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Abstract

Evaluation of performance for complex applications such as Artificial Intelligence
(AI) algorithms and more specifically neural networks on Multi-Processor Systems
on a Chip (MPSoC) is tedious. Finding an optimized partitioning of the application
while predicting accurately the latency induced by communication bus congestion,
is hard using traditional analysis methods. This document presents a performance
prediction workflow based on SystemC simulation models for timing prediction of
neural networks on MPSoC.

Keywords — Model of Performance, Multi Processor, Real-Time Analysis,
Embedded Artificial Intelligence, Neural Network

1 Introduction

The market of the Internet-of-Things (IoT) is still growing, as the number of connected
devices is expected to reach more than 27 billion by 2025 (an increase of more than
200% compared to 2020) [15]. Along with its expansion, the need for smart devices
used to infer Artificial Intelligence (AI) algorithms such has neural networks has become
preponderant. Due to the complexity of neural network algorithms, they are often
deployed on servers available at fog or cloud layer of the IoT application. The servers
dispose of enough computation and memory resources for fast and accurate inference of
AI algorithms. However, executing AI algorithms on cloud is not optimal due to the
necessity to transmit data and computation results from and to the connected device.
This bears high costs in terms of latency and energy consumption, and induces variability
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in execution time (limited bandwidth for data transfers, centralized processing for several
applications in server).

To avoid loss in throughput and energy caused by data transmissions, the focus is
nowadays on the deployment of AI algorithm on edge devices. Among edge devices,
MultiProcessor Systems-On-Chip (MPSoC) are widely used due to the versatility they
offer. However, neural networks are computation-intensive applications that require
important amount of resources, while embedded platforms are limited in processing and
memory resources, and bear strict energy constraints. For this reason, implementing
neural networks on MPSoC is tough. In this context, an intensive evaluation of neural
network implementations on MPSoC is needed early in the design process to identify
solutions that optimize both performance and energy.

Several approaches have already been proposed to predict performance of embedded
AI algorithms on embedded platforms. Most approaches focus on proposing frame-
works to perform design space exploration for neural networks deployed on edge devices.
Some of these approaches rely solely on the implementation and performance evaluation
through measurement. Others propose analytical models used to explore and optimize
architectures for neural network inference. These approaches fail to propose scalable
system level models to allow fast yet accurate analysis of embedded AI algorithms on
MPSoC. Building such models requires capturing the effects of accesses to shared re-
sources through communication bus, while allowing to explore several mapping and
scheduling of the AI application.

In the scope of this work, our aim is to deliver efficient performance models of neural
networks mapped on MPSoCs. To do so, the following challenges have been considered
during the 1st year of the PhD:

• Modeling access to shared resources: what is the impact of data transmissions
on the platform on the application’s performance? How to accurately capture this
mechanism in performance models?

• Partitioning of the neural network algorithm:

1. What level of abstraction should be considered to model the neural network
application, to optimally exploit the parallelism of the application deployed
on the considered platform?

2. Once the grain set, how to partition optimally the application between a
user defined number of processing elements on a given platform (mapping /
scheduling)?

This document presents a modeling and analysis framework for performance pre-
diction for neural networks deployed on MPSoC. The second section of this document
positions our work compared to the state-of-the-art in this field. The third section
presents our proposal: an overview of our workflow is given, then each part of the work-
flow is presented in details. The fourth section presents results obtained on examples.
The fifth section presents the identified work directions for future work. The last section
gives our conclusion on the work done so far.
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2 State of the art

Several trends can be observed in the field of research on performance prediction for
neural networks deployed in embedded platforms.

Some approaches focus on architectural exploration: the aim is to perform perfor-
mance prediction for candidate SoC or FPGA-based accelerator for neural networks.
These works are often based on analytical models that allow exploring the design space
to find an architecture that optimize non-functional properties such as execution time,
energy consumption and surface/memory usage. These approaches often rely on cap-
turing the neural network in a model of computation such as Synchronous DataFlow
(SDF) [7] to partition it in an efficient way to exploit its parallelism.

