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PROBABILISTIC PROOF FOR NON–SURVIVAL AT

CRITICALITY: THE GALTON–WATSON PROCESS AND MORE

OLIVIER GARET

Abstract. In a famous paper, Bezuidenhout and Grimmett demonstrated

that the contact process dies out at the critical point.Their proof technique
has often been used to study the growth of population patterns. The present

text is intended as an introduction to their ideas, with examples of minimal

technicality. In particular, we recover the basic theorem about Galton–Watson
chains: except in a degenerate case, survival is possible only if the fertility

rate exceeds 1. The classical proof that is taught in classrooms is essentially

analytic, based on generating functions and convexity arguments. Following
the Bezuidenhout–Grimmett way, we propose a proof that is more consistent

with probabilistic intuition. We also study the survival problem for an original

model, mixing sexual and asexual reproduction.

1. Introduction

Inspired by an article by Grimmett and Marstrand on supercritical percolation
in dimension d ≥ 3, Bezuidenhout and Grimmett have shown in a famous article
that the contact process vanishes at the critical point. Their proof technique has
often been used to study various growth models.

The implementation of their proof technique is usually quite technical, as it relies
on a renormalization procedure with quite complicated events as a basic brick.

The purpose of this article is therefore to introduce this technique with growth
models for which the implementation is much simpler.

Among the growth models, the most famous is the Galton–Watson process. The
basic theorem concerns the probability of survival as a function of fertility: except
in degenerate cases, survival is possible only if the fertility rate exceeds 1. The
proof that is usually taught – see for example Benäım–El Karoui [1] or Durrett [3]
– is essentially analytic. It relies on generating functions and convexity arguments,
which may seem rather frustrating or at least quite miraculous.

We propose here, inspired by the work of Bezuidenhout and Grimmett, to give
a proof that is more in line with the probabilistic intuition.

This gives an introduction to the ideas of Bezuidenhout and Grimmett, with a
model that is probably the simplest of the models that can be considered. We then
continue with the study of the survival problem on an original model, mixing sexual
and asexual reproduction.

In order to keep our text self-contained (maybe event suitable for a presentation
to graduate students), the first section is devoted to the introduction of the Galton–
Watson process with all the necessary results. The new proof of the classical result
comes in Section 2. Section 3 is devoted to the introduction and the study of a new
cooperative model, mixing sexual and asexual reproduction.

2. Galton–Watson processes: definition and first properties

Let ν, µ be two distributions on N. The distribution ν is denoted as the offspring
distribution, whereas µ is the distribution of the size of the initial population.

2000 Mathematics Subject Classification. 60K35, 82B43.
Key words and phrases. Galton–Watson process, growth model,renormalization.

1



2 OLIVIER GARET

We denote as the Galton–Watson process with initial distribution µ and offspring
distribution ν the Markov chain that starts with µ as initial distribution, and whose
transition matrix is given by

pi,j =

{
ν∗i(j) if i 6= 0

δ0(j) if i = 0

One can build such a chain as follows: Let (Xn
i )i,j≥1, Y0 be independent random

variables with Y0 ∼ µ and Xn
i ∼ ν for every i, n. Then, the sequence (Yn)n≥1 is

recursively defined by

∀n ≥ 0 Yn+1 =
∑

1≤i≤Yn

Xn
i .

Then, (Yn)n≥0, is a Galton–Watson process with initial distribution µ and offspring
distribution ν. The mean number of offspring m =

∫
N x dν(x) is denoted as the

fertility. If we define Fn = σ(Xk
i , i ≥ 1, k ≤ n), we have

(1) E[Yn+1|Fn] = mYn, E[Yn+1] = mE[Yn] and E[Yn] = mnE[Y0]

We define the time to extinction τ as follows: τ = inf{n ≥ 0;Yn = 0}.

Theorem 1. If m < 1, P(τ > n) = O(mn). Particularly, P(τ < +∞) = 1.

