
HAL Id: hal-03546931
https://hal.science/hal-03546931

Submitted on 6 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cache allocation in multi-tenant edge computing via
online reinforcement learning

Ayoub Ben-Ameur, Andrea Araldo, Tijani Chahed

To cite this version:
Ayoub Ben-Ameur, Andrea Araldo, Tijani Chahed. Cache allocation in multi-tenant edge computing
via online reinforcement learning. IEEE International Conference on Communications(ICC 2022),
May 2022, Seoul, South Korea. pp.1-6, �10.1109/ICC45855.2022.9838489�. �hal-03546931�

https://hal.science/hal-03546931
https://hal.archives-ouvertes.fr

Cache Allocation in Multi-Tenant Edge Computing
via online Reinforcement Learning

Ayoub Ben-Ameur, Andrea Araldo, Tijani Chahed
Institut Polytechnique de Paris; Télécom SudParis
{first_name}.{last_name}@telecom-sudparis.com

Abstract—We consider in this work Edge Computing (EC)
in a multi-tenant environment: the resource owner, i.e., the
Network Operator (NO), virtualizes the resources and lets third
party Service Providers (SPs - tenants) run their services, which
can be diverse and with heterogeneous requirements. Due to
confidentiality guarantees, the NO cannot observe the nature
of the traffic of SPs, which is encrypted. This makes resource
allocation decisions challenging, since they must be taken based
solely on observed monitoring information.

We focus on one specific resource, i.e., cache space, deployed
in some edge node, e.g., a base station. We study the decision of
the NO about how to partition cache among several SPs in order
to minimize the upstream traffic. Our goal is to optimize cache
allocation using purely data-driven, model-free Reinforcement
Learning (RL). Differently from most applications of RL, in
which the decision policy is learned offline on a simulator, we as-
sume no previous knowledge is available to build such a simulator.
We thus apply RL in an online fashion, i.e., the policy is learned
by directly perturbing the actual system and monitoring how
its performance changes. Since perturbations generate spurious
traffic, we also limit them. We show in simulation that our method
rapidly converges toward the theoretical optimum, we study its
fairness, its sensitivity to several scenario characteristics and
compare it with a method from the state-of-the-art. Our code
to reproduce the results is available as open source.1

I. INTRODUCTION

Data generation rate is expected to exceed the capacity of
today’s Internet in the near future [1]. It thus becomes more
and more important to serve user requests, whenever possible,
directly at the edge of the network, thus reducing the upstream
traffic, i.e., traffic to/from remote server locations, as well as
latency. Hence, Edge Computing (EC) consists in deploying
computational capabilities, e.g. RAM, CPU, storage, GPUs,
into nodes at the network’s edge. Such nodes could be co-
located with (micro) base stations, access points, etc.

We position our work in the framework of multi-tenant
EC [2], [3]: the NO owns computational resources at the
edge and virtualizes, partitions and allocates them to third
party Service Providers (SPs), e.g. YouTube, Netflix, etc. Each
SP can then use its assigned share as if it were a dedicated
hardware.

We focus in this paper on one resource in particular, namely
storage, which is remarkably relevant: indeed, more than 80%
of the Internet traffic might be represented by content delivery,
and in particular video [4]. We assume that the NO owns
storage at the edge nodes and uses it as cache. However, the

1https://github.com/Ressource-Allocation/Cache-Allocation-Project

NO cannot operate caching directly, as classically assumed,
since all the traffic is encrypted by the SPs. Therefore, it
is neither possible for the NO to know which objects are
requested, for instance which ones are the most popular, nor
whether they are even cacheable, for instance online video
broadcast. We thus assume that the NO allocates storage
among SPs and lets each SP decide what to cache within the
allocated space, as depicted in Fig. 1.2 Our aim is to solve
the problem for the NO to optimally decide how many cache
slots should be allocated to each SP, in order to minimize the
upstream traffic, i.e., the traffic from the Internet to the edge
node. Due to the encrypted nature of traffic, the NO can only
base its decision on data-driven strategies consisting in trial
and error: the NO continuously perturbs the cache allocation
and observes the induced variation on the upstream traffic.

