, and adapt the definition of algebras to our De Bruijn context. Let us
first briefly recall the former.

Definition 7. A first-order signature consists of a set O of operations,
equipped with an arity map ar : O → N.

Definition 8. For any first-order signature S := (O,ar ), an S-algebra is a set
X, together with, for each operation o ∈ O, a map oX : Xar (o) → X.

Let us now generalise this to binding signatures.

Definition 9.

– A binding signature [23] consists of a set O of operations, equipped with
an arity map ar : O → N∗. Intuitively, the arity of an operation specifies the
number of bound variables in each argument.

– The first-order signature |S | associated with a binding signature S := (O,ar )
is |S | := (O, |ar |), where |ar | : O → N maps any o ∈ O to |ar (o)|.

Example 4. The binding signature for λ-calculus has two operations lam and
app, of respective arities (1) and (0,0). The associated first-order signature has
two operations lam and app, of respective arities 1 and 2.

Let us now present the notion of De Bruijn S-algebra:

Definition 10. For any binding signature S := (O,ar ), a De Bruijn S-algebra
is a De Bruijn monad (X, s, v) equipped with an operation oX of binding arity
ar (o), for all o ∈ O.

In order to state our characterisation of the term model, we associate to any
binding signature an endofunctor on sets, as follows.

Definition 11. The endofunctor ΣS associated to a binding signature (O,ar ) is
defined by ΣS(X) =

∑
o∈O X |ar (o) |.

Remark 3. The induced endofunctor just depends on the underlying first-order
signature.
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Remark 4. As is well known, for any binding signature, the initial (N + ΣS)-
algebra has as carrier the least fixed point µA.N + ΣS(A).

The following theorem defines the term model of a binding signature.

Theorem 1. Consider any binding signature S = (O,ar ), and let DBS denote
the initial (N+ΣS)-algebra, with structure maps v : N→ DBS and a : ΣS(DBS) →

DBS. Then,

(i) There exists a unique map s : DBS ×DBS
N → DBS such that

– for all n ∈ N and f : N→ DBS, s(v(n), f ) = f (n), and
– for all o ∈ O, the map oDBS satisfies the ar (o)-binding condition w.r.t.
(s, v).

(ii) This map turns (DBS, v, s,a) into a De Bruijn S-algebra.

Proof. We have proved the result in both HOL Light [22] and Coq [20].

Remark 5. Point (i) may be viewed as an abstract form of recursive definition
for substitution in the term model. The theorem thus allows us to construct
the term model of a signature in two steps: first the underlying set, constructed
as the inductive datatype µZ .N + ΣS(Z), and then substitution, defined by the
binding conditions viewed as recursive equations.

Remark 6. We hope that our mechanisations [22,20] may be useful for future
developments based on De Bruijn representation, to automatically generate the
correct syntax and substitution from a suitable signature. This will have the
advantage of reducing what needs to be read to make sure that the development
actually does what is claimed. Normally, this part includes the whole definition
of syntax and substitution, while our framework reduces it to only the binding
signature. Our mechanisations may in fact be used for this purpose on existing
developments, to certify the syntax and substitution, leaving only the binding
signature for the reader to check.

Example 5. For the binding signature of λ-calculus (Example 4), the carrier of
the initial model is µZ .N + Z + Z2, and substitution is defined inductively by:

v(n)[σ] = σ(n)
λ(e)[σ] = λ(e[⇑ σ])

(e1 e2)[σ] = e1[σ] e2[σ].

3 Initial-algebra semantics of binding signatures in De
Bruijn monads

In this section, for any binding signature S, we organise De Bruijn S-algebras
into a category, S -DBAlg, and prove that the term De Bruijn S-algebra is initial
therein.
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3.1 A category of De Bruijn monads

Let us start by organising general De Bruijn monads into a category:

Definition 12. A morphism (X, s, v) → (Y, t,w) between De Bruijn monads is a
set-map f : X → Y commuting with substitution and variables, in the sense that
for all x ∈ X and σ : N→ X we have f (x[σ]) = f (x)[ f ◦ σ] and f ◦ v = w.

Remark 7. More explicitly, the first axiom says: f (s(x, σ)) = t( f (x), f ◦ σ).

Notation 31. De Bruijn monads and morphisms between them form a category,
which we denote by DBMnd.