A notable work in this field is [19]. This work focuses on the exploration of Con-
volutional Neural Networks (CNN) deployment on FPGA using SDF under timing con-
straints. This approach relies on analytical models to find efficient accelerator candidate
architectures in terms of execution time. The work in [16] presents a Design Space Ex-
ploration (DSE) method to allow finding the best SoC architectures to implement CNN
algorithms. The work emphasizes on finding an efficient bus or interconnect IP for com-
munications between actors. [2] proposes a tool for hardware architecture search for very
low power neural network implementations based on their own accelerator architecture
(UltraTrail).

Another notable approach is NNSim [8]. It proposes a set of SystemC models used to
evaluate and search for optimized mapping parameters for CNN implementations using
the Eyeriss accelerator architecture [3] [4]. The Eyeriss architecture is based on a set of
processing elements connected through a Network on Chip, and managed by a controller
IP. It is similar to GPU architectures [12]. NNSim [8] proposes a Transaction-Level
Model (TLM) in SystemC to alleviate the long simulation time required by RTL mod-
els. However, this work focuses on the processing element timing models and does not
consider the communications between processing elements. Mechanisms such as conges-
tion on communication channels and the effect of arbitration of processing elements on
execution time are overlooked.

All these approaches are focused on proposing analytical models or tools to explore
candidate accelerator architectures for a given neural network. In our work, we focus on
proposing models of performance to explore mappings of a partitioned neural network
on a given MPSoC platform.

Other approaches aim at proposing a performance evaluation workflow to explore
several mapping/schedulings of a given neural network on a given platform. A notable
approach is [18], which proposes a framework to perform DSE for CNNs deployed on low
power processor-based platforms designed for computer vision applications. Their work
targets more specifically the Intel Movidius Myriad 2 Vision Processing Unit (VPU).
Their work shows that the fine-tuned resource management offered by their workflow
reduces the execution time up to 3,6% and the energy consumption up to 7,7% in com-
parison with straightforward implementations.

Another notable approach can be found in [5]. This paper proposes a method to
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explore topologies for a given Deep Neural Network (DNN) in order to explore trade-offs
between accuracy (Quality of Service - QoS) and energy/inference time. The neural
network is implemented on a NVIDIA Jetson TX2 Graphical Processing Unit (GPU).
The candidate topologies are trained on non-embedded GPU boards, then implemented
and tested on the target device.

Both these approaches rely on implementation and testing of candidate neural net-
work algorithms on the considered platform to evaluate their performance. They do
not propose analysis models to predict energy and execution time ahead of the design
and implementation phases. Their work is also focused on VPU or GPU architectures,
which contain resources to ease the execution of applications such as neural networks.
In our work, we consider MPSoC platforms that do not present activated features for
acceleration of neural networks.

The Table 1 summarizes the approaches led in the field of performance evaluation of
neural networks deployed on embedded platforms.

Work Proposition Target
Performance
Evaluation
Technique

Dataflow
model

Effort on
communications

[19]

FPGA-based accelerator
architecture that can
explore and exploit

all sources of parallelism

FPGA
Analytical

model based
on SDF

SDF None

[10]

FPGA-based accelerator
architecture that can
explore and exploit

all sources of parallelism

FPGA
Analytical
models

None None

[16]
SoC design exploration
using analytical models

for CNNs
SoC

Analytical
model

Yes
(not

detailed)

Exploration of
bus and interconnect

IPs

[8]

SystemC TLM models
to explore Eyeriss-type

architectures Chen2016 Chen2018
for CNNs

FPGA
Various level

of computation
models

None Not modeled

[2]

Exploration of very low power
architectures for NN on FPGA,
focused on memory optimization

to reduce power

FPGA

Algorithm for
architecture
search with
measurement

None None

[18]
Performance evaluation (timing,

energy) of CNNs on Intel
Movidius Myriad2

VPU
Evaluation of

measured
performance

None
Optimization by
reduction of data
transfer number

[5]
Performance evaluation (timing,

energy) of CNNs on GPU
GPU

Evaluation of
measured

performance
None None

Our work
Performance prediction using

SystemC models for NN
deployed on MPSoC

MPSoC

System level
communication
and computation

models

SDF
Probabilistic system
level model of bus

Table 1: Summary of notable state-of-the-art approaches for neural network evaluation
on embedded platforms