We propose a data-driven approach based on RL, used in
an online fashion: while usually RL is trained offline and then
applied to a real system, we instead train RL directly on the
system while it is up and running. Therefore, we are not only
interested in finding a good cache allocation, but also in how
to find it. Indeed, while the only way for the NO to learn how
to optimize the allocation is to continuously perturb it, we
also need to keep the cost of such perturbations reasonable.
We conduct simulation-based experiments and show that our
RL optimization approaches the theoretical optimal allocation
and outperforms a state-of-the art method.

The remainder of this paper is organized as follows. In
section II, we review some works related to our present topic.
In section III, we present our system and model. In section IV,
we formulate our problem using RL. In section V, we show
our simulation results. Section VI contains our conclusion and
some hints on future works.

II. RELATED WORK

Authors of [5] show that a utility driven cache partitioning
outperforms sharing it. However, they need information about
the system conditions in order to solve it. We assume instead
that no information is available and that optimization is done
by observing the changes in upstream traffic induced by per-
turbing the allocation. In [6], authors consider the difference
between the resources demanded by each SP and the resources
actually allocated with the aim to be fair. In [7], the authors

2As in classic content caching, we assume the SPs do not pay the NO for
the cache: cache is used by SPs for free, and the NO compensates the initial
storage deployment cost with upstream traffic reduction.

propose a resource pricing framework for one NO and several
SPs, for several well-established resource allocations knowing
the demand of users. We instead do not know anything about
the requests nature. Also, our focus is on resource allocation
and not pricing; SPs do not pay for the resources. In [8], the
mobile edge network is assumed to have multiple cache servers
to assist SPs, each with its own set of users (while we do not
limit a user to a single SP) and acts as a rational selfish player,
in a bargaining game, aiming to maximize its utility. [9] also
considers sharing cache between SPs, by applying coalitional
game theory. Different from them, our allocation decision is
centralized by the NO and we do not require any payment.2

RL has been used for resource allocation in the context
of EC in, for instance, [10], [11], [12] and [13]. Contrary to
our approach, authors pre-train the RL algorithm offline on a
simulated system before using it on the running system. We
instead do not have information to build a simulator, we train
our algorithm online. This imposes on us a more parsimonious
learning strategy. In [14], authors present a RL algorithm for
resource auto-scaling in clouds: resources are assumed to be
unlimited, however the goal is to allocate to each SP an amount
of resources that does not exceed its needs. In our case instead,
resources are scarce, allocating resources to one SP means
allocating less for another. To the best of our knowledge,
the only method we can compare against is Simultaneous
Perturbation Stochastic Approximation (SPSA) [15], since the
latter is the only work to propose a data-driven approach
to partition cache among several SPs. They do so based on
stochastic optimization. However, they need to continuously
perturb the allocation, generating spurious upstream traffic that
may be non-negligible. We instead include traffic perturbation
into the optimization objective, thus managing to keep it low,
which allows us to outperform [15], as shown in section V.

III. SYSTEM MODEL

We consider a setting with one NO, owning the resources,
cache in our case, and willing to share them between P SPs.

A. Request Pattern

Requests of users arrive with rate λ expressed in req/s.
Each request is directed to one of the P SPs. Let fp denote
the probability that a given request is for SP p. Therefore,
λ · fp is the request arrival rate for SP p. The objects of the
SPs are not all eligible to be stored in the cache (e.g., live
streams and boadcasts). To represent this, each SP p has a
certain cacheability ζp, which is the probability that the user
request is for a cacheable content. We consider that SP p has
a catalog of Np cacheable objects. We denote each object as
(c, p), where c = 1, 2, . . . , Np is the identifier of the object
within SP p. Each object of SP p has its own popularity ρc,p
which is defined as the probability that, taking any request for
a cacheable object of SP p, that object is c. Therefore, each
cacheable object c of SP p receives requests at rate λc,p =
λ ·fp ·ζp ·ρc,p. As usually done in the literature, we assume all
objects have the same size. They may represent, for instance,

Fig. 1: Cache allocation and upstream traffic (Origin servers
→ Edge) with multiple Service Providers (SPs).

chunks of videos. We assume that the sequence of requests is
a stationary stochastic process.