Let us conclude this subsection by briefly mentioning a categorical point of
view on the category of De Bruijn monads for the categorically-minded reader,
in terms of relative monads [2].

Proposition 1. The category DBMnd is canonically isomorphic to the category
of monads relative to the functor 1→ Set picking N.

Remark 8. Canonicity here means that the isomorphism lies over the canonical
isomorphism [1,Set] � Set.

According to the theory of [2], this yields:

Corollary 1. The tensor product X ⊗Y := X ×YN induces a skew monoidal [28]
structure on Set, and DBMnd is precisely the category of monoids therein.

Proof. To see this, let us observe that, by viewing any set X, in particular N,
as a functor 1 → Set, one may compute the left Kan extension of X along N,
which is a functor LanN(X) : Set → Set. By the standard formula for left Kan
extensions [21], we have LanN(X)(Y ) � X × YN = X ⊗ Y . The result thus follows
by [2, Theorems 4 and 5].

3.2 Categories of De Bruijn algebras

In this section, for any binding signature S, we organise De Bruijn S-algebras
into a category S -DBAlg.

Let us start by recalling the category of S-algebras for a first-order S:

Definition 13. For any first-order signature S, a morphism X → Y of S-
algebras is a map between underlying sets commuting with operations, in the
sense that for each o ∈ O, letting p := ar (o), we have f (oX (x1, . . . , xp)) =
oY ( f (x1), . . . , f (xp)).

We denote by S - alg the category of S-algebras and morphisms between them.

We now exploit this to define De Bruijn S-algebras:

Definition 14. For any binding signature S, a morphism of De Bruijn S-algebras
is a map f : X → Y between underlying sets, which is a morphism both of De
Bruijn monads and of |S |-algebras. We denote by S -DBAlg the category of De
Bruijn S-algebras and morphisms between them.
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Theorem 2. Consider any binding signature S = (O,ar ), and let DBS denote
the initial (N+ΣS)-algebra. Then, the De Bruijn S-algebra structure of Theorem 1
on DBS makes it initial in S -DBAlg.

Proof. We have proved the result in both HOL Light [22] and Coq [20].

4 Relation to presheaf-based models

The classical initial-algebra semantics introduced in [11] associates in particular
to each binding signature S a category, say ΦS -Mon of models, while we have
proposed in §3 an alternative category of models S -DBAlg. In this section, we
are interested in comparing both categories of models.

In fact, we find that both include exotic models, in the sense that we do
not see any loss in ruling them out. And when we do so, we obtain equivalent
categories.

4.1 Trimming down presheaf-based models

First of all, in this subsection, let us recall the mainstream approach we want to
relate to, and exclude some exotic objects from it.

Presheaf-based models We start by recalling the presheaf-based approach.
The ambient category is the category of functors [F,Set], where F denotes the
category of finite ordinals, and all maps between them. As is well-known, this
category is equivalent to the category [Set,Set] f of finitary endofunctors on
sets, and inherits from it a substitution monoidal structure. By construction,
monoids for this monoidal structure are equivalent to finitary monads on sets.

The idea is then to interpret binding signatures S as endofunctors ΦS on
[F,Set], and to define models as monoids equipped with ΦS-algebra structure,
satisfying a suitable compatibility condition.

The definition of ΦS relies on an operation called derivation:

Definition 15 (Endofunctor associated to a binding signature).

– Let the derivative X ′ of any functor X : F → Set be defined by X ′(n) =
X(n + 1).

– Furthermore, let X (0) = X, and X (n+1) = (X (n))′.
– For any binding arity a = (n1, . . . ,np), let Φa(X) = X (n1) × . . . × X (np ).
– For any binding signature S = (O,ar ), let ΦS =

∑
o∈O Φar (o).

Proposition 2. Through the equivalence with finitary functors, derivation be-
comes F ′(A) = F(A + 1), for any finitary F : Set→ Set and A ∈ Set.

Example 6. For the binding signature Sλ of Example 4 for λ-calculus we get
ΦSλ (X)(n) = X(n)2 + X(n + 1).
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Next, we want to express the relevant compatibility condition between alge-
bra and monoid structure. For this, let us briefly recall the notion of pointed
strength, see [11,10] for details.