Proof. With (1), we have P(τ > n) ≤ P(Yn ≥ 1) ≤ E[Yn] = mnE[Y0]. �

Theorem 2. Let (Xn)n≥0 and (Yn)n≥0 be independent Galton–Watson processes
with the same offspring distribution ν. Then, (Xn+Yn)n≥0 is also a Galton–Watson
process with ν as offspring distribution.

Proof. Since (Xn)n≥0 and (Yn)n≥0 are independent Markov chains, ((Xn, Yn))n≥0
is a Markov chain, with the transition matrix

p(x,a),(y,b) = ν∗x(a)ν∗y(b).

Let us denote by P(x,y) the distributions of the canonically associated Markov
chains. We must prove that if the function f is defined by f(x, y) = x + y, then
(f(Xn, Yn))n≥0 is still a Markov Chain. To this aim, we apply the Dynkin crite-

rion: it is sufficient to prove that whenever x + y = r, then P(x,y)(f(X1, Y1) = `)
only depends on r and `. Also, under P(x,y), X1 and Y1 are independent random
variables with ν∗x and ν∗y as their respective distributions, so the distribution of
f(X1, Y1) is ν∗x ∗ ν∗y = ν∗(x+y) = ν∗r. Finally, P(x,y)(f(X1, Y1) = `) = ν∗r({`})
and (Xn + Yn)n≥0 is a Galton–Watson process with ν as offspring distribution.
Since the initial distribution is PX0+Y0 = PX0 ∗ PY0 = µ1 ∗ µ2, we get the desired
result. �

In the sequel, Pi denotes a probability measure under which (Yn)n≥0 is a Galton–
Watson process with initial distribution δi and offspring distribution ν.

Corollary 1. We have

• For each n ≥ 0, Pn(τ < +∞) = P1(τ < +∞)n

• For n, ` ≥ 0, Pn(τ < +∞|F`) = P1(τ < +∞)Y` .
• For n, ` ≥ 1, we have Pn(τ = +∞) > 0 ⇐⇒ P`(τ = +∞) > 0.

Proof. Thanks to Theorem 2, we have

Pn+1(τ < +∞) = Pn(τ < +∞)P1(τ < +∞),

then Pn(τ < +∞) = P1(τ < +∞)n follows by natural induction. This gives the
first item. Then, the second item follows from the Markov property. The last point
is obvious. �

Corollary 2. Let T ≥ 1. (YTn)n≥0 is a Galton–Watson process with offspring
distribution P1

YT
.
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Proof. Since (Yn) is a Markov chain, it is well known that so does (YTn)n≥0. Let
us compute the transition probabilities.

Let k ≥ 1. Applying Theorem 2 (k−1 times), we see that if the processes (Y 1
t )t≥0,

(Y 2
t )t≥0,. . . (Y kt )t≥0 are independent Galton–Watson processes with δ1 as their com-

mon initial distribution and ν as offspring distribution, then (Y 1
t + . . . Y kt )t≥0 is a

Galton–Watson process with δk as initial distribution and ν as offspring distribu-
tion. Then,

Pk(YT = `) = P(Y 1
T + . . . Y kT = `) = P∗kY 1

T
(`).

Also, P0(YT = `) = δ0(`): this gives the desired result. �

3. A probabilistic proof

In the first step of the proof, we show that a certain growth process may survive,
with the idea that the process that we finally want to study will be compared
to the surviving reference process. In the present paper, the reference process
is a Galton–Watson process too. However in general, the reference process may
belong to a related family. For example, Bezuidenhout and Grimmett compared
the contact process to a supercritical oriented percolation process.

3.1. Survival in the supercritical phase.

Theorem 3. If m > 1, then P1(τ = +∞) > 0.

Proof. Let a with 1 < a < m. We have

lim
M→+∞

∫
x ∧M dν =

∫
x dν = m,

so there exists M with
∫
x ∧M dν > a. For k ≥ n, we have

Pk(Y1 < na) = P(X1 + . . . Xk < na)

≤P(X1 ∧M + . . . Xn ∧M < na)

= P(nE[X1 ∧M ]− (X1 ∧M + . . . Xn ∧M)) > (E[X1 ∧M ]− a)n)

≤ Var X1 ∧M
(E[X1 ∧M ]− a)n

,

by the Tchebitchef inequality. Let us define φ(k, x) = Pk(Y1 < x) and consider

n > c = Var (X1∧M)
E[X1∧M ]−a .