It is reasonable to assume that object popularity and request
rate change smoothly over time, and we verify that our
algorithm converges in a small lapse of time (1h), during which
we assume popularity to be stationary.

B. Cache Partitioning
The NO owns storage resources at the edge of the network,

e.g., in a server co-located with a (micro) base station, and
aims to minimize the inter-domain upstream traffic arriving
from other Autonomous Systems (ASes), which it generally
pays for. To do so, it allocates a total storage of K slots
among the P SPs. For the sake of clarity, we focus on a case
where each SP is a video streaming service, which caches its
most popular objects (videos) in its allocated slots, but our
results could be generalized to other situations. We assume
one slot can store one object. The allocation is a vector θ
= (θ1,...,θP) where each θp is the number of slots given to
SP p and

∑P
p=1 θp ≤ K. We define the set of all possible

allocations as:

T ,

{
θ|

P∑
p=1

θp ≤ K, θp ∈ Z+

}
. (1)

Whenever θp slots are given to SP p, it caches there its θp
most popular objects. The time is slotted and at any time slot
the NO may perturb the allocation, giving ∆ slots to one SP
and subtracting ∆ slots from another.

C. Cost Model
A user request for an object contained into the edge cache

is served directly by the edge, otherwise the object must arrive
from another AS, generating inter-domain upstream traffic. We
call the amount of requested objects that must be retrieved
upstream the nominal cost. The nominal cost is a stochastic
quantity that depends not only on the decided allocation θ, but
also on exogenous conditions, which the NO cannot control,
e.g., the amount of requests of the users of each SP. We denote
exogenous conditions with a random variable ω. We denote the
nominal cost as Cnom(θ, ω).

We assume that SPs are isolated and thus this cost can
be decomposed into a sum of costs Cnom,p(θ, ω), each one
quantifying the upstream traffic of one SP:

Cnom(θ, ω) =

P∑
p=1

Cnom,p(θ, ω). (2)

Thus, we assume that the cost generated by SP p only
depends on θp, i.e., Cnom,p(θ, ω) = Cnom,p(θp, ω).

The NO can monitor the amount of traffic of a certain SP
from the edge node to the users. A part (i) of this traffic will
originate from the SP cache located at the edge node and the
other part (ii) from the remote servers of the SP somewhere
in the Internet (Fig. 1). The traffic saved corresponds to the
difference between (ii) and (i).

D. Data-Driven Optimization

The NO wants to solve the following optimal allocation
problem: θ∗ ∈ arg minθ∈T Cnom(θ, ω). If the expression of
the cost Cnom,p(·, ·) for any SP p and the exogenous conditions
ω were known in advance by the NO, one could have aimed
at solving such an optimization problem in an exact way
by means, for instance, of dynamic programming. However,
such information is not known, which renders the optimization
problem above challenging to solve. Observe that for any θ,
the total cost Cnom(θ, ω) is a random variable depending on
the exogenous random parameter ω. Therefore, the NO can at
most try to minimize its expected value:

θ∗ ∈ arg min
θ∈T

ECnom(θ) (3)

However, not even this last optimization problem is directly
solvable, since the NO does not know the form of the function
θ → ECnom(θ). This is why we resort to data-driven approach:
at each time-slot, we perturb the allocation θ by vector a,
which we call perturbation vector and which denotes the
amount of cache slots we add or remove to each SP (i.e.,
θ := θ + a). Then, we measure the effect of the perturbation,
i.e., we measure the new Cnom(θ, ω). We emphasize that
ECnom(θ) that we would aim to minimize in (3) is never
observable directly, only Cnom(θ, ω) is. The latter can be
considered as a noisy observation of ECnom(θ), where the
noise is:

n = ECnom(θ)− Cnom(θ, ω) (4)