Definition 16. A pointed strength on an endofunctor F : C → C on a mo-
noidal category (C,⊗, I, α, λ, ρ) is a family of morphisms stC ,(D,v) : F(C) ⊗ D →
F(C ⊗ D), natural in C ∈ C and (D, v : I → D) ∈ I/C, the coslice category below
I, satisfying two coherence conditions.

The next step is to observe that binding signatures generate pointed strong
endofunctors.

Definition 17. The derivation endofunctor X 7→ X ′ on [F,Set] has a pointed
strength, defined through the equivalence with finitary functors by

G(F(X) + 1)
G(F(X)+v1)
−−−−−−−−−→ G(F(X) + F(1))

G[F(in1),F(in2)]
−−−−−−−−−−−−−→ G(F(X + 1)).

Product, coproduct, and composition of endofunctors lift to pointed strong end-
ofunctors, which yields:

Corollary 2 ([11,10]). For all binding signatures S, ΦS is pointed strong.

At last, we arrive at the definition of models.

Definition 18. For any pointed strong endofunctor F on C, an F-monoid is
an object X equipped with F-algebra and monoid structure, say a : F(X) → X,
s : X ⊗ X → X, and v : I → X, such that the following pentagon commutes.

F(X) ⊗ X F(X ⊗ X) F(X)

X ⊗ X X

stX ,(X ,v)

a⊗X

F(s)

s

a

A morphism of F-monoids is a morphism in C which is a morphism both of
F-algebras and of monoids. We let F -Mon denote the category of F-monoids
and morphisms between them.

Example 7. For the binding signature Sλ of Example 4, a ΦSλ -monoid is an object
X, equipped with maps X ′ → X and X2 → X, and compatible monoid struc-
ture. Compatibility describes how substitution should be pushed down through
abstractions and applications.

Well-behaved presheaves The exoticness we want to rule out only concerns
the underlying functor of a model, so we just have to define well-behaved functors
in [F,Set].

Well-behavedness for a functor T : F → Set is about getting closed terms
right. More precisely, for some finite sets m and n, an element of T(m + n) which
both exists in T(m) and T(n) should also exist in T(∅), and uniquely so. This says
exactly that T should preserve the pullback
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∅ n

m m + n.

Remark 9. The reader might wonder about other, i.e., non-empty pullbacks. But
these are automatically preserved, by [29, Proposition 2.1].

Definition 19.

– A functor F→ Set is well-behaved iff it preserves binary intersections, or
equivalently empty binary intersections. Let [F,Set]wb denote the full subcat-
egory spanned by well-behaved functors.

– For any binding signature S, an object of ΦS -Mon is well-behaved iff the
underlying functor is. Let ΦS -Monwb denote the full subcategory spanned by
well-behaved objects.

Example 8. As an example of a non well-behaved finitary monad, consider the
monad L of λ-calculus but edited so that L(∅) = ∅.

The important result for comparing the presheaf-based approach with ours
is the following.

Proposition 3. The subcategory ΦS -Monwb includes the initial object.

Proof. Roughly, closed terms are isomorphic to terms in two free variables that
use neither the first, nor the second.

Remark 10. In most natural situations, all models are in fact well-behaved [16,
Proposition 5.17].

4.2 Trimming down De Bruijn monads

Let us now turn to well-behaved De Bruijn algebras. Here well-behavedness
is about finitariness. However, it may not be immediately clear how to define
finitariness of a De Bruijn monad.

Definition 20. A De Bruijn monad (X, s, v) is finitary iff each of its elements
x ∈ X has a (finite) support Nx ∈ N, in the sense that for all f : N → N fixing
the first Nx numbers, the corresponding renaming v ◦ f fixes x.

Example 9. By Proposition 4 below, the initial S-algebra is finitary, for any
binding signature S. For a counterexample, consider the greatest fixed point
νA.N+ΣS(A), for any S with at least one operation with more than one argument.
E.g., if S has an operation of binding arity (0,0), like application in λ-calculus,
then the term v(0) (v(1) (v(2) . . .)) does not have finite support.

Definition 21. For any binding signature S, let S -DBAlgwb denote the full
subcategory spanning De Bruijn S-algebras whose underlying De Bruijn monad
is finitary.