The work led during the first year of this PhD focuses on the proposal of scalable sys-
tem level models for timing analysis of neural networks deployed on MPSoC platforms.
The models allow predicting accurately the effects of data exchanges of the communi-
cation bus on the platform. The workflow presented in this work is based on previous
work presented in [17] [20]. The previous workflow was based on a probabilistic Sys-
temC model and allows predicting execution times of video processing applications. This
approach has demonstrated to deliver fast yet accurate analysis on video processing ap-
plications (1% error in end-to-end latency prediction achieved for 1.000.000 images, with
analysis time around 5 seconds). During the first year of the PhD, this workflow has
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been updated to allow exploring several partitionings and mappings of neural network
algorithms.

3 Proposal

We propose a workflow for performance prediction for neural networks deployed on
MPSoC at system level. An overview of our workflow is given in the first section. Then
every part of the workflow is presented in details: the considered input application,
the considered model of architecture, the model of computation used, the model of
performance and the results obtained so far.

3.1 Overview of the modeling and simulation workflow

Probabilistic SystemC Model

A1 A2

A3

MoA

Capture in
SDF MoC

INPUTS PERFORMANCE PREDICTION ANALYSIS RESULTS

NN
Distribution of predicted probability of

execution time and energy consumption 

MAPPING / SCHEDULING

Mapping
and

scheduling Models annotated via measurement

Communication
Time Model

Computation
Time Model

EXPLORATION OF DESIGN SPACE

Figure 1: Overview of the proposed modeling and analysis workflow

The proposed modeling and analysis workflow is presented in Figure 1. It is composed
of the following elements, which are presented in details in the following sub-sections of
this report:

• The Neural Network (NN): in our workflow, the considered input application
is a neural network.

• The Model of Architecture (MoA): the considered platform is composed of a
set of tiles, which contain one processing element with a separate connected private
memory. It also contains shared resources such as memories which can be accessed
by the tiles through a communication bus.

• The Model of Computation (MoC): Synchronous DataFlow (SDF) is used as
a model of computation in our workflow. The neural network is captured in SDF.

• The mapping and scheduling step: in this step, the neural network captured
in SDF is mapped and self scheduled on the targeted MPSoC platform.

• The performance prediction step: the performance prediction is based on both
a communication model and a computation model, which are integrated in
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a probabilistic SystemC model. The SystemC model is used for execution time
analysis. In future work, the energy consumption will also be predicted.

• The DSE step: this DSE is performed by evaluating several mapping and schedul-
ing for the considered neural network on the considered platform. Optimized can-
didate implementations under timing and energy constraints can be identified using
this process.

3.2 Input Application: Neural Network

AI is a large field, covering numerous algorithms such as decision trees, data clustering
and bayesian classifiers for the most commons ones. One of the most notorious AI
algorithm used for image classification problems is the neural network [14]. This type of
AI algorithm is based on the architecture of brain’s neural networks. There are several
architectures of neural networks. The classical, first architecture of neural networks is
the Multi-Layer Perceptron (MLP) as introduced by Rosenblatt in 1952 [14]. The MLP
is only composed of fully-connected layers. For now, this work is entirely focused on
Multi-Layer Perceptrons type of neural networks.

To ease the implementation of neural networks, deep learning frameworks are widely
used. These frameworks offer classes and functions that can be used to easily build, train,
save, deploy and execute a neural network. Notorious examples of such frameworks
are Tensorflow, released by Google in 2015 [1] and PyTorch [13]. In this work, we
rely on the deep learning library LibFann (Fast Artificial Neural Network Library) [11].
This lightweight library allows capturing multi-layer perceptrons to deploy them on tiny
embedded platforms. It offers simple to use and modify C code, which makes it a better
suit for us than other deep learning frameworks that mainly use Python. The use of the
workflow along with LibFann allows implementing neural network applications on the
platform and characterizing the actors identified in the SDF graph.