Every perturbation a produces spurious upstream traffic.
Indeed, if SP p had θp slots in the previous time-slot and it
has θp+∆ cache slots after a perturbation, it has to download
the ∆ new objects to fill the newly granted cache slots. This
generates an upstream traffic corresponding to ∆ objects. We
call this traffic perturbation cost and denote it by Cpert(a).
Note that this quantity is deterministic. For any time slot k,
let us denote with θ(k),a(k), ω(k) the current allocation vector,
the perturbation applied by the NO and the realization of
the exogenous conditions, respectively. The cumulative cost
over Z time-slots is thus the sum of instantaneous costs C(k),
defined as follows:

Ccum(Z) =

Z∑
k=1

C(k) (5)

where instantaneous cost C(k) , Cnom(θ(k), ω(k)) + Cpert(a
(k))

(6)

Note that, despite the fact that the spurious traffic generated
by perturbations adds to the cost, perturbations are the only
way for the NO to discover how to optimize the “black-box”
function θ → EC(θ). Indeed, by observing the effects of
perturbations on the nominal cost, the NO can accumulate
knowledge that it can use to drive the system close to the
optimal allocation θ∗. Therefore, in our data-driven approach,
rather than directly solving (3), which would be infeasible
for the reasons stated above, our aim is to find a sequence
of perturbations a(k) in order to minimize (5). Thus, we
resort to RL (detailed in § IV). In the numerical results, we
show that, by doing so, we nevertheless approach the optimal
allocation (3). Note that, for any initial allocation θ(0), the
sequence {a(k)} deterministically induces a sequence of states
{θ(k)}:

θ(k+1) = θ(k) + a(k+1). (7)

IV. REINFORCEMENT LEARNING FORMULATION

A. General setting

We make use of RL to solve the data-driven cache allocation
problem described above. The set of states S consists of all the
allocation vectors that we can visit. To reduce the complexity
of the problem, we adopt a discretization step ∆ ∈ N, and
define S as:

S =

{
θθθ = (θ1, . . . , θP)|

P∑
p=1

θp ≤ K, θp multiple of ∆

}
(8)

The discretization step ∆ constitutes a precision/complexity
trade-off. A smaller value of ∆ increases the precision of the
allocation since it allows to converge to a discrete solution
closer to the optimal one (§ V-A); it however increases the
complexity of the problem since it expands the space of states.

Observe that S ⊂ T (see (1)). When in state θθθ, the NO can
pick an action from the following action space:

Aθθθ = {a = ∆ · (ep − ep′)|θθθ + a ∈ S, p, p′ = 1, . . . , P} (9)

where ep is the p-th element of the standard basis of Rp.
We will use the terms allocation/state and

action/perturbation interchangeably. Therefore, an action
a consists in the NO adding ∆ units of storage to a certain
SP p and removing the same amount from another SP. The
null action corresponds to not changing the allocation (which
happens in (9) when p = p′). Thanks to (7), the transition
from a state to another is deterministic.

Our objective function accounts for both nominal cost as
well as perturbation cost and is given by:

C
γ
cum = lim

Z→∞
E

Z∑
k=0

γ
(k) ·

(
Cnom(θ

(k)
, ω

(k)
) + Cpert(a

(k)
)
)

︸ ︷︷ ︸
Instantaneous cost C(k)

θ
(k) ∈ S

a(k) ∈ A
(10)

where γ < 1 is a hyper-parameter called discount factor.
A policy π is a function π(a|θ) defining the decisions of

the NO: whenever the NO observes state θ, it will choose

an action a with probability π(a|θ). During training, the NO
starts with a certain policy π(0)(·) and then adjusts it, based on
measured cost, in order to approach the optimal policy π∗(·),
i.e., the one that minimizes (10) (§ 7 of [16]). Therefore, at
any iteration k, function π(k)(·) evolves. In particular, at any
time slot k the NO observes the current state θ(k), takes an
action a(k) probabilistically, according to the current policy
π(k)(a|θ(k)),∀a ∈ Aθ(k) . Then, the instantaneous cost C(k)

is measured. Such a measurement is adopted to improve policy
π(k)(a|θ), which thus becomes π(k+1)(a|θ). The next section
explains how such an improvement is obtained.

