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Fig. 1. Tetrahedral mesh deformation, locked vertices are shown in red. (a): Rest shape, (b): ABCD [Naitsat et al. 2020], (c): untangling [Garanzha et al.
2021a], (d) our lowest distortion mapping with 𝜃 = 1

2
. Top row: deformations, middle and bottom rows: log-log histograms of element quality (condition

number of the Jacobian matrix and Jacobian determinant).

Construction of optimal deformations is one of the long standing prob-

lems of computational mathematics. We consider the problem of computing

quasi-isometric deformations with minimal possible quasi-isometry constant

(global estimate for relative length change).

We build our technique upon [Garanzha et al. 2021a], a recently proposed

numerical optimization scheme that provably untangles 2D and 3D meshes

with inverted elements by partially solving a finite number of minimization

problems. In this paper we show the similarity between continuation prob-

lems for mesh untangling and for attaining prescribed deformation quality

threshold. Both problems can be solved by a finite number of partial solutions

of optimization problems which are based on finite element approximations

of parameter-dependent hyperelastic functionals. Our method is based on a

polyconvex functional which admits a well-posed variational problem.

To sum up, we reliably build 2D and 3D mesh deformations with smallest

known distortion estimates (quasi-isometry constants) as well as stable quasi

conformal parameterizations for very stiff problems.

CCS Concepts: • Computing methodologies → Mesh models.

Additional KeyWords and Phrases: Parameterization, injective mapping,

mesh untangling, bounded distortion, quality mapping
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1 INTRODUCTION
Construction of optimal deformations is one of central themes in

mesh generation research. Generally, for computing mesh defor-

mations, using elasticity analogy was found to be very fruitful and

resulted in efficient engineering mesh generation algorithms with

sound theoretical foundations [Jacquotte 1988; Rumpf 1996]. The

idea is to say that a mesh represents an elastic material, whose stored

energy of deformation can be measured as

∫
Ω

𝑓 (𝐽 ), where Ω is the

input domain, 𝐽 is the Jacobian matrix of elastic deformation, and 𝑓

is a measure of distortion. Then, obviously, we want to minimize

the stored energy of deformation.

More precisely, let us say that we want to compute a map ®𝑥 ( ®𝜉) :
Ω ⊂ R𝑑 → R𝑑 , where 𝑑 stands for the dimension (2 or 3), and

the arrow denotes a 𝑑-dimensional vector. Consider the following

variational problem:

argmin

®𝑥 ( ®𝜉)

∫
Ω

𝑓 (𝐽 ) 𝑑𝜉, (1)

where 𝐽 is again the Jacobian matrix of the mapping ®𝑥 ( ®𝜉).
While this formulation allows to minimize distortion on average,

it does not allow to limit maximum distortion. The problem of
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constructing bounded distorted deformations has a long-standing

history in elasticity research and goes back to 1957 Prager’s work on

“Ideal locking materials” [Prager 1957]. Now this problem is referred

to as “stiffening” of elastic material and generally is formulated

as a set of nonlinear constraints on the Jacobian matrix of elastic

deformation [Ciarlet and Necas 1985].

Constructing elastic deformations with bounded distortion con-

straints is a very hard non-convex and non-linear problem. There

were numorous attempts made to solve the problem. For example,

[Sorkine et al. 2002] propose to lay triangles in a plane in a greedy

manner without exceeding a user-specified distortion bound. Obvi-

ously, the mesh is cut during the procedure, and since it is possible to

lay individual triangles without any distortion, the method succeeds.

[Fu and Liu 2016] propose to enforce the distortion constraints with

a penalty method, leading to conflicts between multiple terms in

the energy to minimize. [Kovalsky et al. 2015] alternate between

energy optimization and a non-trivial projection to the highly non-

convex set of constraints. [Lipman 2012] formulates the problem as a

second-order cone programming, relying on elaborated commercial

solvers such as MOSEK [Andersen and Andersen 2000].

All these papers try to incorporate the boundedness constraint

into different black-box optimization toolboxes. While the approach

may work reasonably well in practice, it is hard to obtain any guar-

antees, and solutions may exhibit undesirable, hard to explain and

eliminate artifacts, say, noise and loss of symmetries. We propose

to explore another research direction based on a unconditional
optimization, avoiding altogether all issues related to constraints.

A very interesting idea [Garanzha 2000] is to consider a quasi-

isometric hyperelastic material, which unlike other known models,

provides admissible deformations with bounded global distortion

(bounded quasi-isometry constant) as minimizers of elastic energy.

Invertibility theorem for deformation of this material was estab-

lished in 2D and 3D cases [Garanzha et al. 2014]. The main idea is to

use controlled stiffening of material which is incorporated directly

into definition of the density of deformation energy in such a way

that when local measure of deformation exceeds certain threshold,

the elastic material becomes infinitely stiff. The stiffening threshold

is introduced as a parameter, and max-norm optimization prob-

lem for deformation is formulated as a continuation problem for

polyconvex functional (minimization of stiffening threshold, or, al-

ternatively, maximization of the quality threshold). Unfortunately,

this work lacks a robust strategy of stiffening parameter choice.

Generally speaking, the stiffening technique may be expressed in

the following way. Having a distortion measure 𝑓 (𝐽 ), we can try to

minimize the following energy:∫
Ω

𝑤 · 𝑓 (𝐽 ) 𝑑𝜉,

where𝑤 is a weight function. Typically,𝑤 is chosen to be large in

the regions where small values of 𝑓 (𝐽 ) are required. We can use

this general weighted formulation to control pointwise behaviour

of the spatial distribution of the distortion measure. This idea was

suggested in [Garanzha 2000] to build orthogonal mappings near

boundaries which is one of the key requirements for CFD meshes.

[Bommes et al. 2009] used such weights in a heuristic procedure

for mesh untangling. If an adaptation metric is prescribed in the

computational domain, one can compute the weight function 𝑤

according to this metric [Ivanenko 2000].

Some other methods have also used this technique. For example,

by setting

𝑤 := 𝑓 𝑝 (𝐽 ), 𝑝 > 0,

one can get a power law enhancement, thus penalizing large values

of local distortion [Garanzha and Kudryavtseva 2019]. The same

idea was used in IDP algorithm [Fang et al. 2021] where the authors

suggested to use 𝑝 = 4 as a rule of thumb. If function 𝑓 is polyconvex,

function 𝑓 1+𝑝 (𝐽 ) is polyconvex as well. Note however, that in the

continuous case one cannot prove that 𝑓 1+𝑝 (𝐽 ) is bounded from

above, and in the discrete case one cannot prove that 𝑓 (𝐽 ) does not
grow to infinity under mesh refinement.