In this paper, the work is focused on a multi-layer perceptron algorithm used to per-
form digit recognition. To train and test the neural network, we relied on the MNIST
(Modified National Institute of Standards and Technology) database, which was intro-
duced by Y. Lecun [6] to train neural networks for digit recognition tasks. The considered
neural network algorithm is presented in Figure 2.

In order to test the LibFANN library, and manage memory issues on the targeted
platform, an elementary application has been considered in addition to the work on the
MNIST application. This application is used to predict the output of a two input XOR
gate. This application is presented in Figure 3.

In the scope of this work, the neural network is considered to be already trained
before its implementation on target. We do not consider the training of the neural
network on the targeted platform.
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3.3 Model of Architecture (MoA)

The considered platform is composed of a set of tiles (a tile is one processing element
with a separate connected private memory). Executing instructions from this private
memory causes no interference with other tiles. Data exchanges between different tiles
are performed via a shared memory. The accesses to the shared memory are done using
a communication bus. A schematic of our platform is given in Figure 4.

In this work, tiles are assumed to be identical, except for private memory sizes. The
targeted platform is thereby assumed to be homogeneous.

3.4 Model of Computation (MoC) - Synchronous DataFlow (SDF)

To ease the analysis and DSE of candidate neural network implementations on targeted
platform, a model of computation is required. In our work, we consider SDF graphs, as
introduced by Lee and Messerschmitt in 1987 [7]. This model is used to describe the
data flow between actors via communication channels. SDF offers a strict separation
of computation (compute) and communication phases (read, write) of actors. During
the compute phase, no interference with any other actor can occur. Because of this,
capturing neural networks in SDF model of computation enables a more flexible DSE
process while removing restrictions on the targeted hardware platform.

The work in [9] presents a way of capturing neural networks in SDF, featuring several
levels of abstraction. The lowest granularity translation considered is the layer grain.
For this granularity, the actors considered in the SDF graph are the layers of the neural
network. A finer granularity is the neuron grain, where the actors considered in the SDF
graph are the neurons of the neural network. However, the layer grain is too dense to
exploit any parallelism from the neural network. The neuron grain invokes numerous
communication channels, which overload the communication bus of the considered plat-
form. Both the layer and neuron grains are, for this reason, not optimal choices of grain
to capture the neural network application and deploy it on the considered MoA.

In this work, we also consider an intermediate grain, composed of a cluster of neurons.
When using this level of abstraction, the actors of the SDF graph are sets of neurons
obtained from the partitioning of layers. The number of clusters defines how many
actors are generated for each layer in the SDF graph. This grain presents the advantage
of allowing exploiting parallelism from the AI algorithm, while limiting the number
of communications and thereby the communication time. A cluster of neurons only
groups neurons of the same layer, therefore, by construction of neural networks, clusters
formed from the same layer can be executed at the same time, which allows executing
computations in parallel. The various granularity levels are depicted in Figure 5.

The parallelization degree of the SDF graph and the induced number of communica-
tion channels depend directly on the choice of number of clusters. Raising the number
of clusters raises the degree of parallelism, but also raises the number of communication
channels, which may reduce the computation time while raising the communication time
of the application, and therefore impact the global execution time of the application. Ex-
ploring the clustering of the application (the number of clusters generated from every
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Figure 5: Description of a neural network in SDF graphs using various levels of granu-
larity

layer) is for this reason necessary.
Once the application captured in SDF, the mapping and scheduling of the SDF graph

on the platform can be performed. The application is self-scheduled: the scheduling is
established based on the dependency between actors. Therefore, no scheduling step
is required once the mapping of the application on the platform is complete. In the
mapping step, the actors of the identified SDF graph are mapped on the processing
elements available on the platform. The communication channels between actors are
mapped on the shared memory. The processing elements will read and write the tokens
necessary for the execution of the actors on the shared memory. During the execution
of actors, the processing elements cannot be interrupted. The instruction and data for
the execution are available in the local memory of the tile. The local memory can only
be accessed by the local processing element.