Let t ≥ 0. By the Markov property, for each A ∈ Ft with A ⊂ {Yt ≥ n}, we can
write

P(A ∩ {Yt+1 < an}) = E[1A1Yt+1<an}] = E[1AE[1Yt+1<an}|Ft]]
= E[1Aφ(Yt, an)] ≤ E[1Ac/n] = c/nP(A),

so P(Yt+1 ≥ an|A) ≥ 1− c
n .

By natural induction, it follows that for At =
t
∩
i=1
{Yt ≥ nat}, we have

Pn(At) ≥
t−1∏
i=0

(
1− c

nai

)
,

then Pn(τ = +∞) ≥ Pn(∀t ≥ 0 Yt ≥ nat) ≥
∏+∞
i=0

(
1− c

nai

)
> 0. �

Some remarks:

• Obviously, the bound 1 − c
n is very bad, coming from the Tchebitchev

inequality. We were doing better with the Höffding inequality, but that is
sufficient for our purpose.
• The same pattern can be applied to demonstrate that survival is possible

for a multitype Galton–Watson process whose fertility matrix has a spectral
radius strictly greater than 1 (see for example [5]).
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3.2. Survival is a local property.

Theorem 4. Let (Yn)n≥0 be a Galton–Watson process with offspring distribution ν.
Suppose that ν(0) > 0. Then there is an equivalence between:

• ∃N,T ≥ 1 PN (YT ≥ 2N) > 1
2 .

• P1(τ = +∞) > 0.

The event {YT ≥ 2N} only depends on what happens in a finite time box. Thus,
it can be considered to be a local event, which will be useful to get some continuity
with respect to the parameters of the model.

Before starting the proof, let us give the main ideas:

• For the direct implication, the idea is to compare the chain with a super-
critical Galton–Watson process, then conclude with the help of Theorem 3.
• The reverse implication is quite simple, because one essentially has to prove

that the number of particles explodes as soon as the process survives. How-
ever, it must be kept in mind that if the local event is more complicated,
this part will actually be the most difficult one.

Lemma 1. If there exist a > 0 and N ≥ 1 such that aPN (Y1 ≥ aN) > 1, then
P1(τ = +∞) > 0.

Proof. Let Xn
i be i.i.d. with ν as common distribution. Let M0 = 1, Y0 = N , and

then

∀n ≥ 0 Yn+1 =
∑

1≤i≤Yn

Xn
i and Mn+1 =

Mn∑
i=1

aBni ,

with Bni = 1{Xn
(i−1)N+1

+...Xn
iN≥aN}.

We prove by natural induction that Yn ≥ NMn for each n ≥ 0. Indeed, if Yn ≥
NMn, it follows that

Yn+1 =
∑

1≤i≤Yn

Xn
i ≥

∑
1≤i≤NMn

Xn
i =

Mn∑
i=1

(Xn
(i−1)N+1 + . . . Xn

iN )

≥
Mn∑
i=1

aNBni = NMn+1.

We note that (Mn) is a Galton–Watson process, and its fertility is given by
m = E[aBni ] = aPN (Y1 ≥ aN) > 1, then it may survive by Theorem 3. Since
Yn ≥ NMn, the process (Yn) may survive too. �

Note that the proof of the lemma relies on a coupling argument: we make live on
the same space (Yn)n≥0 and a Galton–Watson process with offspring distribution
(1− q)δ0 + qδa, where q = PN (Y1 ≥ aN).
This step can be seen as a static renormalization: with the help of the local events
{Xn

(i−1)N+1 + . . . Xn
iN ≥ aN}, we build a growth process involving Bernoulli vari-

ables, in such a way that

• The process using Bernoulli variables is known to be able to survive;
• The process using Bernoulli variables is dominated by the process that we

study.