Another weight

𝑤 :=
1

1 − 𝑡 𝑓 (𝐽 ) , 0 ≤ 𝑡 < 1

corresponds to algorithm from [Garanzha 2000]. The resulting func-

tional has an inifinite barrier (refer to §2.3 for more details) on

the boundary of the set of quasi-isometric deformations [Garanzha

et al. 2014], thus solving problem of quasi-isometric map generation

formulated by Godunov [S. K. Godunov 1995] for general domains.

Having carefully designed a strategy of choice for the stiffen-

ing parameter 𝑡 , we obtain lowest distortion maps with our quasi-

isometric stiffening (QIS) algorithm (Alg. 2 + Eq. (16)). With this

new contribution, we were able to confirm the 20-years old conjec-

ture that variational problem [Garanzha 2000] allows to build best

deformations compared to state-of-the-art algorithms.

Our contributions. We propose a very simple algorithm that al-

lows us to reliably build 2D and 3D mesh deformations with small-
est known distortion estimates (quasi-isometry constants). To

the best of our knowledge, we are the first to provide theoretical
guarantees
to this long standing problem. Our approach is a discretization

of a well-posed variational scheme, and it has an advantage that

type, size and quality of mesh elements in the deformed object

have a weak influence on the computed deformation. We show that

attainable quality threshold estimates (quasi-isometry constants)

do not deteriorate under mesh refinement which is a unique

property of the proposed algorithm.

By coupling our technique with [Garanzha et al. 2021a], we obtain

a complete unified mapping pipeline. For a better reproductibility,

we publish a complete C++ implementation [Sokolov 2022]. We

start from an arbitrary initial deformation, untangle the mesh in a

finite number of steps, minimizing mean distortion, and finally we

minimize the maximum distortion. Just like for the untangling step,

we can obtain a deformation with a prescribed quality threshold in a

finite number of steps. Both parts of the pipeline build upon the same

ideas, and require only a linear solver [Hestenes and Stiefel 1952]

for positive definite matrices (if Newton minimization is adopted)

or a L-BFGS solver [Zhu et al. 1997] for a quasi-Newton scheme.

Last, but not least, we bring more robustness to global parame-

terizations. [Garanzha et al. 2021a] produce maps free of inverted
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elements, but do not prevent 𝑘-coverings, thus losing local injec-

tivity. We provide a very simple but effective way to handle this

problem: we guarantee local injectivity for global parameteri-
zations.

2 VARIATIONAL FORMULATION FOR UNTANGLING
AND DISTORTION MINIMIZATION

This section gives a necessary background on elastic deformations.

First, in §2.1 we revisit main issues of mesh deformation based on

the elasticity theory. Then, in §2.2 we present the core idea behind

the untangling procedure described in [Garanzha et al. 2021a]. Next,

in §2.3, we describe the idea behind generation of deformations of a

given quality, until recently very heuristic. Finally, having prepared

all necessary concepts, we can present our latest guarantees and

results (§3 and §4).

2.1 Elastic material choice and main issues
For our meshes we chose a material whose stored energy of de-

formation

∫
Ω

𝑓 (𝐽 ) 𝑑𝜉 can be measured with density 𝑓 defined as

follows [Garanzha 2000; Hormann and Greiner 2000]:

𝑓 (𝐽 ) := (1 − 𝜃 ) 𝑓𝑠 (𝐽 ) + 𝜃 𝑓𝑣 (𝐽 ), (2)

where shape distortion is defined as

𝑓𝑠 (𝐽 ) :=


1

𝑑

tr 𝐽⊤ 𝐽

(det 𝐽 )
2

𝑑

, det 𝐽 > 0

+∞, det 𝐽 ≤ 0

(3)

while volumetric distortion is defined

𝑓𝑣 (𝐽 ) :=


1

2

(
det 𝐽 + 1

det 𝐽

)
, det 𝐽 > 0

+∞, det 𝐽 ≤ 0

(4)

Note that functions 𝑓𝑠 (𝐽 ) and 𝑓𝑣 (𝐽 ) have concurrent goals, one pre-
serves angles and the other preserves volumes, and thus 𝜃 serves as

a trade-off parameter. Density (2) is a polyconvex function satisfying

ellipticity conditions, it is therefore very well suited for a numerical

optimization.

Polyconvexity of the energy, ellipticity of the PDE and invertibil-

ity of the minimizer are very strong results; moreover, the minimizer

of Prob. (1) has a minimum average distortion. There are, however,

two issues with this formulation:

(a) the variational problem makes sense and allows for mini-

mization only when an initial guess is in the admissible domain

min

Ω
det 𝐽 > 0, so a special untangling procedure is required for an

arbitrary initial guess;

(b) the fact that functional (1) is bounded does not imply that

distortion measure (2) is bounded. It optimizes average deformation

and admits integrable singularities. In order to provably suppress

this behaviour, one has to consider modified hyperelastic material

which forbids deformations with local distortion above prescribed

threshold.

Two following sections discuss both points and lay the ground for

our contribution in controlled stiffening of a hyperelastic material,

that provably allows us to build best known quasi-isometric maps.

D

χ(D, ε)

ε = 3ε = 4

ε = 2
ε = 1

Fig. 2. Regularization function for the denominator in Eq. (6). When 𝜀 tends
to zero, 𝜒 (𝜀, 𝐷) tends to max(0, 𝐷) .

2.2 Untangling
With a slight abuse of notations, the density (2) can be rewritten as

follows:

𝑓 := (1 − 𝜃 ) 1
𝑑

tr 𝐽⊤ 𝐽

(max(0, det 𝐽 ))
2

𝑑

+ 𝜃 1
2

1 + det2 𝐽
max(0, det 𝐽 )

Note that if an initial guess is not admissible (has inverted ele-

ments), then the function is not defined. To overcome this problem,

we can introduce function 𝜒 (𝐷, 𝜀) that will serve as a regularization
for max(0, 𝐷) in the denominator:

𝜒 (𝐷, 𝜀) := 𝐷 +
√
𝜀2 + 𝐷2

2

(5)

When 𝜀 tends to zero, 𝜒 (𝜀, 𝐷) tends to max(0, 𝐷), refer to Fig. 2

for an illustration. Then, the density can be regularized as fol-

lows [Garanzha and Kaporin 1999]:

𝑓𝜀 (𝐽 ) := (1 − 𝜃 )
1

𝑑

tr 𝐽⊤ 𝐽

(𝜒 (det 𝐽 , 𝜀))
2

𝑑

+ 𝜃 1
2

1 + det2 𝐽
𝜒 (det 𝐽 , 𝜀) (6)

Finally, Prob. (1) can be rewritten as follows:

lim

𝜀→0
+
argmin

®𝑥 ( ®𝜉)

∫
Ω

𝑓𝜀 (𝐽 ) 𝑑𝜉 (7)

This formulation suggests an algorithm: build a decreasing sequence

of the 𝜀𝑘 → 0, and for each value 𝜀𝑘 solve an optimization problem.