Proposition 4. The subcategory S -DBAlgwb includes the initial object.
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4.3 Bridging the gap

We may at last state the relationship between initial-algebra semantics of binding
signatures in presheaves and in De Bruijn monads:

Theorem 3. Consider any binding signature S. The subcategories ΦS -Monwb

and S -DBAlgwb are equivalent.

Proof. See [16, Appendix A].

Remark 11. The moral of this is that, if one removes exotic objects from both
ΦS -Mon and S -DBAlg, then one obtains equivalent categories, which both re-
tain the initial object. Thus, the two approaches to initial-algebra semantics of
binding signatures differ only marginally.

Restricting attention to well-behaved objects, we may thus benefit from the
strengths of both approaches. Typically, in De Bruijn monads, free variables
need to be computed explicitly, while presheaves come with intrinsic scoping,
as terms are indexed by sets of potential free variables. Conversely, in some
settings, observational equivalence may relate programs with different sets of
free variables [25]. In such cases, it is useful to have all terms collected in one
single set. This needs to be computed (and involves non-trivial quotienting) in
presheaves, while it is direct in De Bruijn monads.

5 Strength-based interpretation of the binding conditions

In the previous section, we have compared the category S -DBAlg of models
of a binding signature in De Bruijn monads with the standard category of ΦS-
monoids [11]. In this section, we establish a different kind of link, by showing that,
for any binding signature S, both categories S -DBAlg and ΦS -Mon are instances
of a common categorical construction. We have seen that the standard category
ΦS -Mon is constructed from the pointed strong endofunctor ΦS, so we would
like a similar construction of S -DBAlg. However, pointed strong endofunctors
live on monoidal categories [11,10], while we have seen in Corollary §1 that N
and the tensor product only equip Set with skew monoidal structure. In order
to bridge this gap, we resort to a generalisation of pointed strengths to skew
monoidal categories proposed by Borthelle et al. [6].

We give a condensed account: the interested reader is referred to [16, §6].
The starting point is that the endofunctor ΣS associated to any given binding

signature S may be equipped with a family of maps

dbsS : ΣS(X) ⊗ Y → ΣS(X ⊗ Y ).

However, in order for such a map to be well-defined, we need to assume that
Y features variables and renaming, i.e., that it is a pointed N-module, as we
now introduce:

Definition 22.
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– An N-module is a set X equipped with an action X × NN = X ⊗ N → X. of
the monoid NN.

– For such an action r : X × NN = X ⊗ N→ X, we generally denote r(x, f ) by
x[ f ]r , or merely x[ f ] when clear from context.

– A morphism of N-modules is a map between underlying sets, commuting with
action in the obvious sense.

– A pointed N-module is an N-module (X,r), equipped with a map v : N→ X
which is a morphism of N-modules.

– A morphism of pointed N-modules is a map commuting with action and point,
in the obvious sense.

– Let N -ModN denote the category of pointed N-modules.

Example 10. Any De Bruijn monad (X, s, v) (in particular N itself) has a canon-
ical structure of pointed N-module given by v and r(x, f ) = x[v ◦ f ].

We may now define the map dbsS. Lifting of assignments (Definition 3)
straightforwardly generalises to pointed N-modules. Recalling the definition

ΣS(X) =
∑
o∈O

Xpo ,

where ar (o) = (no1, . . . ,n
o
po
) for all o ∈ O, we thus simply have:

Definition 23. For any binding signature S = (O,ar ), the De Bruijn strength
dbsS of the induced endofunctor ΣS is defined by

ΣS(X) ⊗ Y → ΣS(X ⊗ Y )
((o, (x1, . . . , xpo )), σ) 7→ (o, ((x1,⇑

n1 σ), . . . , (xpo ,⇑
npo σ))),

for all sets X and pointed N-modules Y , with again ar (o) = (no1, . . . ,n
o
po
).

The fact that any De Bruijn monad is in particular a pointed N-module by
Example 10 enables the definition of models in the strength-based approach:

Definition 24. For any binding signature S, a ΣS-monoid is an object X,
equipped with monoid and ΣS-algebra structure, say s : X ⊗ X → X, v : N → X,
and a : ΣS(X) → X, making the following pentagon commute.

ΣS(X) ⊗ X ΣS(X ⊗ X) ΣS(X)

X ⊗ X X

dbsS ,X ,X

a⊗X

ΣS (s)

s

a (3)

A morphism of ΣS-monoids is a map which is both a monoid and a ΣS-algebra
morphism.