For a given SDF graph, several mappings of the application are possible. An example
of mapping for a given neural network application captured in SDF is shown in Figure 6.
Exploring the clustering of the application along with the mapping/scheduling allows
finding optimized implementations based on timing constraints. The analysis of the
mapping/scheduling is performed using our model of performance, presented in the
following section.
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Figure 6: A neural network application captured using layer grain in the SDF model of
computation, then mapped on the model of architecture

3.5 Model of Performance (MoP)

In order to predict the performance of a given mapped and self-scheduled SDF graph
(SDFG) on the considered platform, models of performance are used. Our models of
performance are system level models captured in SystemC. They integrate a computation
time model and a communication time model. The computation time model allows
predicting the execution time of actors based on their measured computation time. The
communication time model allows predicting the time needed for data transactions on the
platform. The Figure 7 presents an overview of our SystemC models, and the Figure 8
presents how the performance of a SDF graph mapped on the targeted platform can be
predicted by our models of performance.

Behavior : 
 

ReadToken +
ComputeActor+

WriteToken

SC_MODULE = Tile

SC_THREAD 

Behavior : 
 

ReadToken +
ComputeActor+

WriteToken

SC_MODULE = Tile

SC_THREAD

SC_CHANNEL

Model for bus +
memory + channels

Figure 7: Overview of SystemC models architecture
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Figure 8: Schematic of how a mapped SDFG is captured in our SystemC model

The ReadToken and WriteToken operations delays are computed by the communi-
cation time model, based on channel size, concurrent accesses, and also bus and memory
properties. The ComputeActor operation delay is computed using the computation time
model. Two different computation time models can be used to predict the delay of
ComputeActor :

• Model A: the model from our previous workflow, which predicts the delay based
on a Gaussian law applied to measured actor execution time,

• Model B: the analytical model developed in this work, which allows predicting
the execution time of any fully connected layer based actor, that is composed of a
set of neurons.

The model A is characterized by measurement: the actors of a given SDF graph are
first executed on the targeted platform, and their execution time is measured. Due to
data dependant paths, the execution time of actor can vary from one iteration to another,
based on the input data. Each measured execution times for a given actor is therefore
associated with its probability to occur, computed based on the statistical appearance
of the execution time during measurement. The execution times with their associated
probability are then used by the model of computation to predict the execution time of
actor while taking the execution time variability into account. Once the characterization
of the model of computations performed using the execution time of actor, using it in
association with the communications time model allows predicting the execution time of
any mapping of the SDF graph on the targeted platform. Thanks to its fast prediction of
execution time along with prediction of variability caused by data dependant paths, this
model proved to be accurate and fast to execute for execution time prediction of video
processing applications such as a Sobel filter application and a JPEG decoder application
[17] [20]. However due to the need to characterize the model again when targeting a new
SDF graph, this model for computation execution time lacks of versatility.

For this reason, and because neural network applications do not present data de-
pendant paths, as shown in subsection 3.2, a new model for computation time has been
built. The model B computes the delay based on the formula given for this class of
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applications in Equation 1, which allows computing the delay for a neuron. In this
equation, Dneuron is the delay in clock cycles needed to compute a neuron. Nn−1 is
the number of neurons contained in the previous layer of the MLP. Drdw is the delay
associated with the reading of the weights. Dsum is the delay to perform the sum. The
weight reading operation and the sum operation must be performed for each input of
the layer, that is for each neuron contained in the previous layer and one more time for
the bias, so Nn−1 + 1 times. Dact.func. is the delay to compute the activation function.
To compute the execution time of a layer, or any cluster of neuron, one simply needs to
multiply the delay required to compute a neuron by the number of neurons contained in
the layer, or in the cluster. This is highlighted in Equation 3. Dlayer is the delay needed
to compute a layer (or a cluster of neurons) of a MLP. NNn is the number of neurons
inside the considered layer (or cluster of neurons). Dbase as set in Equation 2 is the base
delay, composed of the sum of the read weight delay Drdw and sum delay Dsum.