In other words, Prob. (7) offers a way of getting rid of foldovers by

solving a continuation problem with respect to the parameter 𝜀.

The simplest way to discretize Prob. (7) is with first-order FEM:

the map ®𝑥 is piecewise affine with the Jacobian matrix 𝐽 being

piecewise constant, and can be represented by the coordinates of

the vertices in the computational domain {®𝑥𝑖 }#𝑉𝑖=1. Let us denote the

vector of all variables as 𝑋 :=

(
®𝑥⊤
1
. . . ®𝑥⊤

#𝑉

)⊤
.

A discretization of Prob. (7) can be written as follows:

lim

𝜀→0
+
argmin

𝑋

𝐹 (𝑋, 𝜀), (8)

where 𝐹 (𝑋, 𝜀) :=
#𝑇∑︁
𝑘=1

𝑓𝜀 (𝐽𝑘 ) vol(𝑇𝑘 ),

#𝑉 is the number of vertices, #𝑇 is the number of simplices, 𝐽𝑘 is

the Jacobian matrix for the 𝑘-th simplex and vol(𝑇𝑘 ) is the signed
volume of the simplex 𝑇𝑘 in the parametric domain.

Technical Report, 2022.
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Input: 𝑋 0
// arbitrary initial guess (vector of size #𝑉 × 𝑑)

Output: 𝑋 // final foldover-free map (vector of size #𝑉 × 𝑑)
1: 𝑘 ← 0;

2: repeat
3: compute 𝜀𝑘 ; // decreasing sequence
4: 𝑋𝑘+1 ← argmin

𝑋

𝐹 (𝑋, 𝜀𝑘 );

5: 𝑘 ← 𝑘 + 1;
6: until min

𝑡∈1...#𝑇
det 𝐽 𝑘𝑡 > 0 and 𝐹 (𝑋𝑘 , 𝜀𝑘 ) > (1 − 10−3) 𝐹 (𝑋𝑘−1, 𝜀𝑘−1)

7: 𝑋 ← 𝑋𝑘
;

Alg. 1. Computation of a foldover-free map

Input: 𝑋 0
// untangled initial guess (vector of size #𝑉 × 𝑑)

Output: 𝑋 // final bounded distortion map (vector of size
#𝑉 × 𝑑)

1: 𝑘 ← 0;

2: repeat
3: compute 𝑡𝑘 ; // increasing sequence, Eq. (16)
4: 𝑋𝑘+1 ← argmin

𝑋

𝑊 (𝑋, 𝑡𝑘 );

5: 𝑘 ← 𝑘 + 1;
6: until𝑊 (𝑋𝑘 , 𝑡𝑘 ) > (1 − 10−3)𝑊 (𝑋𝑘−1, 𝑡𝑘−1)
7: 𝑋 ← 𝑋𝑘

;

Alg. 2. Quasi-isometric stiffening (QIS)

Prob. (8) can be solved with Alg. 1. The algorithm itself is very

simple, and has been published more than 20 years ago [Garanzha

and Kaporin 1999]. Note, however, that the crucial step here is the

choice of the regularization sequence 𝜀𝑘 (Alg. 1–line 3), and until

very recently only heuristics were used. Last year [Garanzha et al.

2021a] have presented a way to build such a sequence that offers

theoretical guarantees on untangling (refer to §3 for a complete

formulation).

Function 𝐹 (𝑋, 0) has an impenetrable infinite barrier on the

boundary of the set of meshes with positive cell volumes
1

vol( ®𝑥 (𝑇𝑘 ))
vol(𝑇𝑘 )

> 0, 𝑘 = 1, . . . , #𝑇 (9)

which is a finite-dimensional approximation of the set det 𝐽 > 0.

Untangling in Prob. (8) is guaranteed because [Garanzha et al. 2021a]

build a decreasing sequence 𝜀𝑘 → 0 that forces the mesh to fall into

the feasible set (9) of untangled meshes. With some assumptions

on the minimization toolbox chosen, untangling is guaranteed to

succeed in a finite number of steps.

2.3 Controlled quasi-isometric stiffening (QIS):
minimization of maximum distortion

In addition to untangling, by solving Prob. (8) we minimize average
distortion of a map. In this section we present the idea behind

[Garanzha 2000] that will allow us to compute a deformation with

prescribed quality, i.e. optimize the maximum distortion until it

reaches a given bound.

Consider following variational problem related to construction

of deformations with prescribed quality 0 ≤ 𝑡∗ < 1:

argmin

®𝑥 ( ®𝜉)

∫
Ω

𝑓 (𝐽 )
1 − 𝑡∗ 𝑓 (𝐽 ) 𝑑𝜉, (10)

1
As a side note, this set has a quite complicated structure. For 𝑘-th simplex vol( ®𝑥 (𝑇𝑘 ))
is a polylinear function of coordinates of its vertices, hence each term in (9) defines a

non-convex set. One can hardly expect that intersection of the sets in (9) would result

in a convex domain. Moreover, Ciarlet [Ciarlet and Geymonat 1982] has proved that

barrier property and convexity of the density of deformation energy are incompatible.

Fortunately, barrier distortion measures can be polyconvex, as shown by J. Ball [Ball

1976].

Recall that 𝑓 (𝐽 ) ≥ 1, so for this integral to be finite, a necessary

condition is

𝑓 (𝐽 ) < 1

𝑡∗
(11)

Here parameter 𝑡∗ plays the role of the lower quality bound of the

deformation. Note that the density in Prob. (10) is polyconvex and

this variational problem is well-posed [Garanzha et al. 2014].

We propose following finite-dimensional approximation of Prob. (10):

lim

𝑡→𝑡∗
argmin

𝑋

𝑊 (𝑋, 𝑡), (12)

where 𝑊 (𝑋, 𝑡) :=
#𝑇∑︁
𝑘=1

𝑓 (𝐽𝑘 )
1 − 𝑡 𝑓 (𝐽𝑘 )

vol(𝑇𝑘 ),

It is important to note that a solution of Prob. (8) corresponds

to a solution of Prob. (12) with 𝑡∗ = 0, i.e. when no bound on

the maximum deformation is imposed. But then, having reached

the set (9), we can build an increasing sequence of 𝑡𝑘 → 𝑡∗ to
contract the set until the mesh falls into the set of deformations

with prescribed quality 𝑡∗:

𝑓 (𝐽𝑘 ) <
1

𝑡∗
, 𝑘 = 1, . . . , #𝑇 (13)

Alg. 2 sums up the optimization procedure, note how closely it is

related to Alg. 1. While the general idea was published more than 20

years ago, until now it remained unclear how to build this sequence

{𝑡𝑘 }, and this constitutes the main theoretical contribution of the

present paper.