Let ΣS -Mon denote the category of ΣS-monoids and morphisms between
them.

Remark 12. In [16], this definition is framed in a more general context, notably
emphasising the fact that dbsS is in fact a structural strength on the endo-
functor ΣS.
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We may at last relate the initial-algebra semantics of §3 with the strength-based
approach:

Proposition 5. For any binding signature S = (O,ar ) and De Bruijn monad
(M, s, v) equipped with a map oM : Mp → M for all o ∈ O with ar (o) = (n1, . . . ,np),
the following are equivalent:

(i) each map oM : Mp → M satisfies the a-binding condition w.r.t. (s, v);
(ii) the corresponding map ΣSM → M renders the pentagon (3) commutative.

Corollary 3. For any binding signature S, we have an isomorphism ΣS -Mon �
S -DBAlg of categories over Set.

This readily entails the following (bundled) reformulation of Theorems 1 and 2.

Corollary 4. Consider any binding signature S = (O,ar ), and let DBS denote
the initial (N+ΣS)-algebra, with structure maps v : N→ DBS and a : ΣS(DBS) →

DBS. Then:

(i) There exists a unique substitution map s : DBS ⊗ DBS → DBS such that

– the map N⊗DBS
v⊗DBS
−−−−−−→ DBS ⊗DBS

s
−→ DBS coincides with the left unit

of the skew monoidal structure (n, f ) 7→ f (n), and

– the pentagon (3) (with Σ := ΣS) commutes.

(ii) This substitution map turns (DBS, v, s,a) into a ΣS-monoid.

(iii) This ΣS-monoid is initial in ΣS -Mon.

Proof. Let Mon(Set) denote the category of monoids in Set for the skew monoi-
dal structure. We have an equality Mon(Set) = DBMnd of categories, and the
algebra structure ΣS(DBS) → DBS is merely the cotupling of the maps oDBS of
Theorem 1. This correspondence translates one statement into the other.

Remark 13. This result hints at a potential push-button proof of Theorems 1
and 2 (and Corollary 4). Indeed, it is almost an instance of [6, Theorem 2.15]:
the latter is stated for general skew monoidal categories instead of merely Set,
but does not directly apply in the present setting, because it assumes that the
tensor product is finitary in the second argument.

6 Simply-typed extension

In this section, we extend the framework of §2–3, which is untyped, to the simply-
typed case. The development essentially follows the same pattern, replacing sets
with families.

We fix in the whole section a set T of types, and call T-sets the objects of
SetT. A morphism X → Y is a family (X(τ) → Y (τ))τ∈T of maps.
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6.1 De Bruijn T-monads

In this subsection, we define the typed analogue of De Bruijn monads.

The role of N will be played in the typed context by the following T-set.

Definition 25. Let N ∈ SetT be defined by N(τ) = N.

Remark 14. This provides a countable set of variables at each type, which may
not quite be what the reader would have called “typed De Bruijn representation”.
An inconvenience of this representation is that an “erasure” map from typed to
untyped terms appears to need to rely on a bijection T × N � N for “renaming”
variables. In particular, not all indices can be preserved by such a map.

Definition 26. Given a T-set X, an X-assignment is a morphism N → X.
We sometimes merely use “assignment” when X is clear from context.

The analogue of the tensor product X ⊗Y = X×YN will be played by [N,Y ] ·X,
i.e., the iterated self-coproduct of X, with one copy per Y -assignment.

Notation 61. For coherence with the untyped case, we tend to write an element
of ([N,Y ] · X)(τ) as (x, f ), with x ∈ X(τ) and f : N→ Y .

Furthermore, Notation 21 straightforwardly adapts to the typed case.

The definition of De Bruijn monads generalises almost mutatis mutandis:

Definition 27. A De Bruijn T-monad is a T-set X, equipped with

– a substitution morphism s : [N,X] · X → X, which takes an element x ∈ X
and an assignment f : N→ X, and returns an element x[ f ], and

– a variables morphism v : N→ X,

such that for all x ∈ X, and f ,g : N→ X, we have

x[ f ][g] = x[ f [g]] v(n)[ f ] = f (n) x[v] = x.