Dneuron = (Nn−1 + 1) × (Drd input + Drd w + Dsum) + Dact.func. (1)

We set

Dbase = Drd input + Drd w + Dsum (2)

The delay to compute a layer (or cluster of neuron) is:

Dlayer = Nn ×Dneuron = Nn × ((Nn−1 + 1) ×Dbase + Dact.func.) (3)

The Dbase and Dact.func. delays can be characterized based on measured execution
time of neurons.

Due to the strict separation of communication and computation offered by the SDF
model of computation, and by construction of our model of architecture, the proposed
model of performance is scalable: once the characterization performed, the model of
performance is able to predict any configuration with any number of tiles with accurate
results. Different possible mappings are simulated using the proposed model of perfor-
mance. The actual execution times are then measured to compare with the results of
the models.

The next section presents the measurements of neural networks execution time ob-
tained using our measurement infrastructure, and the predictions of our models of per-
formance.

4 Results

This section presents the preliminary results of our workflow. First the platform used
to measure the execution time of neural networks captured in SDF is presented. Then
the results of our prediction models are presented.
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4.1 Measurement infrastructure and measured performance

To characterize our models of performance, and to validate their prediction, we rely on
a measurement infrastructure, used to measure the execution of actors identified in SDF
graphs. This measurement infrastructure is implemented in a platform that follows the
hypothesis done on the model of architecture, as presented in Fig. 4. For the experiment,
the platform is implemented on a ZC702 board, which features a Zynq7000 FPGA. In
future work, the ZCU102 board which features a Ultrascale MPSoC+ component will
also be considered to explore configurations with more tiles and more memory.

A tile is composed of a MicroBlaze processing element, and a local memory imple-
mented as BRAM. The platform is composed of 7 tiles connected via an AXI shared
interconnect. The tiles can access a shared memory, via the shared interconnect. The
measurement infrastructure is composed of two parts: the computation time measure-
ment part and the communication time measurement part. The computation time mea-
surement part contains a set of functions to measure the computation delay of actors.
When a SDF graph starts (when actor IN is executed), the system issues a start signal.
When it ends (when actor OUT is executed), the system issues a stop signal. These
signals are handled directly in the code deployed on the processing elements. Based on
the elapsed time between the start and stop signals, the functions inside the measure-
ment infrastructure computes the execution time of the SDF graph. The computation
time measurement infrastructure then sends the measured execution time through an
UART communication channel. The communication time measurement part relies on
the Integrated Logic Analyzer (ILA) provided by Xilinx to measure the communication
time on the shared interconnect. The platform with the measurement infrastructure is
presented in figure 9.

The execution time of the XOR application (as presented in subsection 3.2, Figure 3)
have been measured, as shown in Table 2. The execution time using iteration-grain (the
neural network algorithm as whole is an actor) is compared with the execution time
using the layer-grain. As depicted in the table, the execution time using layer grain on
1 and 2 MicroBlazes is 3% longer than the iteration grain. This longer execution time is
due to the apparition of more communication channels when using a finer grain, which
bear a cost in communication time on the platform. The parallelism from neural network
applications cannot be exploited using the layer grain, as explained in subsection 3.4.
For this reason, executing layer grain on 1 MicroBlaze and 2 MicroBlazes bears almost
identical execution time (the 2 MicroBlaze implementation is slightly faster, with an
acceleration of 0.27%).

Using the measurement infrastructure, it is also possible to measure the execution
time of actors. The measured execution time of the layers identified in the XOR layer
grain SDF graph are given in table 3. The execution time of the HiddenLayer actor is
2.80 times longer than the execution time of the OutputLayer actor. The HiddenLayer
actor contains the computation of 3 neurons, with each 2 inputs (6 connections in total),
whereas the OutputLayer actor contains the computation of 1 neuron, with 3 inputs.
Less computations are performed in the OutputLayer actor, and for this reason the
execution time of this actor is shorter. These measured execution times of actors are
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Figure 9: Platform implemented on Zynq7000 FPGA for measurements

used to characterize our models of performance.
The measurement of execution for the MNIST application is still undergoing. Im-

plementing neural network applications such as the MNIST application on the targeted
platform is tedious. These applications require important amount of memory resources,
which are not available on the platform. The Table 4 shows the needed memory re-
sources to store the parameters of the considered neural network applications, compared
to the actual capacity of the targeted FPGA boards. Two MNIST algorithms are con-
sidered in this table, the MNIST 784-300-10 contains one hidden layer composed of 300
neurons, and an output layer composed of 10 neurons, and the MNIST 784-32-16-10 is
composed of two hidden layers of respectively 32 and 16 neurons, and an output layer
of 10 neurons.