While we assume that parameter 𝑡∗ exists, fortunately we are

not obliged to know it to make QIS algorithm work. It is an impor-

tant advantage over optimization algorithms which use prescribed

distortion bound like LBD [Kovalsky et al. 2015], since in practice

even rough estimates of this bound are not available. Essentially,

QIS algorithm by itself serves as a distortion bound estimation tool

for problems of any complexity. Refer to App. A for the argumen-

tation of the fact that minimizing our distortion measure implies

minimization of the upper bound for the quasi-isometry constant.

Technical Report, 2022.



Practical lowest distortion mapping • 5

3 THEORETICAL GUARANTEES FOR QUASI-ISOMETRIC
STIFFENING

This section provides our main result, namely, a way to build an in-

creasing sequence {𝑡𝑘 } that allows us to effectively contract the fea-
sible set until we reach the goal. Untangling and stiffening are very

closely related, so let us first restate the main result of [Garanzha

et al. 2021a, Theorem 1], it will allow us to highlight the similarity

between the approaches.

Theorem 1. Let us suppose that the feasible set of untangledmeshes (9)
is not empty.We also suppose that for solving𝑋𝑘+1 ← argmin

𝑋

𝐹 (𝑋, 𝜀𝑘 )

we have a minimization algorithm satisfying the following efficiency
conditions for some 0 < 𝜎 < 1:

For each iteration 𝑘 ,
• either the essential descent condition holds

𝐹 (𝑋𝑘+1, 𝜀𝑘 ) ≤ (1 − 𝜎)𝐹 (𝑋𝑘 , 𝜀𝑘 ), (14)

• or the vector 𝑋𝑘 satisfies the quasi-minimality condition:

min

𝑋
𝐹 (𝑋, 𝜀𝑘 ) > (1 − 𝜎)𝐹 (𝑋𝑘 , 𝜀𝑘 ). (15)

Then the feasible set (9) is reachable by solving a finite number of
minimization problems in 𝑋 with 𝜀𝑘 fixed for each problem.

In this theorem Garanzha et. al. not only proved that there exists

a regularization parameter sequence {𝜀𝑘 }𝐾
𝑘=0

leading to 𝐹 (𝑋𝐾 , 0) <
+∞, but also provided an actual update rule for 𝜀𝑘 , refer to [Garanzha
et al. 2021a, Eq. (6)]. Inspired by these results, we formulate a very

similar theorem allowing us to build maps with bounded distortion

in a finite number of steps.

We also provide a way to build an increasing sequence {𝑡𝑘 } to
be used in Alg. 2–line 3: denote by 𝑓𝑖 (𝑋𝑘+1) the distortion for the

element 𝑖 , and by 𝑓 𝑘+1+ the maximal distortion value over the mesh

𝑋𝑘+1, 𝑓 𝑘+1+ := max𝑖 𝑓𝑖 (𝑋𝑘+1). We propose to use the following up-

date rule for 𝑡𝑘+1:

𝑡𝑘+1 := 𝑡𝑘 + 𝜎
1 − 𝑡𝑘 𝑓 𝑘+1+
𝑓 𝑘+1+

, (16)

where 0 < 𝜎 < 1 is again the performance index of the minimiza-

tion toolbox. Clearly, formula (16) does not involve 𝑡∗. Alg. 2 along
with this update rule define our quasi-isometric stiffening (QIS)

algorithm.

Now we are ready to formulate the stiffening theorem.

Theorem 2. Let us suppose that the feasible set of bounded distor-
tionmeshes (13) is not empty, namely there exists a constant 0 < 𝑡∗ < 1

and a mesh 𝑋 ∗ satisfying𝑊 (𝑋 ∗, 𝑡∗) < +∞. We also suppose that for
solving𝑋𝑘+1 ← argmin

𝑋

𝑊 (𝑋, 𝑡𝑘 ) we have a minimization algorithm

satisfying the following efficiency conditions for some 0 < 𝜎 < 1:
For each iteration 𝑘 ,
• either the essential descent condition holds

𝑊 (𝑋𝑘+1, 𝑡𝑘 ) ≤ (1 − 𝜎)𝑊 (𝑋𝑘 , 𝑡𝑘 ), (17)

• or the vector 𝑋𝑘 satisfies the quasi-minimality condition:

min

𝑋
𝑊 (𝑋, 𝑡𝑘 ) > (1 − 𝜎)𝑊 (𝑋𝑘 , 𝑡𝑘 ). (18)

Then the feasible set (13) is reachable by solving a finite number of
minimization problems in 𝑋 with 𝑡𝑘 fixed for each problem. In other
words, under a proper choice of the continuation parameter sequence
{𝑡𝑘 }𝐾

𝑘=0
, we obtain𝑊 (𝑋𝐾 , 𝑡𝐾 ) < +∞.

Proof. The main idea is very simple: update rule (16) defines an

increasing sequence {𝑡𝑘 }∞
𝑘=0

. We will show that the corresponding

sequence {𝑊 (𝑋𝑘 , 𝑡𝑘 )}∞
𝑘=0

is bounded from above. Then we can

prove that the admissible set (13) is reachable in a finite number of

steps by a simple reductio ad absurdum argument. More precisely, if

the feasible set is not reachable, then𝑊 (𝑋𝑘 , 𝑡𝑘 ) must grow without

bounds, what contradicts the boundedness.

To prove that {𝑊 (𝑋𝑘 , 𝑡𝑘 )}∞
𝑘=0

is bounded from above, we analyse

the behavior at some iteration 𝑘 . First of all, if we couple update

rule (16) with the fact that for any 𝑡2 > 𝑡1 the ratio
1−𝑡1𝜓
1−𝑡2𝜓 is increas-

ing function of argument𝜓 , we can see that the following inequality

holds:

(1 − 𝜎)𝑊 (𝑋𝑘+1, 𝑡𝑘+1) ≤𝑊 (𝑋𝑘+1, 𝑡𝑘 ) . (19)

More precisely,

𝑊 (𝑋𝑘+1, 𝑡𝑘+1) =
∑︁
𝑖

1 − 𝑡𝑘 𝑓𝑖 (𝑋𝑘+1)
1 − 𝑡𝑘+1 𝑓𝑖 (𝑋𝑘+1)

𝑓𝑖 (𝑋𝑘+1)
1 − 𝑡𝑘 𝑓𝑖 (𝑋𝑘+1)

≤

∑︁
𝑖

1 − 𝑡𝑘 𝑓+ (𝑋𝑘+1)
1 − 𝑡𝑘+1 𝑓+ (𝑋𝑘+1)

𝑓𝑖 (𝑋𝑘+1)
1 − 𝑡𝑘 𝑓𝑖 (𝑋𝑘+1)

=
1

1 − 𝜎𝑊 (𝑋
𝑘+1, 𝑡𝑘 ) .