Proof of Theorem 4. By corollary 2, (YnT )n≥0 is a Galton–Watson process. So we
can apply the Lemma with a = 2: (YnT )n≥0 may survive, thus (Yn)n≥0 may survive
also.

Conversely, let us suppose that ν(0) > 0, and P1(τ < +∞) < 1.
Since PN (τ < +∞) = P1(τ < +∞)N , there exists N with PN (τ < +∞) < 1/2.
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We have noted that PN (τ < +∞|Ft) = P1(τ < +∞)Yt .
Since P1(τ < +∞) ≥ P1(Y1 = 0) = ν(0) > 0, we can write

Yt =
logPN (τ < +∞|Ft)

logP1(τ < +∞)
.

Now, the Martingale convergence Theorem ensures that

EN [1{τ<+∞}|Ft] = PN (τ < +∞|Ft)→ 1{τ<+∞} PN a.s.

when t tends to infinity.
Particularly, on the event {τ = +∞}, PN (τ < +∞|Ft) almost surely tends to 0
and Yt almost surely tends to infinity. Therefore, the following inequality holds
PN -almost surely:

1{τ=+∞} ≤ lim
t→+∞

1{Yt≥2N}.

With the Fatou Lemma, it follows that

PN (τ = +∞) = EN (1{τ=+∞}) ≤ lim
t→+∞

EN [1{Yt≥2N}] = lim
t→+∞

PN (Yt ≥ 2N).

Since PN (τ = +∞) > 1/2, there exists T such that PN (YT ≥ 2N) > 1/2. �

3.3. The critical case.

Theorem 5. If ν(0) > 0 and m = 1, then P1(τ = +∞) = 0.

First proof. It is sufficient to note that for every N,T ≥ 1, we have

PN (YT ≥ 2N) ≤ EN (YT )

2N
=

N

2N
=

1

2
,

then apply the converse part in Theorem 4. �

We now present another line of proof, somewhat longer, but also more robust.
It was used in Garet–Marchand [6] and Gantert–Junk [4] for the study of some
branching random walks.

The first proof is not robust because it exploits the fact that we exactly know
how to characterize the critical parameter for survival. However, in many growth
models, the critical parameter can not be given explicitly. The idea is then: having
shown that survival is characterized by the fact that a local event has a fairly high
probability, we reason by contradiction and suppose that there is survival at the
critical point for a certain parameter. Then, with a slight modification of the local
event, we can, by continuity, exhibit a model of the same family that is a little
weaker, for which the local event still has a probability that is large enough to
ensure survival, but which must nevertheless die because its parameter has become
subcritical.

Second proof. By contradiction, let us assume that we have ν(0) > 0, m = 1 and
also P1(τ = +∞) > 0.

By Theorem 4 (converse implication), one can choose n and T such that PN (YT ≥
2N) > 1

2 .
The idea is to provide a coupling with a subcritical process. Let (Xn

i )i,j≥1,
(Bni )i,j≥1 be independent variables with Xn

i ∼ ν, and the (Bni )i,j≥1’s are Bernoulli
with parameter p. Define Y0 = N , Y p0 = N , then

∀n ≥ 0 Yn+1 =
∑

1≤i≤Yn

Xn
i and Y pn+1 =

∑
1≤i≤Y p

n

Bni X
n
i .

By monotonicity,

lim
M→+∞

PN (max(Yi, 0 ≤ i ≤ T ) ≤M,YT ≥ 2N) = PN (YT ≥ 2N) > 1/2,
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so there exists M such that P(max(Yi, 0 ≤ i ≤ T ) ≤M,YT ≥ 2N) > 1/2. We have
then

P(Y pT ≥ 2N) ≥ P(YT ≥ 2N, ∀i ≤ T Y pi = Yi)

≥ P
(

max(Yi, 0 ≤ i ≤ T ) ≤M,YT ≥ 2N,
∀(t, i) ∈ {0, . . . , T − 1} × {1, . . . ,M} Bti = 1

