Pseudospin-phonon pretransitional dynamics in lead halide hybrid perovskites

B. Hehlen, P. Bourges, B. Rufflé, S. Clément, R. Vialla, A.C. Ferreira, C. Ecolivet, S. Paofai S. Cordier, C. Katan, A. Létoublon, and J. Even

Supplemental Material

Figure S1: Polarized (I_{\parallel}) and depolarized (I_{\perp}) Raman spectra in MAPB, MAPI, and FAPB in the cubic phase with incident polarization parallel to [110] and $q \parallel$ [001], showing a stronger Raman activity of the mode ω_1 in the polarized spectra. The latter provides a favorable scattering geometry to follow the mode with temperature across the cubic to tetragonal transition.

Figure S2: Raman spectral response of MAPB of the low frequency mode ω_1 in the cubic phase (our work) compared to *ab-initio* MD calculations of the frequency distribution of the Br modes [1]. The latter have been projected onto Pb-Br stretching and Br₆ rotation eigenvectors. The remaining displacements are Br₆ "distortions" and contain bending. Since in the cubic phase rotations are zone boundary vibrations, they do not contribute to the Raman signal and have not been considered here. The agreement between calculations and experiments suggests that the low-frequency response ω_1 fitted with one single DHO might contain a dominant contribution of bending-like motions together with possibly a weak contribution of stretching at low frequency.

Table S1: Literature data on the reorientational motions of the organic cation in APbX₃ samples (A=FA, MA; X=Br, I). When not specified the values are at room temperature. Values in meV and cm⁻¹ correspond to HWHM. One notices that at high temperature, the characteristic time scales of the reorientational motions are typically lower than ~ 10 ps, leading to HWHM of several wave numbers (few tens of meV).

		Rotation of CH ₃ and/or NH ₃	Reorientation of the C-N axis
Ref.	Techniques	around the C-N axis	(residence time)
		${ m ps}~({ m meV},~{ m cm}^{-1})$	$ps (meV, cm^{-1})$
Our work	INS	FAPB : $1.64 (0.40, 3.2)^*$	
	single crystal		
Our work	Raman	MAPB : $0.8 \ (0.8, \ 6.4)^{*,**}$	
	single crystal	MAPI : $0.9 (0.7, 5.6)^{*,**}$	
		FAPB : $0.47 (1.4, 11.3)^{*,**}$	
Swainson[2]	Powder	MAPB : $1.0 \ (0.7, \ 5.6)^{*,***}$	
(2015)	QENS		
Leguy	Powder	MAPI : $3.0 (0.2, 1.6)$	MAPI : $14 (0.05, 0.4)$
(2015)	QENS		
Chen	Powder	MAPI : $1.0 (0.7, 5.6)$	MAPI : 5 $(0.13, 1.1)$
(2015)	QENS	0.5 (1.3, 10.5) (370 K)	$2.4 \ (0.27, \ 2.2) \ (370 \ \mathrm{K})$
Poglitsch	Powder		MAPB : $2.7 (0.24, 1.9)$
(1987)	mm-wave		MAPI : $5.4 (0.12, 1.0)$
		Wobbling of the C-N axis	Reorientation of the C-N axis
Ref.	Techniques	in a cone (precession)	(residence time)
		$ps (meV, cm^{-1})$	ps (meV, cm^{-1})
Bakulin	Thin films	MAPI : $0.3 (2.2, 17.7)$	MAPI : $3 (0.22, 1.8)$
(2015)	t-resolved IR		

* Nature of the relaxations not specified

** Error bar = $\pm 1 \text{ cm}^{-1}$

 $\ast\ast\ast$ Value extrapolated at room temperature

References

- O. Yaffe, Y. Guo, L. Z. Tan, D. A. Egger, T. Hull, C. C.Stoumpos, F. Zheng, T. F. Heinz, L. Kronik, M. G. Kanatzidis, J. S. Owen, A. M. Rappe, M. A. Pimenta, and L. E. Brus, Phys. Rev. Lett. 118, 136001 (2017).
- [2] I. P. Swainson, C. Stock, S. F. Parker, L. V. Eijck, M. Russina, and J. W. Taylor, Phys. Rev. B 92, 100303 (2015).
- [3] A. M. A. Leguy, et al. Phys. Chem. Chem. Phys. 18, 27051 (2016).
- [4] T. Chen, B.J. Foley, B. Ipek, M. Tyagi, J.R.D. Copley, C.M. Brown, J.J. Choi and S.-H. Lee, Phys. Chem. Chem. Phys. 17, 31278 (2015).
- [5] A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).
- [6] A. A. Bakulin, O. Selig, H.J. Bakker, Y.L.A. Rezus, C. Mueller, T. Glaser, R. Lovrincic, Z. Sun, Z. Chen, A. Walsh, J. M. Frost and T.L.C.Jansen, J. Phys. Chem. Lett. 6, 3663 (2015)