Then, at each iteration 𝑘 , either condition (17) or condition (18)

must be satisfied. Let us consider both cases.

Cond. (17) holds: in this case function𝑊 actually decreases.

Eq. (19) combined with Cond. (17) directly imply that

𝑊 (𝑋𝑘+1, 𝑡𝑘+1) ≤𝑊 (𝑋𝑘 , 𝑡𝑘 ) .
Cond. (18) holds: under assumption that 𝑡𝑘+1 < 𝑡∗, by com-

bining Eq. (19) and Cond. (18), we obtain:

𝑊 (𝑋𝑘+1, 𝑡𝑘+1) ≤ 1

1 − 𝜎𝑊 (𝑋
𝑘+1, 𝑡𝑘 ) ≤

1

(1 − 𝜎)2
min

𝑋
𝑊 (𝑋, 𝑡𝑘 ) ≤ 1

(1 − 𝜎)2
𝑊 (𝑋 ∗, 𝑡𝑘 ) ≤

≤ 1

(1 − 𝜎)2
𝑊 (𝑋 ∗, 𝑡∗)

To sum up, in the first case the value of function𝑊 decreases, and

in the second case it does not exceed a global bound, therefore, the

sequence {𝑊 (𝑋𝑘 , 𝑡𝑘 )}∞
𝑘=0

is bounded from above.

Now we are ready for the main result. Suppose that for an infinite

sequence {𝑋𝑘 , 𝑡𝑘 }∞
𝑘=0

we never reach the given quality bound 𝑡∗.

In other words, we have 𝑡𝑘 < 𝑡∗, 𝑘 = 0, . . .∞. Then the following

inequality holds (apply formula (16) 𝑘 times):

𝑡𝑘 − 𝑡0 = 𝜎
𝑘−1∑︁
𝑗=0

(
1

𝑓
𝑗+1
+
− 𝑡 𝑗

)
≤ 1.

In the infinite sum each term is strictly positive, hence we can extract

a subsequence

1 − 𝑡 𝑗𝑠 𝑓 𝑗𝑠+1+ → 0
+ .

This fact obviously contradicts boundedness of the functional, al-

lowing us to conclude our proof. □
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Remark 1. An important corollary of Th. 2 is that, provided that
the admissible set (13) is not empty, there exists an iteration 𝐾 <

∞ such that the global minimum of the function𝑊 (𝑋, 𝑡𝐾 ) belongs
to the admissible set. The proof is rather obvious: suppose we have
an idealized minimizer such that 𝑋𝑘+1 = argmin

𝑋

𝑊 (𝑋, 𝑡𝑘 ). This

minimizer always satisfies the conditions of Th. 2, therefore it can
reach the distortion bound in a finite number of steps.

In practice, just like in [Garanzha et al. 2021a], the global estimate

𝜎 is not known in advance. Garanzha et al. suggest to compute the

local descent coefficient for each minimization step, and so do we.

Instead of 𝜎 in the update rule (16), we use 𝜎𝑘 defined as follows:

𝜎𝑘 := max

(
1 − 𝑊 (𝑋

𝑘+1, 𝑡𝑘 )
𝑊 (𝑋𝑘 , 𝑡𝑘 )

, 𝜎0

)
,

where 𝜎0 > 0 is a constant (we chose 𝜎0 = 1/10 in all our experi-

ments).

4 RESULTS AND DISCUSSION
Recall that our contribution is two-fold: (a)we provide an algorithm

to compute a deformation where all cells have a deformation qual-

ity above given threshold, and (b) we guarantee local invertibility
of a global parameterization for quad generation. This section is

organized in two subsections accordingly.

4.1 Quality optimization results
In order to check the ability of the variationalmethod (12) to improve

worst quality elements in the deformed meshes, we have performed

a series of tests.

Constrained boundary injective mapping. Along with their pa-

per [Du et al. 2020], Du et al. have published a benchmark with a

huge number of 2D and 3D constrained boundary injective mapping

challenges. We have computed initial injective maps with [Garanzha

et al. 2021a], and optimized the quality of the maps. Fig. 3 shows

the scatter plot for every mapping challenge from the database. For

each problem the plot has two dots: the red one corresponds to the

input injective map reduced to two numbers, namely, the maximum

stretch and the minimum scale. The green dot is the quality of the

map after our optimization. Gray segments show the correspon-

dence between the dots. As can be seen from the plot, in the vast

majority of cases our optimization improves both the maximum

stretch and minimum scale quality measures despite the fact that

the boundary is locked.

Conformal mapping. While in theory conformal maps are beyond

the scope of QIS algorithm, in practice it was found to be highly

successful. As was suggested in [Garanzha et al. 2021a], approxima-

tion of conformal mappings with quasi-isometric ones is indeed a

good and stable numerical solution. We have computed six discrete

conformal maps for a triangular mesh of a hand (refer to Fig.4). To

compare quality of the maps, we use the condition number of the

Jacobian matrix
𝜎1 ( 𝐽 )
𝜎2 ( 𝐽 ) , where 𝜎1 and 𝜎2 stand for the (ordered) singu-

lar values of 𝐽 . First we have computed four maps with state-of-the

art methods:

Fig. 3. Quality plot of the resulting locally injective maps for every challenge
from the database provided by [Du et al. 2020]. Each dot corresponds to a
quality of the corresponding map reduced to two numbers: the maximum
stretch and the minimum scale. Untangling results [Garanzha et al. 2021a]
are shown in red, whereas our results are shown in green (we took 𝜃 = 1

2
).

The gray lines show the correspondence in the results. Top:mapping quality
on the 2D dataset (10743 challenges). Bottom: mapping quality on the 3D
dataset (904 challenges).

(a) The easiest one to compute is the least squares conformal

map [Lévy et al. 2002]. This well-known method requires solving

one linear system with a symmetric positive definite matrix. The

idea behind LSCM is to compute a 𝑃1 finite element approximation

of the Cauchy-Riemann conditions over all triangles of the mesh.

(b) Second map was obtained by applying the boundary first

flattening method [Sawhney and Crane 2017] with boundary log-

scale factors set to zero. This choice of boundary condition leads to

the conformal map with minimal area distortion [Springborn et al.

2008, App. E].

(c) Third map is the result of the elliptic smoother [Garanzha

et al. 2021a], we have obtained it by solving Eq. (10) with 𝜃 = 0,

𝑡 = 0.

(d) Fourth map was obtained with CEPS [Gillespie et al. 2021].