)
= P(max(Yi, 0 ≤ i ≤ T ) ≤M,YT ≥ 2N)pTM

Taking p < 1 large enough, we have

P(max(Yi, 0 ≤ i ≤ T ) ≤M,YT ≥ 2N)pTM > 1/2,

so P(Y pT ≥ 2N) > 1/2. But (Y pt ) is a Galton–Watson process with offspring dis-
tribution B1

1X
1
1 and initial distribution δN , so by Theorem 4 (direct implication),

this Galton–Watson process may survive. However

E[B1
1X

1
1 ] = E[B1

1 ]E[X1
1 ] = pm = p < 1,

so by Theorem 1, the process can not survive. This is a contradiction.
�

The Galton–Watson process has the peculiarity that the survival domain can
be described explicitly. This is obviously very convenient, but it may raise doubts
about the generality of the proof technique we present.

In fact, this technique is more often applied to models where the critical value
is not known, the most emblematic being the contact process or the directed per-
colation. But in these models, the proof of the existence of a large probability for
the local event in question is often quite technical, requiring many steps.

We will therefore present a simpler model, which allows us to show the power
of the method in a model which is not exactly solvable, and seems to us to be rich
enough to be worthy of interest.

4. Application to a cooperative model

We describe a cooperative model with two species by a Markov chain ((Xn, Yn)n≥0)
with values in N2, given by the conditional laws

L((Xn+1, Yn+1)|Fn) = µ(Xn,Yn) with µ(x,y) = Ber(2, q)∗(x+y) ⊗ Ber(2, p)∗min(x,y),

where p and q belong to (0, 1) and Fn = σ((Xk, Yk)0≤k≤n).
The first component of the pair is the number of elements of type 1, which are

athe sexual offspring of representatives of both types; while the second component,
the elements of type 2, arise from a meeting between elements of type 1 and elements
of type 2.

We note that if at a given moment there are no more particles of type 1 or no
more particles of type 2, the particles of type 2 disappear without any possibility
of reappearing.

On the other hand, if the type 2 particles disappear and some type 1 parti-
cles remain, the process behaves like a Galton-Watson process of reproduction law
Ber(2, q): survival is possible if and only if q > 1

2 .

In the following, we will note P(x,y)
p,q the law of the process starting from the state

(x, y) with parameters p and q.
Recall the classical definitions for stochastic order: we say that f : RE → R is

non-decreasing if f(x) ≥ f(x′) as soon as xi ≥ x′i for each i ∈ E and also say that
the measure µ on RE is stochastically dominated by ν if

∫
f dµ ≤

∫
f dν holds for

any non-decreasing function f .



PROBABILISTIC PROOF FOR NON–SURVIVAL AT CRITICALITY 7

Thus, we can note that our model is super-additive: we have the stochastic
inequality on the transition laws

µ(x,y) ∗ µ(x′,y′) = Ber(2, q)∗(x+x
′+y+y′) ⊗ Ber(2, p)∗min(x,y)+min(x′,y′)

� Ber(2, q)∗(x+x
′+y+y′) ⊗ Ber(2, p)∗min(x+x′,y+y′) = µ(x+x′,y+y′),

where � denotes the stochastic domination on R2. This inequality is classically
transported to the laws of processes: for each p, q in (0, 1) and each collection of
integers x, x′, y, y′, we have

P(x,y)
p,q ∗ P(x′,y′)

p,q � P(x+y′,y+y′)
p,q .(2)

In particular, if x ≥ x′ and y ≥ y′, then P(x,y)
p � P(x′,y′)

p .
The remarks made so far lead us to focus on the problem of the simultaneous

survival of the two types.
We thus define

Zn = inf(Xn, Yn) and τ = inf{n ≥ 0;Zn = 0}.

We begin by deducing from (2) a lemma which will be very useful later:

Lemma 2. Let p ∈ [0, 1], x, y, k be natural numbers, N and T be non-zero natural
numbers. Then

P(x,y)
p,q (ZT ≥ kN) ≥ γ∗a([k,+∞[),

where a = min(b xN c, bycN) and γ is the law of bZT

N c under P
(N,N)
p,q .