B. Q-Learning

Among the different flavors of RL, we chose Q-learning,
which has the advantage of being easy to implement and
adapt to different problems (§ 4.3.1 of [17]). A Q-table is
maintained, which associates to any pair (θ,a) a value Q(θ,a)
that approximates the cumulative cost (10) when being at
the state θ and choosing the action a. This approximation is
continuously improved based on the observed instantaneous
cost C(k). In particular, at every time-slot k, the Q-table is
updated as follows:

Q(θ
(k)
, a

(k)
)

:= (1− α(k)
) ·Q(θ

(k)
, a

(k)
) + α

(k) ·
(
C

(k)
+ γ min

a∈A
θ(k+1)

Q(θ
(k+1)

, a)

)
(11)

The Q-table entirely determines the policy, in the sense that
at any time-slot k we choose a random action a(k) ∈ Aθ(k)

with probability ε(k) ∈ [0, 1] and the “best” action a(k) =
arg mina∈A

θ(k)
Q(θ(k),a) with probability 1 − ε(k). This is

the so-called ε-greedy algorithm.

C. Additional Enhancement

We now report some enhancements to Q-learning that con-
siderably improved the performance of our algorithm (§V-A):

(I) The parameter α(k) in (11) is learning rate. As in [15],
we decrease it slowly, to keep Q-table updates relatively large:

α(k) = α(k−1) ·
(

1− 1

1 +M + k

) 1
2+ξ

(12)

where M and ξ are positive constants, used to tune the slope
of decrease.

(II) In the simplest implementation of Q-learning, the
measurement made in a certain time-slot is used to update
the Q-table in that time-slot only and is never used again.
However, the set of previous measurements (i.e., the past
“experience”) could be further exploited to improve the Q-
table update in future time-slots. To this aim, Experience
Replay has been proposed [18]. At any time-slot k, in addition
to using the measured instantaneous cost C(k) to update
the Q-table in (11), we also store this measurement in the
form of a triplet

(
θ(k),a(k), C(k)

)
, which we call experience.

The set of experiences accumulated in this way is called
memory. Whenever we update the Q-table, additionally to

performing (11) using the current observation, we also sample
the memory randomly for a mini-batch of experiences of size
N and we use them when applying (11).

(III) The value of ε(k) is the probability of taking a random
action, instead of the best so far, at any time-slot k. We impose,
motivated by [19], the following decay:

ε(k) =

ε0 −
[

0.9·ε0
cosh(e−

k−A·Z
B·Z)

+ k·C
Z

]
if k ≤ Z

ε(Z)

k−Z otherwise
(13)

where ε0 is the initial value of ε, A, B and C are hyper
parameters and Z is a time horizon. This decay provides:
(i) sufficient time for exploration at the beginning, (ii) pref-
erence to exploitation (with respect to exploration) in the end
(quasi-deterministic policy) and (iii) smooth transition while
switching from exploration to exploitation. A decides whether
to spend more time on exploration or on exploitation, B
decides the slope of the transition between them and C decides
the steepness of the ε(k) decay.

D. Discussion on the use of RL

We now briefly discuss why we preferred our RL setting
over other possible methodologies. First of all, we rule out
all static optimization techniques that require full information,
due to the online and stochastic nature of the problem at hand.

We could also interpret our allocation problem as a “black-
box optimization” and apply Bayesian Optimization [20].
However, such techniques are meant for offline problems,
where the objective is to retrieve the minimum of the cost
function at the end of the optimization (3) and the cost of
jumping from one state to another is neither quantified nor
directly minimized. Our RL framework not only allows us
to reach an allocation close to the optimum at the end, but
also implicitly optimizes the path of states visited during the
optimization.

Lyapunov Optimization (LO) has also been used for allo-
cation problems [21] but it assumes some knowledge about
the expression of the stochastic reward function. We instead
optimize the system even if it is unknown.

The Markov Decision Process (MDP) underlying our RL
method is a Deterministic MDP (DMDP), as the transition
from one state to another is deterministic (7). In [22], DMDP is
solved assuming the structure of the reward function is known,
which in our case we do not know.

If we wanted to apply Multi-Armed Bandit (MAB), we
would need to interpret each allocation vector as an arm. How-
ever, MAB does not allow to consider the cost of “jumping”
from one arm to another.