Note that this method can alter the input triangulation, and the way

it handles surfaces with boundary is to glue together two copies

of the input mesh along the boundary, introduce cone singularities

and cut the mesh. The seams are shown in red in Fig. 4-(e).
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max
𝜎1
𝜎2
≈ 1.61

(a)

max
𝜎1
𝜎2
≈ 2.0

(c)

max
𝜎1
𝜎2
≈ 1.33

(e)

max
𝜎1
𝜎2
≈ 1.63

(b)

max
𝜎1
𝜎2
≈ 1.87

(d)

max
𝜎1
𝜎2
≈ 1.28

(f)

Fig. 4. Discrete conformal mapping test. (a): LSCM [Lévy et al. 2002], (b): BFF [Sawhney and Crane 2017], (c): untangling [Garanzha et al. 2021a], (d):
CEPS [Gillespie et al. 2021], (e): QIS applied to the untangling result (see (c)), (f): QIS applied to the surface cut by CEPS (see (e)).

Finally, starting from the untangling (c) and CEPS (d), we have
computed optimal discrete conformal maps by solving Eq. (10) with

𝜃 = 0while maximizing for 𝑡 . The results are shown in Fig. 4-(e) and
Fig. 4-(f). Log-log element quality histograms show that we improve

considerably the quality of input maps. It is easy to see that the

maximum condition number of the Jacobian matrix is consistently

better in our maps (1.33 and 1.28, respectively).

We were quite surprised by the fact that QIS algorithm outper-

forms highly elaborated algorithms for conformal parameterizations,

since this problem is beyond its derivation principles. One possible

explanation, which is referred to in [Garanzha et al. 2021a], is the

hypothesis that approximation of conformal mappings by quasi-

isometric mappings with growing quasi-isometry constants is a

good theoretical and engineering way for conformal parameteriza-

tions.

Comparison with ABCD. Fig. 1 shows a comparison with Adaptive

Block Coordinate Descent for Distortion Optimization [Naitsat et al.

2020]. We took a tetrahedral mesh of a combination wrench, and we

imposed positional constraints on the vertices located on both ends

of the wrench. As before, we optimize the quality starting from the

untangling result (Fig. 1-(c)).
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While the measures of deformation differ (ABCD uses ARAP-like

energy), most of our input map elements have comparable quality to

ABCD. Note however that ABCD produces several elements of very

bad quality, and untangling gains an order of magnitude over the

worst element quality: the maximum stretch max𝜎1/𝜎3 ≈ 28, the

minimum scale min det 𝐽 ≈ 0.06 for ABCD and max𝜎1/𝜎3 ≈ 2.35,

min det 𝐽 ≈ 0.69 for the untangling. In our turn, we improve the

quality even further, our quality measures are max𝜎1/𝜎3 ≈ 1.22

and min det 𝐽 ≈ 0.86.

Comparisonwith Injective Deformation Processing. Fang et.al [Fang
et al. 2021] attempt to improve worst-element distortions by for-

mulating a regularized min-max optimization for IDP by applying

a 𝑝-norm extension to the symmetric Dirichlet (SD) energy with

exponential factor 𝑝 > 1.

In our next test we deform a cylinder tetrahedral mesh.We applied

two bone handles (two thin boxes of interior axis vertices) to bend it.

Fig. 5 shows the comparison of our results with IDP. Locked vertices

are shown in red.

As advised by Fang et al., we chose 𝑝 = 5. It improves slightly

the worst-element distortion w.r.t regular IDP, but does not allow

to eliminate it completely. As can be seen in Fig. 5–left, the stress is

concentrated around the locked vertices (shown in magenta). Our

optimization (𝜃 = 1

2
) allows to dissipate the stress over a larger area,

thus improving both distortion measures: the maximum stretch

decreases from 5.05 to 1.94, and the minimum scale increases from

0.36 to 0.72.

Comparison with Large-scale Bounded Distortion Mappings. Our
next test is LBD [Kovalsky et al. 2015]. Given an input map (po-

tentially with folds), LBD looks for an injective map as close as

possible to the input map, but satisfying some constraints such as

the orientation as well as distortion bounds. Generally speaking,

the problem of minimizing an energy subject to bounded distortion

constraints is known to be difficult and computationally demanding.

LBD alternates between energy minimization steps and projection

to the constraints.

In our test (refer to Fig. 6), the 3D surface to flatten is a regular

simplicial mesh of a rectangular patch that was lifted and noised.

Since LBD has an explicit optimization of the distortion bounds,

the comparison is of a particular interest. In our test the minimum

Jacobian determinant increases from 0.30 to 0.69, while the maxi-

mum stretch increases from 1.50 to 1.61. Despite the increase in the

max stretch, our variational problem leads to a much better overall

element quality distribution. Note that this test was performed with

default stretch/scale trade-off parameter 𝜃 = 1

2
. If we choose, for

example, 𝜃 = 1

3
, both quality measures improve: max𝜎1/𝜎2 ≈ 1.43

and min det 𝐽 ≈ 0.76.

Comparison with Simplex Assembly. Our final test is confronting
our optimization to Simplex Assembly (SA) [Fu and Liu 2016]. Sim-

plex assembly is a method to compute inversion-free mappings

with bounded distortion on simplicial meshes. The idea is to project

each simplex into the inversion-free and distortion-bounded space.

Having disassembled the mesh, the simplices are then assembled

by minimizing the mapping distortion, while keeping the mapping

(a) (b)

Fig. 5. Bending test for a tetrahedral mesh of a cylinder, locked vertices are
shown in red. (a): IDP [Fang et al. 2021], (b): QIS deformation with 𝜃 = 1

2
.

From top to bottom: Jacobian matrix condition number and the Jacobian
determinant are shown in log-log histograms and corresponding color plots.

(a)

(b) (c)

Fig. 6. Comparison of LBD [Kovalsky et al. 2015] vs QIS. (a): 3D surface to
flatten is a regular triangular mesh of a square patch that was lifted and
noised. (b): Themap obtained by LBD. (c):QIS (𝜃 = 1

2
). Top row: flattenings

of (a), colors correspond to the quality of elements (conditioning of the
Jacobian).Middle and bottom rows: log-log element quality histograms.
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(a) (b)

Fig. 7. Two quasi-isometric maps for the “Lucy” mesh. (a): Simplex assembly,
(b): QIS, 𝜃 = 1

2
. The quality of elements and its distribution over the surface

is shown in log-log histograms and corresponding color plots.

(a) (b)

Fig. 8. Mapping a half-sphere on a disc: our solution with 𝜃 = 1

2
(a) vs

Simplex Assembly (b). Top row: condition number of the Jacobian matrix,
bottom row: Jacobian determinant.

feasible. Fig. 7 provides a quality comparison of SA with our quasi-

isometric (𝜃 = 1

2
) map for a free-boundary mapping of the “Lucy”

mesh. This comparison is interesting for two different reasons: first,

SA offers an explicit optimization for the distortion bound, and sec-

ond, in 2D Fu et. al use exactly the same distortion measure as we

do.