The memory usage required for the MNIST 784-300-10 algorithm is too high to be
implemented on both considered boards. For this reason, another algorithm is consid-
ered. The MNIST 784-32-16-10 requires 400kB for its parameters to be stored on the
targeted platform. In addition to the parameters, the LibFANN libraries functions, the
main execution code of the application and the input MNIST image must be provided,
which approximately require 100kB of memory. In addition to this, some memory should
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Input[0] Input[1] Accuracy IT-grain 1MB L-grain 1MB L-grain 2MB*

-1 -1 97.17 % 103914 p.c.* 107509 p.c.* 107224 p.c.*

1 -1 98.02 % 103695 p.c.* 107287 p.c.* 107002 p.c.*

-1 1 97.67 % 103571 p.c.* 107111 p.c.* 106826 p.c.*

1 1 92.74 % 103726 p.c.* 107291 p.c.* 107006 p.c.*

Table 2: Measured execution time for the XOR multi-layer perceptron application in
processor cycles (p.c.*) - each value depicted in the table has been measured constant
over a large (+1000) number of iterations of the application. IT-grain means iteration
grain, L-grain means layer-grain and MB means MicroBlaze

Input[0] Input[1] HiddenLayer actor* OutputLayer actor*

-1 -1 79054 p.c.* 28311 p.c.*

1 -1 79087 p.c.* 28056 p.c.*

-1 1 78766 p.c.* 28201 p.c.*

1 1 78974 p.c.* 28173 p.c.*

Table 3: Measured execution time for the actors of the XOR multi-layer perceptron
application in processor cycles (p.c.*) - each value shown in the table has been measured
constant over a large (+1000) number of iterations of the application.

be left available for the execution of the code on the MicroBlaze (approximately 50 kB as
measured on the considered applications). This new algorithm, along with the required
functions and input for its execution, fits on the total amount of resources available on
the targeted platforms. However, the whole BRAM memory surface cannot be allocated
to one processing element on the targeted platforms. For instance, on board ZC702,
the maximum BRAM that can be allocated to a MicroBlaze’s local memory is 512kB.
For this reason, the execution of the MNIST 784-32-16-10 is not possible on the current
platform without reducing the size of the parameters, the size of the LibFANN library
or the size of the memory needed by the MicroBlaze to execute its program.

BRAM available
in ZC702

BRAM available
in ZCU102

Memory needed to run
the considered applications

Total
Max. for

1 MicroBlaze
Total

Max. for
1 MicroBlaze

XOR
MNIST

784-300-10
MNIST

784-32-16-10

Size 1.12 MB 512 kB 7.3 MB 2 MB ∼155 kB ∼15MB ∼550 kB

Table 4: Memory available on targeted FPGAs (Block RAM), and memory needed to
store parameters for considered neural network applications

4.2 Performance prediction results

Our probabilistic SystemC model produces a distribution of execution times (in processor
cycles) with their associated probability. The predicted execution time for the XOR
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application are presented in the Table 5. The prediction are performed using both
model A and model B as presented in Section 3.5. The models achieve high accuracy
prediction, by having nearly identical prediction error smaller than 1% compared to
measured execution time on platform.