Online decision problems have been presented in an ad-
versarial setting and solved via Smoothed Online Convex
Optimization (SOCO) [23]. In adversarial setting, performance
bounds are calculated in a worst-case analysis. In such a set-
ting, [24, Theor.3.1] shows that it is impossible to effectively
optimize a DMDP such as ours. We instead adopt a stochastic
setting and study the “average” behavior of the system.

V. NUMERICAL RESULTS

We now evaluate the performance of our RL allocation θ(k)

through simulations developed in Python and compare it with
two static allocations: (i) the theoretical optimal allocation θ∗,
which would ideally be computed by an oracle who knows
exactly the content popularity and thus the expression of
function θ → EC(θ) and (ii) the proportional allocation θprop

where θp is proportional to the rate of requests λp directed to
SP p. We also compare our RL algorithm to SPSA [15].

We consider a network with 3 SPs. We set the overall
request arrival rate to λ = 4 · 103req/s (in the same order
of magnitude of requests supported in one edge location of
Amazon CloudFront). Each of these requests is directed to
SP 1, 2 or 3 with probability 0.75, 0.20, 0.05, respectively.
We set the cacheability (§ III-A) of SP1, SP2 and SP3

to ζ1 = 0.4, ζ2 = 0.9, ζ3 = 0.9. Each SP has catalog of
N1 = N2 = N3 = 107 cacheable objects. Content popularity
in each catalog follows Zipf’s law with exponent β1 = 1.2,
β2 = 0.4 and β3 = 0.2, respectively. The total cache size is
K = 5 ·106. The simulation time is set to 6 hours. The length
of a time-slot is 0.25 second.

We plot a normalized cost, i.e., the amount of objects
downloaded from the Internet (either as a result of an edge
cache miss or of an allocation perturbation) divided by the
total amount of objects requested by the users. All curves are
averaged with a sliding window of 10 min.

A. Pre-tuning of hyper-parameters and convergence

We now discuss some preliminary tuning that we performed,
including the features indicated in §IV-C.

(1) For the discretization step ∆, we found out that a good
complexity vs. precision trade-off was to set it to K/50. To
limit perturbations, we give a higher “weight” to the null
action. Indeed, when we take a random action (§ IV-B), we set
the probability of choosing any non-null action to only 1/P 2

and all the remaining probability is for the null-action.
(2) For γ, we set it to 0.99, i.e., very close to 1 to give

importance to future rewards and prevent myopic decisions.
(3) For α, the learning rate, we found that convergence was

slow when it was fixed. Therefore, we adopt learning rate
scheduling, which starts at 0.9 and decreases following (12)
to 0.2, with M = 3600 and ξ = 0.01).

(4) Regarding the size N of mini-batch of experiences, we
found that small fixed values were not allowing to exploit
past experience, on the other hand, with large values past
experience was dominating too much the updates. We obtained
the best performance by scheduling N as follows:

N (k) =
Nmax

cosh(e−
k−A·Z
B·Z)

+
k · C
Z

(14)

where Nmax = 100, A = 0.15, B = 0.3, C = 0.7, Z = 6 hours.
(5) Finally, we make ε decay as in (13) with A = 0.3, B =

0.1 and C = 0.01. These hyper-parameters have been chosen
empirically after preliminary experimentation and provide a
good compromise between exploration and exploitation.

0 45 90 135 180 225 270 315 360
Time (Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
os
t

Q-Learning SPSA Optimal

(a) Total System Cost C(k)

0 45 90 135 180 225 270 315 360
Time (Minutes)

−100

−80

−60

−40

−20

0

20

40

G
ai
n
(%

)

(b) Gain with respect to θprop

Fig. 2: System Performance

B. Convergence close toward the optimum

The behavior of our algorithm is well illustrated by Fig. 2:
in a first phase, we know nothing about the system and we
need to perturb it a lot by taking many random actions, in
order to learn it. For this reason, perturbation cost is high up
to 135 minutes. After that, we start to exploit the collected
knowledge and we limit perturbation. This “explore-then-
exploit” behavior is very effective in rapidly reducing overall
cost (Fig. 2a) toward the theoretical optimum.