Proof. Let (X̃1, Ỹ1), . . . , (X̃a, Ỹa) a be independent random vectors following the

law of (XT , YT ) under P(N,N)
p,q . Posing Z̃k = min(X̃k, Ỹk), we have

P(x,y)
p,q (ZT ≥ kN) ≥ P(X̃1 + . . . X̃a ≥ kN, Ỹ1 + . . . Ỹa ≥ kN)

≥ P(Z̃1 + . . . Z̃a ≥ kN)

≥ P(b Z̃1

N
c+ . . . b Z̃a

N
c ≥ k) = γ∗a([k,+∞)).

Thus

P(N,N)
p,q (b

Z(n+1)T

N
c ≥ k|FnT ) = P(XnT ,YnT )

p,q (bZT
N
c ≥ k|FnT )

≥ γ∗b
ZnT
N c([k,+∞))

�

We can now state the locality lemma, analogous to Theorem 4.

Lemma 3. Let p ∈ (0, 1). We have equivalence between

• P(1,1)
p,q (τ = +∞) > 0.

• ∃N ≥ 1, T ≥ 1 E(N,N)
p,q (bZT

N c) > 1.

Proof. Suppose p < 1 and P(1,1)
p,q (τ = +∞) > 0. From (2), we deduce that if

min(x, y) ≥ N , we have

P(x,y)(τ < +∞) ≤ P(1,1)(τ < +∞)N(3)

Then, thanks to (3), we can find N such that P(N,N)
p,q (τ = +∞) > 1

2 . We have

P(N,N)
p,q (τ < +∞|Fn) ≥ P(N,N)

p,q (Yn+1 = 0|Fn) = (1− p)2Zn

On the event {τ = +∞}, P(N,N)
p,q (τ < +∞|Fn) converges almost surely to 0, so

Zn P(N,N)
p,q -almost surely tends to infinity. Thus, 1{τ=+∞,Zn<2N} almost surely to
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0, and by dominated convergence, P(N,N)
p,q (τ = +∞, Zn < 2N) tends to 0, which

implies that P
(N,N)
p,q (ZT < 2N) > 1

2 for T sufficiently large. We deduce that

E(N,N)
p,q (bZT

N
c) ≥ E(N,N)

p,q (21{ZT≥2N}) = 2P(N,N)
p,q (ZT ≥ 2N) > 1.

Conversely, suppose now that there exist N and T such that E(N,N)
p,q (bZT

N c) > 1.

We will show that the process (bZnT

N c)n≥0 stochastically dominates a supercrit-
ical Galton-Watson process.

Let γ be the law of bZT

N c under P(N,N)
p,q .

Using Lemma 2 and the Markov property, we have for any k ≥ 0 and any natural
number n:

P(N,N)
p,q (b

Z(n+1)T

N
c ≥ k|FnT ) = P(XnT ,YnT )

p,q (bZT
N
c ≥ k|FnT )

≥ γ∗b
ZnT
N c([k,+∞)).

This shows that (bZnT

N c)n≥0 stochastically dominates a Galton-Watson process
with a γ replication law, which is supercritical according to the condition on the
expectation This results in the process surviving with strictly positive probability.

�

We deduce the continuity theorem:

Theorem 6. The set

S = {(p, q) ∈ (0, 1)2;P(1,1)
p,q (τ = +∞) > 0}.

is an open subset of (0, 1)2.

Proof. Since

S = ∪
N≥1,T≥1

{(p, q) ∈ (0, 1)2;E(N,N)
p,q (bZT

N
c) > 1},

it is enough to prove that for N,T ≥ 1, (p, q) 7→ E(N,N)
p,q (bZT

N c) is a continuous
function. Since we have the recurrence formula:

P(N,N)
p,q

(
Xn+1 = k
Yn+1 = `

)
=

∑
min(i,j)≥`
2(i+j)≥k

(
2 min(i, j)

`

)(
2(i+ j)

k

)
× qk(1− q)2(i+j)−kp`(1− p)2min(i,j)−`

× P(N,N)
p,q (Xn = i, Yn = j),

the probabilities of the different values for (Xn, Yn) are described by a polynomial

in p and q, and so (p, q) 7→ E(N,N)
p,q (bZT

N c) is a polynomial function, obviously
continuous. �

We can finally exhibit areas where we can prove that survival is possible or
impossible.