Our method shows consistently better maps w.r.t. Simplex As-

sembly. In this test, the worst condition number max
𝜎1 ( 𝐽 )
𝜎2 ( 𝐽 ) is 16.46

for SA and 10.32 for our method. The minimum scale min det 𝐽 is

equal to 0.05 for SA and 0.10 for our method.

Note that while in 2D Simplex Assembly has the same objective

function as our method, the way SA poses the problem (minimiza-

tion of maximal distortion) leads to non-smooth solutions. The fact

that the solution is noisy can already be seen in Fig. 7, but we chose

to perform a second test to highlight the fact: we map a half-sphere

onto a disc (Fig. 8).

This test case is interesting because it has a closed form solution.

It is possible to build an analytical flattening which has the smallest

known quasi-isometry constant Γ =
√︁
𝜋/2. This mapping can be ob-

tained by isometric projection of meridians onto straight segments

on the plane starting from the north pole while keeping angular pro-

jection uniform. Obviously, singular values of this mapping range

from 1 to 𝜋/2, and using best scaling we get Γ =
√︁
𝜋/2 ≈ 1.253.

As before, our result is better: the distortion for our flattening

is equal to

√︃
max𝑖 𝜎1 ( 𝐽𝑖 )
min𝑖 𝜎2 ( 𝐽𝑖 ) = 1.279, which is within 2% from the ideal

bound, and the quasi-isometry constant for SA is equal to 1.47.

This difference is due to the optimization scheme choice. Since we

discretize a well-posed variational problem, our method provides

smooth solutions, whereas SA result is noisy and loses angular

symmetry.

Stability. As we have already mentioned, our approach is a dis-

cretization of a well-posed variational scheme, and it has an advan-

tage that type, size and quality of mesh elements in the deformed

object have a weak influence on the computed deformation. Here

we show that attainable quality threshold estimates (quasi-isometry

constants) do not deteriorate with mesh coarsening which is unique
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(a) (b) (c) (d)

Fig. 9. Our method shows an excellent stability irrespective of input mesh quality. Here we show four free-boundary quasi-isometric maps (𝜃 = 1

2
) computed

on different meshes. (a)–(c): Behavior under coarsening (from 73k to 4k triangles) of an isotropic mesh. (d): Stress test, the input mesh has a very bad quality
with the maximum aspect ratio of 108 over the triangulation. Despite that, the resulting map is still of a good quality.

property of the proposed algorithm. To illustrate this point, we have

computed four free-boundary quasi-isometric maps on different

meshes of the same object (Fig. 9). Under coarsening of an input

isotropic mesh, the distortion bound remains almost the same (2.07,

2.10, 2.11 for the maximum jacobian condition number, respectively).

We have also perfomed a stress test Fig. 9–(d) with maximum aspect

ratio of 10
8
over the input triangulation, and the maximum jacobian

condition number we obtained equals to 2.25.

4.2 Untangling global parameterizations
An important application of parameterizations is the generation of

quad meshes. Given a 3D surface and its 2D flattening, applying the

inverse of the map to a 2D grid generates a grid on the surface, i.e. a

quad mesh. Naturally, this technique requires the map to be locally

invertibile, hence the importance of the untangling approach. For

producing more complex quad meshes [Bommes et al. 2009], it is

also possible to introduce discontinuities in the map. To generate

a valid quad mesh, however, we need to impose constraints along

these discontinuities: the transition function that maps one side of

a cut to the other side must be grid-preserving, i.e. it transforms the

2D unit grid onto itself (see Fig. 10).

All such grid preserving transition functions can be decomposed

into a rotation of 𝑘𝜋/2 plus an integer translation. In practice, pro-

ducing such a global parameterization requires two parameteriza-

tion steps: one where only the rotation is known (from a frame

field e.g. [Desobry et al. 2021]) and one where the translation is also

known (after quantization e.g. [Bommes et al. 2013]). In both cases,

these boundary constraints are affine and can be easily introduced

Fig. 10. The map is discontinuous across the red cut, but the projection of
the unit grid cells from the map (right) to the object (left) coincide thanks
to the grid preserving transition function (green arrow).

in our optimization scheme using [Bommes et al. 2012]. Figure 11

illustrates the global parameterization pipeline.

Recall that being free of inverted elements does not imply local

invertibility [Garanzha et al. 2021a, §3.3]. In difficult cases, double

coverings may appear. It is possible to prevent this with a brute force

solution [Garanzha et al. 2021b]. Local injectivity can be enforced

by adding extra (virtual) triangles. Unfortunately, this approach

rigidifies the mesh and can be time consuming. We can do better

for global parameterizations.

We can interpret the gradients of the parameterization as a frame

field [Ray et al. 2008]. Double coverings arise from index -1 singu-

larities of this field (refer to Fig. 12). Poincaré-Hopf theorem states

that the sum of indices is constant, so an index 1 singularity must

be placed somewhere to compensate for the index −1. With free

boundary mapping (as in our example in Fig. 12), the index 1 is

placed outside of the domain, simply adding a loop to the boundary.

For the global parameterization case, there is no free boundary, so

the index 1 must appear at a vertex. Recall however, that our maps
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(a) (b) (c) (d) (e)

Fig. 11. Quad generation via global parameterization pipeline. (a): we compute a frame field over the input triangulation, it allows us to determine singular
vertices. Then the mesh is cut open (b) and flattened under grid preserving constraints along the cuts. Least squares solution (c) has inverted elements that we
need to untangle (d). Finally, the unit grid is projected back to the mesh to define the quad mesh (e).

Fig. 12. A double covering example. Left: a surface to flatten is made of 12
equilateral triangles.Middle: the surface can be mapped to a plane without
inverted elements, producing a double covering. The map is not invertible
in one point. Right: gradients of the parameterization form two orthogonal
vector fields (shown in red and blue), both of them have a -1 singularity at
the center.

have positive Jacobian determinant over all elements, and thus it is

impossible to place singularity 1 at a regular vertex, since it is a pole

singularity that would force the map to have degenerate elements.

Therefore, the only possibility for the solver is to place it on a vertex

that already has a negative index singularity (typically −1/4) as
illustrated in Fig. 13.

This observation allows to avoid double coverings by simply

forcing vertices with negative index singularity to preserve the

index. To this end, for each such vertex 𝑣 , we flatten its one ring,

and compute the rotation + scale (with respect to 𝑣) that send each

adjacent vertex to the next one. The rotation is then scaled according

to the index of the vertex (×5/4 for the index −1/4), and these affine

equations tying in adjacent vertices are introduced as constraints to

our system. This solution forces the angle distortion to be perfectly

distributed on the one ring of these vertices. A local mesh refinement

is applied to prevent these new constraints to conflict.