Experiment Exp 1MB ModA 1MB ModB 1MB Exp 2MB ModA 2MB ModB 2MB
Average execution

time (p.c.*)
107289 107405 107398 107004 107389 107384

Model error / +0.11% +0,10% / +0.36% +0,36%

Table 5: Measured and predicted execution time in processor cycles (p.c.*) for the XOR
application on 1 MicroBlaze (MB) and 2 MicroBlazes, using layer grain (average over
500 iterations). The model A (ModA) and model B (ModB) are presented in Section 3.5

As the MNIST application was not characterized yet, it is impossible to predict its
execution time using the previous computation time model. However, it is possible to
predict the execution time using the new analytical computation model. The new model
only need to be characterized once for a given neural network execution, and is then, by
construction, able to predict the execution time of any neural network. The predicted
execution times for the MNIST application using the new computation time model are
given in table 6 and table 7. When using layer grain, using more MicroBlazes to execute
the application does not accelerate its execution: the layer grain do not extract the
parallelism from the neural network application. However, when using cluster3 grain
(as introduced in subsection 3.4, figure 5c), the hidden layers of the neural network
are divided in 3 actors, allowing to accelerate the execution of the application with a
parallelization degree of 3. Therefore, as highlighted in the predicted execution times,
the application can be accelerated by deploying it to up to 3 MicroBlazes. The cluster3
SDF graph deployed on 3 MicroBlazes is 2.8 times faster to execute than the layer
SDF graph. The reason why it is not 3 times faster is because of the addition of more
communication channels, which induce longer communication times on the platform.

The presented results for the prediction of the MNIST application execution time
on the targeted platform require to be validated through experiment, by measuring the
execution of the MNIST application using the measurement infrastructure.

ModB MNIST
Layer 1MB

ModB MNIST
Layer 2MB

ModB MNIST
Layer 3MB

49252288 p.c.* 49252275 p.c.* 49252262 p.c.*

Table 6: Predicted execution time in processor cycles (p.c.*) of MNIST application using
layer grain. Three mappings are considered: using 1, 2 and 3 MicroBlazes (MB)
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ModB MNIST
Cluster3 1MB

ModB MNIST
Cluster3 2MB

ModB MNIST
Cluster3 3MB

ModB MNIST
Cluster3 6MB

49363231 p.c.* 33840723 p.c.* 17003282 p.c.* 17002754 p.c.*

Table 7: Predicted execution time of MNIST application in processor cycles (p.c.*) using
Cluster3 grain as introduced in subsection 3.4, Figure 5c. Four mappings are considered:
using 1, 2, 3 and 6 MicroBlazes (MB)

5 Future work

This section presents the work that has been identified for the second year of the PhD.
It presents the work that needs to be done to complete our workflow’s results, and the
research directions that has been identified.

During the first year, our model of performance has been updated for neural network
inference time prediction, and allowed predicting the performance of the MNIST appli-
cation. However, the new model has not been validated by comparing the predictions to
the measured execution time. For this reason, a key focus for the upcoming year is to
complete the timing analysis study. To complete the timing analysis study, the following
tasks must be performed:

• Obtain measurement for the MNIST application executed on ZC702,

• Validate the established computation model and our models of performance by
comparing the prediction with the measured values.

• Finish porting the platform to ZCU102 board to enable more testing configurations,
with more memory and number of tiles available.

In addition to this work, research topics that can be explored in the upcoming years
of the PhD have been identified:

• Extension of the modeling approach to power & energy consumption prediction,

• Model of architecture update with caches and DDR (possible option to be added
to extend the use-cases),

• Specification and evaluation of more complex partitioning techniques of neural
networks (e.g. in-layer and multi-layer clustering techniques),

• Specification and evaluation of other neural network topologies such as Convolu-
tional Neural Networks (CNN).

The main direction chosen is the extension of the modeling flow to prediction of
power & energy consumption. The proposed flow should enable the evaluation of power
management strategies available on multi-core platforms for ANN inference. The first
step should therefore consists in performing a state-of-the-art and specification of the
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existing techniques used to manage power on MPSoC platforms. Then a power model
of the platform (tiles, shared memory) should be specified and developed. The proposed
model should then be integrated with the SystemC simulation flow with timing modeling
in order to enable energy consumption prediction. To test, validate and evaluate the
power & energy modeling approach, a power measurement infrastructure for ANNs on
the targeted MoA should be developed and the power consumption of neural networks
should be measured and confronted with the predictions.
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