First, we have

Ep,q[Zn+1|Fn] ≤ Ep,q[Yn+1|Fn] = 2pZn,

so Ep,q[Zn] ≤ (2p)nEp,q(Z0) and with the Borel-Cantelli lemma, Zn tends almost
surely to 0 for p < 1/2.

To exhibit a survival domain, we apply Lemma 3 with N = 1 and T = 1. Then,
we have

E(1,1)
p,q (Z1) =

∫
R2

min(s, t) dµ(1,1)(s, t)



PROBABILISTIC PROOF FOR NON–SURVIVAL AT CRITICALITY 9

In other words, h(p, q) = E(1,1)
p,q (Z1) is E(min(U, V )) where U and V are indepen-

dent random variables, respectively following Ber(4, q) and Ber(p, 2). A simple
calculation gives

h(p, q) = 4p2q4 − 12p2q3 + 12p2q2 − 4p2q − 2pq4 + 8pq3 − 12pq2 + 8pq.

This allows to represent an area where the possibility of survival is demonstrated.

Figure 1. Set of points where h(p, q) > 1.

We can compare with the result of the simulations:

Figure 2. Estimation of P(1,1)
p,q (τ > inf{n ≥ 0; max(Xn, Yn) > 108}).
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Appendix: source code in Julia

using AbstractAlgebra

function compute_proba(p,q)

ex=0

for a=0:1,b=0:1,c=0:1,d=0:1,e=0:1,f=0:1

s=a+b

t=c+d+e+f

z=p^s*(1-p)^(2-s)*q^t*(1-q)^(4-t)

m=min(s,t)

ex+=m*z

end

return(ex)

end

A,(p,q)= PolynomialRing(ZZ ,["p"; "q"])

chaine="h(p,q)="*repr(compute_proba(p,q))

println(chaine)

eval(Meta.parse(chaine ))

# from now on

# h(p,q)=4*p^2*q^4 -12*p^2*q^3+12*p^2*q^2-

# 4*p^2*q-2*p*q^4+8*p*q^3 -12*p*q^2+8*p*q

using Plots

using Distributed

using Distributions

using DistributedArrays

@everywhere using Distributions

println(workers ())

@everywhere function montecarlo(N,survie ,p,q=p/2)

s=0

for i=1:N

a=Integer (1)

b=Integer (1)

while (a>0) && (b>0) && (b<survie) && (a<survie)

distA=Binomial (2*(a+b),q)

distB=Binomial (2*min(a,b),p)

a=rand(distA ,1)[1]

b=rand(distB ,1)[1]

end

s+=(a>0) && (b>0)

end

return(s/N)

end
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pas =0.00125

NMC =1000

interv =0: pas:1

survie=@DArray [montecarlo(NMC ,10^8,i,j) for i=interv ,

j=interv]

survie_simul=convert(Array ,survie)

heatmap(interv ,interv ,survie_simul ,ratio=1,xlabel="q",

ylabel="p",c=reverse(cgrad(: default)),size =(1200 ,800))

savefig("survival_both_species_without_dot.png")

function q_critique(pp)

qmin=0

qmax=1

milieu =0.5

while ((qmax -qmin ) >10^( -12))

milieu =(qmin+qmax )/2

if (h(pp ,milieu )<1)

qmin=milieu

else

qmax=milieu

end

end

return(milieu)

end

y=0.5:0.01:1

plot!( q_critique .(y),y,linewidth=2, linestyle =:dash ,

color=:green ,label="h(p,q)=1")

savefig("survival_2_species_with_dot_and_legend.png")
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