As illustrated on Fig. 14, our method provides injective maps, even

with the high distortion required to produce coarse quad meshes.

Fig. 13. Quad mesh generation via global parameterization approach. The
triangular domain is mapped to a plane, the green line corresponds to a
(grid preserving) discontinuity in the map. Red and blue lines correspond to
the flat unit grid under the action of the inverse map. Left: one singularity
of index −1/4 is present in the domain, a valid quad mesh is generated.
Right: a double covering (−1 singularity) can appear if and only if the −1/4
singularity is “promoted” to 3/4, thus total sum is still equal to -1/4. The
map is no longer invertbile (even if all elements have positive Jacobian!),
leading to problems in quad mesh generation.

5 LIMITATIONS AND FUTURE WORK
Note that the “finite number of steps” theorem cannot be applied

to the case when the diameter of the feasible set is zero. This may

happen, for example, when the parameter 𝑡∗ is set to the maximum

attainable value. To handlemarginal cases of small size of the feasible

set, we can assign to 𝜎0 parameter quite small value, say 10
−3
. For a

moment it is not clear whether we can attain deformation with best

possible distortion numerically.
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Fig. 14. To avoid double coverings, we constrain singularities with negative
index and untangle the map (left). This allows us to obtain valid parameter-
ization even for coarsest quad layouts (right).

QIS algorithm is based on the idea of incremental contraction of

the set of admissible mesh deformations, i.e. the deformations which

provide finite value of QIS functional. While rigorous analysis is

missing, one can hope that with contraction the diameter of the

admissible set tends to zero while its boundary, which is evidently

infinitely smooth, is rounded and resembles the multidimensional

sphere. Evidently one should stop at some finite diameter, expecting

that minimum in the contracted set converges to limiting point

faster than the diameter coverges to zero. Of course, much worser

alternative is possible when measure of the feasible set tends to

zero while its diameter is frozen near certain fixed value. In order

to get certain one should obtain estimates for positive definite part

of the Hessian of QIS functional, similar to that for untangling

functional in [Garanzha et al. 2021a], and consider limiting values,

i.e. relation between diameter of the admissible set and curvature

of its boundary. This analysis is beyond the scope of present paper.

6 CONCLUSION
We formulate a set of variational problems potentially covering the

complete technological chain for construction of optimal mappings

and deformations with fixed as well as free boundaries. We start

with the continuation problem with respect to parameter 𝜀, this

minimization allows us to compute optimal in the average deforma-

tions. Then we formulate a continuation problem for worst quality

measure maximization (quasi-isometric stiffening, QIS), which re-

tains polyconvexity and smoothness of deformation. At all stages

we take care to demonstrate that finite number of basic optimiza-

tion steps is enough in order to solve the problem. We illustrate

performance of our algorithm with challenging 2D and 3D numer-

ical tests. Importance of polyconvexity is underlined since some

competing algorithms for mesh optimization which potentially may

attain good quality criteria for deformations tend to lose deforma-

tion smoothness and symmetries even in the simplest test cases.

A RELATIONSHIP BETWEEN DISTORTION MEASURES
AND THE QUASI-ISOMETRY CONSTANT

Given a deformation of a mesh, let us denote by Γ its quasi-isometry

constant (maximal relative length distortion of the map). In our

optimization procedure we do not optimize for Γ directly, we mini-

mize a mesh distortion measure 𝑓 instead. Let us show the relation

between the two. More precisely, we want to estimate Γ through

available values of 𝑓 (𝐽𝑘 ), where 𝐽𝑘 is the Jacobian matrix of 𝑘-the

simplex of the mesh.

First of all, we can write down following estimation, where 𝜎 𝑗 (𝐽𝑘 )
stand for (ordered) singular values of 𝐽𝑘 :

1

Γ
≤ 𝜎 𝑗 (𝐽𝑘 ) ≤ Γ. (20)

In practice many different distortion measures can be used, but

we are interested in those that satisfy 𝑓 (𝐽𝑘 ) ≥ 1 and guarantee that

inequality

𝑓 (𝐽𝑘 ) <
1

𝑡
, 𝑡 < 1 (21)

implies (20). Naturally, for QIS scheme to work with a certain dis-

tortion measure 𝑓 , we need the bound for Γ to tend to 1 as 𝑡 → 1. In

this section we analyze two possible choices of distortion measures,

namely, Eq. (2) and Symmetric Dirichlet [Schüller et al. 2013].

Let us start with 𝑓 := (1 − 𝜃 ) 𝑓𝑠 + 𝜃 𝑓𝑣 . First of all, let us note that
𝑓𝑠 ≥ 1 and 𝑓𝑣 ≥ 1, so following inequalities hold:

( 1
𝑑
tr 𝐽⊤

𝑖
𝐽𝑖 )𝑑/2

det 𝐽𝑖
< 𝑐1, 𝑐1 :=

(
1 − 𝑡𝜃
𝑡 (1 − 𝜃 )

)𝑑/2
and

1

2

(
det 𝐽𝑖 +

1

det 𝐽𝑖

)
< 𝑐2, 𝑐2 := 1 + 1 − 𝑡

𝑡𝜃
.

Reshetnyak’s inequality [Reshetnyak 1966] implies that

𝜎1 (𝐽𝑖 )
𝜎𝑑 (𝐽𝑖 )

< 𝑐1 +
√︃
𝑐2
1
− 1

From the above estimates we obtain the required bounds for

𝜎 𝑗 (𝐽𝑖 ) [Garanzha 2000], so

Γ <

(
𝑐1 +

√︃
𝑐2
1
− 1

) (𝑑−1)/𝑑 (
𝑐2 +

√︃
𝑐2
2
− 1

)
1/𝑑

Note that in the 2D case and with 𝜃 = 1/2 the bound for Γ takes the

simplest form

Γ <
(1 +
√
1 − 𝑡)2
𝑡

.

Indeed, Eq. (2) forces the quasi-isometry constant Γ to tend to unity

when 𝑡 → 1, so our QIS techinque is correct.

Simple estimates for Γ can be also derived for Symmetric Dirichlet

(SD) distortion measure. This measure can be written as follows:

𝑓 (𝐽 ) := 1

2𝑑

𝑑∑︁
𝑗=1

(
𝜎2𝑗 +

1

𝜎2
𝑗

)
.

In this case

Γ < 𝑐3 +
√︃
𝑐2
3
− 1, 𝑐3 = 1 + 𝑑 1 − 𝑡

𝑡

The bound satisfies the requirements for QIS algorithm, so SD can

be used in our stiffening scheme. Note, however, that even though

SD distortion measure is a convex function of singular values, it is

not clear whether it is polyconvex (convex with respect to minors

of 𝐽 ).
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