Example 11. The set ΛST of simply-typed λ-terms with free variables of type τ
in N×{τ}, considered equivalent modulo α-renaming, forms a De Bruijn monad.
Variables N → ΛST are given by mapping, at any τ, any n ∈ N to the variable
(n, τ). Substitution [N,ΛST] · ΛST → ΛST is standard, capture-avoiding substi-
tution. One main purpose of this section is to characterise ΛST by a universal
property, and reconstruct it categorically.

Morphisms generalise straightforwardly, and we get:

Proposition 6. De Bruijn T-monads and morphisms between them form a cat-
egory DBMnd(T).
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6.2 Initial-algebra semantics

We now adapt the initial-algebra semantics of §3 to the typed case. Let us start
by generalising lifting to the typed case. This relies on a typed form of lifting,
which acts on all variables of a given type, leaving all other variables untouched.

Definition 28. Let (X, s, v) denote any De Bruijn T-monad. We first define a
typed analogue ↑τ of the ↑ of Definition 3, as below left, and then the lifting of
any assignment σ : N→ X as below right.

(↑τ)τ(n) = vτ(n + 1)
(↑τ)τ′(n) = vτ′(n) (if τ , τ′)

(⇑τ σ)τ(0) = vτ(0)
(⇑τ σ)τ(n + 1) = στ(n)[↑τ]
(⇑τ σ)τ′(n) = στ′(n)[↑τ] (if τ , τ′).

Finally, for any sequence γ = (τ1, . . . , τn) of types, we define ⇑γ σ inductively, by
⇑ε σ = σ and ⇑γ,τ σ =⇑τ (⇑γ σ), where ε denotes the empty sequence.

We then generalise first-order and binding arities. The main point is:

Definition 29. A binding arity is an element of (T∗ × T)∗ × T, i.e., a tuple
(((γ1, τ1), . . . , (γp, τp)), τ), where each γi ∈ T∗ is a list of types, and each τi, as well

as τ, are types, thought of as an inference rule
γ1 ` τ1 . . . γp ` τp

` τ
·

Example 12. The binding signature for simply-typed λ-calculus has two opera-
tions lamτ,τ′ and appτ,τ′ for all types τ and τ′, of respective arities

τ ` τ′

` τ → τ′
and

` τ → τ′ ` τ

` τ′
·

This allows us to generalise binding conditions, as follows.

Definition 30. Let a = (((γ1, τ1), . . . , (γp, τp)), τ) be any binding arity, and M
be any set equipped with morphisms s : [N,M] · M → M and v : N → M. An
operation of binding arity a is a map o : M(τ1)×. . .×M(τp) → M(τ) satisfying
the following a-binding condition w.r.t. (s, v):

∀σ : N→ M, x1, . . . , xp ∈ M(τ1) × . . . × M(τp),
o(x1, . . . , xp)[σ] = o(x1[⇑γ1 σ], . . . , xp[⇑γp σ]).

(4)

We may now generalise signatures and their models.

Definition 31. A T-binding signature consists of a set O of operations,
equipped with an arity map O → (T∗ × T)∗ × T.

Definition 32. Consider any T-binding signature S := (O,ar ). A De Bruijn S-
algebra consists of a De Bruijn T-monad (X, s, v), together with algebra structure
on X for the underlying first-order signature |S |, in the obvious sense, such that
for all o ∈ O with arity ar (o) = (((γ1, τ1), . . . , (γp, τp)), τ), the structural map
oX : X(τ1) × . . . × X(τp) → X(τ) satisfies the ar (o)-binding condition w.r.t. (s, v).

We denote by S -DBAlg the category of De Bruijn S-algebras and (the obvious
notion of) morphisms between them.
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Finally, following the untyped case, we may associate to each signature an endo-
functor ΣS, and we have the following typed extension of the initiality theorem.

Theorem 4. For any T-binding signature S, let DBS denote the initial (N+ΣS)-
algebra, with structure maps v : N → DBS and a : ΣS(DBS) → DBS, inducing
maps oDBS : DBS(τ1) × . . . × DBS(τp) → DBS(τ) for all o ∈ O with ar (o) =
(((γ1, τ1), . . . , (γp, τp)), τ). Then:

(i) There exists a unique map s : [N,DBS] · DBS → DBS such that
– for all τ ∈ T, n ∈ N, and f : N→ DBS, sτ(vτ(n), f ) = fτ(n), and
– for all o ∈ O, the map oDBS satisfies the ar (o)-binding condition w.r.t.
(s, v).