Furthermore, our RL algorithm outperforms SPSA used
in [15] which converges to the optimal allocation in 45
minutes but never reaches the optimum due to the continuous
perturbations it has to apply to estimate the sub-gradient of
the objective function.

We now compare the cost collected by our policy C(k) with
the cost of the static allocation θprop. Note that while our
method deals with both nominal and perturbation costs (6),
the static θprop does not apply any perturbation to the system.
We define the gain of our policy with respect to θprop as:

G(k)
prop =

Cnom(θprop, ω
(k))− C(k)

Cnom(θprop, ω(k))
(15)

Fig. 2b shows that our solution reaches a gain of 29% in
less than 3 hours with respect to θprop.

C. Fairness

Let us denote with xp =
θp

ζp·λ·fp the slots given to SP p,
normalized to its amount of cacheable requests. We compute
the fairness of the system with the Jain’s fairness index as
J (x1, . . . , xP) ,

(
∑P
p=1 xp)

2

P ·
∑P
p=1 x

2
p

.
Our results show that cache sharing strategy with our RL-

based allocation θRL (0.7 fairness) is much fairer than the
optimal allocation θ∗ (0.36 fairness), at almost the same total
cost. It is also close to that of the proportional allocation
θprop (0.85 fairness) albeit being much better in terms of
cost. Note that we are also close to the ideal maximum
fairness achieved by the proportional allocation not taking into
account cacheability, i.e. if all contents were cacheable (i.e.
ζp = 1, p = 1, .., P). The latter is 1, by construction, as it is
proportional to the rate of requests directed to each SP; on the
other hand, it is an artificial measure, as it ignores cacheability.

250 500 1000 4000
λ(req/s)

0

5

10

15

20

25

30

35
Av

er
ag

e
C
os
t (
%
)

K=5 · 106

Proportional
Q-learning
Optimum θ ∗

(a) To request rate λ

5 · 104 5 · 105 5 · 106
K

0

20

40

60

80

100

Av
er
ag

e
C
os
t (
%
)

λ=4000 req/s

Proportional
Q-learning
Optimum θ ∗

(b) To cache size K

Fig. 3: Sensitivity of the system

0 45 90 135 180 225 270 315 360
Time (Minutes)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
os
t

Q-Learning SPSA Optimal

(a) Total System Cost C(k)

0 45 90 135 180 225 270 315 360
Time (Minutes)

−250

−200

−150

−100

−50

0

50

100

G
ai
n
(%

)

(b) Gain with respect to θprop

Fig. 4: System Performance for 4 SPs

D. Sensitivity Analysis

We next study how the performance of our solution is
affected by the algorithm parameters and the scenario. We
first focus on the request rate λ. Indeed, a small λ implies that
only few requests are observed in each time slot, which may
result in a high noise, as defined in (4), and ultimately affects
the accuracy of the update and slows down the convergence.
We thus expect our Q-learning approach and, more generally,
any data-driven approach, to perform best only with large λ.
This is confirmed by Fig. 3a, where we plot the average cost
1
ZCcum(Z) (5) of our RL algorithm, after Z = 6 hours, and
compare it to the static proportional and optimal allocations.

Fig. 3b shows the average cost measured over Z = 6 hours
for various cache sizes K ∈ {5 · 104, 5 · 105, 5 · 106} and a
fixed request rate λ = 4 · 103req/s. It confirms that the gains
of our algorithm hold for different cache sizes, and shows
that gain increases for larger caches. Indeed, for small cache
size there is not much to optimize: the cost is high with both
proportional and optimal allocation, so even if our algorithm
positions itself between the two, the cost saved is negligible.

We now study how our algorithm is affected by the number
of SPs. We simulate the same scenario in the same conditions
as in § V-B but we change the number of SPs to P = 4.
As in § V-B, we plot in Fig. 4a the total cost C(k) of our
RL algorithm vs. the optimal solution θ∗. The results show
that our algorithm rapidly converges close to optimal cost,
outperforming SPSA as well.