(ii) This map turns (DBS, v, s,a) into a De Bruijn S-algebra.
(iii) This De Bruijn S-algebra is initial in S -DBAlg.

Example 13. While we saw in Example 12 that the De Bruijn monad of simply-
typed λ-calculus terms admits a simple signature, there is another relevant,
related monad, whose elements at any type are values of that type. (Indeed,
values are closed under value substitution.) It is relatively straightforward to
design a binding signature for this De Bruijn monad, following [15].

7 Equations

In this section, we introduce a notion of equational theory for specifying (typed)
De Bruijn monads, following ideas from [8].

Definition 33. A De Bruijn equational theory consists of

– two binding signatures S and T , and
– two functors L,R : S -DBAlg→ T -DBAlg over DBMnd(T), i.e., making the

following diagram commute serially, where US and UT denote the forgetful
functors.

S -DBAlg T -DBAlg

DBMnd(T)

L,R

US UT

Example 14. Recalling the binding signature SΛ for λ-calculus from Example 4,
let us define a De Bruijn equational theory for β-equivalence. We take Tβ = (1,0),
and for any De Bruijn SΛ-algebra X,

– L(X) has as structure map (e1, e2) 7→ app(lam(e1), e2) while
– R(X) has as structure map (e1, e2) 7→ e1[e2 · id].

(Here e2 · id denotes the assignment 0 7→ e2, n + 1 7→ v(n).)

Definition 34. Given an equational theory E = (S,T, L,R), a De Bruijn E-
algebra is a De Bruijn S-algebra X such that L(X) = R(X).

Let E -DBAlg denote the category of E-algebras, with morphisms of De Bruijn
S-algebras between them.
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Remark 15. The category E -DBAlg is an equaliser of L and R in CAT.

Let us now turn to characterising the initial De Bruijn E-algebra, for any De
Bruijn equational theory E. For this, we introduce the following relation.

Definition 35. For any De Bruijn equational theory E = (S,T, L,R), with S =
(O,ar ) and T = (O′,ar ′), let DBS denote the initial (N + ΣS)-algebra. We define
∼E to be the smallest equivalence relation on DBS satisfying the following rules,

o′L(DBS )
(e1, . . . , ep) ∼E o′R(DBS )

(e1, . . . , ep)

e1 ∼E e′1 . . . eq ∼E e′q
oDBS (e1, . . . , eq) ∼E oDBS (e

′
1, . . . , e

′
q)

for all e, e1, . . . in DBS, o′ ∈ O′ with |ar ′(o′)| = p, and o ∈ O with |ar (o)| = q.

Example 15. For the equational theory of Example 14, the first rule instantiates
precisely to the β-rule, while the second enforces congruence.

Theorem 5. For any equational theory E = (S,T, L,R), E -DBAlg admits an
initial object, whose carrier set is the quotient DBS/∼E .

Proof. This has been mechanised in Coq [20] and HOL [22].

Example 16. The initial model for the equational theory of Example 14 is the
quotient of λ-terms in De Bruijn representation by β-equivalence.

Remark 16. In [16, §9], we mention an equivalent way of defining De Bruijn
equational theories in terms of modules.

8 Conclusion

We have proposed a simple, set-based theory of syntax with variable binding,
which associates a notion of model (or algebra) to each binding signature, and
constructs a term model following De Bruijn representation. The notion of model
features a substitution operation. We have experienced the simplicity of this
theory by implementing it in both Coq and HOL Light.

We have furthermore equipped the construction with an initial-algebra se-
mantics, organising the models of any binding signature into a category, and
proving that the term model is initial therein.

We have then studied this initial-algebra semantics in a bit more depth, in
two directions. We have first established a formal link with the mainstream,
presheaf-based approach [11], proving that well-behaved models (in a suitable
sense on each side of the correspondence) agree up to an equivalence of categories.
We have then recast the whole initial-algebra semantics into the mainstream,
abstract framework of [11,10]. Finally, we have shown that our theory extends
easily to a simply-typed setting, and smoothly incorporates equations.
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