In Fig. 4b, we plot the gain defined by (15) for 4 SPs.
Results show that our RL algorithm continues to outperform
θprop by reaching a gain of 50% in 3 hours.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a Q-learning based algorithm
for cache allocation at the edge between several SPs with
encrypted, not all cacheable content: a main challenge of in-
network caching. We compared our dynamic allocation to the
theoretical optimal and to a static allocation proportional to the
probabilities of requesting content from each SP. We showed
that our algorithm converges quite fast to a configuration close
to the optimal and outperforms the proportional allocation
in several system configurations as well as the state-of-the-
art SPSA. As part of the future work, we intend to consider
scenarios with time varying popularity and to extend our work
to multiple resources e.g., storage, CPU, RAM, etc. We would
also consider a distributed scenario with multiple edge nodes.

VII. ACKNOWLEDGEMENT

This work was partially carried out in the Plateforme THD,
a Fiber-To-The-Home platform of Telecom SudParis.

REFERENCES

[1] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE JSAC, 2019.

[2] A. Araldo et al., “Resource allocation for edge computing with multiple
tenant configurations,” ACM/SIGAPP SAC, 2020.

[3] A. Spallina et al., “Energy-efficient Resource Allocation in Multi-Tenant
Edge Computing using Markov Decision Processes,” 2022.

[4] Cisco, “White paper,” Cisco Visual Networking Index: Forecast and
Trends, 2017–2022.

[5] W. Chu et al., “Joint cache resource allocation and request routing for
in-network caching services,” Computer Networks, 2018.

[6] F. Fossati et al., “Multi-resource allocation for network slicing,”
IEEE/ACM Transactions on Networking, 2020.

[7] S. Hoteita et al., “On fair network cache allocation to content providers,”
Computer Networks, 2016.

[8] G. Zheng and V. Friderikos, “Fair cache sharing management for multi-
tenant based mobile edge networks,” MobiArch, 2020.

[9] A. Mahdieh et al., “Cache subsidies for an optimal memory for
bandwidth tradeoff in the access network,” JSAC, 2020.

[10] W. Xiaofei et al., “In-edge ai: Intelligentizing mobile edge computing,
caching and communication by federated learning,” IEEE Network,
2019.

[11] J. Rao et al., “Vconf: a rl approach to vms auto-configuration,” ACM
ICAC, 2009.

[12] H. Mao et al., “Resource management with deep rl,” HotNets, 2016.
[13] Z. Fang et al., “Qos-aware scheduling of heterogeneous servers for

inference in deep neural networks,” CIKM, 2017.
[14] J. Yuang et al., “Fast reinforcement learning algorithms for resource

allocation in data centers,” IFIP, 2020.
[15] A. Araldo et al., “Caching encrypted content via stochastic cache

partitioning,” IEEE/ACM Transactions on Networking, 2018.
[16] J. N. Tsitsiklis, “Asynchronous stochastic approximation and q-

learning,” Machine Learning, 1994.
[17] C. Szepesvari, “Algorithms for rl,” Synthesis Lectures on AI/ML, 2010.
[18] W. Fedus et al., “Revisiting fundamentals of experience replay,” ICML,

2020.
[19] S. Natarajan. Stretched exponential decay function for epsilon greedy

algorithm. [Online]. Available: https://medium.com/analytics-vidhya/
stretched-exponential-decay-function-for-epsilon-greedy-algorithm

[20] B. Shahriari et al., “Taking the human out of the loop : A review of
bayesian optimization,” Proceedings of the IEEE, 2016.

[21] X. Lyu et al., “Optimal schedule of mobile edge computing for internet
of things using partial information,” IEEE JSAC, 2017.

[22] R. Warlop et al., “Fighting boredom in recommender systems with linear
reinforcement learning,” Advances in NIPS, 2018.

[23] G. Goel et al., “Beyond Online Balanced Descent: An Optimal Algo-
rithm for Smoothed Online Optimization,” Advances in NIPS, 2019.

[24] O. Dekel and E. Hazan, “Better rates for any adversarial deterministic
mdp,” ICML, 2013.

